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We introduce a novel formalism of label-structured modal transition systems that

combines the classical may/must modalities on transitions with structured labels that

represent quantitative aspects of the model. On the one hand, the specification

formalism is general enough to include models like weighted modal transition systems

and allows the system developers to employ more complex label refinement than in the

previously studied theories. On the other hand, the formalism maintains the desirable

properties required by any specification theory supporting compositional reasoning. In

particular, we study modal and thorough refinement, determinization, parallel

composition, conjunction, quotient, and logical characterization of label-structured

modal transition systems.

1. Introduction

Modern computing systems are often large and complex assemblies of numerous reac-

tive and interacting components. The components are often designed by independent

teams, working under a common agreement what the interface of each component should

be. Consequently, the search for mathematical foundations which support compositional
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reasoning about interfaces is a major research goal. The framework should support in-

ferring properties of the global implementation, and designing and advisedly reusing

components.

In a logical setting, interfaces are specifications and components that implement an in-

terface are understood as models/implementations. Specification theories should support

various features including (1) refinement, which allows to compare specifications as well

as to replace a specification by another one in a larger design, (2) structural composition,

which allows to combine specifications of different components, (3) logical conjunction,

expressing the intersection of the set of requirements expressed by two or more specifica-

tions, and last but not least, (4) a quotient operator that, given two specifications S and

T , synthesizes the largest (w.r.t. refinement) specification that can be composed with S

in order to refine T .

For sequential systems the classical notion of Denotational Semantics, founded by Scott

and Strachey, provides a rich mathematical foundation for successfully describing the

semantics of many sequential programming languages and systems (Gordon, 1979; Stoy,

1977) where components, i.e. programs, are basically modelled as computable functions

from the domain of input values to the domain of output values. Most importantly, the

semantics of a composite program is expressed in terms of the semantics of its components

thus supporting compositional reasoning. A similar well-established specification theory

for sequential systems is that of Hoare Logic (Hoare, 1969), where a program is specified

by pairs of pre- and post-conditions on states. In particular, Hoare Logic comes equipped

with all the ingredients required and described above for a specification theory, with

“strongest postcondition” and “weakest precondition” transformers providing the means

for composing and quotienting specifications with respect to sequential composition.

Process algebras such as CCS (Milner, 1980) and CSP (Hoare, 1985) provide a corre-

sponding mathematical foundation for concurrent and reactive systems. Here systems are

semantically understood as labelled transition systems (Plotkin, 1981) describing their

interaction capabilities and dynamic evolution. Based on the labelled transition system

semantics, several equivalences and preorders have been proposed (van Glabbeek, 1990)

in order to capture different aspects of the extensional behaviour of a process. This re-

sults in specification theories where both the specification and the implementation are

expressed within the same formalism, e.g. CCS, and with a preferred preorder or equiv-

alence determining the satisfaction of an implementation with respect to a specification.

To achieve the goal of compositional analysis great care has normally been taken to

ensure that the preorders and equivalences are substitutive with respect to the various

process constructions, e.g. parallel composition, including the notions of observational

equivalence (Milner, 1980) and bisimulation equivalence (Park, 1981; Milner, 1983) used

in CCS.

The specification theory of modal transition systems (Larsen and Thomsen, 1988b)

grew out of a series of attempts to achieve a more flexible and easy-to-use compositional

development methodology for CCS. For the initial motivation consider the so-called step-

wise refinement method to be carried out in CCS. A specification (in CCS) S of some

desired system is given. The task is to find an implementation I of S such that I ≡ S,

where ≡ may be observational (or bisimulation) equivalence. In a first refinement-step S



Extending Modal Transition Systems with Structured Labels 3

might be refined to a composite specification of the form C[S1, S2], where the context C

is some CCS-construct (e.g. parallel composition) and S1 and S2 are subspecifications.

Now we may have different teams working independently towards implementations I1
and I2 of the subspecifications S1 and S2. Given the congruence property of observa-

tional equivalence, it will now suffice to establish the equivalences below to conclude,

in a compositional manner, that the assembled implementation C[I1, I2] satisfies the

original specification S:

C[S1, S2] ≡ S (1)

I1 ≡ S1 (2)

I2 ≡ S2 (3)

However, looking more carefully at the stepwise refinement above, we notice that (2)

and (3) require Si and Ii (i = 1, 2) to be proved congruent, i.e. interchangeable, in any

context and not just interchangeable in the context of C in which they are actually

going to be placed. We are therefore asked to prove more than what seems necessary.

Moreover, the subspecifications Si (i = 1, 2) may have to specify behaviours that are not

at all relevant in the context C. Again it seems that the above compositional analysis

can be substantially harder than necessary.

In order to reduce the work of (1-3), the notion of context-dependent or relativized

bisimulation was introduced in (Larsen, 1985; Larsen, 1987). Here, in order to reduce the

overall effort, the observational equivalence ≡ is relativized with information about the

context C. The required proofs Ii ≡ Si can thus be replaced with proofs of the more spe-

cific Ii ≡e Si where e is some partial information (stated as a labelled transition system)

about the context C. The work (Larsen and Milner, 1987; Larsen and Milner, 1992) ap-

plies the relativized bisimulation to the compositional verification of the Alternating Bit

Protocol, and (Pierce and Sangiorgi, 2000) introduces a proof technique for polymorphic

Pi-Calculus based on polymorphic types which can be seen as a “disciplined instance” of

relativized bisimulation. A more recent usage of relativized bisimulation includes the use

of environment information to produce environment-specific (reduced) code from embed-

ded system specifications (Larsen et al., 2005) and to generate relevant test sequences

from real-time specifications (Larsen et al., 2004).

The introduction of modal transition system was pre-dated by the simpler formalisms

of partial specifications (Larsen and Thomsen, 1988a) and the corresponding notion of

partial bisimulation. Roughly speaking, partial specifications are labelled transition sys-

tems with certain (specification) states being interpreted as completely unspecified. As

such, partial specifications are very similar to that of processes with divergence and the

so-called pre-bisimulation (Stirling, 1987; Stirling and Walker, 1989). However, though

allowing for simple and intuitive subspecifications on several examples, the specifica-

tion theory constituted by partial specifications is closed under neither conjunction nor

quotienting.

Compared with partial specifications, the introduction of modal transition sys-

tems (Larsen and Thomsen, 1988b) resulted in a specification theory much closer to

logic (see (Boudol and Larsen, 1992) for a logical characterization of the expressive power
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of modal transition systems), thus still with a behavioural semantics allowing for easy

composition with respect to process constructions. In short, modal transition systems

are labelled transition systems equipped with two types of transitions: must transitions

that are mandatory for any implementation, and may transitions which are optional for

an implementation. Refinement of modal transition systems now essentially consists in

iteratively resolving the unsettled status of may transitions: either by removing them or

by turning them into must transitions.

It is well admitted that modal transition systems and their extensions (e.g., (Raclet,

2008)) match all the requirements of a good specification theory. There is also no doubt

that the formalism is expressive enough to encode complex industrial problems (see e.g.,

(COMBEST, 2011; SPEEDS, 2010)). Moreover, the model has applications in other

contexts, which include the verification of product lines (Fischbein et al., 2006; Gruler

et al., 2008; Larsen et al., 2007) and a counterexample-guided abstraction refinement

technique for transition systems (Godefroid et al., 2001).

While searching for a specification theory for embedded systems, it is not only the

functional requirements (Larsen et al., 2007; Feuillade and Pinchinat, 2007; Bauer et al.,

2010) of system behaviours that are of importance. The theory should be also capable

of expressing constraints for several non-functional properties such as timing, energy-

consumption, band-width etc. Recently such efforts have been of high interest in the

theory community (Caillaud et al., 2010; Katoen et al., 2009; Delahaye et al., 2011;

Bertrand et al., 2009a; Bertrand et al., 2009b; David et al., 2010).

For different non-functional extensions it is common that similar proof techniques are

used to argue about the specification formalisms. In this article, we present a specification

theory that unifies several of the proof techniques described in the literature by intro-

ducing a general framework of label-structured modal transition system. Specializations

of the framework include, apart from the well-known instances like unlabelled/labelled

modal transition systems, also a new specification theory for weighted and multi-weighted

transition systems that were studied only recently (Juhl et al., 2010). Other formalisms

like timed modal transitions systems can be embedded into the framework as argued in

(Bertrand et al., 2009a) where the authors show that operations defined on some classes

of timed modal specifications can be reduced to questions on modal transition systems

by using a region-based abstraction.

In this article, we study the classical questions related to the formalism of label-

structured modal transition systems: (i) modal and thorough refinement, consistency

and pruning, determinism and deterministic hull (in Section 2), (ii) parallel composi-

tion, conjunction and quotient (in Section 3) and (iii) logical characterization including

generalized model checking (in Section 4).

As a result, we offer in a self-contained manner a full specification theory of label-

structured modal transition systems. The theory specializes to some well-known for-

malisms studied earlier but at the same time also provides novel results for instances

such as weighted and multi-weighted modal transition systems.



Extending Modal Transition Systems with Structured Labels 5

2. Label-Structured Modal Transition Systems

We shall now introduce the notion of label-structured modal transition systems and some

basic properties of the formalism. Before that we need to define the notion of labels and

label-sets used during the system design and specification refinement.

Definition 1 (Label-set). A label-set is a partially ordered set of labels (K,v) such

that ⊥∈ K (modelling inconsistency) is the least element of K.

A label k ∈ K r {⊥} is called an implementation label if k′ v k implies k′ = k for all

k′ ∈ Kr {⊥}. In other words, implementation labels are all elements in K just above ⊥.

The set of all implementation labels of (K,v) is denoted by Imp(K,v). To each label

k ∈ K we associate the set JkK of all implementation labels below k by

JkK = {k′ ∈ Imp(K,v) | k′ v k}.

Definition 2 (Well-formed label-set). A label-set (K,v) with the least element ⊥
∈ K is called well-formed if JkK 6= ∅ for every k ∈ K r {⊥}.

Well-formedness of label-sets ensures consistency of the label refinement relation v,

in other words it should always be possible to refine any label into an implementation

label. We can now define label-structured modal transition systems that combine the

underlying may/must transition relation known from modal transition systems with the

label structure defined above.

Definition 3 (Label-structured modal transition system). A label-structured

modal transition system (LSMTS) is a tuple (S, s0, (K,v), 99K,−→) where S is a set

of states with the initial state s0 ∈ S, (K,v) is a well-formed label-set, 99K⊆ S×K ×S
is the may transition relation, and −→⊆ S ×K × S is the must transition relation such

that −→⊆ 99K.

We write s
k
99K s′ if (s, k, s′) ∈ 99K. If for some k ∈ K no state s′ ∈ S exists such

that s
k
99K s′ we write s 6 k99K, and if there exists some s′ ∈ S such that s

k
99K s′ we write

s
k
99K. The aforementioned notations apply also to −→. By abuse of notation, we use S

to denote an LSMTS (S, s0, (KS ,vS), 99KS ,−→S) and the subscripts are omitted if they

are clear from the context. The notation (s, S) denotes the LSMTS S with the initial

state s0 replaced by s. The class of all LSMTSs with the well-formed label-set (K,v) is

denoted byM(K,v), and we typically use capital letters S, T , U to range over this class.

An LSMTS S is called an implementation if −→= 99K and all labels on the transitions

are implementation labels, that is, for all s
k−→ s′ in S we have k ∈ Imp(K,v). The class

of all implementations with well-formed label-set (K,v) is denoted by I(K,v), and we

typically use capital letters I and J to range over this class.

In the following, LSMTSs will be often represented as graphs with the convention that

whenever two states are connected by both a must and a may transition under the same

label, then we draw only the must transition.

Example 1. The most trivial instance of LSMTSs is obtained by choosing the well-

formed label-set Kunlabelled = ({⊥, •},v) where v= {(⊥,⊥), (⊥, •), (•, •)} illustrated
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⊥
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(b) I

s0 s1 s2

•
⊥

•

•

•

⊥

(c) S

Fig. 1. Unlabelled modal transition system over the label-set Kunlabelled

⊥
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s2
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≤m

(b) S

t0

t1

t2

a

b

a

c

d

(c) T

Fig. 2. Modal transition systems over the label-set Kaction

in Figure 1(a). This label-set gives rise to unlabelled modal transition systems where •
models a single implementation label and ⊥ is the inconsistency label. An example is

shown in Figure 1(b) and (c). The LSMTS I in Figure 1(b) is an implementation because

every label is an implementation label and the may and must transition relations coincide.

Note that the LSMTS in Figure 1(c) is not an implementation as (i) there are transitions

labelled with ⊥ and (ii) there are several may transitions without the corresponding must

ones. The definition and explanation of modal refinement, denoted ≤m, is deferred to

Section 2.2. �

Example 2. A well-known instance of the framework is obtained by considering a finite

set of actions Σ and defining a well-formed label-set Kaction by Kaction = (Σ ∪ {⊥},v)

where a v b if and only if a =⊥ or a = b. Here all labels (apart from ⊥) are imple-

mentation labels and this setting corresponds exactly to the class of modal transition

systems (Larsen and Thomsen, 1988b). Illustration of the label-set Kaction and two ex-

amples of modal transition systems are given in Figure 2. �

Example 3. As another example of a well-formed label-set demonstrating a more

interesting label refinement, we can consider the following structure Kmachine =

({drink , coffee, tea, coin, 1EURO , 2EURO ,⊥},v) where the ordering v is given in Fig-

ure 3(a). Here it is possible to provide a high-level specification of a vending machine by

using the labels drink and coin that can be later in a concrete implementation refined

into the implementation labels coffee and tea, and 1EURO and 2EURO , respectively. �

Example 4. Another instance of the framework is called weighted modal automata. Here

the well-formed label-set Kweighted is given as a set of integer intervals with the natural

inclusion ordering, formally Kweighted = (K,v) where K = {[a, b] | a, b ∈ Z s.t. a ≤
b}∪{⊥} and [a′, b′] v [a, b] if a ≤ a′ and b′ ≤ b,⊥v [a, b], and⊥v⊥, for all a, a′, b, b′ ∈ Z.

It follows that implementation labels are singleton sets of the form [a, a] where a ∈ Z.
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drink

coffee tea

coin

1EURO 2EURO

⊥

(a) v

i0i1 i2

1EURO

tea

2EURO

coffee ≤m

(b) I

s0 s1

coin

drink

(c) S

Fig. 3. Vending machines over the label-set Kmachine

⊥

· · · [-2,-2] [-1,-1] [0,0] [1,1] [2,2] · · ·

· · · [-2,-1] [-1,0] [0,1] [1,2] · · ·

· · · [-2,0] [-1,1] [0,2] · · ·
· · ·· · ·· · ·

(a) v

i0

i1

[4, 4][2, 2] ≤m

(b) I

s0

s1

[4, 4][2, 3] ≤m

(c) S

t0

t1

[2, 6]

[2, 7][1, 3]

(d) T

Fig. 4. Weighted modal automata over Kweighted

Consult Figure 4 for the illustration of Kweighted and for three examples of weighted

modal automata. The automaton I is an implementation while S and T are not. �

2.1. Product of Labels

In this subsection we will discuss a product construction on labels which will allow us to

form (by a general construction) new instances of the framework from existing ones.

Definition 4 (Product). Let (K1,v1) and (K2,v2) be two label-sets with the least

elements ⊥1 and ⊥2, respectively. The product (K1,v1)⊗(K2,v2) of the two label-sets is

a label-set (K,v) where K =
(
(K1r{⊥1})× (K2r{⊥2})

)
∪{⊥} and (k′1, k

′
2) v (k1, k2)

if k′1 v1 k1 and k′2 v2 k2 for all k1, k
′
1 ∈ K1r{⊥1} and all k2, k

′
2 ∈ K2r{⊥2}, and ⊥v `

for all ` ∈ K.

It is easy to observe that the product construction preserves well-formedness and im-

plementations are derived component-wise as stated in the following lemma.

Lemma 1. Let (K1,v1) and (K2,v2) be well-formed label-sets. Then

1. (K1,v1)⊗ (K2,v2) is a well-formed label-set, and

2. Imp((K1,v1)⊗ (K2,v2)) = Imp(K1,v1)× Imp(K2,v2).

Using the product construction of label-sets, we can e.g. combine the previously intro-

duced well-formed label-sets Kaction and Kweighted from Examples 2 and 4 into weighted

modal transition systems using the label-set Kaction ⊗Kweighted or into multi-weighted
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modal transition systems using the label-setKaction⊗Kweighted⊗Kweighted⊗. . .⊗Kweighted

and further combine these with other quantitative aspects.

2.2. Refinement

We shall now define the notion of modal refinement that combines the label refinement,

given by the partial ordering on the label-set, with the allowed transitions that may

be present and required transitions that must be present. It is a generalization of the

original notion of modal refinement over classical modal transition systems (Larsen and

Thomsen, 1988b).

Definition 5 (Modal refinement). Let S, T ∈ M(K,v) be two LSMTSs with initial

states s0 and t0, respectively. We say that S modally refines T , written S ≤m T , if there

exists a relation R ⊆ S × T with (s0, t0) ∈ R such that for every (s, t) ∈ R:

1. whenever s
k
99K s′ then there is t

`
99K t′ such that k v ` and (s′, t′) ∈ R, and

2. whenever t
`−→ t′ then there is s

k−→ s′ such that k v ` and (s′, t′) ∈ R.

The implementation semantics of an LSMTS S ∈ M(K,v) is defined as the class JSK
of all implementations refining S, i.e. JSK = {I ∈ I(K,v) | I ≤m S}.

Example 5. Refinement of modal transition systems labelled with actions (see Exam-

ple 2) is illustrated in Figure 2. The system S is a modal refinement of the system T , and

the relation demonstrating this is given by {(s0, t0), (s1, t1), (s2, t0)}. Note that S is not

an implementation yet, as it contains a may transition under b without a must transition

under the same label. �

Example 6. Consider the label-set Kmachine from Example 3. A specification of a vend-

ing machine is depicted in Figure 3(c). It allows to enter a coin and, should this happen,

it requires that a drink is returned to the customer. One of the possible implemen-

tations (where all labels are implementation labels and the may and must transition

relations coincide) of this specification is given in Figure 3(b). The modal refinement

between the implementation and specification is easily demonstrated by the relation

{(i0, s0), (i1, s1), (i2, s1)}. �

Example 7. Refinement of weighted modal automata (see Example 4) is illustrated

in Figure 4. The relation {(s0, t0), (s1, t0)} is witnessing the modal refinement between

Figure 4(d) and 4(c). Note that the refined specification in Figure 4(c) is not an imple-

mentation yet as it contains the label [2, 3] which is not an implementation label. We

can thus refine it further, ending up with an implementation as seen in Figure 4(b). The

witnessing relation is {(i0, s0), (i1, s1)}. �

Lemma 2. The modal refinement relation ≤m is a preorder.

Proof. Reflexivity is trivial. Transitivity can be seen as follows. Let S, T, U ∈M(K,v)

be three LSMTSs with their initial states s0, t0, u0 such that S ≤m T ≤m U . From the

assumption S ≤m T we know that there exists a witnessing relation R1 ⊆ S×T , and from
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the assumption T ≤m U we know that there exists a witnessing relation R2 ⊆ T × U .

We define a relation R ⊆ S × U by the relational composition of R1 and R2, i.e.

R = {(s, u) | ∃t ∈ T : (s, t) ∈ R1 and (t, u) ∈ R2}.

We show that R is proving S ≤m U . Obviously (s0, u0) ∈ R. Now, let (s, u) ∈ R be an

arbitrary element of R. Let t ∈ T be a state such that (s, t) ∈ R1 and (t, u) ∈ R2.

1. Assume s
ks
99K s′. From (s, t) ∈ R1 it follows that there exists t

kt
99K t′ such that

ks v kt and (s′, t′) ∈ R1. Then, as (t, u) ∈ R2, we get u
ku
99K u′ such that kt v ku and

(t′, u′) ∈ R2, hence (s′, u′) ∈ R and by transitivity of v also ks v ku.

2. Symmetric to the previous direction.

Modal refinement induces an equivalence relation on LSMTS. We say that S and T

are equivalent, denoted by S ≡m T , if both S ≤m T and T ≤m S are satisfied.

Lemma 3. Let I, J ∈ I(K,v) be two implementations. Then I ≤m J implies I ≡m J .

Proof. Given a relation R witnessing I ≤m J we can use R−1 = {(j, i) | (i, j) ∈ R} to

prove that J ≤m I. Let (j, i) ∈ R−1.

1. Assume that i
k−→ i′. Remember that then also i

k
99K i′. From the fact that (i, j) ∈ R

it follows that there exists j
`
99K j′ such that k v ` and (i′, j′) ∈ R. Since J is an

implementation, we get that k = ` and j
`−→ j′. Obviously, (j′, i′) ∈ R−1.

2. The other direction is symmetric.

The notion of modal refinement can be understood as refinement defined at the syntac-

tical level as it directly relates the states of two specifications. A semantically motivated

notion of refinement, usually called thorough refinement, says that S is a refinement of

T if every implementation of S is also an implementation of T .

Definition 6 (Thorough refinement). Let S, T ∈ M(K,v) be two LSMTSs. We say

that S thoroughly refines T , written S ≤t T , if JSK ⊆ JT K.

It is an expected result that modal refinement implies thorough refinement, as stated

in the following soundness theorem. The opposite implication does not hold in general

and details are discussed in Section 2.4.

Theorem 1 (Soundness). Let S, T ∈M(K,v) be two LSMTSs. Then S ≤m T implies

S ≤t T .

Proof. Follows immediately from the transitivity of modal refinement (see Lemma 2).
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s0 s1 s2

s3

•

⊥

• •
⊥

•

(a) A consistent, but locally in-
consistent LSMTS S

s0 s1

s3

•

•

(b) The locally consistent
result ρ(S) of pruning S

Fig. 5. Example of the pruning operator

2.3. Consistency and Pruning

Similar to the classical notion of consistency, an LSMTS S is consistent if it has at least

one implementation.

Definition 7 (Consistency). Let S ∈M(K,v). The LSMTS S is consistent if JSK 6= ∅.

Consistency is a semantical notion and in the rest of this article it will be useful to

introduce also a syntactical notion of consistency, called local consistency.

Definition 8 (Local consistency). Let S ∈M(K,v). A state s ∈ S is locally consistent

if s 6 ⊥−→. The LSMTS S is locally consistent if all states of S are locally consistent.

From our assumption of well-formedness of label-sets, it follows that any locally consis-

tent S has at least one implementation, thus local consistency implies consistency. The

converse is not true as explained in the following example.

Example 8. Consider the LSMTS S presented in Figure 5(a) with the label-set

Kunlabelled from Example 1. The system S is clearly not locally consistent but it is

consistent as an implementation with just two states connected by a must (and may)

transition labelled with • is an implementation of S. �

We shall now define a pruning operator that removes locally inconsistent states.

Definition 9 (Pruning). Let S ∈M(K,v) be an LSMTS and let B ⊆ S be a subset of

its states. Let

pre(B) = {s ∈ S | s k−→ s′ and s′ ∈ B for some k ∈ K}

and pre0(B) = B, prej+1(B) = pre(prej(B)) for j ≥ 0, and pre∗(B) =
⋃
j≥0 prej(B).

The pruning ρ(S) of S is defined if s0 /∈ pre∗(bad) where bad = {s ∈ S | s ⊥−→}, and in

this case, ρ(S) is the LSMTS (Sρ, s0, (K,v), 99Kρ,−→ρ) where

Sρ = S r pre∗(bad),

99Kρ = 99K ∩
(
Sρ × (K r {⊥})× Sρ

)
, and

−→ρ =−→ ∩
(
Sρ × (K r {⊥})× Sρ

)
.

It is clear that for an LSMTS with n states one can compute pre∗(bad) by finitely

many iterations, more precisely pre∗(bad) = pren(bad) in this case. Also note that well-

definedness of pruning is equivalent to the absence of a path of must transitions from the
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initial state to a locally inconsistent state (that enforces inconsistency via must transition

labelled with ⊥).

Figure 5 shows the application of the pruning operator ρ to the system S and one can

easily observe that ρ(S) ≤m S. Pruning also does not remove any implementation. A

summary of the properties of pruning is given in the following proposition.

Proposition 1. Let S ∈M(K,v). If ρ(S) is defined, then

1. ρ(S) is locally consistent,

2. ρ(S) ≤m S,

3. Jρ(S)K = JSK, and

4. for any locally consistent T ∈M(K,v), if T ≤m S then T ≤m ρ(S).

Moreover, ρ(S) is defined if and only if S is consistent.

Proof.

1. As all labels ⊥ were removed in ρ(S), it is trivially locally consistent.

2. We will show that the relation R = {(s, s) | s ∈ Srpre∗(bad)} is a refinement relation

in order to argue that ρ(S) ≤m S. Let (s, s) ∈ R. If s
k
99Kρ s′ in ρ(S) then this by the

construction implies that s′ ∈ S r pre∗(bad). Clearly we have also s
k
99K s′ in S and

(s′, s′) ∈ R. On the other hand, if s
k−→ s′ in S then s′ 6∈ pre∗(bad) as s 6∈ pre∗(bad),

which means that s
k−→ρ s

′ also in ρ(S) and (s′, s′) ∈ R.

3. The inclusion Jρ(S)K ⊆ JSK follows from the fact that ρ(S) ≤m S. Let I ∈ JSK. This

means that there is a refinement relation R demonstrating that I ≤m S. We will

argue that R is also a refinement relation demonstrating I ≤m ρ(S). However, this

easily follows from the observation that R cannot contain any state from pre∗(bad),

because otherwise a must path to the label ⊥ will be enforced in I too, but then I is

not an implementation.

4. The same argumentation as in the previous point applies also here. Any refinement

relation demonstrating T ≤m S can be used to establish also T ≤m ρ(S). In order to

apply the reasoning as above, it is important that T does not contain any transition

with the label ⊥.

For the last claim, observe that if ρ(S) is not defined then there is a must path from

its initial state to a state requiring a transition under ⊥. Any implementation then has

to contain such a path to a state requiring a transition under ⊥, but then it is not

an implementation. On the other hand, if ρ(S) is defined then we can change every

transition in ρ(S) to a must transition and replace every label by some implementation

label below it (possible thanks to well-formedness of the label-set) in order to construct

an implementation of ρ(S), which is also an implementation of S as ρ(S) ≤m S.

2.4. Determinism and Completeness of Refinement

In general, thorough refinement does not imply modal refinement. A counterexample,

using the label-set Kweighted (see Example 7), is given in Figure 6. Clearly, the transition

s0
[0,1]
99K s1 cannot be matched by any of the two transitions from t0 as their labels are
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s0 s1
[0, 1] 6≤m

≤t

(a) S

t0

t1

t2

[0,
0]

[1, 1]

(b) T

Fig. 6. Incompleteness of modal refinement demonstrated by systems S and T

less general than [0, 1]. Hence S 6≤m T . On the other hand, any implementation of S is

either empty or it is a tree of height one with the outgoing edges labelled by either [0, 0]

or [1, 1]. All such implementations are also refinements of the system T .

It is known that for classical modal transition systems thorough refinement implies

the modal one, under the assumption of determinism (Beneš et al., 2009b). We can

generalize this result to the class of label-structured modal transition systems. Before

we define when an LSMTS is deterministic, we first define when two labels k1, k2 are

unifiable, that is, if there is another label k which overlaps with k1 and k2 with respect

to their sets of implementation labels.

Definition 10 (Unifiable labels). Two labels k1, k2 ∈ K are called unifiable if there

exists k ∈ K such that JkK ∩ Jk1K 6= ∅ and JkK ∩ Jk2K 6= ∅.

Then, determinism expresses that for any two outgoing may transitions from the same

state under two different labels k1 and k2, the labels k1 and k2 are not unifiable.

Definition 11 (Determinism). A LSMTS S is called deterministic if for any state

s ∈ S and any two transitions s
k1
99K s′1 and s

k2
99K s′2, if k1 and k2 are unifiable, then

k1 = k2 and s′1 = s′2.

Returning to Figure 6 we can realize that the system T is not deterministic as there is

a branching of the transitions with labels [0, 0] and [1, 1], while there exists a label [0, 1]

such that J[0, 1]K ∩ J[0, 0]K 6= ∅ and J[0, 1]K ∩ J[1, 1]K 6= ∅.
A very natural assumption that has to be imposed on the label-sets later on in order

to show completeness of modal refinement, is completeness of label refinement: inclusion

of implementation labels implies label refinement.

Definition 12 (Completeness of label refinement). Let (K,v) be a label-set. Label

refinement v is complete if for all k, ` ∈ K, JkK ⊆ J`K implies k v `.

All examples of label-sets provided in this article satisfy this property. Note that label

refinement is always sound by definition, i.e. k v ` implies JkK ⊆ J`K by transitivity of

label refinement.

Under the assumption of (1) completeness of label refinement, (2) determinism of the

refined LSMTS, and (3) local consistency of the refining LSMTS, thorough refinement

implies the modal one.

Theorem 2 (Completeness). Let (K,v) be a well-formed label-set for which label
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refinement v is complete. Let S, T ∈ M(K,v) with initial states s0 and t0, respectively,

such that S is locally consistent and T is deterministic. Then S ≤t T implies S ≤m T .

Proof. Assume that S ≤t T . We define a relation R ⊆ S × T as the smallest relation

satisfying:

1. (s0, t0) ∈ R,

2. if (s, t) ∈ R, s
k
99K s′, t

`
99K t′, and JkK ∩ J`K 6= ∅ then (s′, t′) ∈ R.

First, we show a technical result (that we use later on) saying that any (s, t) ∈ R satisfies

J(s, S)K ⊆ J(t, T )K. For (s0, t0) ∈ R, we have J(s0, S)K = JSK ⊆ JT K = J(t0, T )K from the

assumption S ≤t T . Now, let (s, t) ∈ R such that J(s, S)K ⊆ J(t, T )K and assume that

s
k
99K s′, t

`
99K t′, and JkK ∩ J`K 6= ∅. Let I ′ ∈ J(s′, S)K and let m ∈ JkK ∩ J`K which exists

by the construction. Then, since S is locally consistent, there exists an implementation

(i0, I) ∈ J(s, S)K such that i0
m−→ i′ and (i′, I) ≤m I ′. From J(s, S)K ⊆ J(t, T )K it follows

that I ∈ J(t, T )K. Then there exists a transition t
`′

99K t′′ such that (i′, I) ∈ J(t′′, T )K

and m ∈ J`′K. Now, we have t
`
99K t′ and t

`′

99K t′′ such that m ∈ J`K ∩ J`′K, hence

` and `′ are unifiable. As T is deterministic it follows that ` = `′ and t′ = t′′, so

(i′, I) ∈ J(t′, T )K. Finally, from (i′, I) ≤m I ′ and Lemma 3 it follows that (i′, I) ≡m I ′

and hence I ′ ∈ J(t′, T )K.
Now we show that R is a relation witnessing S ≤m T . Clearly (s0, t0) ∈ R. Let

(s, t) ∈ R.

1. Assume s
k
99K s′. By local consistency of S we can assume that k 6=⊥. Then, for each

implementation label m ∈ JkK, there exists an implementation Im ∈ J(s, S)K such

that i0
m−→ i′. We also know that Im ∈ J(t, T )K because J(s, S)K ⊆ J(t, T )K. Hence

there exists a transition t
`m
99K t′m such that m ∈ J`mK. We have to show that, for

all m ∈ JkK, the labels `m are the same. Suppose that there are m1,m2 ∈ JkK and

transitions t
`m1
99K t′m1

and t
`m2
99K t′m2

such that m1 ∈ J`m1
K and m2 ∈ J`m2

K. Then,

since m1 ∈ J`m1
K ∩ JkK and m2 ∈ J`m2

K ∩ JkK and T is deterministic, it follows that

`m1
= `m2

and t′m1
= t′m2

. It follows that there is a unique transition t
`
99K t′ such

that m ∈ J`K for all implementation labels m ∈ JkK, this means JkK ⊆ J`K which

implies k v ` by completeness of label refinement. Moreover, by the definition of R,

we get (s′, t′) ∈ R.

2. Assume t
`−→ t′. If ` =⊥ then there is a transition s

⊥−→ s′ in S, contradicting

local consistency of S; hence ` 6=⊥. Then, for each implementation I ∈ J(t, T )K
we have that there exists a transition i0

m−→ i′ for some label m ∈ J`K. We know

that J(s, S)K ⊆ J(t, T )K, so every implementation (j0, J) ∈ J(s, S)K has a transition

j0
m−→ j′. It follows that S must have a transition s

k−→ s′ such that m ∈ JkK. Suppose

that JkK 6⊆ J`K, then there would exist an implementation (j̄0, J̄) ∈ J(s, S)K having

j̄0
n−→ j̄′ with an implementation label n ∈ JkK not belonging to J`K, which means

that there must exist another transition in T , say t
`′

99K t′′ such that n ∈ J`′K. But

then we have m ∈ J`K ∩ JkK and n ∈ J`′K ∩ JkK which contradicts determinism of T .
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s0

s1

s2

[0,
1]

[3, 4]
≤m

(a) S

t0 t1
[0, 4]

(b) D(S)

Fig. 7. Determinization

Thus, we have JkK ⊆ J`K, which implies k v ` by completeness of label refinement.

Moreover, by definition of R, we get (s′, t′) ∈ R.

2.5. Determinization

It is a well-known fact that, for almost all existing specification theories, deciding thor-

ough refinement involves more complex decision procedures than the ones that can be

used to decide modal refinement (see e.g. (Beneš et al., 2009a) dealing with the classical

modal transition systems). In the previous subsection, we have seen that in case of deter-

ministic systems modal and thorough refinements coincide and can be decided by efficient

syntactical fixed-point based algorithms. In Section 3.1 it will become moreover evident

that determinism plays an important role in establishing several soundness results.

It is thus worth studying a general procedure that, given a nondeterministic LSMTS S,

computes its smallest deterministic over-approximation D(S), called deterministic hull.

Example 9. Consider the system in Figure 7(a) where S is a LSMTS with label-set

Kweighted . It is nondeterministic since there is the label [0, 4] for which J[0, 4]K∩J[0, 1]K 6= ∅
and J[0, 4]K ∩ J[3, 4]K 6= ∅. The best we can do is to approximate S by a determinis-

tic LSMTS in Figure 7(b). However, D(S) is an over-approximation as JSK ( JD(S)K
witnessed by the implementation with a single must transition labelled with [2, 2].

In the following, we will propose an algorithm that computes, for a given LSMTS

S, a deterministic LSMTS D(S) such that D(S) is an over-approximation of S with the

property that it is a minimal one with respect to modal refinement. The construction is a

generalization of the algorithm presented in (Beneš et al., 2009b) and dealing specifically

with modal transition systems.

We impose the following assumption on the label-set (K,v) necessary for applying the

determinization algorithm. For any set L ⊆ K of pairwise unifiable labels we require the

existence of the least upper bound lub(L) ∈ K such that ` v lub(L) for all ` ∈ L and

whenever ` v `′ for all ` ∈ L then lub(L) v `′.

Definition 13 (Deterministic hull). Let S = (S, s0, (K,v), 99K,−→) be an LSMTS.

The deterministic hull of S is defined by the LSMTS

D(S) = (P(S) r {∅}, {s0}, (K,v), 99KD,−→D)

where the transition relations 99KD and −→D are defined as follows. Let T ∈ (P(S)r{∅})



Extending Modal Transition Systems with Structured Labels 15

be a state in D(S). For every maximal, nonempty set L ⊆ {k | s k
99K, s ∈ T } of pairwise

unifiable labels we have T `
99KD T` where ` = lub(L) and T` = {s′ ∈ S | s k

99K s′, s ∈
T , k ∈ L}. If, moreover, for each s ∈ T we have s

k−→ s′ for some s′ ∈ T` and some

k ∈ K such that k v `, then T `−→D T`.

Now we show that D(S) is the smallest deterministic over-approximation of S.

Theorem 3 (Soundness and minimality of determinization). Let S ∈ M(K,v).

Then the following holds:

1. D(S) is deterministic,

2. S ≤m D(S), and

3. for every deterministic D ∈M(K,v), if S ≤m D then D(S) ≤m D.

Proof.

1. Let T be a state in D(S) and assume that there exist two different transitions T `1
99K

T`1 and T `2
99K T`2 such that `1 and `2 are unifiable. It follows that there exists a

least upper bound ` ∈ K of `1 and `2. Hence all labels below `1 are unifiable with all

labels below `2. This contradicts the fact that `1 and `2 are the least upper bounds

of maximal, unifiable sets of labels.

2. We define a relation R ⊆ S × D(S) by R = {(s, T ) | s ∈ T }. Clearly, (s0, {s0}) ∈ R
for the respective initial states. Now, let (s, T ) ∈ R.

First, assume that s
k
99K s′. Then, since s ∈ T , there exists a maximal, nonempty

set L ⊆ {k | s k
99K, s ∈ T } of pairwise unifiable labels such that k ∈ L. So there

exists a transition T `
99K T` where ` = lub(L), which in particular means that k v `.

Moreover, by the definition of T`, we have that s′ ∈ T`, hence (s′, T`) ∈ R.

Second, assume that T `−→ T`. Then we know that for all t ∈ T there is t
k−→ t′ such

that k v ` and t′ ∈ T`. Since we know that s ∈ T , it follows that there is s
k−→ s′

such that k v ` and s′ ∈ T`, hence (s′, T`) ∈ R.

3. Let D ∈ M(K,v) be a deterministic LSMTS and assume that S ≤m D witnessed by

the relation R. We want to show that D(S) ≤m D. We define a relation R′ ⊆ D(S)×D
by

(T , d) ∈ R′ if and only if ∅ 6= T ⊆ {s ∈ S | (s, d) ∈ R}.
We show that R′ is a relation witnessing D(S) ≤m D. Clearly, ({s0}, d0) ∈ R′ for the

corresponding initial states. Let (T , d) ∈ R′.

— First, assume that T `
99K T` and ` = lub(L) for some maximal, nonempty set

L ⊆ {k | s k
99K, s ∈ T }. We want to show that there exists d

`′

99K d′ such that

` v `′ and (T`, d′) ∈ R′. Let

S = {s ∈ T | s k
99K, k ∈ L}

which is nonempty since L is nonempty and it is a subset of {k | s k
99K, s ∈ T }.

From the assumption (T , d) ∈ R′, we know that for all s ∈ S it holds that
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(s, d) ∈ R by the definition of R′. Let

∆ = {s k
99K s′ | s ∈ S and k ∈ L}.

For every transition s
k
99K s′ in ∆, it follows from (s, d) ∈ R that there exists

d
k′

99K dk′ in D such that k v k′ and (s′, dk′) ∈ R. Let L′ denote the set of all

such k′. Since L is a set of pairwise unifiable labels and for every k′ ∈ L′ there is

some k ∈ L such that k v k′, we know that L′ is a set of pairwise unifiable labels,

too. For every k′ ∈ L′ we have a transition d
k′

99K dk′ for some dk′ ∈ D. From

the determinism of D, it follows that there exists d
`′

99K d′ such that d′ = dk′ and

`′ = k′ for all k′ ∈ L′. Hence k v `′ for all k ∈ L. Since ` is the least upper bound

of L, we can conclude that ` v `′. Moreover, it holds that (T`, d′) ∈ R′ because

T` = {s′ ∈ S | s k
99K s′, s ∈ T , k ∈ L} is nonempty, and for every s′ ∈ T` it holds

that (s′, d′) ∈ R.

— Second, assume that d
`′−→ d′. By the definition of R′ we know that (s, d) ∈ R for

all s ∈ T . Then it follows that, for all s ∈ T , we have s
k−→ s′ such that k v `′ and

(s′, d′) ∈ R. Note that T is nonempty, thus there is some maximal, nonempty set

L ⊆ {k | s k
99K, s ∈ T } of pairwise unifiable labels such that k ∈ L for all labels k

where s
k
99K and k v `′. This implies that there exists T `−→ T` with ` = lub(L).

Now, we have to show that ` v `′. Let k ∈ L, then there exists s
k
99K s′ with

s ∈ T , and from (s, d) ∈ R it follows that k v `′ by the determinism of D, and

(s′, d′) ∈ R. Since ` is the least upper bound of L, it follows that ` v `′. Finally,

we show that (T`, d′) ∈ R′. The set T` is clearly nonempty, and moreover, it holds

that for every s′ ∈ T` we have (s′, d′) ∈ R.

We can use the above theorem to prove that given two LSMTSs S and T , whenever S

thoroughly refines T , then D(S) modally (syntactically) refines D(T ).

Corollary 1. Let (K,v) be a well-formed label-set for which the label refinement v is

complete. Let S, T ∈ M(K,v) be locally consistent LSMTSs. If S ≤t T then D(S) ≤m
D(T ).

Proof. By Theorem 3 we know that T ≤m D(T ) and by Theorem 1 also T ≤t D(T ).

By transitivity and the assumption S ≤t T , it follows that S ≤t D(T ), which implies

S ≤m D(T ) by completeness of refinement (Theorem 2). By minimality of D(S) we can

conclude that D(S) ≤m D(T ).

3. Specification Theory

In order to apply label-structured modal transition systems as a specification formalism

for software components, we need to define several operators on LSMTSs essential for



Extending Modal Transition Systems with Structured Labels 17

any specification theory supporting compositional reasoning. First, structural composi-

tion (or parallel composition) allows us to combine interacting specifications. Second,

logical composition (or conjunction) of two or more specifications expresses the greatest

specification satisfying all the requirements of the given set of specifications. And third, a

quotient operator which is dual to parallel composition: given a specification T expressing

a requirement that needs to be implemented, and a specification S of the components that

already exist, the quotient of T by S is the smallest specification which, together with S,

satisfies T . All these operators are an important part of any compositional specification

theory.

3.1. Operators on Labels and their Product

Operators on LSMTSs naturally involve different ways of combining labels. In this sub-

section, we introduce label operators on well-formed label-sets which will become crucial

ingredients for the operators on LSMTSs introduced later on. In the text to follow, label

operators are consistently denoted by symbols in circles.

Definition 14 (Label operator). A (binary) label operator on a label-set (K,v) is a

partial function � : K ×K ⇀ K.

A label operator � on (K,v) is called commutative if k�` is defined iff `�k is defined,

and if they are defined then k � ` = ` � k. The operator is associative if k � (` �m) is

defined iff (k � `)�m, and if they are defined then k � (`�m) = (k � `)�m.

We can also form products of label operators which are operators on the product of

their label-sets.

Definition 15 (Product of label operators). Given two well-formed label-sets

(K1,v1) and (K2,v2), and two label operators �1 and �2, the product of �1 and

�2 is given by the label operator �1 ×�2 on K1 ⊗K2 which is defined as follows:

(k1, k2)(�1 ×�2)(`1, `2) =


(k1 �1 `1, k2 �2 `2) if ⊥6= ki �i `i is defined for i ∈ {1, 2}
⊥ if ki �i `i is defined for i ∈ {1, 2}

and either k1 � `1 =⊥ or k2 � `2 =⊥
undefined otherwise

It is easy to see that if two label operators, �1 and �2, are commutative and associative

then so is the product operator �1 ×�2.

3.2. Parallel Composition

We start with the parallel composition, an operator that reflects the standard structural

composition of implementations at the specification level.

Two LSMTSs with the same well-formed label-set (K,v) can be structurally com-

posed with respect to a label operator ⊕ on (K,v). Two transitions (in different parallel

components) labelled with k ∈ K and ` ∈ K can synchronize if k ⊕ ` is defined. The

synchronized transition is then labelled with the label k ⊕ `.
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The desired property of parallel composition, crucial for any compositional specifica-

tion theory, is called compositional refinement. It allows for a step-wise refinement of

individual specifications while their parallel composition is guaranteed to refine the par-

allel composition of the original specifications. However, in order to achieve this, we have

to impose a natural requirement on the label operator ⊕ for composing labels.

Definition 16 (Compositional label operator). A label operator ⊕ on a well-formed

label-set (K,v) is compositional if whenever k′ v k and `′ v ` then k′ ⊕ `′ is defined if

and only if k ⊕ ` is defined, and in the positive case moreover k′ ⊕ `′ v k ⊕ `.

As expected, compositionality of label operators is preserved under their products.

Proposition 2. If ⊕1 and ⊕2 are compositional label operators on well-formed label-

sets (K1,v1) and (K2,v2) respectively, then ⊕1 ×⊕2 is a compositional label operator

on (K1,v1)⊗ (K2,v2).

The actual definition of ⊕ depends on the interpretation of parallel composition for the

modelled quantity. We present several possible definitions of ⊕ for some of the examples

seen so far. All of the defined operators are compositional label operators and they can

be further combined using the product construction.

Example 10. In Example 2 we have instantiated LSMTSs to modal transition systems

labelled with actions, with well-formed label-set Kaction = (Σ ∪ {⊥},v) for a finite set

of actions Σ. The label operator for Kaction can be defined as follows, depending on the

desired synchronization scheme.

— Synchronization by shared actions:

a⊕ b =


a if a = b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise

— Complete interleaving:

a⊕ b =


a if a 6=⊥ and b = e

b if a = e and b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise

Here we assume the existence of a special action e ∈ K s.t. s
e
99K s for every state s.

�

Example 11. For weighted modal automata (see Example 4), the definition of ⊕ de-

pends on how we want to interpret the weights. If the weights on transitions model e.g.

costs (or energy consumption) then the composition operator may be defined as the sum
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of intervals:

k ⊕ ` =

{
[i1 + i2, j1 + j2] if k = [i1, j1] and ` = [i2, j2]

⊥ if k =⊥ or ` =⊥

Note that this label operator is total, so every transition in a weighted modal automaton

will synchronize with each transition in the other automaton. Other options may include

taking the interval intersection as the composition operator, should the weights represent

e.g. (discrete) time intervals in which a transition can be executed. �

For the rest of this subsection, let us fix a well-formed label-set (K,v) with a compo-

sitional label operator ⊕ on it.

Definition 17 (Parallel composition). Let S, T ∈ M(K,v) be two LSMTSs such

that S = (S, s0, (K,v), 99KS ,−→S) and T = (T, t0, (K,v), 99KT ,−→T ). The parallel

composition of S and T is defined as the LSMTS

S‖T = (S × T, (s0, t0), (K,v), 99K,−→)

where the transition relations 99K and −→ are defined by the following rules:

s
k
99KS s′ t

`
99KT t′ k ⊕ ` is defined

(s, t)
k⊕`
99K (s′, t′)

s
k−→S s

′ t
`−→T t

′ k ⊕ ` is defined

(s, t)
k⊕`−→ (s′, t′)

As we assumed that the label operator ⊕ is compositional, we get the property of

compositional refinement, also called independent implementability (de Alfaro and Hen-

zinger, 2005). In other words, modal refinement is a precongruence with respect to parallel

composition. This is formalized in the following theorem.

Theorem 4 (Independent Implementability). Let S, S′, T, T ′ ∈ M(K,v) be

LSMTSs and let ⊕ be a compositional label operator on (K,v). If S′ ≤m S and T ′ ≤m T

then S′‖T ′ ≤m S‖T .

Proof. Assume that R1 is a relation showing S′ ≤m S and R2 is a relation showing

T ′ ≤m T . We define a relation R ⊆ (S′× T ′)× (S × T ) by ((s′, t′), (s, t)) ∈ R if and only

if (s′, s) ∈ R1 and (t′, t) ∈ R2. We show that R witnesses S′‖T ′ ≤m S‖T .

Obviously ((s′0, t
′
0), (s0, t0)) ∈ R where s0, s

′
0, t0, t

′
0 are the initial states of S, S′, T , T ′,

respectively. Let ((s′, t′), (s, t)) ∈ R.

1. Assume (s′, t′)
k′⊕`′
99K (ŝ′, t̂′). By the rule of parallel composition, we have s′

k′

99K ŝ′ and

t′
`′

99K t̂′. Then, from (s′, s) ∈ R1 and (t′, t) ∈ R2 it follows that there exist s
k
99K ŝ and

t
`
99K t̂ such that k′ v k, `′ v `, (ŝ′, ŝ) ∈ R1, and (t̂′, t̂) ∈ R2. From the fact that ⊕ is

a compositional label operator it follows that k′⊕ l′ v k⊕ `, and then (s, t)
k⊕`
99K (ŝ, t̂)

and ((ŝ′, t̂′), (ŝ, t̂)) ∈ R.

2. Assume (s, t)
k⊕`−→ (ŝ, t̂). By the rule of parallel composition, we have s

k−→ ŝ and t
`−→

t̂. Then, from (s′, s) ∈ R1 and (t′, t) ∈ R2 it follows that there exist s′
k′−→ ŝ′ and t

`′−→
t̂′ such that k′ v k, `′ v `, (ŝ′, ŝ) ∈ R1, and (t̂′, t̂) ∈ R2. From the compositionality



S. Bauer, L. Juhl, K. Larsen, A. Legay and J. Srba 20

of the label operator it follows that k′ ⊕ `′ v k ⊕ `, and then (s′, t′)
k′⊕`′−→ (ŝ′, t̂′) and

((ŝ′, t̂′), (ŝ, t̂)) ∈ R.

Clearly, if ⊕ is commutative and associative, then so is the parallel composition (up

to isomorphism).

3.3. Conjunction

Different component requirements can be often specified by independent teams. The issue

of dealing with the aspects of multiple viewpoints/properties is thus essential. It should be

possible to represent several specifications (viewpoints) for the same implementation and

to combine them in a logical manner. This is the objective of the conjunction operation.

Two LSMTSs with the same label-set (K,v) can be conjoined with respect to a label

operator 7 on (K,v). We first state a necessary condition on 7 such that the conjunction

operator yields the greatest lower bound with respect to the modal refinement relation

on LSMTSs.

Definition 18 (Greatest lower bound operator). A commutative label operator 7
on a well-formed set (K,v) is a greatest lower bound operator if the following is satisfied:

1. if k 7 ` is defined, then k 7 ` v k and k 7 ` v `,

2. if m 6=⊥, m v k and m v `, then k 7 ` is defined and m v k 7 `.

As in the case of the compositional label operator, it is easy to see that greatest lower

bound operators are preserved by the product construction.

Proposition 3. Let 71 and 72 be greatest lower bound operators on (K1,v1) and

(K2,v2), respectively. Then 71 ×72 is a greatest lower bound operator on the product

(K1,v1)⊗(K2,v2).

Again, the actual definition of 7 depends on the interpretation of conjunction for the

modelled quantity.

Example 12. Conjoining labels in Kaction = (Σ ∪ {⊥},v), for a finite set of actions Σ

(see Example 2), can be defined as follows:

a7 b =


a if a = b, a 6=⊥, b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise

�

Example 13. For the case of weighted modal automata (see Example 4), conjunction

7 can be defined as the intersection of the intervals, assuming that we consider the cost

(energy) interpretation.

k 7 ` =

{
k ∩ ` if k 6=⊥, ` 6=⊥ and k ∩ ` 6= ∅
⊥ otherwise
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s0

s1

b

[2, 2]

a

[2, 3]

c

[2, 5]

d

[3, 6]

(a) S

t0

t1 t2

a
[1
, 4

]

d
[1
, 2

]

b
[1, 3]c

[1, 4]

(b) T

s0, t0

s1, t2

b

[2, 2]

c

[2, 4]

(c) ρ(S ∧ T )

Fig. 8. Pruned conjunction of two LSMTSs S and T

�

It is easy to see that the label operators defined in Examples 12 and 13 are greatest lower

bound operators on their respective label-sets.

Let us fix a well-formed label-set (K,v) and some greatest lower bound operator 7
on (K,v) for the rest of this subsection.

Definition 19 (Conjunction). Let S, T ∈ M(K,v) be two LSMTSs such that S =

(S, s0, (K,v), 99KS ,−→S) and T = (T, t0, (K,v), 99KT ,−→T ). The conjunction of S and

T is defined by the LSMTS S∧T = (S×T, (s0, t0), (K,v), 99K,−→) where the transition

relations 99K and −→ are defined by the following rules.

s
k−→S s

′ t
`
99KT t′ k 7 ` is defined

(s, t)
k7`−→ (s′, t′)

s
k
99KS s′ t

`−→T t
′ k 7 ` is defined

(s, t)
k7`−→ (s′, t′)

s
k
99KS s′ t

`
99KT t′ k 7 ` is defined

(s, t)
k7`
99K (s′, t′)

s
k−→S s

′ (
k 7 ` is not defined for any ` such that t

`
99KT

)
(s, t)

⊥−→ (s, t)

t
`−→T t

′ (
k 7 ` is not defined for any k such that s

k
99KS

)
(s, t)

⊥−→ (s, t)

Clearly, conjunction ∧ on LSMTSs is commutative (up to isomorphism) as 7 is commu-

tative, and moreover, if 7 is an associative label operator, then so is conjunction.

Example 14. An example for conjoining specifications is given in Figure 8. Here S and

T are LSMTSs with the label-set Kaction ⊗Kweighted . Note that the state (s1, t1) does

not appear in ρ(S ∧ T ) since it is locally inconsistent in S ∧ T ; the LSMTS T requires a

transition labelled with the action d and the weight interval [1, 2], however, S only allows

d with the weight interval [3, 6]. �

We now propose a notion of determinism that is dedicated to the conjunction operation.

This definition shall be used later on to prove that conjunction is the greatest lower bound

with respect to the modal refinement ordering.
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Definition 20 (7-determinism). A LSMTS S ∈ M(K,v) is 7-deterministic if for all

may transitions s
k′

99K s′ and s
k′′

99K s′′ in S with labels k′, k′′ ∈ K r {⊥}, whenever there

is an ` ∈ Kr{⊥} such that both k′7 ` and k′′7 ` are defined, then k′ = k′′ and s′ = s′′.

It is easy to see that if 7 is associative, then the construction for conjunction pre-

sented in Definition 19 preserves 7-determinism. The reader may also observe that for

modal transition systems with the label-set Kaction , the notions of 7-determinism and

determinism (as defined in Section 2) coincide. In this case, we note that the determiniza-

tion algorithm proposed in Section 2.5 can be applied to compute minimal deterministic

LSMTSs of non-deterministic ones.

Under the assumption of 7-determinism, the conjunction construction yields the great-

est lower bound with respect to modal refinement, as stated in the following theorem.

Theorem 5 (Greatest lower bound of conjunction). Let S, T, U ∈ M(K,v) be

locally consistent LSMTSs such that S and T are 7-deterministic and S∧T is consistent.

Assume that 7 is a greatest lower bound label operator. Then

1. ρ(S ∧ T ) ≤m S and ρ(S ∧ T ) ≤m T , and

2. if U ≤m S and U ≤m T , then U ≤m ρ(S ∧ T ).

Proof.

1. It suffices to show that ρ(S ∧ T ) ≤m S, the other assertion is symmetric. We define

a relation R ⊆ (S × T )× S by R = {((s, t), s) | s ∈ S, t ∈ T}. We will show that R is

a relation witnessing ρ(S ∧ T ) ≤m S. Clearly ((s0, t0), s0) ∈ R where s0 is the initial

state of S and t0 is the initial state of T . Let ((s, t), s) ∈ R.

Let (s, t)
k7`
99K (s′, t′). Since ρ(S ∧T ) does not contain any transitions labelled with ⊥,

we know that k7` 6=⊥. Then there are transitions s
k
99K s′ and t

`
99K t′. By assumption

we know k 7 ` v k, and from the definition of R we can conclude ((s′, t′), s′) ∈ R.

Now, let s
k−→ s′. By local consistency of S we can assume that k 6=⊥. Suppose

that T does not have any t
`
99K t′ such that k 7 ` is defined, then (s, t)

⊥−→ (s′, t)

contradicting the local consistency of ρ(S ∧T ). So there exists t
`
99K t′ such that k7 `

is defined and then (s, t)
k7`−→ (s′, t′). By the assumption about the label operator we

know that k 7 ` v k. By the definition of R we get ((s′, t′), s′) ∈ R.

2. We can assume a relation R1 witnessing U ≤m S and a relation R2 witnessing U ≤m
T . We define a relation R ⊆ U × (S × T ) by

R = {(u, (s, t)) | (u, s) ∈ R1 and (u, t) ∈ R2}.

We show that R is witnessing U ≤m ρ(S ∧T ). Clearly (u0, (s0, t0)) ∈ R for the initial

states. Let (u, (s, t)) ∈ R.

Assume that u
m
99K u′. Then there exists s

k
99K s′ such that m v k, and t

`
99K t′ such

that m v `. By Definition 18 part 2. we get that k7` is defined and m v k7`, hence

(s, t)
k7`
99K (s′, t′), and (u′, (s′, t′)) ∈ R by the definition of R.

Assume that (s, t)
k7`−→ (s′, t′). By local consistency of ρ(S ∧ T ) we can assume that
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s0

s1

drink

(a) S

t0

t1 t2

tea coffee

(b) T

s0, t0

s1, t1 s1, t2

tea coffee

(c) S∧T = ρ(S∧T )

u0

u1

tea

(d) U

u′
0

u′
1

coffee

(e) U ′

Fig. 9. Conjunction of two LSMTSs specifying a vending machine

k 7 ` 6=⊥. Then (w.l.o.g.) there exist s
k−→ s′ with k 6=⊥, and t

`
99K t′ with ` 6=⊥

thanks to local consistency of S and T . It follows from (u, s) ∈ R1 that there exists

u
m−→ u′ such that (u′, s′) ∈ R1 and m v k. Local consistency of U implies m 6=⊥. We

have to show that (u′, t′) ∈ R2. From (u, t) ∈ R2 it follows that there exists t
`′

99K t′′

such that m v `′ and (u′, t′′) ∈ R2. Now, by m 6=⊥, m v k and m v `′ we know that

k 7 `′ is defined (Definition 18 part 2.). From 7-determinism of T we get ` = `′ and

t′ = t′′. It follows that (u′, t′) ∈ R2 and thus (u′, (s′, t′)) ∈ R.

Corollary 2. Let S, T, U ∈ M(K,v) be locally consistent LSMTSs such that S and T

are 7-deterministic and S ∧ T is consistent. Then U ≤m S and U ≤m T if and only if

U ≤m ρ(S ∧ T ). In particular, JS ∧ T K = JSK ∩ JT K.

Proof. The implication from left to right is exactly the second part of Theorem 5. The

other direction follows from the first part of Theorem 5 and the transitivity of v. The

additional assertion JS ∧ T K = JSK ∩ JT K follows from U ≤m S and U ≤m T if and only

if U ≤m ρ(S ∧T ) if we take U as an implementation, and by Proposition 1 showing that

Jρ(S ∧ T )K = JS ∧ T K.

For maximality of the conjunction (see Theorem 5, 2.), 7-determinism is necessary.

To see this, consider the example shown in Figure 9 that shows two specifications of a

vending machine with the label-set Kmachine from Example 3. The LSMTS S requires

drink , and T allows tea and coffee. For the conjunction S ∧ T we take 7 as the obvious

greatest lower bound for Kmachine for which drink 7tea = tea and drink 7coffee = coffee.

Note that T is not 7-deterministic in this case. It is easy to see that (S ∧ T ) ≤m S and

(S∧T ) ≤m T , however U and U ′ are both refining S and T , but U 6≤m (S∧T ) = ρ(S∧T ).

With a small extension of the proof for modal transition systems (Delahaye et al., 2010),

it can easily be proved that there does not exist any LSMTS which is the greatest lower

bound for S and T but the construction of conjunction in this case is at least safe.

3.4. Quotient

An essential operator in a complete specification theory is the one of quotienting. It allows

for factoring out behaviours from a larger component. Given two component specifica-

tions S and T , the quotient of T by S, written T \\S, is a specification of exactly those
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components that when composed with S refine T . In other words, the quotient is the

largest specification that can be composed with S and still refines T .

As expected, we have to first state the required property for label operators used for

quotienting.

Definition 21 (Dual label operators). Let � and ⊕ be two label operators on a given

well-formed label-set (K,v). We say that the operator � is a dual label operator to ⊕ if

m v `� k if and only if k ⊕m v `.

Example 15. Quotienting labels in Kaction = (Σ ∪ {⊥},v) for a finite set of actions Σ

as introduced in Example 2, together with the ⊕ operator for synchronization by shared

actions given in Example 10 can be defined as identical to ⊕, namely:

a� b =


a if a = b 6=⊥
⊥ if a =⊥ or b =⊥
undefined otherwise.

Clearly, � is a dual label operator to ⊕. �

Example 16. A more interesting example of � in Kweighted (see Example 4) dual to the

composition operator ⊕ from Example 11 that sums up weight intervals is given by

[a, b]� [a′, b′] =

{
[a− a′, b− b′] if [a− a′, b− b′] ∈ Kweighted

⊥ otherwise.

�

Let us for the rest of this subsection fix two label operators � and ⊕ such that � is a

dual label operator to ⊕ on a well-formed label-set (K,v).

Definition 22 (Quotient). Let S, T ∈ M(K,v) be two LSMTS such that S =

(S, s0, (K,v), 99KS ,−→S) and T = (T, t0, (K,v), 99KT ,−→T ). The quotient of T by S

is defined as T \\S =
(
(T × S) ∪ {u}, (t0, s0), (K,v), 99K,−→

)
where u is a new state

modelling a universal state, and the transition relations 99K and −→ are defined by the

following rules:

t
`
99KT t′ s

k
99KS s′ `� k is defined

(t, s)
`�k
99K (t′, s′)

t
`−→T t

′ s
k−→S s

′ `� k is defined

(t, s)
`�k−→ (t′, s′)

t
`−→T

(
`� k is not defined for any k s.t. s

k−→S

)
(t, s)

⊥−→ (t, s)

m ∈ K and m⊕ k is not defined for any s
k
99KS

(t, s)
m
99K u

m ∈ K
u

m
99K u
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The first two rules presented above are derived from the two rules of Definition 17,

while the third one captures the inconsistency present when the larger system T has

a must transition that cannot be mimicked by the smaller system S in parallel with

any transition from the quotient. To achieve maximality of the quotient, we introduce a

universal state u that allows for an arbitrary behaviour. Any allowed behaviour not struc-

turally composable with the allowed behaviour of the smaller system can be safely added

to the quotient (leading to the state u) as this will not affect the parallel composition

with the smaller system. This is captured by the fourth rule.

Example 17. An example of quotienting is shown in Figure 10. Both specifications

T and S have as the label-set Kaction ⊗ Kweighted where Kaction = ({a, b,⊥},v), and

ρ(T \\S) is the result of the pruned quotient of T by S with respect to the product of

the corresponding label operators from Examples 15 and 16 where the resulting opera-

tors are summarized in Figure 11 (these operators are already defined by the product

construction, we just present their combined definitions for clarity reasons). Thereby, a

may transition under [−∞,∞] between two states stands for all may transitions between

those states under any label in Kweighted .

— The quotient ρ(T \\S), in state (t0, s0), may do the action b with any weight (abbrevi-

ated by [−∞,∞]) and afterwards show arbitrary behaviour (reflected by the universal

state) since S has no corresponding transition for action b in state s0.

— Note that the state (t3, s3) is not present in the pruned quotient. If ρ(T \\S) would

allow for a transition labelled with a (which would be possible with the weight interval

[0, 0]), then (b, [1, 4])� (b, [0, 4]) yields ⊥ (on a must transition), turning (t3, s3) into

an inconsistent state with no implementation.

�

The quotient T \\S intends to synthesize the largest component that can be composed

with S in order to refine T . In existing theories such as modal transition systems, this

maximality property only holds when the specifications are deterministic. As for con-

junction, we now propose a general notion of determinism for quotienting.

Definition 23 (⊕/�-determinism). Let S ∈ M(K,v) be an LSMTS. We say that S

is ⊕/�-deterministic if, for any k′, k′′ ∈ K r {⊥},

1. whenever s
k′

99K s′ and s
k′′

99K s′′ and there exists m ∈ K r {⊥} such that k′ ⊕m and

k′′ ⊕m are defined, then k′ = k′′ and s′ = s′′, and

2. whenever s
k′−→ s′ and s

k′′−→ s′′ and there exists ` ∈ K r {⊥} such that ` � k′ and

`� k′′ are defined, then k′ = k′′ and s′ = s′′.

The reader may again observe that for modal transition systems with the label-set

Kaction , the notions of ⊕/�-determinism and determinism (as defined in Section 2)

as well as 7-determinism coincide. Here, in case of non-deterministic LSMTSs, the de-

terminization algorithm proposed in Section 2.5 can be applied to compute minimal

deterministic versions of them.

Under the assumption of ⊕/�-determinism, the quotient construction T \\S yields the

most general LSMTS that, composed with S, still refines T .
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t0

t1

t2 t3

t4

a

[5, 8]

b

[0, 4]

a

[0, 0]

b

[1, 4]

(a) T

s0

s1

s2 s3

s4

a

[0, 3]

b

[0, 1]

b

[0, 0]

a

[0, 0]

b

[0, 4]

(b) S

(t0, s0)

(t1, s1)

(t2, s2)

u (t3, s3)

a

[5, 5]

b

[0, 3]

b [−∞
,∞]

a [−∞,∞]

a [−∞,∞] a [0, 0]

⊥

a

[−∞,∞]

b

[−∞,∞]

(c) T \\S

(t0, s0)

(t1, s1)

(t2, s2)

u

a

[5, 5]

b

[0, 3]

b [−∞
,∞

]

a [−∞
,∞

]

a

[−∞,∞]

b

[−∞,∞]

(d) ρ(T \\S)

(s0, (t0, s0))

(s1, (t1, s1))

(s2, (t2, s2))

a

[5, 8]

b

[0, 4]

(e) S‖ρ(T \\S)

Fig. 10. Quotienting of two LSMTSs

(a, i)⊕ (a′, i′) =


a, [l + l′, r + r′] if a = a′ 6=⊥, i = [l, r], i′ = [l′, r′]

⊥ if a =⊥ or a′ =⊥ or i =⊥ or i′ =⊥
undefined otherwise

(a, i)� (a′, i′) =


a, [l − l′, r − r′] if a = a′ 6=⊥, i = [l, r], i′ = [l′, r′], [l − l′, r − r′] ∈ Kweighted

⊥ if a =⊥ or a′ =⊥ or i =⊥ or i′ =⊥
or i = [l, r], i′ = [l′, r′] and [l − l′, r − r′] 6∈ Kweighted

undefined otherwise

Fig. 11. Label operators ⊕, � for quotienting with the label-set Kaction ⊗Kweighted
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Theorem 6 (Soundness and maximality of quotient). Let S, T,X ∈ M(K,v)

be locally consistent LSMTSs such that T \\S is consistent. Assume that S is ⊕/�-

deterministic, and assume that � is the dual label operator to ⊕. Then X ≤m ρ(T \\S)

if and only if S‖X ≤m T .

Proof. “=⇒”: We assume a relation R1 witnessing X ≤m ρ(T \\S). We define a relation

R2 ⊆ (S ×X)× T by

R2 = {((s, x), t) | (x, (t, s)) ∈ R1}.
We show that R2 is a relation witnessing S‖X ≤m T . Clearly ((s0, x0), t0) ∈ R2 for the

corresponding initial states. Let ((s, x), t) ∈ R2.

1. Assume (s, x)
k⊕m
99K (s′, x′). Then there exist s

k
99K s′ and x

m
99K x′. Since X is locally

consistent, we know m 6=⊥. From (x, (t, s)) ∈ R1 and x
m
99K x′ it follows that there

exists (t, s)
`�k′
99K (t′, s′′) such that m v `� k′ and (x′, (t′, s′′)) ∈ R1. From m v `� k′

we get k′ ⊕m v ` by assumption. Moreover, we have t
`
99K t′ and s

k′

99K s′′. Then,

from ⊕/�-determinism of S it follows k = k′ and s′ = s′′, and so k ⊕m v `. Thus

(x′, (t′, s′)) ∈ R1 and hence ((s′, x′), t′) ∈ R2.

2. Assume t
`−→ t′. By local consistency of T we can assume that ` 6=⊥. Suppose that

there does not exist a transition s
k−→ s′ such that ` � k is defined, then (t, s)

⊥−→
which contradicts (t, s) ∈ ρ(T \\S). It follows that there exists s

k−→ s′ such that

`� k is defined, and (t, s)
`�k−→ (t′, s′). By a similar argument as above we know that

` � k 6=⊥. Then from (x, (t, s)) ∈ R1 it follows that there exists x
m−→ x′ such that

(x′, (t′, s′)) ∈ R1 and m v ` � k which implies k ⊕ m v `. We can conclude that

(s, x)
k⊕m−→ (s′, x′) and ((s′, x′), t′) ∈ R2.

“⇐=”: We assume a relation R2 witnessing S‖X ≤m T . We define a relation R1 ⊆
X × (T × S) by

R1 = {(x, (t, s)) | ((s, x), t) ∈ R2} ∪ {(x, u)}.
We show that R1 is a relation witnessing X ≤m ρ(T \\S). Clearly (x0, (t0, s0)) ∈ R1 for

the corresponding initial states. First, let (x, u) ∈ R1, then clearly for every transition

x
m
99K x′, it holds again that (x′, u) ∈ R1 since the universal state u allows arbitrary

behaviour. Second, let (x, (t, s)) ∈ R1.

1. Assume x
m
99K x′. If there is no transition s

k
99K s′ such that k ⊕m is defined, then

(t, s)
m
99K u, and in this case, (x, u) ∈ R1, and clearly m v m by reflexivity of v. If

there is a transition s
k
99K s′ such that k⊕m is defined, then (s, x)

k⊕m
99K (s′, x′). From

((s, x), t) ∈ R2 it follows that there exists t
`
99K t′ such that ((s′, x′), t′) ∈ R2 and

k ⊕m v `, implying m v `� k. Hence (t, s)
`�k
99K (t′, s′) and (x′, (t′, s′)) ∈ R1.

2. Assume (t, s)
`�k−→ (t′, s′). From local consistency of ρ(T \\S) we know `�k 6=⊥. Then

there are t
`−→ t′ and s

k−→ s′. From ((s, x), t) ∈ R2 we can conclude that there exists

(s, x)
k′⊕m−→ (s′′, x′) such that k′ ⊕ m v ` and ((s′′, x′), t′) ∈ R2. Then there exist

s
k′−→ s′′ and x

m−→ x′. The fact that k′ ⊕m v ` implies m v `� k′ by the duality of
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the operators. From ⊕/�-determinism of S it follows that k = k′ and s′ = s′′. Thus

m v `� k and ((s′, x′), t′) ∈ R2, hence (x′, (t′, s′)) ∈ R1.

4. Logical Characterization

It was shown in (Larsen, 1989) that Hennessy-Milner logic (Hennessy and Milner, 1985)

can be used as a logical characterization for modal refinement of modal transition systems

(the reader may also consult (Bruns and Godefroid, 2000)). In this section we shall extend

this result to LSMTSs and study other related topics. For the rest of this section, we fix

a well-formed label-set (K,v).

Let us first introduce LSHML, an extension of Hennessy-Milner logic (HML) that is

interpreted over LSMTSs, taking into account their label structures. The syntax of the

logic is given by the abstract syntax:

ϕ ::= true | false | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈k〉ψ | [k]ψ

where k ∈ K is a label. We define the ∨-free fragment of LSHML as a set of formulae in

LSHML not containing the disjunction operator.

Let S ∈ M(K,v) be an LSMTS. The satisfaction relation between a state s ∈ S

and a formula ϕ is defined inductively as follows.
s |= true

s 6|= false

s |= ϕ1 ∧ ϕ2 iff S |= ϕ1 and S |= ϕ2

s |= ϕ1 ∨ ϕ2 iff S |= ϕ1 or S |= ϕ2

s |= 〈k〉ϕ iff ∃(s `−→ s′) : J`K ⊆ JkK and s′ |= ϕ

s |= [k]ϕ iff ∀(s `
99K s′) s.t. J`K ∩ JkK 6= ∅ : s′ |= ϕ

We write S |= ϕ iff s0 |= ϕ where s0 is the initial state of S.

Example 18. Consider the specification of a vending machine given in Figure 3(c). The

specification satisfies the property that after inserting a 1e coin, a drink is guaranteed, as

we have s0 |= [1EURO ]〈drink〉true. On the other hand, we are not guaranteed to receive

a cup of tea if a coin is inserted as s0 6|= [coin]〈tea〉true. �

We are now ready to prove the soundness and completeness theorems for our logic. The

following theorem ensures soundness of LSHML, i.e., if a formula holds for a specification,

then it holds for any of its refinements.

Theorem 7 (Soundness). Let T ∈M(K,v), and ϕ a LSHML-formula. Then

T |= ϕ =⇒ ∀S ≤m T : S |= ϕ .

Proof. Assume that S ≤m T and T |= ϕ. We prove by induction on the structure of ϕ

that S |= ϕ too. Let s0 and t0 be the initial states of S and T , respectively. The induction

basis, where ϕ = true and ϕ = false, is trivial.
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ϕ = ϕ1 ∧ ϕ2. By the definition of |= and then from the induction hypothesis.

ϕ = ϕ1 ∨ ϕ2. As in the case above.

ϕ = 〈k〉ψ. From T |= 〈k〉ψ it follows that there exists t0
`−→ t such that J`K ⊆ JkK and

t |= ψ. Since S ≤m T there exists s0
`′−→ s such that `′ v ` and (s, S) ≤m (t, T ). By

the induction hypothesis we get s |= ψ. From transitivity of v we have J`′K ⊆ JkK and

therefore S |= ϕ.

ϕ = [k]ψ. Let s0
`
99K s such that JkK ∩ J`K 6= ∅. Since S ≤m T we know that there exists

t0
`′

99K t in T with ` v `′ and (s, S) ≤m (t, T ). Clearly, JkK ∩ J`′K 6= ∅ and because

T |= [k]ψ we know that t |= ψ. By the induction hypothesis we get s |= ψ and hence

S |= ϕ.

We shall now focus on the issue of completeness. We consider two possible definitions:

1. Completeness with respect to implementations: if all implementations of a specification

S satisfy a formula of the logic, then so does the specification S.

2. Completeness with respect to modal refinement: if all formulae satisfied by some spec-

ification S are satisfied also by another specification T , then S ≤m T .

The latter, completeness with respect to modal refinement, is also known as logical

characterization in the literature (Larsen, 1989).

We first study the completeness with respect to implementations and observe that

LSHML-logic is not complete in this case.

Theorem 8. The logic LSHML is incomplete with respect to implementations.

Proof. Let T be an LSMTS consisting of a single transition t0
•
99K t over the label-set

Kunlabelled from Example 1. Consider the formula ϕ = 〈•〉true∨ [•]false. Since there is no

must transition from t0 and at the same time there is a may transition, we get t0 6|= ϕ. On

the other hand, any implementation of T either contains no transition at all (and then

it satisfies [•]false) or it contains at least one outgoing transition (and then it satisfies

〈•〉true). Hence any implementation of T satisfies ϕ and we get the incompleteness result

with respect to implementations.

Inspecting the proof of the above theorem, one can notice that it is the disjunction

that breaks the completeness property. In fact, we can show completeness if we consider

the ∨-free fragment of LSHML.

Theorem 9 (Completeness with respect to implementations for ∨-free

LSHML). Let T ∈ M(K,v) be a locally consistent specification, and let ϕ be a ∨-free

LSHML-formula. Then

(∀I ∈ JT K : I |= ϕ) =⇒ T |= ϕ .

Proof. We prove the contraposition. We show that for any ∨-free LSHML-formula ϕ

if T 6|= ϕ then there exists I ∈ JT K such that I 6|= ϕ .
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The proof is by induction on the structure of the formula ϕ and under the assumption that

T 6|= ϕ we construct its implementation (i0, I) such that i0 6|= ϕ. During the construction

we will write that we add a transition i0
n−→ (i′0, I

′) for an implementation (i′0, I
′),

meaning that together with this transition we implicitly add also a disjoint copy of I ′

rooted at i′0 to the implementation I.

The induction basis, where ϕ = true and ϕ = false, is trivial.

— Case 1: ϕ = ϕ1∧ϕ2. By the definition of |= either T 6|= ϕ1 or T 6|= ϕ2 Assume w.l.o.g.

that T 6|= ϕ1. By applying the induction hypothesis there is I ∈ JT K such that I 6|= ϕ1

and we conclude that I 6|= ϕ1 ∧ ϕ2.

— Case 2: ϕ = 〈k〉ψ. Assume that T 6|= 〈k〉ψ, which is the case if for all t0
`−→ t

we have either (1) J`K 6⊆ JkK or (2) (t, T ) 6|= ψ. We construct an implementation

(i0, I) ∈ JT K as follows. For every t0
`−→ t such that (1) is satisfied, we add the

transition i0
n−→ (i′0, I

′) into I where n ∈ J`K r JkK and (i′0, I
′) ≤m (t, T ) (the

implementation (i′0, I
′) exists by local consistency of T and well-formedness of the

label-set). For every t0
`−→ t such that (2) is satisfied, we have by induction hypothesis

an implementation (i′0, I
′) ∈ J(t, T )K such that i′0 6|= ψ. We add i0

m−→ (i′0, I
′) to I

for some m ∈ J`K. It is easy to see that I ≤m T , and moreover I 6|= 〈k〉ψ by the

construction.

— Case 3: ϕ = [k]ψ. Assume that T 6|= [k]ψ. Then there exists t0
`
99K t such that

J`K ∩ JkK 6= ∅ and (t, T ) 6|= ψ. By induction hypothesis there exists (i′0, I
′) ∈ J(t, T )K

such that i′0 6|= ψ. Let (i0, I) ∈ JT K be some implementation of T (which exists by

local consistency of T ) where we add the transition i0
n−→ (i′0, I

′) with n ∈ J`K ∩ JkK.
Clearly, we still have I ≤m T and moreover the transition i0

n−→ i′0 ensures that

i0 6|= [k]ψ.

A similar completeness result in the setting of partial Kripke structures can be found

also in (Antonik and Huth, 2006).

We now study completeness with respect to modal refinement, that is the completeness

definition considered in (Larsen, 1989). In this article, it was shown that for classical

modal transition systems (with the label-set Kaction from Example 2), the LSHML logic

is complete with respect to refinement. We first observe that the result does not extend

to general LSMTSs.

Theorem 10. The logic LSHML is incomplete with respect to modal refinement.

Proof. Consider the systems S and T from Figure 6. By case analysis it is easy to

verify that s0 |= ϕ if and only if t0 |= ϕ for any LSHML-formula ϕ. However, as argued

before, S 6≤m T .

On the other hand, if we consider only deterministic systems, LSHML is complete

even with disjunction, as proved below. We let F(S) = {ϕ | S |= ϕ} denote the set of all

LSHML-formulae satisfied by S.

Theorem 11 (Completeness with respect to modal refinement for determin-
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istic LSMTSs). Let S, T ∈ M(K,v) be deterministic LSMTSs (see Definition 11) and

assume that the label refinement relation v is complete. Then

F(T ) ⊆ F(S) =⇒ S ≤m T .

Proof.

Assume that F(T ) ⊆ F(S). We define a relation R ⊆ S × T by

R = {(s, t) | F((t, T )) ⊆ F((s, S))}.

We show that R is a relation witnessing S ≤m T . Clearly (s0, t0) ∈ R for the respective

initial states. Let (s, t) ∈ R.

— First, assume that s
k
99K s′. Clearly, t

`
99K t′ for some ` such that JkK ∩ J`K 6= ∅,

otherwise the formula [k]false is satisfied in (t, T ) but not in (s, S), contradicting our

assumption that F((t, T )) ⊆ F((s, S)). By the determinism of T there can only be

one such ` with JkK ∩ J`K 6= ∅.
For the sake of contradiction assume that k 6v `. By completeness of label refinement

we get JkK 6⊆ J`K. Thus, there exists some m ∈ JkK r J`K. The formula [m]false holds

in (t, T ) due to the choice of m and the absence of any other may transition having

any common implementation labels with JkK, hence in particular also with JmK =

{m}. However, [m]false does not hold in (s, S), contradicting the assumption that

F((t, T )) ⊆ F((s, S)). Thus, we can assume the existence of t
`
99K t′ with k v `.

Now we need to argue that (s′, t′) ∈ R. Assume that this is not the case. Then we

have F((t′, T )) 6⊆ F((s′, S)), and therefore there is a formula ϕ′ such that (t′, T ) |= ϕ′

and (s′, S) 6|= ϕ′. Consider the formula ϕ = [k]ϕ′. Again (t, T ) |= ϕ, but (s, S) 6|= ϕ.

This contradicts the assumption that F((t, T )) ⊆ F((s, S)). Thus (s′, t′) ∈ R.

— Second, assume that t
`−→ t′. As in the previous item, there must be a transition

s
k−→ s′ such that JkK ⊆ J`K, otherwise the formula 〈`〉true is satisfied in (t, T )

but not in (s, S), contradicting the assumption that F((t, T )) ⊆ F((s, S)). By the

determinism of S we know that s
k−→ s′ is a unique transition such that JkK ⊆ J`K

and due to the completeness of label refinement we know that k v `.

Remains to argue that (s′, t′) ∈ R. Assume that this is not the case. The arguments

are similar to the previous case by considering the formula 〈`〉ϕ′ where t′ |= ϕ′ and

s′ 6|= ϕ′. Thus (s′, t′) ∈ R and this completes the proof.

5. Conclusion

We introduced label-structured modal transition systems, a basis for a specification for-

malism that generalizes modal theories such as weighted and multi-weighted modal tran-

sition systems. Our work contributes to the long-term objective towards the unification

of existing specification theories through a common framework. A full specification the-

ory for label-structured modal transition systems was developed, including the notions of

modal and thorough refinement, consistency, determinization and deterministic-hull and

a number of completeness results, often conditioned (as expected) by the requirement of
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determinism. We showed soundness results for the operators of parallel composition, con-

junction and quotient. The specification theory was concluded by suggesting an extension

of Hennessy-Milner logic to handle quantitative aspects and by showing the interplay be-

tween the logic and the refinement theory in a similar way as known from the classical

theory of labelled transition systems and bisimulation.

Most of the proof techniques were generalizations of the techniques developed for

concrete instances of the framework like modal transition systems, however, the general

theorems provide novel results for particular instances like weighted and multi-weighted

modal transition systems. Finally, we consider the uniform and complete presentation of

the main aspects of the suggested specification theory as a contribution on its own.

There are a few instances of recently studied extensions of modal transition systems

that cannot be captured in our framework. Here we list some of them as possible directions

for future research.

Abstract Probabilistic Automata (Delahaye et al., 2011) and constraint Markov

Chains (Caillaud et al., 2010) are recently introduced stochastic extensions of modal

transition systems. One of the major difficulties is how to capture and generalize the sat-

isfaction relation which is (unlike to our framework) based on a redistribution of weights

from one to several transitions.

The theories based on the optimistic approach introduced in Interface Au-

tomata (de Alfaro and Henzinger, 2001; de Alfaro et al., 2002) are also hard to capture

by our framework. Here the semantics of a given specification is viewed as a two player

game. The approach is optimistic in the sense that two specifications can be composed if

and only if there exists at least one environment in which they can cooperate. The input

and output modalities are orthogonal to may and must ones, which suggests that the

label-structured modal transition systems need to be further extended to capture this

phenomenon.

Finally, it would be of interest to consider models that manipulate data like in the

spirit of sociable interfaces (de Alfaro et al., 2005; Adler et al., 2006) and see if they can

be described in the framework of label-structured modal transition systems.
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