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ABSTRACT
In this paper, we present a novel approach to schedulability
analysis of Safety Critical Hard Real-Time Java programs.
The approach is based on a translation of programs, written
in the Safety Critical Java profile introduced in [21] for the
Java Optimized Processor [18], to timed automata models
verifiable by the Uppaal model checker [23]. Schedulability
analysis is reduced to a simple reachability question, check-
ing for deadlock freedom. Model-based schedulability anal-
ysis has been developed by Amnell et al. [2], but has so
far only been applied to high level specifications, not actual
implementations in a programming language. Experiments
show that model-based schedulability analysis can result in
a more accurate analysis than possible with traditional ap-
proaches, thus systems deemed non-schedulable by tradi-
tional approaches may in fact be schedulable, as detected
by our analysis.

Our approach has been implemented in a tool, named
SARTS, successfully used to verify the schedulability of a
real-time sorting machine consisting of two periodic and two
sporadic tasks. SARTS has also been applied on a number of
smaller examples to investigate properties of our approach.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications; D.3.2
[Language classifications]: Object-oriented Languages;
D.3.4 [Programming Languages]: Processors - Runtime
environments; D.4.1 [Operating Systems]: Process Man-
agement - Scheduling, Threads; J.7 [Computer Applica-
tions]: Computers in Other Systems - Real time
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1. INTRODUCTION
Traditional schedulability analysis are based on the crit-

ical instant and assume maximum interference and block-
ing; an approach which often results in a very pessimistic
analysis. Due to this pessimistic nature, a new approach is
desirable.

Several modeling tools exist, where the general idea is to
model the system, and verify that certain properties hold.
Some tools also allow the developer to check whether dead-
lines are missed, based on a scheduling strategy and a WCET
for each task; other tools must be used to estimate this
WCET. A tight correspondence between the model used in
these tools and the actual implementation is required, in or-
der to rely on the guarantees given. One such tool is the
TIMES tool [2] which builds on timed automata models of
systems and generates C code.

However, in many circumstances a high-level model of a
hard real-time system from which code can be generated
does not exist. Instead the code of the system has to be
analyzed to give verifiable guarantees. This paper focuses
on improving and automating the schedulability analysis of
such systems, where the implementation language is Java.

Several real-time profiles for Java exists: the Real-Time
Specification for Java (RTSJ) [11], the Ravenscar-Java Pro-
file [16], which is based on the Ravenscar profile for Ada [10],
and the Safety Critical Java (SCJ) profile [21]. Furthermore,
there is currently a huge standardization effort underway by
academia and industry to provide a standard Safety Critical
Java profile under the Java Community Process which has
issued the Java Specification Request 302 (JSR-302).

RTSJ is a general, somewhat complex, real-time frame-
work with many dynamic features. Often these dynamic
features inhibit static analysis and dynamic checks have to
be performed, e.g. checks for budget overruns and missed
deadlines, with associated miss handlers. The Ravenscar-
Java profile and the current direction of the expert group for
the JSR-302, both define extended subsets of RTSJ, which
remove many of the dynamic features of RTSJ, making them
more suitable for static analysis. SCJ also removes many
dynamic features and many parameters from RTSJ to en-
sure implementations are verifiable such that they can be
deployed in high integrity systems. SCJ presents a program-
ming model similar to the midlet model of J2ME MIDP for
mobile phones. In SCJ release parameters of schedulable
entities (periodic and sporadic threads) are time and not
priority. The implementation uses a priority based preemp-
tive scheduler which maps the time requirements according
to the deadline-monotonic order. This relieves the program-
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mer of the error prone assignment of priorities.
The approach developed in this paper, is the translation

of an existing implementation of a hard real-time system
written in the SCJ profile [21] for the Java Optimized Pro-
cessor (JOP) [18], to an abstract time preserving model, on
which the Uppaal model-checker [23] can be used to verify
that deadline misses never occur. The schedulability anal-
ysis considers blocking, interference, context switches, and
event interactions between tasks. This improves the accu-
racy of the analysis, while ensuring a tight correspondence
between the model and the actual implementation.

The contributions of this paper, is the tool SARTS. SARTS
performs a fully automatic translation of real-time Java ap-
plications into Uppaal models, on which schedulability anal-
ysis is performed using the theoretical foundations of Fers-
man and Yi [12, 13, 15]. It is shown how this approach can
result in a more accurate result than possible with tradi-
tional approaches.

2. RELATED WORK
A traditional approach to schedulability analysis, involves

WCET calculation of tasks, and combining these with for-
mulae, e.g. utilization test or response time analysis [8].
WCA [20] is a tool developed for JOP [18], supporting WCET
calculation for a single method of a real-time Java program.
The result is intended to be used in conjunction with the
afore mentioned formulae.

Several modeling tools for Java already exists, such as
Bandera [9] which translates Java source code to an inter-
mediate representation, on which slicing and abstraction is
performed. This intermediate representation is translated
to abstract models, on which safety properties of the imple-
mentation can be verified. However, Bandera has no notion
of time, which is critical in real-time systems, and is there-
fore not suitable for schedulability analysis.

The TIMES tool [2] already supports a schedulability anal-
ysis of a real-time system, but the focus is on high-level
models of systems. However, TIMES supports generation of
source code from the model, and is therefore an approach,
opposite from that of SARTS. Furthermore, TIMES puts
several restrictions on what computation is actually possi-
ble by periodic and sporadic tasks and TIMES includes no
context switch or scheduler cost in the schedulability analy-
sis, which may be significant in some systems.

Polychrony is another interesting tool, which allows trans-
lation of Java to its input language SIGNAL targeted hard
real-time systems [22]. However, it is unclear how Poly-
chrony handles WCET, and therefore how it can be utilized
as a schedulability tool.

Java PathFinder [7] is a model checker to verify properties
of executable Java bytecode programs. Java PathFinder is
a Java Virtual Machine (JVM) that systematically explore
all potential execution paths of a program to find violations
of properties like deadlocks or unhandled exceptions. Java
PathFinder has been used to verify properties of RTSJ pro-
grams, basically by implementing (a subset of) RTSJ on top
of the Java PathFinder JVM using discrete event simulation
as a basis for modeling time. Real-time threads are modeled
in Java PathFinder as ordinary Java threads, constrained to
run one at a time, modeling resource contention, such as
scheduling, through discrete event programming [17].

3. SARTS
SARTS automatically translates real-time Java systems

into Uppaal models. The Java system must be implemented
in SCJ; a safety critical hard real-time profile for Java [21]
implemented and documented in [5]. SCJ supports peri-
odic and sporadic tasks, and uses a fixed priority sched-
uler. Furthermore, a priority inversion control mechanism
is included. In SCJ priority ceiling emulation is the only
available protocol. Release parameters of schedulable en-
tities (periodic and sporadic threads) in SCJ are time and
not priority. An implementation that uses a priority based
preemptive scheduler maps the time requirements according
to the deadline-monotonic order. As SCJ does not allow
dynamic creation of threads during mission phase this map-
ping can be done on the transition from the initialization to
the mission phase. This relieves the programmer of the error
prone assignment of priorities. SCJ does not have budget pa-
rameters, as WCET and schedulability analysis is supposed
to be performed to guarantee that no budget overruns or
deadline misses will ever happen, thus eliminating the need
for miss handlers.

SARTS translates the Java application to SARTS Inter-
mediate Representation (SIR), on which analyses and trans-
formations are performed. SIR represents an abstraction of
the actual Java bytecode via a class graph, where each class
contains a set of methods represented as control flow graphs.
SIR is extracted from a Java class file using the BCEL li-
brary [3].

In the current implementation, WCET calculation and
simple collapsing is performed. SIR is translated to a Uppaal
model. For a description of Uppaal see [4].

The following sections describe the principles of the trans-
lation to Uppaal. The models are created to simulate the
execution of the system on JOP. The scheduler, preemption,
and interrupt mechanisms are modeled directly as the actual
implementations on JOP.

3.1 The Scheduler
The purpose of the scheduler is to schedule the thread

with the highest priority, according to a deadline monotonic
priority assignment. The scheduler is depicted in Figure 1.

Initially the broadcast channel GO! is synchronized to en-
sure all threads are in their correct state. The scheduler
simulates execution, by waiting for wcet time. If any schedu-
lable thread exists, the highest priority thread is selected, by
setting the corresponding index in the running array to 1.
If no threads are schedulable all indices in running are set
to 0. This is handled by the two functions selectThread()

and idle() respectively. The values in the array, running,
are used in stopwatch expressions to determine which thread
is executing, modeling preemption.

3.2 Periodic Thread
For each periodic and sporadic thread in the Java pro-

gram, a base model is added. This model must be supplied
with parameters to determine its ID, period, deadline, and
offset corresponding to the actual Java implementation of
the thread. The base model for the periodic thread is de-
picted in Figure 2.

Initially the thread waits if an offset is specified. If the
thread has a higher priority than the currently executing
thread, preemption occurs and the scheduler is started, by
calling runScheduler(). In the actual Java implementation,
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GO!

selectThread(),
executionTime = 0

idle(),
executionTime = 0

executionTime <= wcet && 
executionTime' == running[schedulerID]

Running

executionTime == wcet

!exists(i:ThreadID)schedulable[i]

exists(i:ThreadID)schedulable[i]

Figure 1: Scheduler

run[pID]?

run[pID]!

GO?

runScheduler()

GO?

schedulable[pID] = true,
releasedTime = 0

schedulable[pID] = false,
runScheduler()

ReadyToBeScheduled

releasedTime <= offset

releasedTime <= period

CheckForOffset

ExecutingThread

DONE

offset == 0

offset != 0

releasedTime == offset

threadPriority[pID] < selectedThreadPriority

threadPriority[pID] >= selectedThreadPriority

releasedTime == period

releasedTime <= deadline

releasedTime <= deadline

Figure 2: PeriodicThread base model

it is not the thread’s responsibility to notify the scheduler,
but the scheduler’s responsibility to schedule interrupts at
the correct time. However, this implementation is not suit-
able in Uppaal, since it would make the model unnecessar-
ily complicated. The implementation of runScheduler() is
shown in Listing 1.

If the system is in a synchronized region an interrupt is
queued. Once the synchronized region is left the scheduler is
started if scheduled interrupts exist. Otherwise all threads
are stopped and the scheduler is started.

void runScheduler (){
int i;
if (synchronized){

interruptWaiting = true;
} else {

for (i = 0; i <= totalThreads; i++){
running[i] = 0;

}
running[schedulerID] = 1;

}
}

Listing 1: Implementation of runScheduler in
Uppaal

To start the run logic for the thread, synchronization is
performed on the correct channel in the run channel array.
This synchronizes with the template containing the run logic
for the thread. The template waits in ExecutingThread for a
synchronization on the same channel, indicating the thread
is done with its run logic. An example of a run method is
explained in Section 3.5. It is ensured that the thread has
completed before its deadline, otherwise a deadlock occurs,
and the system is not schedulable. The scheduler model is
invoked to determine which thread to schedule next. The
same procedure continues for each period of the periodic
thread.

3.3 Sporadic Thread
The sporadic model is similar to the periodic model, ex-

cept it must be invoked by synchronizing on the correct
channel in the fire array. This synchronization occurs when
a thread chooses to fire the given thread. The base model
is depicted in Figure 3. This model must be supplied with
parameters for its ID, minimum inter-arrival time, and dead-
line. When the run logic is done, the template waits in DONE.
Once the minimum inter-arrival time has passed since the
last release, the firable array is set to true for the specific
thread, and it is ready to be fired again.

run[sID]!

fire[sID]?

run[sID]?

fireable[sID] = true

schedulable[sID] = true,
fireable[sID] = false,
releasedTime = 0,
runScheduler()

GO?

ReadyToBeScheduledReadyToBeFired

ExecutingThread

DONE

schedulable[sID] = false,
runScheduler()

releasedTime == minIA

releasedTime <= deadline

releasedTime <= deadline

releasedTime = 0,
fireable[sID] = true

releasedTime <= minIA

Figure 3: SporadicThread base model

3.4 Basic Blocks
As an abstraction to the actual Java bytecode, the concept

of basic blocks is introduced. A basic block contains a list
of the Java bytecode instructions it represents and the cost
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of executing these along with extra information, e.g. loop
bound in the case of a loop basic block.

SIR consists of basic blocks, which are translated to a
corresponding part of the Uppaal model.

• SimpleBasicBlock: This is a sequence of bytecode
instructions with exactly one predecessor and exactly
one successor.

• MethodCallingBasicBlock: This represents a method
invocation. It contains a set of possible methods, which
can be invoked.

• SporadicInvokeBasicBlock: This is a special case
of a method invoke, where a sporadic event is fired.

• IfBasicBlock: Represents an if branch, and therefore
contains two outgoing edges.

• LoopBasicBlock: Represents any kind of a loop. It
contains an estimated upper iteration bound for the
actual loop, specified by the developer of the real-time
system.

• MonitorEnter- and MonitorExitBasicBlock: Rep-
resent start and end of synchronized regions. Syn-
chronized regions are handled by setting the variable
synchronized, see Listing 1, to true; disabling inter-
rupts.

• EmptyBasicBlock: These blocks do not represent
actual instructions, and are added for convenience rea-
sons, e.g. one is added in the beginning and the end
of a method.

A simple basic block modeled in Uppaal is depicted in Fig-
ure 4. An invariant is added to ensure the model stays in this
state for as long as the WCET of the represented bytecode,
denoted by instX. Whether the given thread is executing is
denoted by executionTime’ == running[tID], a stopwatch
expression. Preemption is done by setting running[tID] to
0; stopping the clock, executionTime. The execution time
is reset on the outgoing edge to reuse the clock in the next
basic block.

executionTime = 0

executionTime <= instX && 
executionTime' == running[tID]

SimpleX

executionTime == instX

Figure 4: Simple basic block

Each basic block, uses the same notation to represent the
correct amount of time spent in a state. The other types
of basic blocks are implemented in a similar way, by adding
the control flow, e.g. a branching basic block, and special
variable updates, e.g. a monitor enter or exit.

3.5 Example
As a small example of how Java code is translated to a

Uppaal model, a simple periodic run method is shown in
Listing 2.

protected boolean run() {
if (condition){

// then statements
} else {

// else statements
}
return true;

}

Listing 2: Run method example

The translated Uppaal model is depicted in Figure 5.
This model is slightly modified from the translated model
to reduce the size, and focus on the essential aspects. All
invariants, guards, and updates have been removed, as they
all follow the pattern of the simple basic block depicted in
Figure 4, i.e. the model waits in each state for the correct
amount of time, corresponding to the represented bytecode
instructions.

Ready

End

IfElse

WaitingForRelease

run[tID]?

If

Return

IfThen

IfEnd

run[tID]!

Figure 5: Translated Uppaal model

Each time the periodic thread is released, the template
enters the Ready state. However, it does not start execut-
ing until the thread is selected by the scheduler. It enters
the If state and performs a nondeterministic choice between
the two branches, and returns from the method, by synchro-
nizing on run[tID]. The corresponding periodic template,
Figure 2, enters the DONE state, and waits for the period to
elapse, before the periodic thread is released again.

3.6 Method Invoke
When a method invocation is performed, it corresponds to

switching to another template in Uppaal. This is modeled
as depicted in Figure 6. A model is created for each method
in the system. Each of these has an array of channels, one
for each thread. This is done to enable different threads
to invoke the same method. A method invoke consists of
synchronization on the correct channel, transferring control
to the invoked method, and waiting for a synchronization
on the same channel, meaning the method has returned.

In Figure 6, methodName1 to methodNameN denote the un-
certainty of method invokes due to dynamic dispatching.

Using this design Uppaal will nondeterministically con-
sider all possible method candidates for this call.
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methodNameN[tID]!

methodName1[tID]? methodNameN[tID]?

executionTime = 0

executionTime = 0,
methodSwitchCost = Y

methodName1[tID]!

MethodCallingX

executionTime <= methodSwitchCost && 
executionTime' == running[tID]

executionTime <= instX && 
executionTime' == running[tID]

running_MethodCallingX

returningFrom_MethodCallingX

executionTime = 0

executionTime == instX executionTime == instX

executionTime = 0

executionTime = 0,
methodSwitchCost = Y

executionTime == methodSwitchCost

Figure 6: Invoke of a standard method

JOP has a method cache to improve performance, how-
ever, the method cache complicates WCET analysis and in
the current implementation of SARTS method caches are
always assumed to miss, thus making a conservative approx-
imation. We expect the rather conservative approximations
that both dynamic dispatch and cache miss assumption in-
troduce, can be reduced significantly by combining tradi-
tional control flow and call graph analysis within the SARTS
model generation module.

4. CASE STUDY
A case study of a real-time system has been implemented

in SCJ. It was originally designed and implemented in [6].
The system is a sorting machine called RTSM, depicted in
Figure 7. The machine is built in LEGO, using motors and
sensors controlled and monitored by JOP1.

Figure 7: Real-Time Sorting Machine

RTSM is a prototypical example of a hard real-time sys-
tem, representative of many real-life real-time control sys-
tems. It includes periodic and sporadic tasks, blocking re-
gions, and dependencies between tasks. These are interest-
ing properties of a system, when performing schedulability
analysis.

1A video of the machine in action is available at http://
sarts.boegholm.dk/

Task Cyclomatic Complexity
Periodic 1 9
Periodic 2 17
Sporadic 7

Table 1: Cyclomatic complexity of tasks

The implementation contains two periodic and two spo-
radic tasks, where the sporadic tasks are two instances of
the same class. The cyclomatic complexity of each tasks in
the system is shown in Table 1, indicating the complexity
of the system being verified. The system consists of 17 dif-
ferent methods, and contains more than 300 lines of code.
The generated model contains 20 templates, one for each
method and the three base models. The instantiated sys-
tem contains 65 instances of templates, and a total of about
700 template locations.

Periodic 1 reads the input from the sensors, to determine
whether an object has passed by, and of which color. Each
time an object is detected, the time of detection is added
to a bounded buffer. Periodic 2 reads this buffer, and fires
a sporadic event, when the object must be pushed off the
conveyor belt. The two sporadic tasks push off the objects
depending on their color.

The code in Listing 3 contains the run logic for the spo-
radic thread pushing objects off the conveyor belt. This
sporadic thread is fired three times for each object detected
on the conveyor belt, keeping an internal state for each op-
eration, forward, backward and brake. Note that the method
invoke, motor.setMotorPercentage has a cyclomatic com-
plexity of 2.

protected boolean run(){
if (state == IDLE){

motor.setMotorPercentage(
Motor.STATE_FORWARD ,
false , 100);

state = FORWARD;
} else if (state == FORWARD){

motor.setMotorPercentage(
Motor.STATE_BACKWARD ,
false , 100);

state = BACKWARD;
} else if (state == BACKWARD){

motor.setMotorPercentage(
Motor.STATE_BRAKE ,
false , 100);

state = IDLE;
}
return true;

}

Listing 3: Code example from RTSM

A simple version of RTSM, called RTSMSimple, has been
developed for performing experiments. RTSMSimple has a
lower complexity, which allows for faster verification. The
difference between RTSM and RTSMSimple is that the peri-
odic thread, Periodic 2, can only fire the sporadic threads
at two code points instead of six in RTSM.

5. EXPERIMENTS
This section presents experiments conducted to evaluate

the implementation of SARTS. In [5] it is shown that SARTS
is comparable to WCA [20] in terms of WCET analysis ac-
curacy.
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The experiments presented here show how the model-
based schedulability analysis is able to exploit the control
flow of the analyzed system, in order to achieve a more ac-
curate analysis result, followed by experiments illustrating
the scaling properties of the generated models.

5.1 Conditional Sporadic Events
For this experiment, the example system consists of one

periodic thread and two sporadic threads. The logic of the
run method for the periodic thread is shown in Listing 4, in
which the periodic task Experiment1 fires either event 1 or
event 2, but never both in the same period. The period and
minimum inter-arrival times are set to 4 microseconds, and
the sporadic tasks have the same WCET.

public class Experiment1 extends PeriodicThread
{

public boolean run() {
if(b)

RealtimeSystem.fire (1);
else

RealtimeSystem.fire (2);
return true;

}
}

Listing 4: Conditional sporadic invoke

The WCET for the periodic run method is 161 clock cycles
and 64 clock cycles for the sporadic run method. The period
calculated into clock cycles is 240, and the calculation of the
processor utilization is performed as follows:„

161

240

«
+

„
64

240

«
+

„
64

240

«
= 1.20

Following traditional schedulability analysis approaches, this
system will be deemed not schedulable since processor uti-
lization is greater than 1 [8]. Running SARTS on this system
will correctly show it as being schedulable, since the model
checker can deduct that the two sporadic events will never
be fired at the same time. A time-line for the execution of
the system can be seen in Figure 8.

5.2 Scalability
Several experiments have been conducted to illustrate the

scalability of SARTS. The experiments consider only the
time used to verify the system in Uppaal, since the transla-
tion time is insignificant. The example system being verified
is RTSMSimple compiled using two different Java compilers
generating slightly different code. This small change in the
generated bytecode is, enough to make a measurable differ-
ence in verification time.

The execution of the verification for the two generated
systems is shown in Table 2. These results indicate that
even small variation in the generated bytecode, can lead
to huge variations in the verification time of the generated
model.

Compiler Verification time Result
Javac 14m 29s Satisfied
Eclipse 1m 55s Satisfied

Table 2: Verification time of RTSMSimple

The cause of the difference in verification time is illus-
trated in Figure 9 and 10. These two models are seman-

tically equivalent, disregarding execution time. The Javac
version, Figure 9, has a single return statement and a jump
to this statement from the other branch, the Eclipse version
has two return statements.

WCET = 1

WCET = 23

Return

Basic

IF

GOTO

End

Basic

WCET = 1

WCET = 4

Figure 9: Javac compiled model

In the Eclipse version, Figure 10, both branches have the
same execution time. The state of the model, when the
template enters the End location, is therefore independent
of the previous branch, since the choice of branch becomes
insignificant and thus no additional traces are considered by
the model checker.

WCET = 1

WCET = 23

Return

Basic

IF

Return

End

Basic

WCET = 1

WCET = 23

Figure 10: Eclipse compiled model

The result of this experiment, is that small factors in the
system and hence the model generated, have significant im-
pact on verification time.

However, it is possible to reduce the time needed to verify
the systems, using the options available in Uppaal. Ad-
ditional tests have therefore been conducted. Table 3 is
the same experiments where a depth first search instead of
breath first search is used, and aggressive state space reduc-
tion is enabled.

Compiler Verification time Result
Javac 4m 23s Satisfied
Eclipse 51s Satisfied

Table 3: Verification time of RTSMSimple using
depth first search and aggressive state space reduc-
tion

Uppaal also supports a convex-hull approximation op-
tion, reducing verification time at the cost of an over ap-
proximate answer. If Uppaal using convex hull determines
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Periodic

Sporadic 1

Time

Thread

Sporadic 2

Process release time

Process completion time – deadline met

Executing

Preempted

Figure 8: Time-line for conditional sporadic invoke

a safety property to be satisfied, then it is also satisfied
without the approximation. The result of this experiment is
shown in Table 4.

Compiler Verification time Result
Javac 16s Satisfied
Eclipse 9s Satisfied

Table 4: Verification time of RTSMSimple using
convex-hull approximation

In addition to verifying RTSMSimple, the full version of
RTSM has also been verified, requiring substantially more
verification time than RTSMSimple due to the increased com-
plexity. The verification times using different optimizations
can be seen in Table 5. In all cases, the system is deemed
schedulable.

Settings Compiler Verification time
Standard Javac 27h 15m 26s
Standard Eclipse 5h 42m 10s
Aggressive Javac 6h 30m 01s
Aggressive Eclipse 1h 28m 29s
Convex Hull Javac 52s
Convex Hull Eclipse 37s

Table 5: Verification time of Full RTSM

The experiments show that even small changes in the an-
alyzed program, the compiled code, or the Uppaal template
can significantly increase the verification time. How the dif-
ferent parameters interact is still an open research question.

6. IMPROVEMENTS
In the current implementation all branches and loops from

the Java code are present in the Uppaal model. This is
done to maintain the control flow of the actual application,
however, it will be possible to collapse branches if this change
is made to the analyzed system as well, to keep consistency.
Collapsing branches applies to branches where the contained
instructions do not affect the overall system, such as firing a
sporadic task. This could be done by calculating the worst
case path through the branch and creating a single basic
block with WCET equal to that worst case. This way the
state space could be significantly reduced, since fever traces
are explored by the model checker. The code being analyzed

must be changed correspondingly to correctly reflect this
change in the model. This is due to interleavings, where a
blocking region can be moved past a point where it would
have prevented a higher priority thread from executing.

In order to illustrate this problem, a small system consist-
ing of two threads is analyzed. The actual time-line for the
execution is depicted in Figure 11. The thread b includes a
blocking region larger than the deadline of the higher prior-
ity thread a, resulting in a deadline miss. Note, this is due
the implementation of synchronized regions on JOP, which
implements the priority ceiling protocol with all locks as-
signed the highest priority.

a

b

Time

Thread

BlockedExecuting with lock

a

b

Thread

Time

Deadline missed

Figure 11: Blocking example, actual execution

The actual implementation of the system is therefore not
schedulable. However, a pessimistic WCET in the verified
model might postpone the blocking region, moving it past
the release of task a, deeming the system schedulable, de-
picted in Figure 12. It is therefore necessary to consider all
paths with different execution time, in order to rely on the
result.

A way to circumvent this problem is to perform changes in
both the model and the program itself, i.e. the Java class file,
by padding the cheapest branch, adding execution time, a
technique well know in secure applications to prevent timing
attacks.

As an example, consider a simple branching if-statement.
The cheapest in terms of execution time, of the two branches,
could be padded with nop instructions with the execution
time of 1 clock cycle, such that the branch is execution time
symmetric. Since selecting either branch is of no significance
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a

b

Time

Thread

BlockedExecuting with lock

a

b

Thread

Time

Deadline missed

Figure 12: Blocking example, generated model

to the execution time, this branch can be collapsed into one
block.

This technique will add execution time to the system, but
the WCET is preserved and the additional time is therefore
not a problem for the overall system, since average execution
time is not important.

7. CONCLUSION
In this paper we have presented a novel model-based schedu-

lability analysis of Java based safety critical hard real-time
systems. The approach has been implemented in the SARTS
tool, which automatically translates a real-time system im-
plemented in Java to an abstract time preserving Uppaal
model.

Verification can be performed on this model and schedula-
bility analysis translates into a simple reachability question
checking for deadlock freedom. The translation is an ab-
straction of the Java code, including an analysis of the ac-
tual bytecode, in order to determine the WCET. The WCET
analysis is based on published bytecode execution time for
the FPGA implementation of JOP [19].

The automatic translation from Java to Uppaal ensures
direct correspondence between the actual implementation,
and the model being verified. This automatic translation
also allows the developer to abstract away from the actual
verification process and no knowledge of model checkers is
required. In the future we invision SARTS integrated into
the Eclipse development environment. Currently the de-
veloper has to annotate loop bounds, which is a potential
source of errors. However, we believe that this source of er-
rors could be eliminated by integrating into SARTS the loop
bounds analysis presented in [14].

Several experiments have been conducted, in order to com-
pare SARTS to existing techniques and tools, and the actual
execution on JOP. The results are that SARTS is capable of
performing WCET analysis comparable with tools such as
WCA. Furthermore, the model-based approach can lead to
more accurate results than traditional approaches to schedu-
lability analysis. We believe the more accurate analysis can
deem systems runnable on cheaper hardware.

The improved accuracy comes at the cost of verification
time, and scalability of the approach is clearly dependent
on scalability of the model checking tool. Currently there is
an upper bound on the state space the Uppaal system can
handle. Clearly more powerful implementations of Uppaal,
such as the current effort to implement it on 64bit multi-core
systems, can analyze more complex systems. Furthermore,
the translation from Java to timed automata can perhaps
be improved to reduce the complexity of the verified model.

As our experiments show, even the small difference in se-
mantically equivalent code generation between javac and the
Eclipse compiler, yield a huge difference in the state space.

Currently only the SCJ profile introduced in [21] is sup-
ported and the only execution platform supported is the
JOP [18]. We believe supporting other Java processors such
as the AJ-100 from aJile Systems [1] is straightforward, only
requiring published execution times for all Java bytecode in-
structions. A somewhat more ambitious goal is to support
real-time JVMs on mainstream real-time Linux platforms on
ARM and Intel Processors as getting time predictable Java
bytecode instruction will depend on JVM implementation,
operating system, and hardware platforms.

The implementation of the SCJ profile on JOP uses a fixed
priority scheduler with deadline monotonic priority assign-
ment. We believe that experimenting with other scheduling
policies and priority assignments, such as Earliest Deadline
First and Value-Based Scheduling (VBS), should be possi-
ble, only requiring a change to the Uppaal template mod-
eling the scheduler.

There is currently huge standardization effort underway
by academia and industry to provide a standard Safety Crit-
ical Java profile under the Java Community Process which
has issued the JSR-302. The SCJ profile shares many com-
monalities with JSR-302 and we believe that in the future
we will be able to analyze JSR-302 compliant Java programs
adhering to the upcoming standard, at least to level 1.

A much more challeging task is to apply our approach
to programs written in RTSJ with its many dynamic fea-
tures. However, as our approach shares some commonalities
with the approach used to model RTSJ in Java PathFinder
in [17], such as modeling threads as coroutines running one
at a time, scheduled by resource contention through discrete
events, we have some expectations that this might work with
Uppaal.

A web based version of the SARTS tools has been devel-
oped, and is available at http://sarts.boegholm.dk/.
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