
Nash Equilibria in Concurrent Priced Games

Miroslav Klimoš1, Kim G. Larsen2, Filip Štefaňák1, Jeppe Thaarup2

1 Masaryk University, Faculty of Informatics, Czech Republic
2 Aalborg University, Department of Computer Science, Denmark

Abstract. Concurrent game structures model multi-player games played
on finite graphs where the players simultaneously choose their moves and
collectively determine the next state of the game. We extend this model
with prices on transitions for each player. We study pure Nash equilibria
in this framework where each player’s payoff is the accumulated price of
all transitions until reaching their goal state. We provide a construction of
a Büchi automaton accepting all Nash equilibria outcomes and show how
this construction can be used to solve a variety of related problems, such
as finding pareto-optimal equilibria. Furthermore, we prove the problem
of deciding the existence of equilibria to be NP-complete.

1 Introduction

Games played on graphs have enjoyed much attention from computer scientists in
the past decades. Traditionally, they have been used to model scenarios where an
actor tries to find a course of action against an unpredictable environment. Games
have proven to be a helpful formalism with many applications. Bisimulation,
accepting conditions of alternating automata, satisfiability of predicate logic can
all be expressed as a two-player game with antagonistic objectives. Only one
player can win in this case and the focus is usually limited to finding out which
player has a winning strategy.

Non-zero-sum Games. In non-zero-sum games the players have independent
objectives. Each player only cares about their own objective and does not care
about objectives of others. Furthermore, it is natural to consider more than two
players in this context. Such generalization of games allows for more realistic
expression of real world problems and has been prominently used in economics,
evolutionary biology or political science. In computer science, they have been
used to model network routing problems [4]. The non-zero-sum games have been
the focus of the game theory branch of mathematics for many years. However,
game theorists do not usually study games and strategies as objects with internal
structure.

The objectives of players in non-zero-sum games can be qualitative or quanti-
tative. In the qualitative setting, each player can either win or lose, so the game
has a set of winners. In the quantitative setting, the result of each player is a
number – the cost – which they try to minimize (or maximize – in this case, the
number is called payoff). In our case of graph games, the moves of the game are
equipped with individual prices for each player.

Concurrent Games. Traditionally, the players take their decicions with full
information and the game is turn-based. If the result depends on simultaneous
and secret choices of multiple players, such as in the game rock-paper-scissors,
we call the game concurrent [1]. Concurrent games are sufficient to describe all
turn-based games, but they can model additional interesting problems, such as
the famous prisoners’ dilemma.

Nash Equilibria. Rational players adjust their play to the play of their oppo-
nents to improve their own benefit. If the game is repeated, the course of the

game changes until they reach a situation where no player can further improve
by unilaterally changing their play. Such state is called a Nash equilibrium [6]
and it is the game theorists’ tool of choice for the analysis of non-zero-sum games.
Barring pacts between the players, the situation always stabilizes in a state that
is a Nash equilibrium. A pure Nash equilibrium does not always exist and is not
always optimal, but a game can also have multiple equilibria.

H,O

(7, 1)

M,O (5, 2)

L,O

(3, 3)

O,O

(1, 0)

O,P
(4, 0)

O,O

q0 q1 g
(1, 1)

0 5 10
0

5

cost for player 1

co
st

fo
r
p
la
y
er

2

(6,2)
(4,3) (7,3)

Pareto optimal equilibrium

Fig. 1. A Priced Concurrent Games Structure and the Cost for its Equilibria

Our Contribution. In Section 2, we introduce Priced Concurrent Games
Structures (PCGS), deterministic concurrent game graphs with non-negative
integer prices on transitions for each player with individual reachability objectives.
An example of a two-player PCGS can be seen in Fig. 1. From each state, a
transition is determined by a choice of both players (pair of letters). Each
transition is assigned a pair of numbers representing costs for the respective
players. The goal state for both players is a bold circle.

A player provides a strategy that can consider the whole history of the game
to choose a next move. The combination of strategies determines a run in the
graph, which yields the cost for each player, defined as the accumulated price of
all transitions until reaching their goal state.

The studied problem is to characterize all Nash equilibria of a given game.
Variants of this problem include deciding existence of an equilibrium and limiting
the search to equilibria with the costs of players constrained by bounds. In the
chart in Fig. 1, we can see plotted costs of all Nash equilibria of the example.

In sections 3 and 4 we identify all Nash equilibrium strategy profiles by
constructing a Büchi automaton accepting precisely the language of outcomes of
all equilibrium strategy profiles satisfying a bound vector. Such characterization
also allows for simple reduction of other similar problems, such as deciding an
existence of any equilibrium by checking emptiness of a language of a Büchi
automaton.

In Section 5, we characterize the complexity of the decision problem by
proving that it is NP-complete in its several variants, except for the special case
of turn-based games without bounds. We prove that an equilibrium always exists
in turn-based games, which makes the general decision problem trivial.

Related Work Bouyer et. al. explore in [2] the existence of Nash equilibria in
multiplayer concurrent games with reachability objectives. They include timed
games, but they only consider qualitative reachability objectives. Brihaye et.
al. study in [3] turn-based quantitative multiplayer games with reachability
objectives. They prove existence of finite-memory Nash equilibria in such games.
We confirm this in our framework as a corollary of our main result. However, it
is necessary to point out that the formalisms are not completely equivalent. Most
recently, Ummels et. al. study Nash equilibria in [7], using concurrent games but
only with respect to limit-average objectives. The important distinction is that
the initial part of the game is irrelevant to them. Thus, although related, the
studied problems are quite different.

2 Preliminaries

We start with definitions of Concurrent Game Structures, computations, (full-
memory) strategies and strategy profiles and outcomes of strategies. Then we
introduce Priced Concurrent Game Structures by adding prices to transitions.
Afterwards we formally define Nash equilibria on priced games. As the formalism
of Büchi automata is well known, we only include the exact definition of Büchi
automata and runs in the Appendix.

We use the symbol N∞ = N ∪ {∞} for the set of natural numbers with
zero and infinity. The 𝑎-th projection of a vector 𝑋 is denoted by 𝑋𝑎. We
use the notation 𝑋−𝑎 = (𝑋1 . . . 𝑋𝑎−1, 𝑋𝑎+1 . . .) for the vector 𝑋 without its
𝑎-th element. We define a vector extension operator �𝑎, which adds the first
argument to the position 𝑎 in the vector given as the second argument, i.e.
𝑥𝑎 �𝑎 (𝑥1 . . . 𝑥𝑎−1, 𝑥𝑎+1 . . . 𝑥𝑛) = (𝑥1 . . . 𝑥𝑛) and 𝑋𝑎 �𝑎 𝑋−𝑎 = 𝑋.

A word over alphabet 𝛴 is a (finite or infinite) sequence of elements from 𝛴.
Given a word 𝑤 and 𝑖 ≤ |𝑤|, 𝑤[𝑖] denotes the 𝑖-th element of 𝑤, 𝑤𝑖 is a prefix of
𝑤 of length 𝑖, and 𝑤𝑖 is the 𝑖-th suffix s. t. 𝑤 = 𝑤𝑖.𝑤

𝑖. An empty word is denoted
by 𝜖.

For the rest of the article we use standard comparison operators over natural
numbers including zero and special symbols ∞ and ⊥. For the sake of comparison,
∞ is the largest element and ⊥ is the smallest element. Addition or subtraction
involving ∞ results in ∞ (except when ⊥ is involved). Addition or subtraction
involving ⊥ always results in ⊥.

Definition 1 (Concurrent Game Structures). A Concurrent Game Struc-
ture (CGS) is a tuple (𝐾, 𝑄, 𝑞0, 𝛷, 𝜑,M, 𝛥, 𝛿) with the following components:

– A natural number 𝐾 ≥ 1 of players. We identify the players with numbers
1, . . . , 𝐾 and we use notation 𝛺 = {1, . . . , 𝐾} for the set of players.

– A finite set 𝑄 of states.
– An initial state 𝑞0 ∈ 𝑄.
– A finite set 𝛷 of propositions.
– A labeling function 𝜑 : 𝑄 → 2𝛷, such that for each state 𝑞 ∈ 𝑄, 𝜑(𝑞) ⊆ 𝛷 is

a set of propositions true at 𝑞.
– A non-empty, finite set M of moves.
– A move function 𝛥 : 𝛺 × 𝑄 → 2M ∖ {∅}, that defines a set of possible moves

for each player and each state. For each state 𝑞 ∈ 𝑄, a move vector at 𝑞 is a
vector 𝐽 ∈ M𝑘 such that 𝐽𝑎 ∈ 𝛥𝑎(𝑞) for each player 𝑎. Given a state 𝑞 ∈ 𝑄
we write 𝛥(𝑞) =

∏︀
𝑎∈𝛺 𝛥𝑎(𝑞) for the set of all move vectors. We denote

by 𝛥−𝑏(𝑞) =
∏︀

𝑎∈𝛺,�̸�=𝑏 𝛥𝑎(𝑞) the set of vectors of the possible moves of all
players except 𝑏.

– A transition function 𝛿, such that for each state 𝑞 ∈ 𝑄 and each move vector
𝐽 ∈ 𝛥(𝑞), it determines a state 𝛿(𝑞, 𝐽) ∈ 𝑄 that results from state 𝑞 if every
player 𝑎 ∈ 𝛺 chooses move 𝐽𝑎.

Let us remark that commonly studied turn-based games are a special case of
CGS, where in every state each player but one has exactly one possible move.
We define the extended transition function 𝛿 over finite words of move vectors
inductively: 𝛿(𝑞, 𝜖) = 𝑞 and 𝛿(𝑞, 𝐽.𝛬) = 𝛿(𝛿(𝑞, 𝐽), 𝛬), where 𝐽 ∈ M𝐾 , 𝛬 ∈ (M𝐾)*.

Definition 2 (Computation). Let 𝛬 be a (finite or infinite) word over alphabet
M𝐾 and 𝑞 a state of a CGS. We say that 𝛬 is a computation from 𝑞 if for each
position 𝑖 ∈ N, 𝛬[𝑖 + 1] ∈ 𝛥(𝛿(𝑞, 𝛬𝑖)).

Lemma 1. Let 𝛬 be a computation from state 𝑞. Then 𝛬𝑖 is a computation from
state 𝛿(𝑞, 𝛬𝑖).

Definition 3 (Strategy). Given a CGS 𝑇 , 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝛺, a function
𝑓 : (M𝐾)* → M is a strategy from state 𝑞 for player 𝑎, if 𝑟 = 𝛿(𝑞, 𝛬) implies
𝑓𝑎(𝛬) ∈ 𝛥𝑎(𝑟).

Thus, a strategy of a player is a function that for a finite history determines
their next move.

A vector (𝑓1, . . . , 𝑓𝐾) is a strategy profile from state 𝑞, if for each 𝑎 ∈ 𝛺, 𝑓𝑎
is a strategy from state 𝑞 for player 𝑎.

The operator � allows us to change the strategy of a player in a strategy
profile: If 𝐹 is a strategy profile from state 𝑞 and 𝑓 is a strategy from state 𝑞
for player 𝑎, 𝑓 �𝑎 𝐹−𝑎 is a strategy profile, where all players except 𝑎 use the
strategies according to 𝐹 and player 𝑎 uses the strategy 𝑓 . Similarly, if 𝑗 ∈ 𝛥𝑎(𝑞)
is a move of player 𝑎 in state 𝑞 and 𝐽 ∈ 𝛥(𝑞) is a move vector, 𝑗 �𝑎 𝐽−𝑎 is a
move vector with changed move for player 𝑎.
Definition 4 (Outcome). An outcome is a function 𝜆 from strategy profiles
to outcomes, s. t. whenever 𝐹 is a strategy profile from a state 𝑞, 𝜆(𝐹) is an
infinite computation from 𝑞 s. t. 𝜆(𝐹)[𝑖 + 1] = (𝐹1(𝜆(𝐹)𝑖), . . . , 𝐹𝐾(𝜆(𝐹)𝑖)) .

That is, 𝜆(𝐹) is a computation where each step consists of individual moves
of strategies from 𝐹 based on current history.
Definition 5 (Priced Concurrent Game Structures). A Priced Concurrent
Game Structure (PCGS) is a tuple (𝐾, 𝑄, 𝑞0, 𝛷, 𝜑,M, 𝛥, 𝛿, 𝛾) with the following
differences to CGS:

– The set of propositions 𝛷 always includes 𝑔1, . . . , 𝑔𝐾 , which are used to
represent goal states for the respective players.

– The price function 𝛾 assigns to each state 𝑞 and each move vector 𝐽 ∈ 𝛥(𝑞)
a 𝐾-tuple of non-negative natural numbers which correspond to the price for
each player. 𝛾𝑖 denotes the 𝑖-th projection of 𝛾, i.e. the price for player 𝑖.

Definition 6 (Cost). Given a PCGS 𝑇 , a cost function is a function 𝛤 :
𝑄 × (M𝐾)* → N𝐾

∞ such that for each player 𝑎 ∈ 𝛺, state 𝑞 ∈ 𝑄 and computation
𝛬 from 𝑞,

𝛤𝑎(𝑞, 𝛬) =
𝑘∑︁

𝑖=1
𝛾𝑎(𝛿(𝑞, 𝛬𝑖−1), 𝛬[𝑖]),

where 𝑘 is the smallest position such that 𝑔𝑎 ∈ 𝜑(𝛿(𝑞, 𝛬𝑘)). If no such 𝑘 exists,
𝛤𝑎(𝑞, 𝛬) = ∞.

We omit the state 𝑞 since it is usually clear from the context of the computation
𝛬 and write just 𝛤 (𝛬).

Lemma 2. Let 𝛬 be a computation from 𝑞. If 𝑔𝑎 ∈ 𝜑(𝑞), then 𝛤𝑎(𝛬) = 0.
Otherwise, 𝛤𝑎(𝛬) = 𝛤𝑎(𝛬1) + 𝛾𝑎(𝑞, 𝛬[1]).

Definition 7 (Nash Equilibrium). Given a PCGS with initial state 𝑞0, we
say that strategy profile 𝐹 from state 𝑞0 is a Nash equilibrium, if for each player
𝑎 ∈ 𝛺 and for all strategies 𝑓𝑎 of player 𝑎,

𝛤𝑎(𝜆(𝑓𝑎 �𝑎 𝐹−𝑎)) ≥ 𝛤𝑎(𝜆(𝐹)).

That is, no player can reduce their cost 𝛤𝑎 by changing their strategy.
We say that a Nash equilibrium 𝐹 satisfies bounds 𝐵 ∈ N𝐾

∞, if 𝐵𝑎 ≥ 𝛤𝑎(𝜆(𝐹)).

Example 1. Let us go back to the example in Fig. 1. Consider the following
strategies 𝑓𝐻 , 𝑓𝑀 , 𝑓𝐿 for player 1 from 𝑞0 (all possible strategies) and 𝑓1, 𝑓2, 𝑓3
for player 2 from 𝑞0 (3 out of 8 possible strategies). For any history 𝛬 ∈ (M2)*:

𝑓𝐻(𝛬) =
{︂

𝐻 if 𝛬 = 𝜖
𝑂 otherwise 𝑓1(𝛬) =

{︀
𝑂 always

𝑓𝑀 (𝛬) =
{︂

𝑀 if 𝛬 = 𝜖
𝑂 otherwise 𝑓2(𝛬) =

{︂
𝑃 if 𝛬 = (𝐿, 𝑂)
𝑂 otherwise

𝑓𝐿(𝛬) =
{︂

𝐿 if 𝛬 = 𝜖
𝑂 otherwise 𝑓3(𝛬) =

{︂
𝑃 if 𝛬 = (𝐿, 𝑂) or (𝑀, 𝑂)
𝑂 otherwise

The outcome for the strategy profile (𝑓𝑀 , 𝑓2) is 𝜆(𝑓𝑀 , 𝑓2) = (𝑀, 𝑂)(𝑂, 𝑂)𝜔

(the blue dotted path). The cost of this outcome is 𝛤 (𝜆(𝑓𝑀 , 𝑓2)) = (6, 2). The
outcome for the strategy profile (𝑓𝐿, 𝑓2) is 𝜆(𝑓𝐿, 𝑓2) = (𝐿, 𝑂)(𝑂, 𝑃)(𝑂, 𝑂)𝜔 (the
red dashed path). The cost of this outcome is 𝛤 (𝜆(𝑓𝐿, 𝑓2)) = (7, 3). Note that
although the strategy for player 2 remains the same, their move is different in
the second step.

Let us now examine some of the strategy profiles for equilibria. Profile (𝑓𝑀 , 𝑓2)
is a Nash equilibrium as no player can reduce their cost. Particularly, if player 1
uses 𝑓𝐿, he gets lower cost for the first step, but suffers even worse penalty in
the second step. Other equilibria include (𝑓𝐿, 𝑓1), (𝑓𝑀 , 𝑓1), and (𝑓𝐿, 𝑓3). Profiles
(𝑓𝑀 , 𝑓1) and (𝑓𝑀 , 𝑓3) are not Nash equilibria. Player 1 may switch to 𝑓𝐿 without
any penalty. Profile (𝑓𝐻 , 𝑓3) is not a Nash equilibrium. While switching to 𝑓𝑀
does not do player 1 any good, switching to 𝑓𝐿 yields an immediate benefit that
is greater than the received penalty from player 2.

Problem 1 (Nash equilibria problem). Given a PCGS and bound vector (𝑏1 . . . 𝑏𝐾) ∈
N𝐾

∞, find all Nash equilibria 𝐹 satisfying bounds (𝑏1 . . . 𝑏𝐾).

Problem 2 (Decision variant of Nash equilibria problem). Given a PCGS and a
bound vector (𝑏1 . . . 𝑏𝐾) ∈ N𝐾

∞, decide whether there is a Nash equilibrium 𝐹
satisfying bounds (𝑏1 . . . 𝑏𝐾). If all 𝑏𝑎 are fixed to ∞, i.e. we decide whether there
is some Nash equilibrium in general, we refer to this problem as the Decision
variant of Nash equilibria problem without bounds.

We might want to consider only equilibria where each player reaches their
goal, i. e. where each cost is finite. We would still want to be able to limit the
individual costs.
Problem 3 (Decision variant of Nash equilibria with finite costs problem). Given
a PCGS and a bound vector (𝑏1 . . . 𝑏𝐾) ∈ N𝐾

∞, decide whether there is a Nash
equilibrium 𝐹 satisfying bounds (𝑏1 . . . 𝑏𝐾), in which each cost is finite.

3 Temptation and Punishment

When looking for Nash equilibria, we are looking neither for best strategies,
nor for any competition. The players are not opponents, but collaborators. A
Nash equilibrium is a stable mutual cooperation, where no player is tempted
to defect. The cooperation need not be the most effective one. In games with
multiple equilibria, we can often find multiple or even infinite number of stable
cooperations that are strictly worse than other stable cooperations (such as the
equilibrium (𝑓𝐿, 𝑓3) in the example from Fig. 1 with cost (7, 3)).

The temptation is the best possible cost a player can achieve by defecting a
cooperation from a particular transition. Without temptation, all cooperations
would be Nash equilibria because players would have no incentive to defect. That
is also the approach we use for finding equilibria. We assume that players can
agree on any outcome that is not jeopardized by a better temptation for one of
the players.

Reactive games such as CGS allow strategies to detect a defection and adjust
their behaviour. However, the players always provide their whole strategy in
advance. Therefore the defecting adversary is able to adjust to the cooperating
players’ punishment. The punishment are the moves of the coalition that they
had decided to use after they detect a betrayal. One of the properties of Nash
equilibria strategies is that the players also advertise the punishment they will
use. The defecting player can fully take advantage of that and choose a way of
defection that guarantees the best outcome, given the future punishment.

A strategy can never detect and punish a defection in advance. The reason
for this is that a strategy is determined only by a history of moves. As long as
the defecting strategy plays according to the deal, the other strategies must be
using the same moves.

On the other hand, the punishing coalition’s strategies do not care about
their own cost anymore. After the alliance is broken by the traitor, all they are
trying to do is make things miserable for the traitor. Such behaviour might seem
counter-intuitive at first, but it makes sense when we reconsider the very purpose
of such punishment. It exists to minimize temptation, and never has to occur
when the players keep the deal which they have no incentive of breaking.

Let us introduce punishment values 𝛱 and temptation values 𝜏 . First of all,
we state our requirements for these values and show an easy example. Then we
provide an algorithm for computing punishment and temptation values based on
relations between them and finally we formally prove that the computed values
correspond to our requirements.

The punishment value 𝛱𝑎(𝑞) for player 𝑎 and state 𝑞 is the cost of the worst
outcome for player 𝑎 which the coalition 𝛺 ∖ {𝑎} can enforce, starting in 𝑞. In
other words, coalition 𝛺 ∖ {𝑎} has a strategy profile 𝐹−𝑎 to guarantee that the
cost for player 𝑎 from 𝑞 will be at least 𝛱𝑎(𝑞).

Temptation value 𝜏𝑎(𝑞, 𝐽−𝑎) for player 𝑎, state 𝑞 and move 𝐽−𝑎 of the coalition
𝛺 ∖ {𝑎} is the cost of the best outcome for player 𝑎 starting from 𝑞, provided that
𝛺 ∖ {𝑎} use 𝐽−𝑎 as their first move and they are commited to their strategy. In
other words, if players 𝛺 ∖ {𝑎} use profile 𝐹−𝑎 from 𝑞, starting with 𝐽−𝑎, player
𝑎 has a strategy to guarantee that her cost from 𝑞 will be at most 𝜏𝑎(𝑞, 𝐽−𝑎). For
the sake of simplicity, we use notation 𝜏𝑎(𝑞, 𝐽) = 𝜏𝑎(𝑞, 𝐽−𝑎).

H,O

(7, 1)

M,O (5, 2)

L,O
(3, 3)

O,O

(1, 0)

O,P
(4, 0)

O,O

q0 q1 g
(1, 1)

Π(q1) = (4, 0)
Π(q0) = (7, 3) τ1(q1, O) = 1
τ1(q0, O) = 7 τ1(q1, P) = 4
τ2(q0, H) = 1 τ2(q1, O) = 0
τ2(q0,M) = 2
τ2(q0, L) = 3 Π(g) = (0, 0)

τ1,2(g,O) = 1
Π = (0, 0)

τ = (1, 1)

τ = (4, 0)

τ = (1, 0)τ = (7, 1)

τ = (7, 2)

τ = (7, 3)

Π = (7, 3) Π = (4, 0)

Fig. 2. PCGS from Fig. 1 with punishment and temptation values

Our algorithm is based on the following relations between punishment and
temptation values.

𝜏𝑎(𝑞, 𝐽−𝑎) = min
𝑗∈𝛥𝑎(𝑞)

𝛾𝑎(𝑞, 𝑗 �𝑎 𝐽−𝑎) + 𝛱(𝛿(𝑞, 𝑗 �𝑎 𝐽−𝑎))

if 𝑔𝑎 /∈ 𝜑(𝑞) : 𝛱𝑎(𝑞) = max
𝐽∈𝛥−𝑎(𝑞)

𝜏𝑎(𝑞, 𝐽)

if 𝑔𝑎 ∈ 𝜑(𝑞) : 𝛱𝑎(𝑞) = 0

It starts with an initial assignment of punishment values to ∞ for non-goal
states and to 0 for goal states of a player. Then, in every iteration, it updates
all the values according to these equations until reaching a fixed point. We can
prove that no more than |𝑄| iterations are needed and therefore the algorithm
operates in polynomial time.

In the following lemmas – the proofs of which may be found in the Appendix
– consider 𝛱, 𝜏 to be values computed by the algorithm, i.e. values satisfying the
above equations. Here we show that they accord with their meaning provided in
the first paragraphs.

Lemma 3 (Punishment Lemma). For each state 𝑞 of a PCGS 𝑇 , there is a
strategy profile 𝐹−𝑎 from 𝑞 for coalition 𝛺 ∖ {𝑎}, such that for each strategy 𝑓
from 𝑞 of player 𝑎, 𝛤𝑎(𝜆(𝑓 �𝑎 𝐹−𝑎)) ≥ 𝛱𝑎(𝑞).

Lemma 4 (Temptation Lemma). For each state 𝑞 and move 𝐽−𝑎 ∈ 𝛥−𝑎(𝑞)
and for each strategy profile 𝐹−𝑎 from 𝑞 for coalition 𝛺∖{𝑎} starting with the move
𝐽−𝑎, there is a strategy 𝑓 from state 𝑞 of player 𝑎, such that 𝛤𝑎(𝜆(𝑓 �𝑎 𝐹−𝑎)) ≤
𝜏𝑎(𝑞, 𝐽−𝑎)

4 Equilibrium Automaton

Theorem 1. For a PCGS 𝑇 , the set of all outcomes of Nash equilibria satisfying
bounds 𝐵 ∈ N𝐾

∞ is an 𝜔−regular language.

We proceed with constructing a Büchi automaton accepting exactly the set
of all equilibria outcomes. The idea of the construction is that we enhance states
with local bounds for each player. Bounds 𝑋 = (𝑥1 . . . 𝑥𝐾) in state (𝑞, 𝑋) mean
that the cost of any infinite computation 𝛬 from 𝑞 represented by a run from
(𝑞, 𝑋) must satisfy 𝑋, i.e. 𝛤𝑎(𝛬) ≤ 𝑥𝑎. We are also allowed to say that we no
longer care about the cost for player 𝑎 from this state and let 𝑥𝑎 = ⊥.

Whenever there is a transition from 𝑞 to 𝑟 with cost 𝐶, there should be
a transition from (𝑞, 𝑋) to (𝑟, 𝑌 ′), where 𝑌 ′ = (𝑦′

1 . . . 𝑦′
𝐾) and 𝑦′

𝑎 = 𝑥𝑎 − 𝐶𝑎.
However, whenever 𝑞 is a goal state for player 𝑎, then instead the local bound 𝑦′

𝑎
for 𝑎 is set to ⊥, because the cost of this run for 𝑎 has already been determined.
This alone would allow us to observe the global bounds 𝐵.

On the other hand, we also have to account for the temptations of players
to defect a potential equlibrium. Whenever we want to agree on a move 𝐽 with
temptation 𝜏𝑎(𝑞, 𝐽), then the cost of the rest of the outcome for player 𝑎 must
be lower than or equal to this temptation. Otherwise, player 𝑎 would defect the
cooperation in this transition. Therefore we also update local bounds in 𝑟 to
𝑦′′

𝑎 = 𝜏𝑎(𝑞, 𝐽) − 𝐶𝑎.
We are interested in the lower of the two bounds 𝑦′, 𝑦′′. Thus finally,

𝑦𝑎 = min(𝑥𝑎, 𝜏𝑎(𝑞, 𝐽)) − 𝛾𝑎(𝑞, 𝐽)

Note that such transition function guarantees that on any run of an equilibrium
automaton, the local bound for any player 𝑎 is nonincreasing.

Additionally, whenever 𝑦𝑎 is lower than 0, we omit that transition. The
transition function for the Equilibrium automaton will be deterministic, but not
total.

A choice of accepting states reflects the local bounds. If local bound 𝑥𝑎 is
⊥, the cost is finite and respects the bounds. However, a computation 𝛬 which
never reaches a state with goal 𝑔𝑎 has cost 𝛤𝑎(𝛬) = ∞. Such computation can
only be an equilibrium if local bounds for all states are ∞. Otherwise, there is
a temptation for player 𝑎 to defect. Therefore we allow ∞ as a local bound for
accepting states.

Definition 8 (Equilibrium automaton 𝒯). For a PCGS 𝑇 and 𝐵 ∈ N𝐾
∞, an

Equilibrium automaton for 𝑇 and bounds 𝐵 is a Büchi automaton
(𝛴, 𝒬, 𝛿′, {(𝑞0, 𝐵)}, ℱ) with the following components:

– Alphabet 𝛴 =
⋃︀

𝑞∈𝑄 𝛥(𝑞), the set of all move vectors.
– The state set 𝒬 = 𝑄 × 𝑃1 × . . . × 𝑃𝐾 , where 𝑃𝑎 denotes the set {⊥, ∞} ∪

{0, 1 . . . 𝑝𝑎}. If 𝐵𝑎 ≠ ∞, 𝑝𝑎 = 𝐵𝑎, otherwise 𝑝𝑎 equals to the highest punish-
ment value 𝛱𝑎 for player 𝑎 lower than ∞.

– The partial transition function 𝛿′ : 𝒬 × 𝛴 → 𝒬, defined as follows. For each
state 𝑞 and local bounds 𝑋 = (𝑥1 . . . 𝑥𝐾), let 𝑌 = (𝑦1 . . . 𝑦𝐾), s. t.

𝑦𝑎 =
{︂

⊥ if 𝑥𝑎 = ⊥ or 𝑔𝑎 ∈ 𝜑(𝑞),
min(𝑥𝑎, 𝜏𝑎(𝑞, 𝐽)) − 𝛾𝑎(𝑞, 𝐽) otherwise.

Then 𝛿′((𝑞, 𝑋), 𝐽) =
{︂

(𝛿(𝑞, 𝐽), 𝑌) if 𝑦𝑎 = ⊥ or 𝑦𝑎 ≥ 0 for all 𝑎,
undefined otherwise.

– The initial state set {(𝑞0, 𝐵)}, the initial state of 𝑇 augmented with bounds
𝐵.

– The accepting state set ℱ = 𝑄 × {⊥, ∞}𝐾 .

Lemma 5 (Correspondence). Let 𝑇 be a PCGS, 𝐿𝑇 be the language of all
outcomes 𝜆(𝐹), such that 𝐹 is a Nash equilibrium satisfying bounds 𝐵 ∈ N𝐾

∞,
and let 𝒯 be an Equilibrium automaton for 𝑇 and bounds 𝐵. Then ℒ(𝒯) = 𝐿𝑇 .

Proof. The ⊆ direction is given by Lemma 7, the ⊇ is given by Lemma 8.

Theorem 1 is a corollary of the previous Lemma.

Example 2. In Fig. 3 we provide a second example which is not turn-based and
includes cycles. On the left side there is PCGS 𝑇 with temptation and punishment
values according to the previous section. The cost of each transition is (1, 1),
except for the transition 1, 1 from 𝑞𝑘 which is (0, 1). On the right side, there is
an Equilibrium automaton for 𝑇 and bounds (∞, ∞).

Lemma 6. Let 𝒯 be an Equilibrium automaton for a PCGS 𝑇 and bounds
𝐵 ∈ N𝐾

∞.
Then, if 𝒯 has an accepting run 𝜌 over word 𝛬, then 𝛬 is a computation on

𝑇 starting in 𝑞0 and the state component of the extended state always corresponds
to the state of the computation, e.g. for 𝜌(𝑖) = (𝑞𝑖, 𝑥𝑖

1 . . . 𝑥𝑖
𝐾), 𝑞𝑖 = 𝛿(𝑞0, 𝛬𝑖).

Furthermore, 𝜌 satisfies local bounds in each state, e.g. for each player 𝑎,
either 𝑥𝑖

𝑎 = ⊥, or 𝛤𝑎(𝛬𝑖) ≤ 𝑥𝑖
𝑎.

O,OO,O

q0,∞,∞ q1,∞,∞

qk,∞,∞ qk,∞,0 qk,0,∞

g,0,0g,⊥,⊥

N,NN, YY,N

Y, Y

G,W W,G

W,W

G,G

O,O
O,O

q0

qk

q1

g

Y, Y
G,G W,W

W,G
G,W

Π = (0, 0)

Π = (∞,∞)

Π = (∞,∞)

Π = (∞,∞)

τ = (1, 1)

τ = (0, 0)

τ = (∞,∞)

τ = (1,∞)

τ = (∞, 1)

τ = (∞,∞)

τ = (∞,∞)

τ = (∞,∞)
(0, 1)

Y,N; N,Y;
N,N

O,O

O,O

Fig. 3. Construction of an Equilibrium automaton for bounds (∞, ∞)

Lemma 7. Let 𝒯 be an Equilibrium automaton for a PCGS 𝑇 and bounds
𝐵 ∈ N𝐾

∞.
If 𝒯 accepts 𝛬, there exists a strategy profile 𝐹 from 𝑞0, such that 𝛬 is an

outcome 𝜆(𝐹) and 𝐹 is a Nash equilibrium satisfying 𝐵.

Proof. Firstly, we construct strategy profile 𝐹 = (𝑓1 . . . 𝑓𝐾) s. t. 𝛬 = 𝜆(𝐹). These
strategies follow 𝛬 but as soon they detect a defection, they employ a punishing
strategy according to the Punishment Lemma 3. Then we show that 𝐹 is a Nash
equilibrium by contradiction. Assuming that player 𝑎 can reduce her cost by
changing to 𝑓 ′

𝑎, we find the last state 𝑞𝑖−1 before the defection and refer to the
Punishment Lemma for the next state to show that the new cost for 𝑎 from 𝑞𝑖−1
is at least 𝑥𝑖−1

𝑎 . However, since the original cost for 𝑎 is at most 𝑥𝑖−1
𝑎 thanks to

Lemma 6, we reach a contradiction with the improvement of the cost.
Finally 𝐹 satisfies bounds 𝐵, as 𝐵 are local bounds for state 𝑞0 and Lemma

6 gives an upper bound for the cost of 𝜆(𝐹). ⊓⊔

Lemma 8. For each strategy profile 𝐹 that is a Nash equilibrium on a PCGS
𝑇 satisfying bounds 𝐵, their outcome is in the language of 𝒯 , the Equilibrium
automaton for 𝑇 and 𝐵. That is, 𝜆(𝐹) ∈ ℒ(𝒯).

Proof. If 𝛬 is not accepted by 𝒯 , we find the last index 𝑘 s. t. condition 𝑥𝑖
𝑎 = ⊥

or 𝛤𝑎(𝛬𝑖) ≤ 𝑥𝑖
𝑎 is satisfied for each 𝑖 ≤ 𝑘. If such index does not exist because the

run is infinite but the condition is always satisfied, the cost for some player is ∞
which implies that the condition is not satisfied in some state (a contradiction). If
such index does not exist because the condition is never satisfied, the equilibrium
does not meet the bounds.

Otherwise, we show that 𝛬[𝑘] is a move with a low temptation value for
player 𝑎 and according to the Temptation Lemma 4, we can find a strategy 𝑓
defecting in this move, resulting in cost lower than the original. Thus, 𝐹 is not
Nash equilibrium. ⊓⊔

The Equilibrium automaton provides a straightforward solution to Problems
1 and 2. We can easily modify the automaton to solve Problem 3 by limiting the
set of accepting states to those where all local bounds are ⊥, as this corresponds
to runs where each player reaches their goal. This also allow us to compute
all Pareto optimal equilibria: the set of bounds (𝑏1, . . . , 𝑏𝑘) ∈ N𝑘 satisfied by a

Nash equilibrium is clearly upwards closed. Having just presented the solution to
Problem 3 we can apply the result of Valk and Jantzen [8] for computing the
finite (due to Dickson’s lemma) minimal such bounds:

Theorem 2. The set of Pareto optimal bounds (𝑏1, . . . , 𝑏𝑘) ∈ N𝑘 satisfied by a
Nash equilibrium can be computed.

5 Complexity of the Decision Variant

Consider the decision variant of the Nash equilibria problem. With the construc-
tion of the Equilibrium automaton 𝒯 for PCGS 𝑇 and bounds 𝐵, the problem
is reduced to deciding an existence of an accepting run in the Büchi automa-
ton. Although the size of the automaton is possibly exponential, we present the
following result:

Theorem 3. Decision variant of the Nash equilibria problem is NP-complete.

First we focus on showing that the problem is solvable in NP. The idea is
that instead of constructing the Equilibrium automaton, we nondeterministically
guess an accepting lasso in the automaton. We then verify the lasso in time linear
to its length using the transition rules. The following two lemmas show that a
lasso of polynomial length is sufficient for this.

Definition 9 (Relation %). Two states 𝑋 = (𝑞𝑋 , 𝑥1 . . . 𝑥𝐾), 𝑌 = (𝑞𝑌 , 𝑦1 . . . 𝑦𝐾)
are in relation 𝑋 % 𝑌 iff 𝑞𝑋 = 𝑞𝑌 and for each player 𝑎, either 𝑥𝑎 = 𝑦𝑎 = ⊥, or
𝑥𝑎 ≥ 𝑦𝑎 > ⊥.

Lemma 9. Let 𝑋, 𝑌 be two states of an equilibrium automaton 𝒯 such that
𝑋 % 𝑌 . Then, for every computation 𝛬 from 𝑞, whenever there is a run 𝜌𝑌 from
state 𝑌 over 𝛬, then there also exists a run 𝜌𝑋 from 𝑋 over 𝛬. Furthermore,
𝜌𝑋(𝑖) % 𝜌𝑌 (𝑖) for all 𝑖.

Proof. As all local bounds are lower in 𝑌 , whenever there is a transition from 𝑌 ,
the conditions of the transition function also hold in 𝑋. Furthermore, the end
states are in %. ⊓⊔

Lemma 10. Given a PCGS with 𝐾 players and |𝑄| states, if there is an accepting
run in 𝒯 , there is also an accepting run which is a lasso of length at most
(𝐾 + 2)|𝑄|.

Proof. Let 𝜌 be the shortest accepting lasso. We first show that the length of
the cycle is at most |𝑄|. As the local bounds are nonincreasing, the values of
the local bounds must be the same on all states on the cycle (either ∞ or ⊥).
Therefore they differ only in the base state. For cycle longer than |𝑄| we find a
repeating state and create a shorter accepting cycle, reaching a contradiction.

Now we show that the length of the nonrepeating path is at most (𝐾 + 1)|𝑄|.
If it is longer, some base state must repeat more than 𝐾 + 1 times. A local bound
for player 𝑎 can change to ⊥ only once. Therefore between at least one pair of
those repetitions, no local bound changes to ⊥. The previous lemma gives us
a run 𝜌′ from the first of those states. Now take the first state 𝑋 of the cycle
on 𝜌. Since all local bounds are either ⊥ or ∞, 𝜌′ leads to this exact state and
continues on the same accepting cycle. Joining 𝜌′ and the path to 𝑋 skips the
steps between its one repetition, which contradicts that 𝜌 is the shortest. ⊓⊔

Lemma 11. Decision variant of the Nash equilibria problem is NP-hard.

(m1, 0)

q2q1

(0,m1)

(m2, 0)

(0,m2)

qn

(mn, 0)

(0,mn)

qn+1

(0, 0)

(M, 0)

g

(0, 0)∈, O ∈, O ∈, O

/∈, O /∈, O /∈, O

O, Y

O,N O,O

Fig. 4. Reduction from the subset sum problem

Proof. We show a reduction from the subset sum problem [5], i.e. for every input
instance of the subset sum problem, we construct a game structure and bounds,
such that there is a Nash equilibrium meeting these bounds iff the input instance
of the subset sum problem has a solution.

Let 𝑆 = {𝑚1, 𝑚2, . . . , 𝑚𝑛} be a set of positive integers and 𝑚 be the target
sum. The input instance (𝑆, 𝑚) has a solution iff there exists a set 𝑆′ ⊆ 𝑆, such
that sum of the numbers of 𝑆′ is exactly 𝑚. Let 𝑀 =

∑︀
𝑠∈𝑆 𝑠, the sum of all

numbers. We construct a two-player turn-based game 𝐺 according to the Fig.
4. The initial state is 𝑞1, 𝑔 is a goal state for both players and numbers above
the transitions represent the prices. In circle (resp. square) states, player 1 (resp.
player 2) chooses the next move. We set the bounds (𝑏1, 𝑏2) = (𝑚, 𝑀 − 𝑚).

For the first direction, suppose there is a solution to the subset sum problem
𝑆′. Now consider the following strategies for the players.

Player 1 In 𝑞𝑖(1 ≤ 𝑖 ≤ 𝑛), choose ∈ if 𝑚𝑖 ∈ 𝑆′, otherwise choose /∈.
Player 2 In 𝑞𝑛+1, choose 𝑌 if the accumulated costs so far are (𝑚, 𝑀 − 𝑚),

otherwise choose 𝑁 .

Outcome of these strategies has costs (𝑚, 𝑀 − 𝑚) = (𝑏1, 𝑏2). If player 1
changes his strategy such that the costs are different in 𝑞𝑛+1, his cost increases
by 𝑀 > 𝑚 in the last transition and thus she can not improve her cost. Player 2
can not influence her cost at all. The strategies are Nash equilibrium.

Now for the second direction, suppose there exists a Nash equilibrium meeting
the bounds (𝑏1, 𝑏2). As the sum of the costs for both players is at least 𝑚1 + . . . +
𝑚𝑛 = 𝑀 = 𝑚 + (𝑀 − 𝑚) = 𝑏1 + 𝑏2, the cost is exactly (𝑏1, 𝑏2). We consider the
outcome and construct the set 𝑆′ as the set {𝑚𝑖 | player 1 chooses the ∈ in 𝑞𝑖}.
Since the cost for player 1 is 𝑚, the sum of 𝑆′ must be exactly 𝑚 and it is a
solution to the subset sum problem. ⊓⊔

The Theorem 3 is a corollary of the previous lemma and Lemma 10. We
now show that the problem of deciding the existence of an equilibrium point is
NP-hard even if we have no bounds on the possible equilibria.

Theorem 4. Decision variant of the Nash equilibria problem without bounds is
NP-complete.

Proof. Given a two-player PCGS 𝑇 and bounds (𝑏1, 𝑏2) we construct a two-player
PCGS 𝑇 ′ according to the Fig. 5. The new initial state is 𝑞′

0 and the state 𝑔 is a
goal state of both players. We need to prove that there is an equilibrium in 𝑇 ′ iff
there is an equilibrium in 𝑇 satisfying the bounds (𝑏1, 𝑏2).

None of the added edges can be part of an equilibrium outcome as can be seen
in the Table of choices in Fig. 5. The horizontal arrows indicate improvement for
player 1, the vertical for player 2. Every equilibrium in 𝑇 satisfying bounds (𝑏1, 𝑏2)
is preserved in 𝑇 ′, but the equilibria not satisfying the bounds are suppressed,
because both players could change their first move and get a better cost. ⊓⊔

original game T

q′0 A B C

X (x1, x2) (b1, 1) (b1 + 1, 0)

Y (1, b2) (1, 0) (0, 1)

A,X

C,X

C,Y

B,Y

B,X

A,Y

(b1, 1)

(1, 0)

(0, 1)

(b1 + 1, 0)

(1, b2)

g q′0 q0
(0, 0)

O,O

(0, 0) x1>b1

x2>b2

Fig. 5. Reduction from the problem with bounds (𝑏1, 𝑏2) to the problem without bounds

Lemma 11 shows NP-hardness even for turn-based games. However, [3] shows
that for a special kind of games which roughly correspond to turn-based games
where cost for each transition and player is 1, a Nash equilibrium always exists.
Without elaborating on this further, we can confirm their result for any priced
turn-based game with strategies that use history. Hence, the decision problem
for this case is trivial and the answer is always positive.

6 Conclusion
We introduced the Nash Equilibrium problem with bounds for priced concurrent
games structures and provided a construction of a Büchi automaton accepting
the set of all equilibria outcomes, characterizing the class of all Nash equilibria
outcomes as an 𝜔-regular set. The Equilibrium automaton can also be used to
solve a variety of similar problems involving Nash equilibria, such as deciding
existence of equilibria satisfying properties expressed in Linear temporal logic.

Furthermore, we characterized the complexity of the decision variant of the
problem as NP-complete. The problem remains NP-complete even if we consider
either turn-based PCGS, or we omit bounds. If we do both, the problem becomes
trivial as the equilibrium always exists.

References
1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM

49, 672–713 (September 2002), http://doi.acm.org/10.1145/585265.585270
2. Bouyer, P., Brenguier, R., Markey, N.: Nash equilibria for reachability objectives in

multi-player timed games. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Con-
currency Theory, Lecture Notes in Computer Science, vol. 6269, pp. 192–206. Springer
Berlin / Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-15375-4_14,
10.1007/978-3-642-15375-4_14

3. Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in quantitative reachability games.
In: Ablayev, F., Mayr, E. (eds.) Computer Science – Theory and Applications,
Lecture Notes in Computer Science, vol. 6072, pp. 72–83. Springer Berlin / Hei-
delberg (2010), http://dx.doi.org/10.1007/978-3-642-13182-0_7, 10.1007/978-
3-642-13182-0_7

4. Felegyhazi, M., Hubaux, J., Buttyan, L.: Nash equilibria of packet forwarding
strategies in wireless ad hoc networks. IEEE Transactions on Mobile Computing pp.
463–476 (2006)

5. Gormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. MIT
Press and McGraw-Hill Book Company 7, 1162–1171 (1976)

6. Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy
of Sciences of the United States of America 36(1), 48–49 (1950)

7. Ummels, M., Wojtczak, D.: The complexity of nash equilibria in limit-average games.
In: Katoen, J.P., König, B. (eds.) CONCUR. Lecture Notes in Computer Science,
vol. 6901, pp. 482–496. Springer (2011)

8. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability
problems in petri nets. In: Application and Theory of Petri Nets. pp. 234–258 (1984)

http://doi.acm.org/10.1145/585265.585270
http://dx.doi.org/10.1007/978-3-642-15375-4_14
http://dx.doi.org/10.1007/978-3-642-13182-0_7

7 Appendix

7.1 Büchi automaton
Definition 10 (Büchi automaton). A Büchi automaton 𝒜 is a five tuple
(𝛴, 𝑄, 𝛿, 𝑄0, 𝐹) s. t.

– 𝛴 is the finite alphabet.
– 𝑄 is the finite set of states.
– 𝛿 ⊆ 𝑄 × 𝛴 × 𝑄 is the transition relation.
– 𝑄0 ⊆ 𝑄 is the set of initial states.
– 𝐹 ⊆ 𝑄 is the set of final states.

Let 𝛬 be a (finite or infinite) word from 𝛴* ∪ 𝛴𝜔. A run over 𝛬 from 𝑞 is a
mapping 𝜌 : {0, 1 . . . |𝛬|} → 𝑄 such that:

– The first state is 𝑞, that is, 𝜌(0) = 𝑞.
– Moving from the 𝑖th state 𝜌(𝑖) to the 𝑖 + 1st state 𝜌(𝑖 + 1) upon reading the

𝑖th input letter 𝛬[𝑖] is consistent with the transition relation. That is, for
0 ≤ 𝑖 < |𝛬|, (𝜌(𝑖), 𝛬[𝑖], 𝜌(𝑖 + 1)) ∈ 𝛿.

We say that 𝜌 is a run of 𝒜 over 𝛬 if 𝜌 is a run over 𝛬 from 𝑞 and 𝑞 is an initial
state. That is, 𝜌(0) ∈ 𝑄0.

Let inf(𝜌) be the set of states that appear infinitely often in the run 𝜌. A run
𝜌 of 𝒜 over an infinite word 𝛬 is accepting iff some accepting state appears in 𝜌
infinitely often. That is, inf(𝜌) ∩ 𝐹 ̸= ∅.

An automaton 𝒜 accepts a word 𝛬 iff there exists an accepting run of 𝒜 over
𝛬.

The language of 𝒜, ℒ(𝒜) ⊆ 𝛴𝜔 consists of all words accepted by 𝒜.

7.2 Algorithm computing punishment and temptation values

Algorithm 1: Computation of punishment and temptation values
Input: PCGS (𝐾, 𝑄, 𝑞0, 𝛷, 𝜑, 𝛥, 𝛿, 𝛾)
Output: Punishment values 𝛱 and temptation values 𝜏
begin

foreach 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝛺 do
if 𝑔𝑎 ∈ 𝜑(𝑞) then 𝛱𝑎(𝑞) := 0 else 𝛱𝑎(𝑞) := ∞;

end
repeat |𝑄| times or until no values change

foreach 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝛺 do
foreach 𝐽−𝑎 ∈ 𝛥−𝑎(𝑞) do

𝜏𝑎(𝑞, 𝐽−𝑎) := min𝑗∈𝛥𝑎(𝑞) 𝛾𝑎(𝑞, 𝑗 �𝑎 𝐽−𝑎) + 𝛱𝑎(𝛿(𝑞, 𝑗 �𝑎 𝐽−𝑎));
end
if 𝑔𝑎 ̸∈ 𝜑(𝑞) then 𝛱𝑎(𝑞) := max𝐽∈𝛥−𝑎(𝑞) 𝜏𝑎(𝑞, 𝐽);

end
end

end
return 𝛱, 𝜏

Lemma 12. During the execution of Algorithm 1, there is no update in (|𝑄|+1)-
th iteration.

Proof. We show that in |𝑄|-th iteration, there is no update of 𝛱 and, therefore,
the changes can propagate to 𝜏 in the last run. The idea of the proof is the
following. The update of 𝛱 in some state can induce another updates in connected
states. However, the update path, i.e. the sequence of induced updates, cannot go
through the same state twice. The complete proof can be found in Appendix. ⊓⊔

7.3 Proof of Lemma 12

Proof. We will prove that in |𝑄|-th iteration, there is no update of 𝛱 and,
therefore, the changes can propagate to 𝜏 in the next, last run. We say that update
of 𝛱(𝑞) is induced by update of 𝛱(𝑞′), if 𝑞′ = 𝛿(𝑞, 𝐽) and 𝛱(𝑞) = 𝛾(𝑞, 𝐽) + 𝛱(𝑞′)
after the update. Let us start with some observations:

1. Both 𝛱 and 𝜏 values decrease in time.
2. If we consider all the punishment values to be initially ∞ and setting them

to 0 in goal states as the first update, we can say that every next update is
induced by some previous update of punishment value in a succesor. If there
are more possiblities, we do not care which one we take.

3. If an update of 𝛱(𝑞) is induced by a change of 𝛱(𝑞′), then 𝛱(𝑞) ≥ 𝛱(𝑞′).

To get a contradiction, suppose there is a change of punishment value in state
𝑞1 in |𝑄|th iteration. Then, with the second observation, we can reconstruct the
update path (𝑞1, 𝑣1), (𝑞2, 𝑣2), . . . , (𝑞𝑚, 0), such that the update in 𝑞𝑖 to value 𝑣𝑖
was induced by the update in 𝑞𝑖+1 to value 𝑣𝑖+1 and 𝑞𝑚 is a goal state. The
length of this path is at least |𝑄| + 1, because we start with (𝑞𝑚, 0) and every
iteration lengthened the path by at least one. Hence at least one state repeats,
let say 𝑞𝑘 = 𝑞𝑙, 𝑘 < 𝑙. From the third observation we know that 𝑣𝑖 ≥ 𝑣𝑖+1, so
𝑣𝑘 ≥ 𝑣𝑙. The first observation says that the values decrease in time, so 𝑣𝑘 ≤ 𝑣𝑙.
The only possible case 𝑣𝑘 = 𝑣𝑙 means that there was no update and that is a
contradiction. ⊓⊔

7.4 Proof of Punishment Lemma 3

Proof. Let strategies in 𝐹−𝑎 choose in each state the move selected by the
maximum function when updating the punishment value in the state. To get
a contradiction, suppose that there is a strategy 𝑓 for player 𝑎, such that
𝛤𝑎(𝛬) < 𝛱𝑎(𝑞), where 𝛬 = 𝜆(𝑓 �𝑎 𝐹−𝑎) is the corresponding outcome from the
state 𝑞. Denote by 𝑞𝑖 = 𝛿(𝑞, 𝛬𝑖) the 𝑖-th state visited in computation 𝛬.

Consider the longest finite prefix 𝛬𝑘 of 𝛬, s. t. 𝛤𝑎(𝛬𝑙) < 𝛱𝑎(𝑞𝑙) for all 𝑙 ≤ 𝑘.
Note that there is always such a state, because the computation goes through
a goal state, where this condition does not hold. Let 𝐽 = 𝛬[𝑘] be the vector of
moves of the players from 𝑞𝑘 according to the strategy profile 𝑓 �𝑎 𝐹−𝑎. Since
𝐽−𝑎 is the move vector selected by the maximum function, it follows from the
algorithm that

𝛱𝑎(𝑞𝑘) = min
𝑗∈𝛥𝑎(𝑞𝑘)

𝛾𝑎(𝑞𝑘, 𝑗 �𝑎 𝐽−𝑎) + 𝛱𝑎(𝛿(𝑞𝑘, 𝑗 �𝑎 𝐽−𝑎)) ≤ 𝛾𝑎(𝑞𝑘, 𝐽) + 𝛱𝑎(𝑞𝑘+1)

From this inequality we get

𝛤𝑎(𝛬𝑘+1) = 𝛤𝑎(𝛬𝑘) − 𝛾𝑎(𝑞𝑘, 𝐽) < 𝛱𝑎(𝑞𝑘) − 𝛾𝑎(𝑞𝑘, 𝐽) ≤ 𝛱𝑎(𝑞𝑘+1)

and that is a contradiction with the selection of 𝛬𝑘. ⊓⊔

7.5 Proof of Temptation Lemma 4

Proof. The proof is similar to the proof of Lemma 3. To get a contradiction,
suppose that there is a strategy profile 𝐹−𝑎, such that for any strategy 𝑓 for 𝑎,
𝛤𝑎(𝛬) > 𝜏𝑎(𝑞, 𝐽−𝑎), where 𝛬 = 𝜆(𝑓 �𝑎 𝐹−𝑎).

Let construct the strategy 𝑓 as follows. Denote by 𝐽𝑘
−𝑎 = 𝐹−𝑎(𝛬𝑘) the move

of 𝛺 ∖{𝑎} in 𝑘-th step. Let the move 𝑗𝑘
𝑎 of player 𝑎 in 𝑘-th step is the one selected

by the minimum function when updating the temptation value 𝜏𝑎(𝑞𝑘, 𝐽𝑘
−𝑎).

Consider the longest prefix 𝛬𝑘 of 𝛬, such that 𝛤𝑎(𝛬𝑙) > 𝜏𝑎(𝑞𝑙, 𝐽 𝑙
−𝑎), for all

𝑙 ≤ 𝑘. Since 𝑗𝑎 is the move selected by the minimum function and 𝛱 is the
maximum of temptation values,

𝜏𝑎(𝑞𝑘, 𝐽𝑘
−𝑎) = 𝛾𝑎(𝑞𝑘, 𝑗𝑘

𝑎 �𝑎 𝐽𝑘
−𝑎) + 𝛱𝑎(𝑞𝑘+1) ≥ 𝛾𝑎(𝑞𝑘, 𝑗𝑘

𝑎 �𝑎 𝐽𝑘
−𝑎) + 𝜏𝑎(𝑞𝑘+1, 𝐽𝑘+1

−𝑎)

From this inequality we get

𝛤𝑎(𝛬𝑘+1) = 𝛤𝑎(𝛬𝑘) − 𝛾𝑎(𝑞𝑘, 𝑗𝑘
𝑎 �𝑎 𝐽𝑘

−𝑎)

𝛤𝑎(𝛬𝑘) − 𝛾𝑎(𝑞𝑘, 𝑗𝑘
𝑎 �𝑎 𝐽𝑘

−𝑎) > 𝜏𝑎(𝑞𝑘, 𝐽𝑘
−𝑎) − 𝛾𝑎(𝑞𝑘, 𝑗𝑘

𝑎 �𝑎 𝐽𝑘
−𝑎) ≥ 𝜏𝑎(𝑞𝑘+1, 𝐽𝑘+1

−𝑎)

and that is a contradiction with the selection of 𝛬𝑘.
⊓⊔

7.6 Proof of Lemma 6

Proof. We show the first statement by induction over 𝑖.
For base case, 𝑖 = 0, 𝛬𝑖 = 𝜖. From the definition, 𝑞0 = 𝛿(𝑞0, 𝜖). Now

since (𝜌(0), 𝛬[1], 𝜌(1)) ∈ 𝛿′, also 𝑞1 = 𝛿(𝑞0, 𝛬[1]) and therefore 𝛬[1] ∈ 𝛥(𝑞0) =
𝛥(𝛿(𝑞0, 𝜖)).

Now let assume that the statement holds for 𝑖. We show that it holds for
𝑖 + 1. Since (𝜌(𝑖), 𝛬[𝑖 + 1], 𝜌(𝑖 + 1)) ∈ 𝛿′, also 𝑞𝑖+1 = 𝛿(𝑞𝑖, 𝛬[𝑖 + 1]). Therefore
𝛬[𝑖 + 1] ∈ 𝛥(𝑞𝑖) = 𝛥(𝛿(𝑞0, 𝛬𝑖)). Also, from the definition of 𝛿, 𝛿(𝑞0, 𝛬𝑖+1) =
𝛿(𝛿(𝑞0, 𝛬𝑖), 𝛬[𝑖 + 1]) = 𝛿(𝑞𝑖, 𝛬[𝑖 + 1]) = 𝑞𝑖+1.

The induction shows that the statement holds for all 𝑖 ≥ 0. Now we prove
the second statement.

Since 𝜌 is accepting, an accepting state must repeat infinitely often. Let that
state be (𝑟, 𝑦1, . . . , 𝑦𝐾). We show that the consistency holds for any player 𝑎.
Local bound 𝑦𝑎 must either be ∞ or ⊥.

If 𝑦𝑎 is ∞, then 𝑥𝑖
𝑎 is ∞ for all 𝑖, because local bounds are nonincreasing.

Indeed, assume that for some 𝑗, 𝑥𝑗
𝑎 < ∞. Then for each 𝑖 ≥ 𝑗, 𝑥𝑖

𝑎 ≤ 𝑥𝑗
𝑎 < ∞.

However, then for no 𝑖 ≥ 𝑗, 𝜌(𝑖) = (𝑟, 𝑦1, . . . , 𝑦𝐾), which is a contradiction.
If 𝑦𝑎 is ⊥, let 𝑗 be the the the first index such that 𝑥𝑗+1

𝑎 = ⊥. The rules of
transition relation 𝛿′ clearly show that for each 𝑖 ≥ 𝑗 + 1, 𝑥𝑗+1

𝑎 = ⊥.
Additionally, we also can make sure that 𝑗 is the smallest index such that

𝑔𝑎 ∈ 𝜑(𝑞𝑗). If there was some smaller index 𝑖 < 𝑗, then 𝑥𝑖+1
𝑎 = ⊥ according to 𝛿′,

which contradicts that 𝑗 is the smallest index s. t. 𝑥𝑗+1
𝑎 = ⊥.

We show by backwards induction that for each 𝑖 ≤ 𝑗, 𝛤𝑎(𝛬𝑖) ≤ 𝑥𝑖
𝑎.

For the base case, 𝑖 = 𝑗, 𝛤𝑎(𝛬𝑗) = 0 since 𝑔𝑎 ∈ 𝜑(𝑞𝑗). As 𝑥𝑗
𝑎 can not be ⊥,

0 ≤ 𝑥𝑗
𝑎.

Let us assume that the inequality holds for 𝑖 + 1, 0 ≤ 𝑖 < 𝑗. We show that
it also holds for 𝑖. According to the transitions rules, 𝑥𝑖+1

𝑎 = min(𝑥𝑖
𝑎, 𝜏𝑎(𝑞𝑖, 𝛬[𝑖 +

1])) − 𝛾𝑎(𝑞𝑖, 𝛬[𝑖 + 1]). Therefore from the hypothesis:

𝛤𝑎(𝛬𝑖+1) ≤ min(𝑥𝑖
𝑎, 𝜏1(𝑞𝑖, 𝛬[𝑖 + 1])) − 𝛾𝑎(𝑞𝑖, 𝛬[𝑖 + 1])

𝛤𝑎(𝛬𝑖) ≤ min(𝑥𝑖
𝑎, 𝜏𝑎(𝑞𝑖, 𝛬[𝑖 + 1])), since 𝑔𝑎 /∈ 𝜑(𝑞𝑖)

𝛤𝑎(𝛬𝑖) ≤ 𝑥𝑖
𝑎

⊓⊔

7.7 Proof of Lemma 7

Proof. First, we construct strategy profile 𝐹 = (𝑓1 . . . 𝑓𝐾) from 𝑞0 with outcome
𝛬. The strategies are constructed in the following way. As long as the history
matches 𝛬, both strategies are moving according to 𝛬:

𝑓𝑎(𝛬𝑖) = 𝑗𝑖+1
𝑎 , where 𝛬[𝑖 + 1] = (𝑗𝑖+1

1 . . . 𝑗𝑖+1
𝐾)

By reversal of this rule for strategies all 𝑓𝑎, we get:

𝛬[𝑖 + 1] = (𝑓1(𝛬𝑖) . . . 𝑓𝐾(𝛬𝑖))

Therefore 𝛬 = 𝜆(𝐹).
Whenever 𝛬′ is not a prefix of 𝛬, it means that a player betrayed the coalition

in the past and the remaining players will employ their punishment strategy. Let
𝑙 be the smallest index s. t. 𝛬′[𝑙] ̸= 𝛬[𝑙]. Then let 𝑝𝑎 be a strategy for 𝑎 from
𝛿(𝑞0, 𝛬′

𝑙) according to the Punisment Lemma 3. We set 𝑓𝑎 to act exactly like 𝑝𝑎

from this state:
𝑓𝑎(𝛬′) = 𝑝𝑎(𝛬′𝑙)

We now show that 𝐹 is a Nash equilibrium by contradiction. Let us assume
the contrary, that there exists a strategy 𝑓 ′

𝑎 from 𝑞0 for player 𝑎 which achieves
lower cost. Let 𝛬′ = 𝜆(𝑓 ′

𝑎 �𝑎 𝐹−𝑎). Then:

𝛤𝑎(𝛬′) < 𝛤𝑎(𝛬)

Let 𝑟𝑖 = 𝛿(𝑞0, 𝛬𝑖) for any 𝑖. Since the cost of the outcomes is different, no
state 𝑟𝑖, 𝑖 < 𝑙 that occurs before the distinguishing move 𝛬′[𝑙] is a goal state for
player 𝑎.

According to the punishment lemma, the cost of outcome 𝛬′𝑙 for player 𝑎
from 𝑟𝑙 is greater than or equal than its punishment value 𝛱𝑎(𝑟𝑖):

𝛤𝑎(𝛬′𝑙) ≥ 𝛱𝑎(𝑟𝑙)

𝛤𝑎(𝛬′) ≥ 𝛱𝑎(𝑟𝑙) +
𝑙∑︁

𝑖=1
𝛾𝑎(𝑟𝑖−1, 𝛬′[𝑖])

𝛤𝑎(𝛬′) ≥ 𝛱𝑎(𝑟𝑙) + 𝛾𝑎(𝑟𝑙−1, 𝛬′[𝑙]) +
𝑙−1∑︁
𝑖=1

𝛾1(𝑟𝑖−1, 𝛬′[𝑖])

Since temptation value 𝜏𝑎 is calculated as a minimum:

𝛱𝑎(𝑟𝑙) + 𝛾𝑎(𝑟𝑙−1, 𝛬′[𝑙]) ≥ 𝜏𝑎(𝑟𝑙−1, 𝛬′[𝑙])

𝛤𝑎(𝛬′) ≥ 𝜏𝑎(𝑟𝑙−1, 𝛬′[𝑙]) +
𝑙−1∑︁
𝑖=1

𝛾𝑎(𝑟𝑖−1, 𝛬′[𝑖]).

Now, let us go back to the original computation 𝛬 accepted by 𝒯 . There
is run 𝜌 over 𝛬. Let 𝜌(𝑖) = (𝑞𝑖, 𝑥𝑖

1 . . . 𝑥𝑖
𝐾). As the prefixes 𝛬𝑙−1 and 𝛬′

𝑙−1 are
identical, 𝑞𝑖 = 𝑟𝑖 = 𝛿(𝑞0, 𝛬𝑖) for all 𝑖 ≤ 𝑙 − 1.

Since 𝑞𝑙−1 is not a goal state for player 1, we can extract from the transition
rules of 𝒯 the following:

min(𝑥𝑙−1
1 , 𝜏𝑎(𝑞𝑙−1, 𝛬[𝑙])) − 𝛾𝑎(𝑞𝑙−1, 𝛬[𝑙]) = 𝑥𝑙

𝑎

𝜏𝑎(𝑞𝑙−1, 𝛬[𝑙]) − 𝛾𝑎(𝑞𝑙−1, 𝛬[𝑙]) ≥ 𝑥𝑙
1

Note that since 𝑔𝑎 /∈ 𝑞𝑖 for all 𝑖 < 𝑙, we know that 𝑥𝑙
𝑎 ≠ ⊥. From Lemma 6, we

get that 𝑥𝑙
𝑎 ≥ 𝛤𝑎(𝛬𝑙).

𝜏𝑎(𝑞𝑙−1, 𝛬[𝑙]) − 𝛾𝑎(𝑞𝑙−1, 𝛬[𝑙]) ≥ 𝛤𝑎(𝛬𝑙)
𝜏𝑎(𝑞𝑙−1, 𝛬[𝑙]) ≥ 𝛤𝑎(𝛬𝑙−1)

Now as 𝛬𝑙−1 = 𝛬′
𝑙−1, then also 𝑓𝑏(𝛬𝑙−1) = 𝑓𝑏(𝛬′

𝑙−1) for all players 𝑏. Therefore if
𝛬[𝑙] = 𝐽 𝑙, then 𝛬′[𝑙] = 𝑗′𝑙

𝑎 �𝑎 𝐽 𝑙
−𝑎 and:

𝜏𝑎(𝑞𝑙−1, 𝑗′𝑙
𝑎 �𝑎 𝐽 𝑙

−𝑎) = 𝜏𝑎(𝑞𝑙−1, 𝐽 𝑙)
𝜏𝑎(𝑟𝑙−1, 𝛬′[𝑙]) = 𝜏𝑎(𝑞𝑙−1, 𝛬[𝑙])
𝜏𝑎(𝑟𝑙−1, 𝛬′[𝑙]) ≥ 𝛤𝑎(𝛬𝑙−1)

𝜏𝑎(𝑟𝑙−1, 𝛬′[𝑙]) +
𝑙−1∑︁
𝑖=1

𝛾𝑎(𝑟𝑖−1, 𝛬[𝑖]) ≥ 𝛤𝑎(𝛬𝑙−1) +
𝑙−1∑︁
𝑖=1

𝛾𝑎(𝑟𝑖−1, 𝛬[𝑖])

𝜏𝑎(𝑟𝑙−1, 𝛬′[𝑙]) +
𝑙−1∑︁
𝑖=1

𝛾𝑎(𝑟𝑖−1, 𝛬′[𝑖]) ≥ 𝛤𝑎(𝛬)

𝛤𝑎(𝛬′) ≥ 𝛤𝑎(𝛬),

which is a contradiction. ⊓⊔

7.8 Proof of Lemma 8

Proof. We will prove this lemma by contradiction. Let 𝐹 be a Nash equilibrium
on 𝑇 satisfying bounds 𝐵, but 𝛬 = 𝜆(𝐹) /∈ ℒ(𝒯).

Since the transition function is deterministic, there can be at most one run of
𝒯 over 𝛬. We take the longest possible prefix 𝛬𝑗 s. t. we can find run 𝜌 over 𝛬𝑗 .
Let 𝜌(𝑖) = (𝑞𝑖, 𝑥𝑖

1 . . . 𝑥𝑖
𝐾). Then we find the last index 𝑘 where all local bounds are

met, that is the largest 𝑘 s. t. for each player 𝑎 and 𝑗 ≤ 𝑘, 𝑥𝑗
𝑎 ≥ 𝛤𝑎(𝛬𝑗) ∨ 𝑥𝑗

𝑎 = ⊥.

If such index does not exist because the local bounds are never met, then for
𝑗 = 0, 𝛤𝑎(𝛬) > 𝑥0

𝑎 = 𝐵𝑎 ≠ ⊥. Therefore equilibrium 𝐹 does not meet bounds 𝐵.
If such index does not exist because the run is infinite and the bounds

are always met, the run must be nonaccepting. Hence, since the bounds are
nonincreasing, a bound for some player must be always greater than ⊥, but also
lower than ∞ after some point. However, that means that the run does not pass
any goal state for that player and the cost for her is infinite. Thus we can see
that there is a state where the bounds are not met, which is a contradiction.

Finally, for the case when such 𝑘 does exist, we prove that 𝐹 is not a Nash
equilibrium and 𝑘 + 1 is the index of a move in which a player would defect.

Case 𝑘 = 𝑖: Since 𝑖 is the length of the induced path, 𝛿′((𝑞𝑖, 𝑥𝑖
1 . . . 𝑥𝑖

𝐾), 𝛬[𝑘 + 1])
is undefined. Therefore there is player 𝑎, s. t. 𝑥𝑘

𝑎 ̸= ⊥, 𝑔𝑎 ≠ 𝜑(𝑞𝑘), and 0 > 𝑦𝑘
𝑎 .

0 > min(𝑥𝑘
𝑎, 𝜏𝑎(𝑞𝑘, 𝛬[𝑘 + 1])) − 𝛾𝑎(𝑞𝑘, 𝛬[𝑘 + 1])

𝛤𝑎(𝛬𝑘) = 𝛾𝑎(𝑞𝑘, 𝛬[𝑘 + 1]) > min(𝑥𝑘
𝑎, 𝜏𝑎(𝑞𝑘, 𝛬[𝑘 + 1]))

Case 𝑘 < 𝑖: There must be a player 𝑎 for which 𝛤𝑎(𝛬𝑘+1) > 𝑥𝑘+1
𝑎 ∧ 𝑥𝑘+1

𝑎 ̸= ⊥.
Otherwise, 𝑘 would not be the largest index. That gives us 𝑔𝑎 /∈ 𝜑(𝑞𝑘) and
𝑥𝑘

𝑎 ̸= ⊥.

𝛤𝑎(𝛬𝑘+1) > 𝑥𝑘+1
𝑎

𝑥𝑘+1
𝑎 = min(𝑥𝑘

𝑎, 𝜏𝑎(𝑞𝑘, 𝛬[𝑘 + 1])) − 𝛾𝑎(𝑞𝑘, 𝛬[𝑘 + 1])
𝛾𝑎(𝑞𝑘, 𝛬[𝑘 + 1]) + 𝛤𝑎(𝛬𝑘+1) > min(𝑥𝑘

𝑎, 𝜏𝑎(𝑞𝑘, 𝛬[𝑘 + 1]))
𝛤𝑎(𝛬𝑘) > min(𝑥𝑘

𝑎, 𝜏𝑎(𝑞𝑘, 𝛬[𝑘 + 1]))

Finally, since 𝛤𝑎(𝛬𝑘) ≤ 𝑥𝑘
𝑎, then for both cases:

𝛤𝑎(𝛬𝑘) > 𝜏𝑎(𝑞𝑘, 𝛬[𝑘 + 1])

Now we let 𝑡𝑎 be a strategy for player 𝑎 from 𝑞𝑘 for move 𝛬[𝑘 + 1] according
to the Temptation Lemma. We construct a strategy 𝑓 ′

𝑎:

𝑓 ′
𝑎(𝛬𝑘.𝛬′) = 𝑡𝑎(𝛬′)

𝑓 ′
𝑎(𝛬′) = 𝑓𝑎(𝛬′) otherwise

Now 𝜆(𝑓 ′
𝑎 �𝑎 𝐹−𝑎) is 𝛬𝑘.𝛬′, because 𝑎 follows 𝛬 for 𝑘 steps. According to the

Temptation Lemma, 𝜏𝑎(𝑞𝑘, 𝛬[𝑘 + 1]) ≥ 𝛤𝑎(𝛬′), and 𝛤𝑎(𝛬𝑘) > 𝛤𝑎(𝛬′) Now since
for all 𝑗 ≤ 𝑘, 𝑔𝑎 ̸= 𝜑(𝑞𝑗),

𝛤𝑎(𝛬) > 𝛤𝑎(𝛬𝑘.𝛬′)
𝛤𝑎(𝜆(𝐹)) > 𝛤𝑎(𝜆(𝑓 ′

𝑎 �𝑎 𝐹−𝑎))

Therefore for this last case, 𝐹 is not a Nash equilibrium. We have exhausted
all cases and reached a contradiction. ⊓⊔

7.9 Proof of Theorem 4

Proof. Given a two-player PCGS 𝑇 and bounds (𝑏1, 𝑏2) we construct a two-player
PCGS 𝑇 ′ according to the Figure 5. The new initial state is 𝑞′

0 and the state 𝑔 is
a goal state of both players. We need to prove that there is an equilibrium in 𝑇 ′

iff there is an equilibrium in 𝑇 satisfying the bounds (𝑏1, 𝑏2).
Suppose there is a Nash equilibrium strategy profile 𝐹 in 𝑇 satisfying the

bounds 𝑏1, 𝑏2. Then there is a strategy profile 𝐹 ′ in 𝑇 ′, in which both players
start with the move 1 and then continue according to 𝐹 . Formally, 𝐹 ′(𝜖) =
1, 𝐹 ′(𝛬) = 𝐹 (𝛬1) if 𝛬[1] = (1, 1), 𝐹 ′(𝛬) = 1 otherwise. Changing the first move
is not profitable for either player: If player 1 change his move to 2 or 3, his cost
will be at least 𝑏1 ≥ 𝛤1(𝜆(𝐹 ′)). If player 2 change his move to 2, his cost will be
𝑏2 ≥ 𝛤2(𝜆(𝐹 ′)). Hence, there is a Nash equilibrium in 𝑇 ′.

On the other hand, suppose there is a Nash equilibrium strategy profile 𝐹 ′

in 𝑇 ′. If it is not the case, that both players are starting with move 1, at least
one player can improve his cost according to the table in Figure 5. Hence, 𝜆(𝐹 ′)
starts with (1, 1). Denote by 𝑐𝑖 = 𝛤𝑖(𝜆(𝐹 ′)) the cost for player 𝑖 when using 𝐹 ′.
If 𝑐1 > 𝑏1 (resp. 𝑐2 > 𝑏𝑐), the player 1(resp. 2) have better to change his first
move to 2 to improve his cost to 𝑏1(resp. 𝑏2) and it would not be an equilibrium.
Hence, 𝐹 ′ satisfies the bouds (𝑏1, 𝑏2) and there is a Nash equilibrium strategy
profile 𝐹 : 𝐹 (𝛬) = 𝐹 ′((1, 1).𝛬) in PCGS 𝑇 , also satisfying the bounds.

	Nash Equilibria in Concurrent Priced Games

