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Abstract. Modal transition systems (MTS), a specification formalism
introduced more than 20 years ago, has recently received a considerable
attention in several different areas. Many of the fundamental questions
related to MTSs have already been answered. However, the problem of
the exact computational complexity of thorough refinement checking be-
tween two finite MTSs remained unsolved.

We settle down this question by showing EXPTIME-completeness of
thorough refinement checking on finite MTSs. The upper-bound result
relies on a novel algorithm running in single exponential time providing a
direct goal-oriented way to decide thorough refinement. If the right-hand
side MTS is moreover deterministic, or has a fixed size, the running time
of the algorithm becomes polynomial. The lower-bound proof is achieved
by reduction from the acceptance problem of alternating linear bounded
automata and the problem remains EXPTIME-hard even if the left-hand
side MTS is fixed.

1 Introduction

Modal transition systems (MTS) is a specification formalism which extends the
standard labelled transition systems with two types of transitions, the may tran-
sitions that are allowed to be present in an implementation of a given modal
transition system and must transitions that must be necessarily present in any
implementation. Modal transition systems hence allow to specify both safety and
liveness properties. The MTS framework was suggested more than 20 years ago
by Larsen and Thomsen [14] and has recently brought a considerable attention
due to several applications to e.g. component-based software development [16,7],
interface theories [20,17], modal abstractions and program analysis [11,12,15] and
other areas [10,21], just to mention a few of them. A renewed interest in tool
support for modal transition systems is recently also emerging [8,9]. A recent

� Partially supported by the Academy of Sciences of the Czech Republic, project
No. 1ET408050503.

�� Partially supported by the research centre ITI, project No. 1M0545.
��� Partially supported by the VKR Center of Excellence MT-LAB.

† Partially supported by Ministry of Education of the Czech Republic, project
No. MSM 0021622419.

M. Leucker and C. Morgan (Eds.): ICTAC 2009, LNCS 5684, pp. 112–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Checking Thorough Refinement on MTS Is EXPTIME-Complete 113

overview article on the theoretical foundations of MTSs and early tool develop-
ment is available in [1].

Modal transition systems were designed to support component-based system
development via a stepwise refinement process where abstract specifications are
gradually refined into more concrete ones until an implementation of the system
(where the may and must transitions coincide) is obtained. One of the fundamen-
tal questions is the decidability of a thorough refinement relation between two
specifications S and T . We say that S thoroughly refines T iff every implementa-
tion of S is also an implementation of T . While for a number of other problems,
like the common implementation problem, a matching complexity lower and up-
per bounds were given [2,13,3], the question of the exact complexity of thorough
refinement checking between two finite MTSs remained unanswered.

In this paper, we prove EXPTIME-completeness of thorough refinement
checking between two finite MTSs. The hardness result is achieved by a re-
duction from the acceptance problem of alternating linear bounded automata,
a well known EXPTIME-complete problem, and it improves the previously es-
tablished PSPACE-hardness [2]. The main reduction idea is based on the fact
that the existence of a computation step between two configurations of a Turing
machine can be locally verified (one needs to consider the relationships between
three tape symbols in the first configuration and the corresponding three tape
symbols in the second one, see e.g. [19, Theorem 7.37]), however, a nonstandard
encoding of computations of Turing machines (which is crucial for our reduction)
and the addition of the alternation required a nontrivial technical treatment.
Moreover, we show that the problem remains EXPTIME-hard even if the left-
hand side MTS is of a constant size. Some proof ideas for the containment in
EXPTIME were mentioned in [2] where the authors suggest a reduction of the
refinement problem to validity checking of vectorized modal μ-calculus, which
can be solved in EXPTIME—the authors in [2] admit that such a reduction relies
on an unpublished popular wisdom, and they only sketch the main ideas hinting
at the EXPTIME algorithm. In our paper, we describe a novel technique for
deciding thorough refinement in EXPTIME. The result is achieved by a direct
goal-oriented algorithm performing a least fixed-point computation, and can be
easily turned into a tableau-based algorithm. As a corollary, we also get that if
the right-hand side MTS is deterministic (or of a constant size), the algorithm
for solving the problem runs in deterministic polynomial time.

A full version of the paper is available in [6].

2 Basic Definitions

A modal transition system (MTS) over an action alphabet Σ is a triple
(P, ���,−→), where P is a set of processes and −→ ⊆ ��� ⊆ P × Σ × P are
must and may transition relations, respectively. The class of all MTSs is denoted
by MTS. Because in MTS whenever S

a−→ S′ then necessarily also S
a��� S′,

we adopt the convention of drawing only the must transitions S
a−→ S′ in such

cases. An MTS is finite if P and Σ are finite sets.



114 N. Beneš et al.
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Fig. 1. S ≤t T but S �≤m T , and S �≤t U and S �≤m U

An MTS is an implementation if ��� = −→. The class of all implementations is
denoted iMTS and as in implementations the must and may relations coincide,
we can consider such systems as the standard labelled transition systems.

Definition 2.1. Let M1 = (P1, ���1,−→1), M2 = (P2, ���2,−→2) be MTSs
over the same action alphabet Σ and S ∈ P1, T ∈ P2 be processes. We say that
S modally refines T , written S ≤m T , if there is a relation R ⊆ P1 × P2 such
that (S, T ) ∈ R and for every (A, B) ∈ R and every a ∈ Σ:

1. if A
a���1 A′ then there is a transition B

a���2 B′ s.t. (A′, B′) ∈ R, and
2. if B

a−→2 B′ then there is a transition A
a−→1 A′ s.t. (A′, B′) ∈ R.

We often omit the indices in the transition relations and use symbols ��� and
−→ whenever it is clear from the context what transition system we have in
mind. Note that on implementations modal refinement coincides with the clas-
sical notion of strong bisimilarity, and on modal transition systems without any
must transitions it corresponds to the well-studied simulation preorder.

Example 2.2. Consider processes S and T in Fig. 1. We prove that S does not
modally refine T . Indeed, there is a may-transition S

a��� S1 on the left-hand
side which has to be matched by entering either T1 or T2 on the right-hand side.
However, in the first case there is a move T1

a−→ T on the right-hand side which
cannot be matched from S1 as it has no must-transition under a. In the second
case there is a may-transition S1

a��� S on the left-hand side which cannot be
matched by any may-transition from T2. Hence there cannot be any relation
of modal refinement containing the pair S and T , which means that S �≤m T .
Similarly, one can argue that S �≤m U . ��

We shall now observe that the modal refinement problem, i.e. the question
whether a given process modally refines another given process, is tractable for
finite MTSs.

Theorem 2.3. The modal refinement problem for finite MTSs is P-complete.

Proof. Modal refinement can be computed in polynomial time by the standard
greatest fixed-point computation, similarly as in the case of strong bisimulation.
P-hardness of modal refinement follows from P-hardness of bisimulation [4] (see
also [18]). ��
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We proceed with the definition of thorough refinement, a relation that holds
for two modal specification S and T iff any implementation of S is also an
implementation of T .

Definition 2.4. For a process S let us denote by �S� = {I ∈ iMTS | I ≤m S}
the set of all implementations of S. We say that S thoroughly refines T , written
S ≤t T , if �S� ⊆ �T �.

Clearly, if S ≤m T then also S ≤t T because the relation ≤m is transitive. The
opposite implication, however, does not hold as demonstrated by the processes
S and T in Fig. 1 where one can easily argue that every implementation of S is
also an implementation of T . On the other hand, S �≤t U because a process with
just a single a-transition is an implementation of S but not of U .

3 Thorough Refinement Is EXPTIME-Hard

In this section we prove that the thorough refinement relation ≤t on finite modal
transition systems is EXPTIME-hard by reduction from the acceptance problem
of alternating linear bounded automata.

3.1 Alternating Linear Bounded Automata

Definition 3.1. An alternating linear bounded automaton (ALBA) is a tuple
M = (Q, Q∀, Q∃, Σ, Γ, q0, qacc, qrej ,	,
, δ) where Q is a finite set of control
states partitioned into Q∀ and Q∃, universal and existential states, respectively,
Σ is a finite input alphabet, Γ ⊇ Σ is a finite tape alphabet, q0 ∈ Q is the initial
control state, qacc ∈ Q is the accepting state, qrej ∈ Q is the rejecting state,
	,
 ∈ Γ are the left-end and the right-end markers that cannot be overwritten
or moved, and δ : (Q � {qacc, qrej}) × Γ → 2Q×Γ×{L,R} is a computation step
function such that for all q, p ∈ Q if δ(q,	) � (p, a, D) then a = 	, D = R; if
δ(q,
) � (p, a, D) then a = 
, D = L; if δ(q, a) � (p,	, D) then a = 	; and if
δ(q, a) � (p,
, D) then a = 
.

Remark 3.2. W.l.o.g. we assume that Σ = {a, b}, Γ = {a, b,	,
}, Q∩Γ = ∅ and
that for each q ∈ Q∀ and a ∈ Γ it holds that δ(q, a) has exactly two elements
(q1, a1, D1), (q2, a2, D2) where moreover a1 = a2 and D1 = D2. We fix this
ordering and the successor states q1 and q2 are referred to as the first and the
second successor, respectively. The states qacc, qrej have no successors.

A configuration of M is given by the state, the position of the head and the
content of the tape. For technical reasons, we write it as a word over the alphabet
Ξ = Q ∪ Γ ∪ {	,
, ∃, ∀, 1, 2, ∗} (where ∃, ∀, 1, 2, ∗ are fresh symbols) in the
following way. If the tape contains a word 	w1aw2
, where w1, w2 ∈ Γ ∗ and a ∈
Γ , and the head is scanning the symbol a in a state q, we write the configuration
as 	w1αβqaw2
 where αβ ∈ {∃∗, ∀1, ∀2}.

The two symbols αβ before the control state in every configuration are non-
standard, though important for the encoding of the computations into modal
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transition systems to be checked for thorough refinement. Intuitively, if a con-
trol state q is preceded by ∀1 then it signals that the previous configuration (in
a given computation) contained a universal control state and the first successor
was chosen; similarly ∀2 reflects that the second successor was chosen. Finally, if
the control state is preceded by ∃∗ then the previous control state was existential
and in this case we do not keep track of which successor it was, hence the symbol
∗ is used instead. The initial configuration for an input word w is by definition
	∃∗q0w
.

Depending on the present control state, every configuration is called either
universal, existential, accepting or rejecting.

A step of computation is a relation → between configurations defined as follows
(where w1, w2 ∈ Γ ∗, αβ ∈ {∀1, ∀2, ∃∗}, a, b, c ∈ Γ , i ∈ {1, 2}, and w1aw2 and
w1caw2 both begin with 	 and end with 
):

– w1αβqaw2 → w1b∀ipw2

if δ(q, a) � (p, b, R), q ∈ Q∀ and (p, b, R) is the i’th successor,
– w1αβqaw2 → w1b∃∗pw2

if δ(q, a) � (p, b, R) and q ∈ Q∃,
– w1cαβqaw2 → w1∀ipcbw2

if δ(q, a) � (p, b, L), q ∈ Q∀ and (p, b, L) is the i’th successor, and
– w1cαβqaw2 → w1∃∗pcbw2

if δ(q, a) � (p, b, L) and q ∈ Q∃.

Note that for an input w of length n all reachable configurations are of length
n + 5. A standard result is that one can efficiently compute the set Comp ⊆
Ξ10 of all compatible 10-tuples such that for each sequence C = c1c2 · · · ck

of configurations c1, c2, . . . , ck, with the length of the first configuration being
l = |c1| = n + 5, we have c1 → c2 → · · · → ck iff for all i, 0 ≤ i ≤ (k − 1)l − 5,

(C(i + 1), C(i + 2), C(i + 3), C(i + 4), C(i + 5),
C(i + 1 + l), C(i + 2 + l), C(i + 3 + l), C(i + 4 + l), C(i + 5 + l)) ∈ Comp .

A computation tree for M on an input w ∈ Σ∗ is a tree T satisfying the
following: the root of T is (labeled by) the initial configuration, and whenever
N is a node of T labeled by a configuration c then the following holds:

– if c is accepting or rejecting then N is a leaf;
– if c is existential then N has one child labeled by some d such that c → d;
– if c is universal then N has two children labelled by the first and the second

successor of c, respectively.

Without loss of generality, we shall assume from now on that any computation
tree for M on an input w is finite (see e.g. [19, page 198]) and that every accepting
configuration contains at least four other symbols following after the state qacc.

We say that M accepts w iff there is a (finite) computation tree for M on w
with all leaves labelled with accepting configurations. The following fact is well
known (see e.g. [19]).

Proposition 3.3. Given an ALBA M and a word w, the problem whether M
accepts w is EXPTIME-complete.
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3.2 Encoding of Configurations and Computation Trees

In this subsection we shall discuss the particular encoding techniques necessary
for showing the lower bound. For technical convenience we will consider only
tree encodings and so we first introduce the notion of tree-thorough refinement.

Definition 3.4. Let Tree denote the class of all MTSs with their graphs being
trees. We say that a process S tree-thoroughly refines a process T , denoted by
S ≤tt T , if �S� ∩ Tree ⊆ �T � ∩ Tree.

Lemma 3.5. For any two processes S and T , S ≤tt T iff S ≤t T .

Proof. The if case is trivial. For the only if case, we define an unfold U(S) of
a process S over an MTS M = (P, ���,−→) with an alphabet Σ to be a process
S over an MTS U(M) = (P ∗, ���U ,−→U ) over the same alphabet and where
P ∗ is the set of all finite sequences over the symbols from P . The transition
relations are defined as follows: for all a ∈ Σ, T, R ∈ P and α ∈ P ∗, whenever
T

a��� R then αT
a���U αTR, and whenever T

a−→ R then αT
a−→U αTR. Since

the transitions in U(S) depend only on the last symbol, we can easily see that
U(S) ≤m S and S ≤m U(S) for every process S.

Let I be now an implementation of S. Its unfold U(I) is also an implementa-
tion of S by U(I) ≤m I ≤m S and the transitivity of ≤m. By our assumption
that S ≤tt T and the fact that U(I) is a tree, we get that U(I) is also an imple-
mentation of T . Finally, I ≤m U(I) ≤m T and the transitivity of ≤m allow us
to conclude that I is an implementation of T . ��

Let M = (Q, Q∀, Q∃, Σ, Γ, q0, qacc, qrej ,	,
, δ) be an ALBA and w ∈ Σ∗ an
input word of length n. We shall construct (in polynomial time) modal tran-
sition systems L and R such that M accepts w iff L �≤tt R. The system L
will encode (almost) all trees beginning with the initial configuration, while the
implementations of R encode only the incorrect or rejecting computation trees.

Configurations, i.e. sequences of letters from Ξ, are not encoded straightfor-
wardly as sequences of actions (the reason why this naive encoding does not
work is explained later on in Remark 3.12). Instead we have to use two aux-
iliary actions π a σ. The intended implementations of L and R will alternate
between the actions π and σ on a linear path, while the symbols in the encoded
configuration are present as side-branches on the path.

Formally, a sequence a1a2a3 · · ·an ∈ Ξ∗ is encoded as

• • • •

•
begin

π
�� •

σ
��

a1

��

•
π
�� •

σ
��

a2

��

•
π
�� •

σ
��

a3

��

· · · •
π
�� •

σ
��

an

��

•
end

and denoted by code(a1a2 · · · an).
We now describe how to transform computation trees into their corresponding

implementations. We simply concatenate the subsequent codes of configurations
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in the computation tree such that the end node of the previous configuration
is merged with the begin node of the successor configuration. Whenever there
is a (universal) branching in the tree, we do not branch in the corresponding
implementation at its beginning but we wait until we reach the occurrence of
∀. The branching happens exactly before the symbols 1 or 2 that follow after
∀. This occurs in the same place on the tape in both of the configurations due
to the assumption that the first and the second successor move simultaneously
either to the left or to the right, and write the same symbol (see Remark 3.2).
A formal definition of the encoding of computation trees into implementations
follows.

•
π ��
•

σ ��

c1=� ��

...
π
��
•

σ ��

cn=� ��

•
π ��
•

σ ��

d1=� ��

...
π
��
•

σ ��

∀ ��

•
π

��							 π

		








•
σ ��

1 �� •
σ ��

2 ��

...
π
��

...
π
��

•
σ ��

d1
n=� �� •

σ ��

d2
n=� ��

• •

Fig. 2. Comp. Tree Encoding

Definition 3.6 (Encoding computation trees into implementations).
Let T be a (finite) computation tree. We define its tree implementation code(T )
inductively as follows:

– if T is a leaf labelled with a configuration c
then code(T ) = code(c);

– if the root of T is labelled by an existen-
tial configuration c with a tree T ′ being its
child, then code(T ) is rooted in the begin
node of code(c), followed by code(T ′) where
the end node of code(c) and the begin node
of code(T ′) are identified;

– if the root of T is labelled by a universal con-
figuration c with two children d1 . . . ∀1 . . . d1

n

and d1 . . . ∀2 . . . d2
n that are roots of the sub-

trees T1 and T2, respectively, then code(T )
is rooted in the begin node of code(c), fol-
lowed by two subtrees code(T1) and code(T2)
where the nodes in code(d1 . . .∀) of the ini-
tial part of code(T1) are identified with the
corresponding nodes in the initial part of
code(T2) (note that by Remark 3.2 this pre-
fix is common in both subtrees), and finally
the end node of code(c) is identified with now
the common begin node of both subtrees.

Fig. 2 illustrates this definition on a part of a
computation tree, where the first configuration
c1 . . . cn is universal and has two successor con-
figurations d1 . . . ∀1 . . . d1

n and d1 . . . ∀2 . . . d2
n.

3.3 The Reduction—Part 1

We now proceed with the reduction. As mentioned earlier, our aim is to con-
struct for a given ALBA M and a string w two modal transition systems L and
R such that L �≤tt R iff M accepts w. Implementations of L will include all
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code of the initial configuration
︸ ︷︷ ︸

• • for all a ∈ Ξ � {∀}

L• π �� •
�
��

σ �� π �� •
�
��

σ ��M•
π



� � �

π ��

�


Ma• a ��
σ

�� •

• •2��

σ



• 1 ��
σ

��

• M∀• ∀ ��

σ��

•

•
M ′

π

��

π

��

Fig. 3. Full specification of the process L

(also incorrect) possible computation trees. We only require that they start with
the encoding of the initial configuration and do not “cheat” in the universal
branching (i.e. after the encoding of every symbol ∀ there must follow a branch-
ing such that at least one of the branches encodes the symbol 1 and at least
another one encodes the symbol 2).

As L should capture implementations corresponding to computations starting
in the initial configuration, we set L to be the begin of code(	∃∗q0w
) and denote
its end by M . After the initial configuration has been forced, we allow all possible
continuations of the computation. This can be simply done by setting

M
π��� Ma

Ma
σ−→ M

Ma
a−→ Xa

for all letters a ∈ Ξ � {∀} and there are no outgoing transitions from Xa.

for all a ∈ Ξ � {∀}

M•
π



� � � � � � �Ma• a ��
σ

��
Xa•

Finally, we add a fragment of MTS into the constructed process L which will
guarantee the universal branching as mentioned above whenever the symbol ∀
occurs on a side-branch. The complete modal transition system L is now depicted
in Fig. 3.

We shall now state some simple observations regarding tree implementations
of the process L.

Proposition 3.7. Every tree implementation I of the process L satisfies that
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1. every branch in I is labelled by an alternating sequence of π and σ actions,
beginning with the action π, and if the branch is finite then it ends either
with the action σ or with an actions a ∈ Ξ � {∀}, and

2. every state in I with an incoming transition under the action π has at least
one outgoing transition under the action σ and at least one outgoing transi-
tion under an action a ∈ Ξ, and

3. whenever from any state in I there are two outgoing transitions under some
a ∈ Ξ and b ∈ Ξ then a = b, and moreover no further actions are possible
after taking any transition under a ∈ Ξ, and

4. every branch in I longer than 2(n+5) begins with the encoding of the initial
configuration 	∃∗q0w
 where n = |w|, and

5. every state in I with an incoming transition under σ from a state where the
action ∀ is enabled satisfies that every outgoing transition under π leads to
a state where either the action 1 or 2 is enabled (but not both at the same
time), and moreover it has at least one such transition that enables the action
1 and at least one that enables the action 2.

Of course, not every tree implementation of the process L represents a correct
computation tree of the given ALBA. Implementations of L can widely (even
uncountably) branch at any point and sequences of configurations they encode
on some (or all) of their branches may not be correct computations of the given
ALBA. Nevertheless, the encoding of any computation tree of the given ALBA
is an implementation of the processes L, as stated by the following lemma.

Lemma 3.8. Let T be a computation tree of an ALBA M on an input w. Then
code(T ) ≤m L.

Proof (Sketch). To show that the implementation code(T ) modally refines L
is rather straightforward. The implementation code(T ) surely starts with the
encoding of the initial configuration and all symbols a ∈ Ξ � {∀} on the side-
branches in code(T ) can be matched by entering Ma in the right-hand side
process M . In case that the implementation contains a side-branch with the
symbol ∀, the specification M will enter the state M∀ and require that two
branches with labels 1 and 2 follow, however, from definition of code(T ) this is
clearly satisfied. ��

3.4 The Reduction—Part 2

We now proceed with the construction of the right-hand side process R. Its
implementations should be the codes of all incorrect or rejecting computation
trees. To cover the notion of incorrect computation, we define a so-called bad
path (see page 116 for definition of the relation Comp).

Definition 3.9. A sequence

c1c2c3c4c5 a1a2 . . . an−6an−5
︸ ︷︷ ︸

n−5 elements from Ξ

d1d2d3d4d5

is called a bad path if (c1, c2, c3, c4, c5, d1, d2, d3, d4, d5) ∈ Ξ10
� Comp.
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� �

Fig. 4. A fragment of the system R for a bad path c1c2c3c4c5 . . . d1d2d3d4d5

To cover the incorrect or rejecting computations, we loop in the process R un-
der all actions, including the auxiliary ones, except for qacc. For convenience
we denote Ξ ′ = Ξ ∪ {π, σ}. For any bad path, the process R can at any time
nondeterministically guess the beginning of its first quintuple, realize it, then
perform n − 5 times a sequence of π and σ, and finally realize the second quin-
tuple. Moreover, we have to allow all possible detours of newly created branches
to end in the state U where all available actions from Ξ ′ are always enabled and
hence the continuation of any implementation is modally refined by U . Formally,
for any (c1, c2, c3, c4, c5, d1, d2, d3, d4, d5) ∈ Ξ10

� Comp we add (disjointly) the
following fragment into the process R (see also Fig. 4).

R
π��� V1

Vj
π−→ Wj

σ−→ Vj+1 for 1 ≤ j < n + 5
Vj

cj−→ Xj for 1 ≤ j ≤ 5

Vn+j
dn+j−→ X5+j for 1 ≤ j ≤ 5

Vj
x��� U, Wj

x��� U, Vn+5
x��� U for 1 ≤ j < n + 5 and x ∈ Ξ ′

U
x��� U for all x ∈ Ξ ′

R
x��� R for all x ∈ Ξ ′

� {qacc}

We also add ten new states N1, . . . , N10 and the following transitions: R
π���

N1
Ξ′
��� N2

Ξ′
��� N3

Ξ′
��� N4

Ξ′
��� . . .

Ξ′
��� N10 and N1

qacc−→ N10 where any transition
labelled by Ξ ′ is the abbreviation for a number of transitions under all actions
from Ξ ′.

Remark 3.10. We do not draw these newly added states N1, . . . , N10 into Fig. 4
in order not to obstruct its readability. The reason why these states are added
is purely technical. It is possible that there is an incorrect computation that
ends with the last symbol qacc but it cannot be detected by any bad path as
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defined in Definition 3.9 because that requires (in some situations) that there
should be present at least four other subsequent symbols. By adding these new
states into the process R, we guarantee that such situations where a branch in
a computation tree ends in qacc without at least four additional symbols will be
easily matched in R by entering the state N1. ��

Lemma 3.11. Let I be a tree implementation of L such that every occurrence
of qacc in I is either preceded by a code of a bad path or does not continue with
the encoding of at least four other symbols. Then I ≤m R.

Proof (Sketch). All branches in I that do not contain qacc can be easily matched
by looping in R and all branches that contain an error (bad path) before qacc

appears on that branch are matched by entering the corresponding state V1 and
at some point ending in the state U which now allows an arbitrary continuation
of the implementation I (including the occurrence of the state qacc). ��

Remark 3.12. Lemma 3.11 demonstrates the point where we need our special
encoding of configurations using the alternation of π and σ actions together with
side-branches to represent the symbols in the configurations. If the configurations
were encoded directly as sequences of symbols on a linear path, the construction
would not work. Indeed, the must path of alternating σ and π actions in the
process R is necessary to ensure that the bad path entered in the left-hand side
implementation I is indeed realizable. This path cannot be replaced by a linear
path of must transitions containing directly the symbols of the configurations
because the sequence of n− 5 symbols in the middle of the bad sequence would
require exponentially large MTS to capture all such possible sequences explicitly
and the reduction would not be polynomial. ��

Let us now finish the definition of the process R. Note that in ALBA even
rejecting computation trees can still contain several correct computation paths
ending in accepting configurations. We can only assume that during any universal
branching in a rejecting tree, at least one of the two possible successors forms
a rejecting branch. The process R must so have the possibility to discard the
possibly correct computation branch in universal branching and it suffices to
make sure that the computation will continue with only one of the branches.

So in order to finish the construction of R we add an additional fragment to
R as depicted in Fig. 5 (it is the part below R that starts with branching to U1

and U2).
The construction of the process R is now finished (recall that the part of

the construction going from R to the right is repeated for any bad path of the
machine M). Because the newly added part of the construction does not use
any must transitions, it does not restrict the set of implementations and hence
Lemma 3.11 still holds. The following two lemmas show that the added part of
the construction correctly handles the universal branching.

Lemma 3.13. Let I be a tree implementation of L which is not, even after
removing any of its branches, a code of any accepting computation tree of M on
the input w. Then I ≤m R.
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Fig. 5. Full specification of the process R

Proof (Sketch). We should prove that in the universal branching in I, the spec-
ification R can choose one of the two possible continuations and discard the
checking of the other one. This is achieved by entering either the state U1 or
U2 whenever the next side-branch in I contains the symbol ∀. From U1 the con-
tinuation under the second successor is discarded by entering the state U ′ and
symmetrically from U2 the continuation under the first successor is discarded.
We argued in Lemma 3.11 for the rest. ��

Lemma 3.14. Let T be an accepting computation tree of an ALBA M on the
input w. Then code(T ) �≤m R.

Proof (Sketch). Indeed, in code(T ) any branch ends in a configuration containing
qacc and there is no error (bad path), so clearly code(T ) �≤m R. ��

3.5 Summary

We can now combine the facts about the constructed systems L and R.

Theorem 3.15. An ALBA M accepts an input w iff L �≤t R.

Proof. If M accepts the input w then clearly it has an accepting computation
tree T . By Lemma 3.8 code(T ) ≤m L and by Lemma 3.14 code(T ) �≤m R. This
implies that L �≤t R.

On the other hand, if M does not accept w then none of the tree implemen-
tations of L represents a code of an accepting computation tree of M on w. By
Lemma 3.13 this means that any tree I such that I ≤m L satisfies that I ≤m R
and hence L ≤tt R which is by Lemma 3.5 equivalent to L ≤t R. ��
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Corollary 3.16. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-hard.

In fact, we can strengthen the result by adapting the above described reduction
to the situation where the left-hand side system is of a fixed size (see [6]).

Theorem 3.17. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-hard even if the left-hand side system is fixed.

4 Thorough Refinement Is in EXPTIME

In this section we provide a direct algorithm for deciding thorough refinement
between MTSs in EXPTIME. Given two processes A and B over some finite-
state MTSs, the algorithm will decide if there exists an implementation I that
implements A but not B, i.e. I ≤m A and I �≤m B.

For a modal transition systems B, we introduce the syntactical notation B to
denote the semantical complement of B, i.e. I ≤m B iff I �≤m B. Our algorithm
now essentially checks for consistency (existence of a common implementation)
between A and B with the outcome that they are consistent if and only if A �≤t B.

In general, we shall check for consistency of sets of the form {A, B1, . . . , Bk} in
the sense of existence of an implementation I such that I ≤m A but I �≤m Bi for
all i ∈ {1, . . . , k}. Before the full definition is given, let us get some intuition by
considering the case of consistency of a simple pair A, B. During the arguments,
we shall use CCS-like constructs (summation and action-prefixing) for defining
implementations.

Clearly, if for some B′ with B
a−→ B′ and for all Ai with A

a−→ Ai we can
find an implementation Ii implementing Ai but not B′ (i.e. we demonstrate
consistency between all the pairs Ai, B′), we can claim consistency between A
and B: as a common implementation I simply take H +

∑

i a.Ii, where H is
some arbitrary implementation of A with all a-derivatives removed.

We may also conclude consistency of A and B, if for some A′ with A
a��� A′,

we can find an implementation I ′ of A′, which is not an implementation of any
B′ where B

a��� B′. Here a common implementation would simply be H + a.I ′

where H is an arbitrary implementation of A. However, in this case we will need
to determine consistency of the set {A′} ∪ {B′ | B

a��� B′} which is in general
not a simple pair.

Definition 4.1. Let M = (P, ���,−→) be an MTS over the action alphabet Σ.
The set of consistent sets of the form {A, B1, . . . , Bk}, where A, B1, . . . , Bk ∈ P ,
is the smallest set Con such that {A, B1, . . . , Bk} ∈ Con whenever k = 0 or for
some a ∈ Σ and some J ⊆ {1, . . . , k}, where for all j ∈ J there exists B′

j such
that Bj

a−→ B′
j, we have

1. {A′, B′
j | j ∈ J} ∈ Con for all A′ with A

a−→ A′, and

2. {A�, B′
� | B�

a��� B′
�} ∪ {B′

j | j ∈ J} ∈ Con for all 
 �∈ J and some A� with

A
a��� A�.
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Lemma 4.2. Given processes A, B1, . . . , Bk of some finite MTS, there exists an
implementation I such that I ≤m A and I �≤m Bi for all i ∈ {1, . . . , k} if and
only if {A, B1, . . . , Bk} ∈ Con.

Computing the collection of consistent sets {A, B1, . . . , Bk} over an MTS
(P, ���,−→) may be done as a simple (least) fixed-point computation. The
running time is polynomial in the number of potential sets of the form
{A, B1, . . . , Bk} where A, B1, . . . , Bk ∈ P , hence it is exponential in the number
of states of the underlying MTS. This gives an EXPTIME algorithm to check
for thorough refinement.

Theorem 4.3. The problem of checking thorough refinement on finite modal
transition systems is decidable in EXPTIME.

Example 4.4. Consider S and T from Fig. 1. We have already mentioned in Sec-
tion 2 that S ≤t T . To see this, we will attempt (and fail) to demonstrate con-
sistency of {S, T} according to Definition 4.1, which essentially asks for a finite
tableau to be constructed. Now, in order for {S, T} to be concluded consistent,
we have to establish consistency of {S1, T 1, T 2}— as T has no must-transitions
the only choice for J is J = ∅. Now, to establish consistency of {S1, T 1, T 2} both
J = ∅ and J = {1} are possibilities. However, in both cases the requirement will
be that {S, T} must be consistent. Given this cyclic dependency together with
the minimal fixed-point definition of Con it follows that {S, T} is not consistent,
and hence that S ≤t T . ��
Example 4.5. Consider S and U from Fig. 1. Here S �≤t U clearly with I = a.0 as
a witness implementation. Let us demonstrate consistency of {S, U}. Choosing
J = ∅, this will follow from the consistency of {S1, U1}. To conclude this, note
that J = {1} will leave us with the empty collection of sets—as S1 has no must-
transitions—all of which are obviously consistent. ��
Note that in the case of B being deterministic, we only need to consider pairs
of the form {A, B} for determining consistency. This results in a polynomial
time algorithm (see also [5] for an alternative proof of this fact). Similarly, if the
process B is of a constant size, our algorithm runs in polynomial time as well.

Corollary 4.6. The problem of checking thorough refinement between a given
finite modal transition system and a finite deterministic or fixed-size modal tran-
sition system is in P.

To conclude, by Theorem 4.3 and Corollary 3.16 we get our main result.

Theorem 4.7. The problem of checking thorough refinement on finite modal
transition systems is EXPTIME-complete.
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5. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: On determinism in modal transi-
tion systems. Theoretical Computer Science (to appear) (2008)
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18. Sawa, Z., Jančar, P.: Behavioural equivalences on finite-state systems are
PTIME-hard. Computing and informatics 24(5), 513–528 (2005)

19. Sipser, M.: Introduction to the Theory of Computation. Course Technology (2006)
20. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: FSE 2004,

pp. 43–52. ACM, New York (2004)
21. Wei, O., Gurfinkel, A., Chechik, M.: Mixed transition systems revisited. In: Jones,

N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 349–365. Springer,
Heidelberg (2009)


	Checking Thorough Refinement on Modal Transition Systems Is EXPTIME-Complete
	Introduction
	Basic Definitions
	Thorough Refinement Is EXPTIME-Hard
	Alternating Linear Bounded Automata
	Encoding of Configurations and Computation Trees
	The Reduction—Part 1
	The Reduction—Part 2
	Summary

	Thorough Refinement Is in EXPTIME
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




