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Abstract

Modal and mixed transition systems are formalisms that allow mixing of over- and under-approximation in
a single specification. We show EXPTIME-completeness of three fundamental decision problems for such
specifications: whether a set of modal or mixed specifications has a common implementation, whether a
sole mixed specification has an implementation, and whether all implementations of one mixed specification
are implementations of another mixed or modal one. These results are obtained by a chain of reductions
starting with the acceptance problem for linearly bounded alternating Turing machines.
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1 Introduction

Behavioral models capture actual, desired or required system behavior and can

so serve as documentation, specification or as the basis of analysis and validation

1 Huth and Antonik were partially supported by the UK EPSRC projects Efficient Specification Pattern
Library for Model Validation EP/D50595X/1 and Complete and Efficient Checks for Branching-Time
Abstractions EP/E028985/1. Wąsowski was partially funded by CISS—Center for Embedded Software
Systems, Aalborg University
2 aa1001@doc.imperial.ac.uk
3 mrh@doc.imperial.ac.uk
4 kgl@cs.aau.dk
5 ulrik@cs.aau.dk
6 wasowski@itu.dk

Electronic Notes in Theoretical Computer Science 242 (2009) 19–33

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.06.011

mailto:aa1001@doc.imperial.ac.uk
mailto:mrh@doc.imperial.ac.uk
mailto:kgl@cs.aau.dk
mailto:ulrik@cs.aau.dk
mailto:wasowski@itu.dk
http://www.elsevier.com/locate/entcs


activities. Formal behavioral models — of which we mention process algebras, Petri

nets and labelled transition systems— bring a high degree of rigor and dependability

to validation and verification activities.

Often one has to deal with more than one behavioral model at a time. For

example, in requirement elaboration one may have several versions of a model, in

component-based design one may have models that each focus on a different aspect

of the system, and in formal verification one may have a system model accompanied

by models that represent either desired features or genuinely faulty behavior. In

each of these cases the modeller may want to have assurance that this collection of

models is consistent. If versions of models are inconsistent with each other, this may

reveal important implementation trade-offs. If all aspect models are inconsistent,

their combination is not implementable. If a system model is inconsistent with all

members of a given set of fault models, the system will not exhibit any of these

flaws. Finally if a system model is consistent with a set of feature models, then the

system will be able to actually implement all these features.

A related concept is the consistency of a single behavioral model. If models serve

as specifications, their inconsistency suggests that the specification cannot be imple-

mented. Conversely, a consistent model boosts our confidence in implementability

and may even allow code-generation of such an implementation.

The stepwise-refinement paradigm proposes to write specifications as models and

to then repeatedly refine such models until an implementation has been realized. In

a thorough interpretation, refinement is decreasing the set of possible implementa-

tions: only implementations that were possible before the refinement step are still

possible thereafter, but not necessarily all of them anymore.

This paper is devoted to studying the exact computational complexity of these

three decision problems; whether finitely many models are consistent, whether a

single model is consistent, and whether one model thoroughly refines another. The

actual models we study are mixed specifications — stateful models with allowed and

required transitions, well recognized as a formal foundation for system specification

and abstraction alike [23,18,24,5,21,22,8,9,20,19]. We show that

• deciding whether finitely many modal or mixed specifications are consistent is

EXPTIME-complete in the sum of the sizes of these specifications
• deciding whether one mixed specification is consistent is EXPTIME-complete in

the size of that specification
• deciding whether one mixed specification thoroughly refines another mixed spec-

ification is EXPTIME-complete in the sum of their sizes.

Interestingly, checking the consistency of 100 mixed specifications with a few

states each can be dramatically more complex than checking the consistency of a

few mixed specifications with 100 states each. This is in striking contrast to the

situation when all mixed specifications are fully refined (have identical required and

allowed behaviors). In that case, consistency checks reduce to pairwise bisimilarity

checks, which can be performed in polynomial time.

Our complexity results motivate future research that aims to either approximate
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these three decision problems soundly and efficiently, or that identifies sub-classes

of specifications for which these decision problems are less complex.

We proceed by introducing the necessary background on alternating Turing ma-

chines, specifications, and their decision problems in Section 2. In Section 3 state-of-

the-art bounds for these problems are reported. The new EXPTIME-completeness

results are given in Section 4. Section 5 reflects on a remaining open complexity gap

for a special kind of mixed specifications, modal ones. We conclude in Section 6.

Related work

We refer to our recent overview [2] for a full account of related work. The

present paper primarily improves on the results of [3], which are discussed in detail

in Section 3. The relation of this work to generalized model checking [4] is detailed

in Section 5.

In [13] a superpolynomial algorithm is given, which establishes common imple-

mentation for k > 1 modal specifications. The algorithm is exponential in k, but

polynomial if k is fixed. It computes a common implementation if one exists. These

upper bounds follow also from the polynomial algorithm for consistency checking

of a conjunction of disjunctive modal transition systems, as studied in [24].

In [14] Hussain and Huth present an example of two modal specifications that

have a common implementation but no greatest common implementation.

Fischbein et al. [10] use modal specifications for behavioral conformance checking

of products against specifications of product families. They propose a new thorough

refinement whose implementations are defined through a generalization of branching

bisimulation. The thorough refinement obtained in this manner is finer than weak

refinement, and argued to be more suitable for conformance checking.

2 Background

Let us begin with a definition of the decision problem used in the main proof

of this paper. An Alternating Turing Machine [6], or an ATM, is a tuple T =

(Q,Γ, δ, q0,mode), where Q is a non-empty finite set of control states, Γ is an al-

phabet of tape symbols, null �∈ Γ is a special symbol denoting empty cell contents,

δ : Q× (Γ ∪ {null}) → P(Q × Γ× {l, r}) is a transition relation, q0 ∈ Q is the initial

control state, and mode : Q → {Univ,Exst} is a labeling of control states as respec-
tively universal or existential. Universal and existential states with no successors

are called accepting and rejecting states (respectively). Each ATM T has an infinite

tape of cells with a leftmost cell. Each cell can store one symbol from Γ. A head

points to a single cell at a time, which can then be read or written to. The head

can then move to the left or right: (q′, a′, r) ∈ δ(q, a), e.g., says “if the head cell (say

c) reads a at control state q, then a successor state can be q′, in which case cell c

now contains a′ and the head is moved to the cell on the right of c.” The state of

the tape is an infinite word over Γ ∪ {null}.

Figure 1 presents an example of an ATM T over a binary alphabet Γ = {0, 1}
where arrows q (a,a′,d)−−−−−→ q′ denote (q′, a′, d) ∈ δ(q, a). The initial control state e is an
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e u1 u2(1, 1, r) (1, 1, r)

(1, 1, r)

(0, 0, r)

(0, 1, l)

(0, 0, r)

δ(e, 0) = {(e, 0, r)}

δ(e, 1) = {(e, 1, r), (u1, 1, r)}

δ(u1, 0) = {(u1, 1, l), (u1, 0, r)}

δ(u1, 1) = {(u2, 1, r)}

δ(u2, 0) = δ(u2, 1) = {}

Fig. 1. The transition relation of an ATM as a labelled graph and a function.

existential one, and both ui control states are universal.

Configurations of an ATM T are triples 〈q, i, τ〉 where q ∈ Q is the current

control state, the head is on the ith cell from the left, and τ ∈ (Γ ∪ null)ω is the

current tape state. For input w ∈ Γ∗, the initial configuration is 〈q0, 1, wnull
ω〉.

The recursive and parallel execution of all applicable 7 transitions δ from initial

configuration 〈q0, 1, wnull
ω〉 yields a computation tree T〈T,w〉. We say that ATM T

accepts input w iff the tree T〈T,w〉 accepts, where the latter is a recursive definition:

• T〈T,w〉 with root 〈q, i, τ〉 and mode(q) = Exst accepts iff there is a successor

〈q′, i′, τ ′〉 of 〈q, i, τ〉 in T〈T,w〉 such that the sub-tree with root 〈q
′, i′, τ ′〉 accepts

• T〈T,w〉 with root 〈q, i, τ〉 and mode(q) = Univ accepts iff for all successors 〈q′, i′, τ ′〉
of 〈q, i, τ〉 in T〈T,w〉 the sub-tree with root 〈q

′, i′, τ ′〉 accepts (in particular, this is
the case if there are no such successors)

The ATM of Figure 1 accepts the regular language (0+1)∗10∗1(0+1)∗. Observe

that u2 is the only accepting state. Intuitively the part of T rooted in e accepts

the prefix (0 + 1)∗1 — the semantics of existential states is locally that of states in

non-deterministic Turing machines. The part of T rooted in u1 consumes a series

of 0 symbols until 1 is reached, which leads to acceptance. The suffix of the input

word after the last 1 is ignored. Note that the computation forks in u1 whenever a

0 is seen. However, the top branch would reach the earlier 1 eventually and accept.

An ATM T is linearly bounded iff for all words w ∈ Γ∗ accepted by T , the accept-

ing part of the computation tree T〈T,w〉 only contains configurations 〈q, i, vnull
ω〉,

where the length of v ∈ Γ∗ is no greater than the length of w. That is to say,

by choosing exactly one accepting successor for each existential configuration in

T〈T,w〉, and by removing all the remaining successors and configurations unreach-

able from the root, one can create a smaller tree that only contains configurations

with 〈q, i, vnull
ω〉 where |v| ≤ |w|. We refer to such pruned computation trees simply

as “computations”.

Our notion of “linear boundedness” follows [17] in limiting the tape size to the

size of the input. This limitation does not change the hardness of the acceptance

problem (see below). In addition we assume that linearly bounded ATMs have

no infinite computations since any linearly bounded ATM can be transformed into

another linearly bounded ATM, which accepts the same language, but also counts

the number of computation steps used, rejecting any computation whose number of

7 Transitions ( , , , , l) are not applicable in configurations 〈 , 1, 〉 as the head cannot move over the left
boundary of the tape.
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steps exceeds the number of possible configurations. 8

Let ATMLB = {〈T,w〉 | w ∈ Γ∗ accepted by linearly bounded ATM T}. The
problem of deciding if for an arbitrary linearly bounded ATM T and an input w

the pair 〈T,w〉 is in ATMLB is EXPTIME-complete [6].

Let us now define the basic models of interest in our study [18,8,7]:

Definition 2.1 For a finite alphabet of actions Σ, amixed specification M is a triple

(S,R�, R�), where S is a finite set of states and R�, R� ⊆ S × Σ× S are must- and

may- transitions relations (respectively). A modal specification is a mixed specifica-

tion satisfying R� ⊆ R�; all its must-transitions are also may-transitions. A pointed

mixed (respectively modal) specification (M,s) is a mixed (modal) specification M

with a designated initial state s ∈ S. The size |M | of a mixed (modal) specification
M is defined as |S | + |R� ∪ R� |.

Refinement [18,8,7], called “modal refinement” in [20], is a co-inductive rela-

tionship between two mixed specifications that verifies that one such specification

is more abstract than the other. This generalizes the co-inductive notion of bisim-

ulation [25] to mixed specifications:

Definition 2.2 A mixed specification (N, t0) = ((SN , R�

N , R�
N ), t0) refines another

mixed specification (M,s0)=((SM , R�

M , R�
M ), s0) over the same alphabet Σ, written

(M,s0)≺(N, t0), iff there is a relation Q ⊆ SM×SN containing (s0, t0) and whenever

(s, t) ∈ Q then

(i) for all (s, a, s′) ∈ R�

M there exists some (t, a, t′) ∈ R�

N with (s′, t′) ∈ Q

(ii) for all (t, a, t′) ∈ R�
N there exists some (s, a, s′) ∈ R�

M with (s′, t′) ∈ Q

Deciding whether one finite-state mixed specification refines another one is in P.

For mixed specification (N, t0) and modal specification (M,s0) in Figure 2 we have

(M,s0)≺(N, t0), given by Q = {(s0, t0), (s1, t1), (s2, t2), (s3, t2), (s4, t3)}. Note that
throughout figures, solid arrows denote R�-transitions, and dashed arrows denote

R�-transitions. But we do not have (N, t0)≺(M,s0). To see this, assume that there

is a relation Q with (t0, s0) ∈ Q satisfying the properties in Definition 2.2. Then

from (s0, π, s2) ∈ R�
M we infer that there must be some x with (t0, π, x) ∈ R�

N

and (x, s2) ∈ Q. In particular, x can only be t1 or t2. If x is t1, then since

(s2, π, s4) ∈ R�
M and (t1, s2) ∈ Q there has to be some R�

N transition out of t1,

which is not the case. If x is t2, then (t2, π, t3) ∈ R�

N and (t2, s2) ∈ Q imply that

there is some R�

M transition out of s2, which is not the case. In conclusion, there

cannot be such a Q and so (N, t0) �≺(M,s0).

Labeled transition systems over an alphabet Σ are pairs (S,R) where S is a non-

empty set of states and R ⊆ S ×Σ×S is a transition relation. We identify labelled

transition systems (S,R) with modal specifications (S,R,R). The set of implemen-

tations I(M,s) of a mixed specification (M,s) are all pointed labelled transition

systems (T, t) refining (M,s). Note that I(M,s) may be empty in general, but is

guaranteed to be non-empty if M is a modal specification.

8 This is possible because ASPACE = EXPTIME [27, Thm. 10.18].
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s0

s1 s2 s3

s4

π
π

π

π
π

M :

t0

t1 t2

t3

π
π

π

N :

Fig. 2. Mixed ((M, s0)) and modal ((N, t0)) specifications with I(M, s0)=I(N, t0) but not (N, t0)≺(M, s0).

Definition 2.3 Let (N, t) and (M,s) be pointed mixed specifications. As in [20] we

define thorough refinement (M,s)≺th(N, t) to be the predicate I(N, t) ⊆ I(M,s).

Refinement approximates this notion: (M,s)≺(N, t) implies (M,s)≺th(N, t)

since refinement is transitive. The converse is known to be false [16,28,26]; Fig-

ure 2 provides a counterexample.

We shall now formally define the decision problems informally stated above:

Common implementation (CI): given k > 1 modal or mixed specifications (Mi, si),

is the set
⋂k

i=1 I(Mi, si) non-empty?

Consistency (C): Is I(M,s) non-empty for a modal or mixed specification (M,s)?

Thorough refinement (TR): Does a mixed specification (N, t) thoroughly refine a

mixed specification (M,s), i.e., do we have I(N, t) ⊆ I(M,s)?

As far as these decision problems are concerned, the restriction to finite imple-

mentations, which follows from restricting our definitions to finite specifications,

causes no loss of generality, as already explained in [3]. A mixed specification

(M,s) is consistent in the infinite sense iff its characteristic modal mu-calculus

formula Ψ(M,s) [15] is satisfiable. Appealing to the small model theorem for mu-

calculus, Ψ(M,s) is satisfiable iff it is satisfiable over finite-state implementations.

We can reason in a similar manner about common implementation, which justifies

the restriction to finite-state specifications and implementations.

Throughout this paper we work with Karp reductions, many-one reductions

computable by deterministic Turing machines in polynomial time. This choice is

justified since we reduce problems that are EXPTIME-complete.

3 Current Bounds

In [3], the three decision problems CI, C, and TR were studied for mixed and modal

specifications. The results of [3] are summarized in Table 1. Two reductions were

given in [3] that we appeal to here:

• a reduction of CI for modal specifications to C for mixed specifications
• a reduction of C for mixed specifications to TR for mixed specifications.
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EXPTIME-hardness of CI for modal specifications would thus render EXPTIME-

completeness of the decision problems CI, C, and TR for mixed specifications. We

Table 1
A summary given in [3] of the results provided in [3].

Modal specifications Mixed specifications

Common impl. PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

Consistency trivial PSPACE-hard, EXPTIME

Thorough ref. PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

turn to this EXPTIME-hardness proof in the next section.

4 EXPTIME-Completeness Results

Theorem 4.1 Let {(Ml, sl)}l∈{1...k} be a finite family of modal specifications over

the same action alphabet Σ. Deciding whether there exists an implementation (I, i)

such that (Ml, sl)≺(I, i) for all l = 1 . . . k is EXPTIME-hard.

We prove Theorem 4.1 by demonstrating a PTIME reduction from ATMLB.

Given an ATM T and an input word w of length n we synthesize a collection of

(pointed) modal specifications MT
w = {Mi | 1 ≤ i ≤ n} ∪ {Mhead,Mctrl,Mexist}

whose sum of sizes is polynomial in n and in the size of T , such that T accepts w

iff there exists an (pointed) implementation I refining all members ofMT
w.

Specifications Mi, Mhead, Mctrl, and Mexist model tape cell i, the current head

position, the finite control of T , and acceptance (respectively). Common implemen-

tations of these specifications model action synchronization to agree on what symbol

is read from the tape, what is the head position, what is the symbol written to the

tape, in what direction the head moves, and what are the transitions taken by the

finite control, and whether a computation is accepting. The achieved effect is that a

common refinement of these specifications corresponds to an accepting computation

of T on input w. More precisely, any common implementations will correspond to

different unfoldings of the structure of the finite control into a computation tree

based on the content of the tape cells and the tape head position.

We now describe the specifications inMT
w both formally and through our run-

ning example in Figure 1. All specifications inMT
w have the same alphabet

9

Σ = {π,∃} ∪ (Γ × {1..n} × Γ × {l, r})

where ∃ and π are fresh symbols whose transitions encode logical constraints like

disjunction and conjunction. All other actions are of the form (a1, i, a2, d) and

denote that the machine’s head is over the ith cell of the tape, which contains the

9 A stricter and more complex reduction to CI of modal specifications over a binary alphabet is possible
by encoding actions in binary form.

A. Antonik et al. / Electronic Notes in Theoretical Computer Science 242 (2009) 19–33 25



p〈1,0〉 p〈1,1〉

(0, 1, 1, )

(1, 1, 0, )
(0, 1, 0, )

Σ − {( , 1, , )}
(1, 1, 1, )

Σ − {( , 1, , )}

Fig. 3. Specification M1 of the first tape cell in our running example, assuming w1 = 0.

p1 p2 p3 p4
( , 1, , r)

( , 2, , l)

( , 2, , r)

( , 3, , l)

( , 3, , r)

( , 4, , l)
{π,∃} {π,∃} {π,∃} {π,∃}

Fig. 4. Example of the head specification Mhead assuming |w| = 4.

a1 symbol, and that it shall be moved one cell in the direction d after writing a2 in

the current cell. The alphabet for our running example is

{π,∃} ∪ ({0, 1} × {1..n} × {0, 1} × {l, r})

Encoding Tape Cells.

For each tape cell i, specification Mi represents the possible contents of cell i.

It has |Γ| states {p〈i,a〉}a∈Γ and initial state p〈i,wi〉, representing the initial contents

of the ith cell. There are no must-transitions:

R� = ∅

The may-transition relation connects any two states:

for all symbols a1, a2 in Γ we have (p〈i,a1〉, (a1, i, a2, ), p〈i,a2〉) ∈ R�

Changes in cells other than i are also consistent with Mi:

for all a ∈ Γ if i �=j, 1≤j≤ n, then (p〈i,a〉, ( , j, , ), p〈i,a〉) ∈ R�

Finally the π and ∃ actions may be used freely as they do not affect the contents
of the cell:

(p〈i,a〉, π, p〈i,a〉) ∈ R� and (p〈i,a〉,∃, p〈i,a〉) ∈ R� for any a∈Γ

There are no more may-transitions in Mi.

Figure 3 presents a specification M1 for the leftmost cell of an ATM over a

binary alphabet. In figures we visualize multiple transitions with the same source

and target as single arrows labeled with sets of actions. Several labels placed by the

same arrow denote a union of sets. Wildcards (the ’ ’ symbol) are used to generate

sets of actions that match the pattern in the usual sense.
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Encoding The Head.

Specification Mhead, which tracks the current head position, has n states labeled

p1 to pn — one for each possible position. Initially, the head occupies the leftmost

cell, so p1 is the initial state of Mhead. There are no must-transitions:

R� = ∅

May-transitions are consistent with any position changes based on the direction

encoded in observed actions. More precisely,

for every position 1≤ i<n we have (pi, ( , i, , r), pi+1) ∈ R�

for every 1<i≤n we have (pi, ( , i, , l), pi−1) ∈ R�

The π and ∃ transitions may again be taken freely, but in this case without moving
the machine’s head:

(pi, π, pi) ∈ R� and (pi,∃, pi) ∈ R� for each 1 ≤ i ≤ n

There are no more may-transitions in Mhead. Note that the head of T is only

allowed to move between the first and nth cell in any computation. Figure 4 shows

specification Mhead for our running example.

Encoding The Finite Control.

SpecificationsMctrl andMexist model the finite control of the ATM T . Specifica-

tionMexist is indepenendent of the ATM T . It is defined in Figure 5. It ensures that

a π-transition is taken after every ∃-transition. SpecificationMctrl mimics the finite

control of T almost directly. Each control state qs ∈ Q is identified with a state in

Mctrl of the same name. Additional internal states of Mctrl encode existential and

universal branching:

for each qs a state qs∃ with two ∃-transitions (qs,∃, qs∃) ∈ R� ∩ R� is added

Dependent on mode(qs), additional states and transitions are created:

• If mode(qs)=Exst: for each 1≤ i≤n, aold∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold) add a may π-transition from qs∃ to a new intermediate state uniquely

named 〈qsaoldianewdqt〉, and add a must-transition labeled (aold, i, anew, d) from

that intermediate state to qt. Formally:

(qs∃, π, 〈qsaoldianewdqt〉) ∈ R�

(〈qsaoldianewdqt〉, (aold, i, anew, d), qt) ∈ R�∩ R�

Figure 6 shows this encoding for the state e of our running example.

• Ifmode(qs)=Univ: for each 1≤ i≤n, aold∈Γ, and for each transition (qt, anew, d)∈
δ(qs, aold) add a may π-transition from qs∃ to an intermediate state named 〈qsaoldi〉,
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and add a must-transition labeled (aold, i, anew, d) from the intermediate state

〈qsaoldi〉 to qt. Formally:

(qs∃, π, 〈qsaoldi〉) ∈ R� , (〈qsaoldi〉, (aold, i, anew, d), qt) ∈ R�∩ R�

x1 x2

x3

∃

π

(
,

,
,

)

Fig. 5. Specification Mexist enforces a π-transition after each ∃-transition.

The initial state of Mctrl is its state named q0, where q0 is the initial state of T .

Figure 7 demonstrates the encoding of the state u1 of the ATM in Figure 1. The

complete specification Mctrl for our running example is shown in Figure 8.

u1
e

e∃

〈e010re〉

〈e020re〉

〈e030re〉

〈e040re〉

〈e111re〉

〈e121re〉

〈e131re〉

〈e141re〉

〈e111ru1〉

〈e121ru1〉

〈e131ru1〉

〈e141ru1〉

∃

π

π

π

π

π

π

π

π

π

π

π

π

(1
,
1,
1,
r)

(1
,
2,
1,

r)

(1,3,1,r)

(1,4,1,r)

(0,1,0,r)

(0
,2

,0
,r)

(0
,3

,0
,r)

(0
,4

,0
,r)

(1
,1

,1
,r)

(1
,2

,1
,r)

(1,3,1,r)

(1
,
4,
1,
r)

Fig. 6. Encoding for the existential state of the running example, assuming |w| = 4.

Notice how the two specifications Mctrl and Mexist cooperate to enforce the

nature of alternation. For example, for an existential state, Mctrl forces every im-

plementation to have an ∃-transition, which may be followed by a π-transition.

SimultaneouslyMexist allows an ∃-transition but requires a π-transition. Effectively

at least one of the π branches fromMctrl must be implemented (which is an encoding

of a disjunction).

The complete family of specifications MT
w contains all the specifications de-

scribed above:

MT
w = {Mi | 1 ≤ i ≤ n} ∪ {Mhead,Mctrl,Mexist}
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u1 u1∃

〈u101〉

〈u102〉

〈u103〉

〈u104〉

〈u111〉

〈u112〉

〈u113〉

〈u114〉

u2

∃

π

π

π

π

(0
,
1,
0,
r)(0

,
1,
1,

l)
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Fig. 7. Encoding for the universal state u1 of the running example, assuming |w| = 4.

All these specifications are modal by construction. Since the sum of their sizes is

bounded by a polynomial in n and in the size of T , it remains to prove the following

lemma:

Lemma 4.2 For each linearly bounded ATM T and an input w, T accepts w iff the

set of modal specifications MT
w has a common implementation.

The proof of Lemma 4.2 will appear in the final version of the paper. We mention

here some points of interest. From an accepting computation tree T〈T,w〉 one can

construct a specification N by structural induction on T〈T,w〉. This N effectively

adds to T〈T,w〉 some new states and labeled transitions so that the computation

encoded in T〈T,w〉 then interlocks with the action synchronization of specifications

in MT
w. Since N is of the form (S,R,R) it suffices to show that N is a common

refinement of all members inMT
w. This is a lengthy but routine argument.

For the converse, a common implementation ofMT
w is cycle-free by our assump-

tion that T never repeats a configuration. So that pointed common implementation

is a DAG and we use structural induction on that DAG to synthesize an accepting

computation tree of T for input w. This makes use of the fact that the head of T

never reaches a cell that was not initialized by input w.

Further results.

Theorem 4.1 states EXPTIME-hardness of CI for modal specifications. To-

gether with the upperbound given in [3] we conclude that this bound is tight: CI is

EXPTIME-complete. Moreover, by applying the reduction of CI for modal specifi-

cations to C for mixed specifications [3] we conclude that C for mixed specifications

is EXPTIME-complete. Furthermore by appealing to the reduction of C for mixed

specifications to TR for mixed specifications [3], we obtain that TR for mixed spec-

ifications is EXPTIME-complete as well.

Corollary 4.3 The complexities shown in Table 2 are correct.
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Fig. 8. The entire specification Mctrl for the example of Figure 1 assuming |w| = 4.
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5 Discussion

One complexity gap remains in Table 2, that for thorough refinement of modal spec-

ifications. Despite having made an extensive effort we can presently show neither

EXPTIME-hardness nor membership in PSPACE for this problem.

In this context, it is useful to state that thorough refinement can be reduced

to certain validity checks. First, as observed in [3], mixed and modal specifications

(M,s) have characteristic formulæ Ψ(M,s) [15] in the modal μ-calculus such that

pointed labeled transition systems (L, l) are implementations of (M,s) iff (L, l)

satisfies Ψ(M,s). This was already observed in [18] for such formulæ written in

vectorized form. So the thorough refinement problem of whether (M,s)≺th(N, t)

reduces to a validity check of ¬Ψ(N,t) ∨ Ψ(M,s). This raises the question of whether

the validity problem for formulae given in the vectorized form of [18] is in PSPACE

or whether it is EXPTIME-hard; that problem is known to be in EXPTIME (see

for example [3]).

Second, we can reduce thorough refinement to a universal version of gener-

alized model checking [4]. In loc. cit. Bruns and Godefroid consider judgments

GMC(M,s, ϕ) which are true iff there exists an implementation of (M,s) satisfy-

ing ϕ. They remark that this generalizes both model checking (when (M,s) is an

implementation) and satisfiability checking (when (M,s) is such that all labeled

transition systems refine it). This existential judgment has a universal dual (see

e.g. [1]), VAL(M,s, ϕ) which is true iff all implementations of (M,s) satisfy ϕ, thus

generalizing model checking and validity checking. The former judgment is useful

for finding counter-examples, the latter one for verification; e.g. both uses can be

seen in the CEGAR technique for program verification of [11]. Since (M,s)≺th(N, t)

directly reduces to VAL(N, t,Ψ(M,s)), it would be of interest to understand the ex-

act complexity of VAL(N, t, ϕ) for modal specifications (N, t) when ϕ ranges over

characteristic formulæ Ψ(M,s) in vectorized form.

We remark that by translations and completeness results presented in [12] it

follows that all complexity bounds presented here carry over to partial Kripke struc-

tures and Kripke modal transition systems.

6 Conclusion

We have discussed three fundamental decision problems for modal and mixed spec-

ifications: common implementation, consistency, and thorough refinement. For

Table 2
Tabular summary of the results provided in this paper (in bold).

Modal specifications Mixed specifications

Common impl. EXPTIME-complete EXPTIME-complete

Consistency trivial [23] EXPTIME-complete

Thorough ref. PSPACE-hard, EXPTIME [3] EXPTIME-complete
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modal specifications, consistency is trivially true, while thorough refinement was

previously shown to be PSPACE-hard and in EXPTIME [3]. For the remaining

decision problems we have shown here that they are all EXPTIME-complete in the

sum of the sizes of mixed or modal specifications.

We have appealed to known reductions between some of these problems [3] and,

crucially, to a new reduction of input acceptance for linearly bounded alternating

Turing machines to the existence of a common implementation for modal specifi-

cations – sketched in this extended abstract. The exact complexity of thorough

refinement for modal specifications is subject to further investigation.

References

[1] Antonik, A. and M. Huth, On the complexity of semantic self-minimization, in: Proc. AVOCS 2007,
to appear in ENTCS.

[2] Antonik, A., M. Huth, K. G. Larsen, U. Nyman and A. Wąsowski, 20 years of modal and mixed
specifications, Bulletin of EATCS (2008), available at
http://processalgebra.blogspot.com/2008/05/concurrency-column-for-beatcs-june-2008.html .

[3] Antonik, A., M. Huth, K. G. Larsen, U. Nyman and A. Wąsowski, Complexity of decision problems
for mixed and modal specifications, in: FoSSaCS’08, Lecture Notes in Computer Science 4962 (2008),
pp. 112–126.

[4] Bruns, G. and P. Godefroid, Generalized model checking: Reasoning about partial state spaces, in:
C. Palamidessi, editor, CONCUR, Lecture Notes in Computer Science 1877 (2000), pp. 168–182.

[5] Cerans, K., J. C. Godskesen and K. G. Larsen, Timed modal specification - theory and tools, in: CAV
’93: Proceedings of the 5th International Conference on Computer Aided Verification (1993), pp. 253–
267.

[6] Chandra, A. K., D. Kozen and L. J. Stockmeyer, Alternation, J. ACM 28 (1981), pp. 114–133.

[7] Clarke, E. M., O. Grumberg and D. E. Long, Model checking and abstraction, ACM Trans. Program.
Lang. Syst. 16 (1994), pp. 1512–1542.

[8] Dams, D., “Abstract Interpretation and Partition Refinement for Model Checking,” Ph.D. thesis,
Eindhoven University of Technology (1996).

[9] Dams, D., R. Gerth and O. Grumberg, Abstract interpretation of reactive systems, ACM Trans.
Program. Lang. Syst. 19 (1997), pp. 253–291.

[10] Fischbein, D., S. Uchitel and V. Braberman, A foundation for behavioural conformance in software
product line architectures, in: ROSATEA ’06 Proceedings (2006), pp. 39–48.

[11] Godefroid, P. and M. Huth, Model checking vs. generalized model checking: Semantic minimizations
for temporal logics, in: LICS (2005), pp. 158–167.

[12] Godefroid, P. and R. Jagadeesan, On the expressiveness of 3-valued models, in: L. D. Zuck, P. C. Attie,
A. Cortesi and S. Mukhopadhyay, editors, VMCAI, Lecture Notes in Computer Science 2575 (2003),
pp. 206–222.

[13] Hussain, A. and M. Huth, On model checking multiple hybrid views, Technical report, Department of
Computer Science, University of Cyprus (2004), TR-2004-6.
URL http://pubs.doc.ic.ac.uk/hybrid-logic-multiple-views/

[14] Hussain, A. and M. Huth, Automata games for multiple-model checking, Electr. Notes Theor. Comput.
Sci. 155 (2006), pp. 401–421.

[15] Huth, M., Labelled transition systems as a Stone space, Logical Methods in Computer Science 1 (2005),
pp. 1–28.
URL http://pubs.doc.ic.ac.uk/labelled-systems-metrics-Stone/
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