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Abstract This paper is concerned with the derivation of infinite schedules for timed au-
tomata that are in some sense optimal. To cover a wide class of optimality criteria we start
out by introducing an extension of the (priced) timed automata model that includes both
costs and rewards as separate modelling features. A precise definition is then given of what
constitutes optimal infinite behaviours for this class of models. We subsequently show that
the derivation of optimal non-terminating schedules for such double-priced timed automata
is computable. This is done by a reduction of the problem to the determination of optimal
mean-cycles in finite graphs with weighted edges. This reduction is obtained by introducing
the so-called corner-point abstraction, a powerful abstraction technique of which we show
that it preserves optimal schedules.

Keywords Priced timed automata · Optimal mean-payoff

1 Introduction

In the past years the application of model-checking techniques to scheduling problems has
become an established line of research. Scheduling problems can often be reformulated in
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terms of reachability, viz. as the (im)possibility to reach a state that improves on a given op-
timality criterion. Although there exists a wide body of literature and established results on
(optimal) scheduling in the fields of real-time systems and operations research, the model-
checking approach is interesting on two accounts. First of all, it serves as a benchmarking
activity in which the effectivity and efficiency of model-checking can be compared to the
best known results obtained by other techniques. Second, most classical scheduling solutions
have good properties only in the context of additional assumptions that may or, quite often,
may not apply in actual practical circumstances. Here model-checking techniques have the
advantage of offering a generic approach for finding solutions in a model, in much the same
way that, say, numerical integration techniques may succeed where symbolic methods fail.

Of course, model-checking comes with its own restrictions and stumbling blocks, the
most notorious being the state-space explosion. A lot of research, therefore, is devoted to the
containment of this problem by sophisticated techniques, such as data structures for com-
pact state space representation, smart state space search strategies, etc. An interesting idea
for the model-checking of reachability properties that has received more attention recently
is to somehow “guide” the exploration of the (symbolic) state space such that “promising”
sets of states are visited first. In a number of applications [14, 19, 20, 26] model-checkers
have been used to solve a number of non-trivial scheduling problems. Such approaches
are different from classical, full state space exploration model-checking algorithms. They
are used together with, for example, branch-and-bound techniques [7] to prune parts of the
search tree that are guaranteed not to contain optimal solutions. This development has mo-
tivated research into the extension of model checking algorithms with optimality criteria.
They provide a basis for the guided exploration of state spaces, and improve the potential of
model-checking techniques for the resolution of scheduling problems. Work on extensions
for application of the real-time model-checker Uppaal [11, 23] to optimal scheduling prob-
lems is reported in the articles [9, 10, 24]; related work is reported in [6, 8]. A closely related
activity is reported in [1, 2], where specific search algorithms on timed automata models are
defined to solve classes of scheduling problems, such as job-shop and task graph scheduling.

The formulation of scheduling synthesis as a reachability problem is not accurate in cases
of reactive behaviours, where actually an infinite (optimal) schedule must be determined in
case of reactive behaviours. In this case, not the (optimal) reachability of a good final state,
but the reachability of good (optimal) infinite behaviours is relevant. Borrowing terminology
from performance analysis, we can say that we are interested in the stationary behaviours
of the system. In the discrete case, stationary behaviours are cyclic behaviours. Assuming
cyclic behaviour the cost of reaching a cycle will be insignificant compared to the infinite
cost related to non-terminating cyclic behaviours (assuming a single cycle execution has
some positive cost). Approximating infinite behaviours by finite ones can yield good and
even optimal solutions if it is possible to search sufficiently “deep”, but costly pre-ambles
may also obscure limit optimal behaviours [25].

In this paper we study optimal infinite behaviour in the context of priced timed au-
tomata.1 In a discrete setting the detection of optimal behaviours goes back to Karp’s al-
gorithm [21], which determines the minimal mean cost of the cycles in a finite graph with
weighted edges. Our contribution in this paper is that we show the computability of the
corresponding symbolic question for priced timed automata using a reduction to a discrete
problem à la Karp based on the so-called corner-point abstraction.

A second contribution is that we will not only establish computability of the problem in
the original setting of priced timed automata, the model used in [6, 9, 10], but also in an

1Called linearly priced timed automata in [9, 10, 24] and weighted timed automata in [6].
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extension that features two price parameters, viz. costs and rewards. This is motivated by
the fact that the optimality of infinite behaviours is usually expressed as a limit ratio be-
tween accumulated costs and rewards. In practical terms they may involve measures such as
units of money, production, consumption, time, energy, etc., as in throughput (units/time),
production cost (units/money), efficiency (units/energy), etc. In principle all of such mea-
sures could count both as cost and reward depending on the particular problem. In this paper
the difference between cost and reward is merely a technical one: for infinite behaviour we
insist that accumulated rewards diverge (tend to positive infinity), whereas the accumulation
of cost has no such constraint. Optimality is then interpreted as maximizing or minimizing
the cost/reward ratio.

The structure of the rest of this paper is as follows. In Sect. 2 we define double-priced
transition systems, and on that basis introduce the model of double-priced timed automata.
Section 3 states the main technical result of the paper together with the assumptions that
must be made. Section 4 introduces the central notion of corner-point abstraction related
to the region automaton construction for timed automata. Section 5 contains the proof of
a necessary result, which states that quotients of affine functions over regions (and more
generally zones) attain their extreme values in corner points. In Sect. 6 we show the corner-
point abstraction to be sound, and in Sect. 7 to be complete w.r.t. optimal behaviours. In
Sect.8, we deal with the complexity of the computation of optimal infinite schedules. In
Sect. 9, finally, we draw our conclusions and give indications for future work.

This paper is a long version of [12].

2 Models and problems

2.1 Double-priced transition systems

A Double-Priced Transition System (DPTS for short) is a tuple (S, s0, T , cost, reward)

where S is a set of states, s0 ∈ S is the initial state, T ⊆ S × S is the set of transitions,
and cost, reward : T → R are price functions. If (s, s ′) is a transition then cost(s, s ′) and
reward(s, s ′) are two prices (the cost and the reward) associated with the transition (s, s ′).
We shall use the notation s → s ′ whenever (s, s ′) ∈ T , and s

c,r−→ s ′ whenever (s, s ′) ∈ T

with cost(s, s ′) = c and reward(s, s ′) = r .
Let γ = s0 → s1 → ·· · → sn be a finite execution of a DPTS (S, s0, T , cost, reward). The

price functions extend to γ in a natural way:

Cost(γ ) =
n∑

k=1

cost(sk−1, sk) and Reward(γ ) =
n∑

k=1

reward(sk−1, sk).

Moreover, for a finite execution γ the ratio Ratio(γ ) is defined as

Ratio(γ ) = Cost(γ )

Reward(γ )

if this quotient does exist (i.e. if Reward(γ ) �= 0). Now consider an infinite execution Γ .
Denote by Γn the finite prefix of length n of Γ . The ratio of Γ is defined as

Ratio(Γ ) = lim
n→+∞ Ratio(Γn)
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provided this limit exists. Otherwise, we consider the infimum ratio and the supremum ratio
(denoted respectively as Ratio and Ratio) defined by

Ratio(Γ ) = lim inf
n→+∞ (Ratio(Γn)) and Ratio(Γ ) = lim sup

n→+∞
(Ratio(Γn)).

Given a DPTS A, we define the optimal ratio μ∗
A as

μ∗
A = inf{Ratio(Γ ) | Γ is an infinite execution of A}.

An infinite execution (also called schedule) Γ ∗
A of A is ratio-optimal if Ratio(Γ ∗

A) = μ∗
A.

Note that a ratio-optimal run may not exist. In this case, we will say that (Γ
∗,ε
A )ε>0 is a

ratio-optimal family of runs whenever for every ε > 0, |Ratio(Γ
∗,ε
A ) − μ∗

A| < ε.
The optimal ratio problem consists then in computing μ∗

A and, if it does exist, Γ ∗
A, or a

family (Γ
∗,ε
A )ε>0.

Example 1 Consider a DPTS with states {A,B,C} and transitions A
1,1−→ B , B

1,0−→ B ,

B
2,1−→ C, C

1,0−→ B , C
2,1−→ C and C

1,1−→ A, and with A initial state. To see that the ratio
is not always defined consider the execution B → C → B2 → C2 → B4 → C4 → ·· · →
B2n → C2n · · · . Computing ratios of finite prefixes, we get respectively

Ratio(B → C → B2 → C2 → ·· · → B2n

) = 3

whereas Ratio(B → C → B2 → C2 → ·· · → B2n → C2n

) = 5.

On the other hand, the execution consisting in an infinite repetition of the cycle A → B →
C → A has a well-defined ratio, 4

3 , which is in fact the optimum ratio of the given DPTS.

2.2 Double-priced timed automata

For finite-state DPTSs the optimal ratio μ∗ is obviously computable. Karp’s theorem [21]
provides an algorithm with time complexity O(V .E) (V being the number of states and
E the number of edges) in the case that the reward of each transition is 1. Extensions of
Karp’s algorithm have been proposed for computing μ∗ in the general case, see for example
[17, 18]. In the remainder of this paper we shall settle the computability of μ∗ for infinite-
state DPTS derived from so-called double-priced timed automata being timed automata ex-
tended with price(-rates) for determining cost and reward of discrete and delay transitions.

Given a set of clocks X, the set of clock constraints C(X) is defined inductively by the
following rules:

g ::= x 	
 c | g ∧ g,

where x ∈ X, c ∈ N and 	
∈ {<,≤,=,≥,>}.

Definition 1 A Double-Priced Timed Automaton (DPTA for short) over a set of clocks X

is a tuple (L, �0,E, I, c, r), where L is a finite set of locations, �0 is the initial location,
E ⊆ L × C(X) × 2X × L is the set of edges,2 I : L → C(X) assigns invariants to locations
and c, r : (L ∪ E) → Z assign price-rates to locations and prices to edges.

2In case (�, g,Y, �′) ∈ E, we write �
g,Y−→ �′ .
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Example 2 Consider a production system consisting of a number of machines M1, . . . ,Mn

all attended to by a single operator O . Each machine Mi has two production modes: a high
(H ) and a low (L) mode, characterized by the amount of goods produced per time-unit
(G respectively g) and the amount of power consumed per time-unit (P respectively p).
From the producer’s point of view the high production mode is preferable as it has a better
(i.e. smaller) P/G-ratio than the low production mode. Unfortunately, each machine can
only operate in the high production mode for a certain amount of time (D) without being
attended to by the operator. The operator, in turn, needs a minimum time-separation (S)
between attending machines. The figure below provides DPTA’s for a typical machine and
an operator.3 In Fig. 1 we consider a production system obtained as the product of a machine
M1 with parameters D = 3,P = 3,G = 4,p = 5, g = 2, a machine M2 with parameters
D = 6,P = 3,G = 2,p = 5, g = 2 and a single operator with separation time S = 4. In the
product construction a cost (reward) rate of a composite location is obtained as sum of the
cost (reward) rates of the corresponding component locations.

The semantics of a DPTA is given as a DPTS. Intuitively, there are two types of tran-
sitions: delay transitions with cost and reward obtained by applying the rates c and r of
the source location, and discrete transitions with cost and reward given by the values of
c and r of the corresponding edge. Before formally stating the semantics, we introduce a
few definitions. A clock valuation u ∈ R

X
≥0 is a function which assigns values to clocks.

If d ∈ R>0 is a delay, then u + d denotes the clock valuation such that for each clock x,
(u + d)(x) = u(x) + d . If Y is a set of clocks then [Y ← 0]u is the clock valuation u′ with
u′(x) = 0 if x ∈ Y and u′(x) = u(x) otherwise. Finally we write u |= g if and only if the
clock valuation u satisfies the guard g (defined in the natural way).

Definition 2 The semantics of a DPTA A = (L, �0, T , I, c, r) over set of clocks X is the
DPTS (S, s0,→, cost, reward) over X, where S = L × R

X
≥0, s0 = (�0,0) (where 0 is the

valuation assigning 0 to each clock of X), and → is defined as follows:

– (�,u)(�,u + d) if u + t |= I (�) for every 0 ≤ t ≤ d , c = c(�) · d and r = r(�) · d ,

– (�,u)
c,r−→ (�′, u′) if there exists a transition �

g,Y−→ �′ in T such that u |= g, u′ =
[Y ← 0]u, u′ |= I (�′), c = c(�

g,Y−→ �′), and r = r(�
g,Y−→ �′).

3The cost and reward rates are both zero in the single location of the operator.
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Fig. 1 Production system with two machines M(D = 3,P = 3,G = 4,p = 5, g = 3) and
M(D = 6,P = 3,G = 2,p = 5, g = 2) and an operator O(4)

Example 3 Reconsider the production system from Fig. 1. The following is an infinite ex-
ecution providing a scheduling policy for the operator with the cost-reward ratio 96/66 ≈
1,455:

((H,H), x1 = x2 = z = 0)
18,18−→ ((L,H), x1 = x2 = z = 3)

8,5−→ ((L,H), x1 = x2 = z = 4) −→ ((H,H), x1 = z = 0, x2 = 4) (∗)

12,12−→ ((H,L), x1 = z = 2, x2 = 6)
8,6−→ ((L,L), x1 = z = 3, x2 = 7)

10,5−→ ((L,L), x1 = z = 4, x2 = 8) −→ ((H,L), x1 = z = 0, x2 = 8)

24,18−→ ((L,L), x1 = z = 3, x2 = 11)
10,5−→ ((L,L), x1 = z = 4, x2 = 12)

−→ ((L,H), x1 = 4, x2 = z = 0
32,20−→ ((L,H), x1 = 8, x2 = z = 4)

−→ ((H,H), x1 = z = 0, x2 = 4) (∗).

Figure 2a illustrates this schedule as a Gantt chart. An other execution providing a
scheduling policy with the cost-reward ratio 68/46 ≈ 1,478 is given in Fig. 2b.

Remark Let us point out several interesting subclasses of DPTAs. The reward will be
said impulse-based whenever all reward-rates in locations are zero. This class corresponds
roughly to the mean ratio as in classical finite-state systems [18]. An other interesting class
is the one where the reward corresponds to the elapsing of time, that is when all location
reward-rates are 1 and all transition rewards are 0. This last class corresponds to the usual
intuitive notion of stationary behaviours where the measure is the cost by unit of time.
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Fig. 2 Schedules for the production system with ratios 1,455 and 1,478

3 Result

Restrictions In the remainder of this paper, we do several restrictions on the models we
consider. We first restrict ourselves to reward functions that are non-negative. Though neg-
ative costs have a priori no real significance for modelling real systems, we will not restrict
to non-negative costs, to get a more general result.

We also restrict ourselves to double-priced timed automata where the reward is strongly
reward-diverging in the following sense: a DPTA A is strongly reward-diverging if, closing
all the constraints of A (that is replacing in A each constraint x < c by x ≤ c and each
constraint x > c by x ≥ c), every infinite path Γ of the new closed automaton should satisfy
that Reward(Γ ) = +∞. Intuitively, the new closed automaton accepts all limit paths of the
first automaton. The following example shows that this assumption is necessary if we want
to have a link between the ratio of the limit of a sequence of paths and the limit of a sequence
of ratios of paths, as we will do in the following. This restriction is close to the usual non-
zeno hypothesis where an infinite number of actions can not be done in a finite amount of
time. In our case, an infinite number of actions can not be done without some reward.

Example 4 The following DPTA (where k/h is a shortcut for c = k and r = h) does not
meet the previous restriction. Indeed consider the path γn,d that takes the first transition at
date d and then takes n times the loop. We have that Reward(γn,d) = 2+d.n. Thus, the ratio
of any real infinite path is +∞ (because for those states d is positive). Now, if we consider
the infinite path where d is 0 (this path is a path of the automaton where all constraints have
been closed), we get that Reward(γn,0) = 2 �= +∞.

As we will see later, this restriction will have an important implication (cf. Proposition 2).

Assumption for the following We assume that timed automata are bounded, that is there
exists a constant M such that for every reachable extended state (�, v), for every clock x,
v(x) ≤ M . This is not a restriction as every DPTA can be transformed into an “equivalent”
bounded timed automaton (strongly bisimilar and with the same costs and rewards).
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We can now state the main result of this paper.

Theorem 1 The optimal ratio problem is computable for strongly reward-diverging DPTAs
with non-negative rewards.

A more precise statement of the above theorem is obtained by notions of soundness
and completeness. Given two DPTSs S and S ′ we say that S ′ is sound w.r.t S whenever
μ∗

S′ ≤ μ∗
S and we say that S ′ is complete w.r.t. S whenever μ∗

S ≤ μ∗
S′ . Theorem 1 is now a

corollary of the following proposition:

Proposition 1 Let A be a bounded and strongly reward-diverging DPTA with non-negative
rewards. Then there exists a finite-state DPTS S which is sound and complete w.r.t. the DPTS
defined by A.

The finite-state DPTS we will prove sound and complete w.r.t. to a bounded DPTA A is
the so-called corner-point abstraction of A that we define in the next section.

4 Regions and corner-point abstraction

The aim of this section is to propose a discretization of timed automata behaviours
based on an extension of the region automaton construction [3, 4]. We fix a DPTA A =
(L, �0, T , I, c, r) and we assume that it is bounded by M . Moreover, we denote by k its
number of clocks.

4.1 Regions and corner-points

In this paper, we will use the standard notion of regions, as initially defined by Alur and
Dill [3]. As we consider only bounded timed automata, we only need bounded regions.
A region (bounded by M) over a (finite) set of clocks X is a tuple r = (h, [X0, . . . ,Xp])
where h : X → N ∩ [0,M] assigns to each clock an integer value between 0 and M , p is
some integer, and (Xi)i=0,...,p forms a partition of X such that for all i > 0, Xi �= ∅ and
h(x) = M implies x ∈ X0.

Given a valuation v, we say that v is in the region r whenever:

– for any clock x ∈ X, the integer part of v(x) is h(x),
– for any clock x ∈ X, x ∈ X0 ⇐⇒ v(x) = h(x),
– for all clocks (x, y), {v(x)} ≤ {v(y)} ⇐⇒ x ∈ Xi and y ∈ Xj with i ≤ j , where {·}

represents the fractional part.

A(n M-)corner-point is an element α = (aj )1≤j≤k of N
k such that for every 1 ≤ j ≤ k,

0 ≤ aj ≤ M . Let R be a region. A corner-point α is associated with R whenever it is in the
closure of R (for the usual topology of R

k). Let r = (h, [X0, . . . ,Xp]) be a region. It has
p + 1 corner-points, (αi)0≤i≤p , αi being defined by:

αi(x) =
{

h(x) if x ∈ Xj with j ≤ i,

h(x) + 1 if x ∈ Xj with j > i.
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4.2 Corner-point abstraction

We will construct a finite state DPTS Acp = (S, s0, T
′, cost, reward) called the corner-point

abstraction of A where states (set S) are of the form (�,R,α) with � being a location,
R a region and α a corner-point of R. Transitions (set T ′) of Acp are defined in the following
manner:

Discrete transitions If e = �
g,Y−→ �′ is a transition of A, there will be transitions e′ =

(�,R,α) → (�′,R′, α′) in Acp with R ⊆ g, R′ = [Y ← 0]R, α corner-point associated with
R, α′ corner-point associated with R′ and α′ = [Y ← 0]α. We then set cost(e′) = c(e) and
reward(e′) = r(e).

Idling transitions There are two types of idling transitions.

– There are transitions e′ = (�,R,α)
g,Y−→ (�,R,α′) where α and α′ are distinct corner-

points of R and α′ is the time successor of α (in which case, α′ = α + 1). We then set
cost(e′) = c(�) and reward(e′) = r(�) (intuitively the delay between the corner-points α

and α′ is one time unit).

– There are transitions e′ = (�,R,α)
g,Y−→ (�,R′, α) where R′ is the time successor region

of R and α is a corner-point associated with both R and R′. We then set cost(e′) = 0 and
reward(e′) = 0 (intuitively, there is no delay between the corner-point of the two distinct
regions).

The following proposition is an important consequence of the strongly reward-divergence
hypothesis.

Proposition 2 Let A be a bounded, strongly reward-diverging DPTA with non-negative
rewards. Then there exist two constants λ > 0 and μ ≥ 0 such that for any infinite path Π

of Acp

Reward(Πn) ≥ λ.n − μ,

where Πn denotes the prefix of length n of Π .

Note that the above λ and μ only depend on the automaton A, not on the paths.

Proof Let us consider an infinite path Π of Acp. Let K denote the number of states of Acp.
Every factor of length K + 1 of Π has a reward of at least 1, otherwise we could find in
Acp a reachable cycle with a 0-reward, which would be in contradiction with the strongly
reward-divergence hypothesis (this cycle corresponds to a real path in the automaton where
all constraints have been closed). For each n, we note Πn the prefix of length n of Π .

Thus, we get that Reward(Πn) ≥ int( n
K

) ≥ 1
K

n − 1 where int(·) represents the integral
part. �

In everything which follows we will assume that DPTAs are strongly reward-diverging.
However, the only property which we really need is the one expressed by Proposition 2.
Hypotheses under which the results we present in this paper hold are thus decidable, as we
only need to check that there is no cycle in the corner-point abstraction whose reward is 0.
Note that the exact hypothesis can also be decided using the corner-point abstraction of the
closed automaton.



12 Form Methods Syst Des (2008) 32: 3–23

Let γ : (�0, u0) → (�1, u1) → ·· · be a (finite or infinite) path in A. The set of all paths

π : (�0,R0, α0,0) → (�0,R0, α0,1) · · · (�0,R0, α0,p0) → (�1,R1, α1,0) · · ·

in Acp such that for every i, ui ∈ Ri and for every j , αi,j is a corner-point associated
with Ri is denoted projcp(γ ). Note that if γ : (�0, u0) → (�1, u1) → ·· · and γ ′ : (�0, v0) →
(�1, v1) → ·· · are two “region-equivalent” real-paths (i.e. for every i, ui and vi are region-
equivalent), then projcp(γ ) = projcp(γ

′).
In the remainder of the paper, we will prove that the optimal ratio of the corner-point

abstraction is the same as the optimal ratio of the original DPTA. As the corner-point
abstraction can be effectively constructed and as computing optimal ratios in finite-state
DPTSs (the corner-point abstraction is a finite-state DPTS) is effective (see for example
[17, 18, 21]), we get that μ∗

A is effectively computable for DPTAs A satisfying the strongly
reward-divergence hypothesis.

Example 5 If we come back to the automaton of Example 4, as we have already seen, it
does not meet the strongly reward-divergence restriction. It is easy to compute that for any
real infinite path Γd (where d denotes the date the first transition is taken), Ratio(Γd) = 11.
However if we consider the path Π of the corner-point abstraction where d would be 0, we
get that Ratio(Π) = 3

2 . We see that we could change the costs and rewards on the transitions,
and we would get that there is no relation between the ratio of paths in the original automaton
and ratio of paths in the corner-point abstraction. This shows that strongly reward-divergence
is somehow necessary.

5 Quotient of affine functions

This section contains technical results that will be useful in the following. Let A be a closed
set of R

n (with n ≥ 1). The border of A is denoted by Bordern(A) and is defined as A \ Å
where Å denotes the interior of A. Let A be a closed set and x a point in R

n. The following
statements are equivalent and characterize the border of A:

– x ∈ Bordern(A),
– x ∈ A and for every ε > 0, there exists y �∈ A such that ‖x − y‖∞ < ε.4

Lemma 1 Let f be a function defined on a compact set A ⊂ R
n (where n ≥ 1) such that

f (x1, . . . , xn) =
∑n

i=1 cixi + c∑n

i=1 rixi + r
.

Then the minimum of f on A is obtained on the border of A.

Proof The proof will be done by induction on n, the dimension of the space.

4‖.‖∞ represents the usual infinite norm defined as ‖(xi )i=1,...,n‖∞ = max{|xi | | i = 1, . . . , n}.
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Initial step It corresponds to the case where n = 1. Assume that f (x) = ax+b
cx+d

with c �= 0.
The function f is defined on the set R \ {−d

c
} and we can compute the derivative f ′ of f

over this set:

f ′(x) = a(cx + d) − (ax + b)c

(cx + d)2
= ad − bc

(cx + d)2
.

The sign of f ′ is constant on both ]−∞, −d
c

[ and ]−d
c

,+∞[. The minimum of f over A

is thus obtained in one of the points min(A−), max(A−), min(A+), and max(A+), where
A− = A∩]−∞, −d

c
[ , A+ = A∩]−d

c
,+∞[ , min(B) is the smallest point of B and max(B)

is the largest point in B . In all cases, this minimum is obtained on the border of A.
Note that if ad − bc = 0, then it means that f is constant, and thus the minimum can in

particular be obtained on the border of A.
Assume that f (x) = ax + b. Similarly, we prove that the minimum of f is obtained on

the border of A.

Inductive step Assume n > 1. As A is compact, the minimum of f on A is obtained for
some value α for x1. Now, assume that

gα(x2, . . . , xn) = f (α, x2, . . . , xn)

(α can be viewed as a parameter).
Fix an α such that A ∩ (x1 = α) �= ∅. The function gα is defined on a subset of R

n−1.
We denote by Bα the projection of A ∩ (x1 = α) onto the last n − 1 coordinates, Bα is a
compact set of R

n−1. Note also that gα has the same form as the function f . We know from
induction hypothesis that minBα gα is obtained on Bordern−1(Bα). To get the induction step,
it is then sufficient to prove that if (x2, . . . , xn) is in Bordern−1(Bα), then (α, x2, . . . , xn) is
in Bordern(A).

Pick (x2, . . . , xn) in Bordern−1(Bα) and ε > 0. Then (x2, . . . , xn) ∈ Bα and there ex-
ists (y2, . . . , yn) �∈ Bα such that ‖(x2, . . . , xn) − (y2, . . . , yn)‖∞ < ε. Bα is the projec-
tion of A ∩ x1 = α onto the n − 1 last coordinates, thus (α, x2, . . . , xn) ∈ A ∩ x1 =
α and (α, y2, . . . , yn) �∈ A ∩ (x1 = α). However, ‖(α, x2, . . . , xn) − (α, y2, . . . , yn)‖∞ =
‖(x2, . . . , xn) − (y2, . . . , yn)‖∞ < ε.

We conclude that (α, x2, . . . , xn) is in Bordern(A). �

In the remainder of the section, we will use the standard notion of zone. A zone over the
set of clocks X is a convex set of valuations defined by constraints of the forms x 	
 c and
x −y 	
 c where x and y are in X, 	
 ∈ {≤,<,=,>,≥} and c is an integer. For example, the
constraints {x ≤ 3, y ≥ 4, x − y < −5} represent the set of valuations v such that v(x) ≤ 3,
v(y) ≥ 4 and v(x) − v(y) < −5.

Lemma 2 Let f be a function defined on a bounded zone Z ⊂ R
n (where n ≥ 1) by

f (x1, . . . , xn) =
∑n

i=1 cixi + c∑n

i=1 rixi + r
.

We assume in addition that Z (the closure of Z for the usual topology) is included in the
definition set of f . Then the infimum of f on Z is obtained on a point of Z with integer
coordinates.

Proof As Z is a bounded zone, Z is a compact set of R
n. We have thus that infZ f = minZ f .

The rest of the proof is done by induction on the dimension n of the space.
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Initial step The initial step is for n = 1. Zones in one dimension are lines (a, b) where
a, b are integers and (, ) are either [or]. As it has been done in the proof of Lemma 1, the
minimum of f on [a, b] is obtained in a or b, which are integers.

Induction step We assume n > 1. Applying Lemma 1, we get that minZ f is obtained on
Bordern(Z). Recall that Z can be obtained from Z by replacing the constraints x − y < c by
x − y ≤ c and that Bordern(Z) corresponds to the union of all the facets of Z.5

The infimum of f on Z is thus on a facet whose equation is x − y = c (resp. x = c).
We eliminate variable x in f by replacing x with y + c (resp. c) and we get a function
g which has n − 1 variables. Without loss of generality we can assume that x = x1. We
then use the property that minZ f = minZ′ g where Z′ = proj(x2,...,xn)(Z ∩ x1 = y + c) (resp.
Z′ = proj(x2,...,xn)(Z ∩ x1 = c)).

We know by induction hypothesis that the minimum of g is obtained with each xi (i > 1)
having integer values. Thus, the minimum of f is obtained with x1 = y + c (resp. x1 = c)
which is an integer and all other clocks also have integer values. �

The two lemmas above together imply that the infimum of such a function f on a
bounded zone Z is obtained in one of the corner-points of the zone. The result could be
easily generalized to general bounded convex polyhedra, and not only bounded zones. The
result would then be that the function f is minimized in one of the corner-points of the
polyhedron, a corner-point representing intuitively an extremal point.

6 Soundness of the corner-point abstraction

The aim of this section is to prove that the corner-point abstraction is sound, that is for all
the infinite paths in the timed automaton, we can find an infinite path in the corner-point
abstract automaton with a smaller ratio. The proof will be done in two steps: first, we will
consider finite paths, and then we will extend the result to infinite paths.

Theorem 2 Let A be a bounded, strongly reward-diverging DPTA with non-negative re-
wards. Then, μ∗

Acp
≤ μ∗

A.

6.1 Considering finite paths

Proposition 3 Let A be a bounded, strongly reward-diverging DPTA and let γ be a finite
execution in A. Then there exists an execution π ∈ projcp(γ ) such that

Ratio(π) ≤ Ratio(γ ).

The special case where the reward is impulse-based may be obtained as a direct
consequence of previous works on cost-optimality in timed automata (cf. for example
[9, 10, 24]). The general case however requires a new proof. It will require the technical
results developed in Sect. 5.

5A facet of a closed zone Z is an intersection Z ∩ (x = c) (or Z ∩ (x − y = c)) where x{≤,≥}c (or
x − y{≤,≥}c) is a constraint, as tight as possible, defining Z, see [24] for more details.
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Proof Let γ = (�0, u0) → (�0, u0 +d0) → (�1, u1) → (�1, u1 +d1) · · · → (�n, un) be a finite
execution in A (with alternating delay and discrete transitions). We set for any 1 ≤ i ≤ n,
ti = ∑

0≤j<i dj . We moreover assume that this execution is read on the sequence of transi-

tions �0
g1,Y1−→ �1 · · · gn,Yn−→ �n in A. The ratio of γ is:

f (t1, . . . , tn) =
∑n

i=1 ci(ti − ti−1) + c∑n

i=1 ri(ti − ti−1) + r
,

where ci , ri are the cost and reward of the transition �i−1
gi ,Yi−→ �i and c, r are the sum of all

the discrete costs and rewards along γ .
We want to minimize this function with the constraints that for all i, v′

i ∈ Ri where:

– v′
i (x) = ti − tj where j = max{k ≤ i | x ∈ Yk},

– Ri is the region to which belongs vi .

The set of constraints {v′
i ∈ Ri | i = 1, . . . , n} defines a zone Z on the variables (ti)i=1,...,n.

We can apply Lemma 2 and we get that the infimum of f on Z is obtained in (at least) a
point with integer coordinates, say (αi)i=1,...,n. Note that this point is in the closure of Z, and
thus that it satisfies in particular the set of constraints {v′

i ∈ Ri | i = 1, . . . , n}.
We define the valuations (σi)i=1,...,n by σi(x) = αi − αj where j = max{k ≤ i | x ∈ Yk}.

Each valuation σi is in Ri and has integer coordinates. It is thus a corner-point of Ri . More-
over, the sequence of valuations (σi)i would be an accepted sequence if we replace the
constraints Ri by Ri . In addition, the time elapsed in each state �i would then be αi+1 − αi .

We are now ready to build a path in the corner-point abstraction which will meet
our requirements. For any i, there exist regions (Ri,j )j=0,...,ni

for a given index ni such
that:

– Ri,0 = Ri ,
– Ri,j+1 is the time successor region of Ri,j ,
– Ri+1 = [Yi ← 0]Ri,ni

.

We construct a graph. Transitions are:

Initial idlings

– (�i,Ri,0, σi) → �i,Ri,1, σi) if σi is also a corner-point of Ri,1,
– (�i,Ri,0, σi) → (�i,Ri,0, σi + 1) if σi + 1 is a corner-point of Ri,0

and then inductively:

Idlings We assume (�i,Ri,j , β) has already been constructed.

– (�i,Ri,j , β) → (�i,Ri,j+1, β) if 0 < j < ni and β is a corner-point of Ri,j+1,
– (�i,Ri,j , β) → (�i,Ri,j , β + 1) if 0 < j ≤ ni , β + 1 is a corner-point of Ri,j and [Yi+1

← 0] β �= σi+1.

Discrete actions We assume (�i,Ri,ni
, β) has already been constructed.

– (�i,Ri,ni
, β) → (�i+1,Ri+1,0, [Yi+1 ← 0]β) if i < n and [Yi+1 ← 0]β = σi+1.

Claim 1 The graph we just constructed is a path of Acp. We denote it by π .
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Proof For any computed (�,R,α) �= (�n,Rn,nn , σn), there is exactly one possible successor
in the graph above. �

Claim 2 The path π is in projcp(γ ).

Proof The only thing we need to prove is that for each i, we will always go through a state
(�i,Ri,ni

, β) with [Yi+1 ← 0]β = σi+1.
First note that there exists t such that σi+1 = [Yi+1 ← 0](σi + t). Moreover, σi+1 ∈ Ri+1 =

[Yi ← 0]Ri,ni
, σi ∈ Ri and Ri,ni

is some time successor of Ri (which implies that Ri,ni

is also some time successor of Ri ). Thus σi + t ∈ Ri,ni
. All the transitions between states

(�i,Ri,j , β) are such that β is a time successor of σi which is in Ri,j . Thus, after having gone
through all the regions Ri,j , we will arrive in σi + t , viewed as a corner-point of Ri,ni

. �

We can now compute the ratio of π :

Ratio(π) =
∑n

i=1 ci(αi − αi−1) + c∑n

i=1 ri(αi − αi−1) + r
= f (α1, . . . , αn)

(using the costs and rewards as defined in the construction of Acp).
As (αi)i=1,...,n minimizes f over Z, we get that Ratio(π) ≤ Ratio(γ ) and we are done. �

6.2 Extension to infinite paths

We will now prove that the previous property, restricted to finite executions, can be extended
to infinite executions.

Proposition 4 Let A be a bounded, strictly reward-diverging DPTA with non-negative re-
wards, and let Γ be a infinite path in A. Then, there exists an infinite path Π in Acp such
that

Ratio(Π) ≤ Ratio(Γ ). (∗)

Notice that, on the contrary to Proposition 3 the path Π may not be in projcp(Γ ). In
addition, for any finite prefix γ of Γ , it may happen that no finite prefix of Π satisfies the
property described in Proposition 3, which means that we will not solve the problem just by
extending paths given by Proposition 3.

Proof Let Γ : (�0, u0) −→ (�1, u1) · · · be an infinite path in A. In the following, we will
denote by Γn the prefix of length n of Γ .

Let α be the value of the minimal ratio for a reachable cycle in Acp. Let n be an integer.
From Proposition 3, there exists a path Πn in projcp(Γn) such that Ratio(Πn) ≤ Ratio(Γn).
Using Proposition 2, we get that Reward(Πn) ∈ Ω(n)6, which implies in particular that
limn→+∞ Reward(Πn) = +∞.

6We recall that a function f over integers is in Ω(n) if there exists some positive κ and some integer n0 such
that for all n ≥ n0, f (n) ≥ κ.n.
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We decompose Πn into cycles, i.e. we write Πn = π0,n.σ1,n.π1,n . . . σpn,n.πpn,n where
πi,n are simple paths and σi,n are cycles (see the figure above). We assume in addition that
this decomposition is maximal in the sense that the path π0,n.π1,n . . . πpn,n is acyclic. The
maximality property of our decomposition implies that the total length of π0,n.π1,n . . . πpn,n

is less than the number of nodes in Acp.
We set C(n) = ∑pn

i=0 Cost(πi,n) and R(n) = ∑pn

i=0 Reward(πi,n) and we compute now
the difference between Ratio(Πn) and α:

Ratio(Πn) − α =
∑pn

i=1 Cost(σi,n) + C(n)∑pn

i=1 Reward(σi,n) + R(n)
− α

=
∑pn

i=1 Cost(σi,n)
∑pn

i=1 Reward(σi,n)
+ C(n)∑pn

i=1 Reward(σi,n)

1 + R(n)∑pn
i=1 Reward(σi,n)

− α.

We set β(n) =
∑pn

i=1 Cost(σi,n)
∑pn

i=1 Reward(σi,n)
and we have that β(n) ≥ α because α is the ratio of the

minimal reachable cycle.7 We get that

Ratio(Γn) − α ≥ Ratio(Πn) − α =
β(n) − α + C(n)−αR(n)∑pn

i=1 Reward(σi,n)

1 + R(n)∑pn
i=1 Reward(σi,n)

. (∗∗)

Observe now that R(n) and C(n) are bounded and that limn→+∞
∑pn

i=0 Reward(σi,n) =
+∞. We can now take the infimum limit of equation (∗∗), and we get:

lim
n→+∞

(Ratio(Γn)) − α ≥ lim
n→+∞

β(n) − α ≥ 0.

Hence, the infimum ratio of Γ is greater than the ratio of the optimal reachable cycle in
Acp. Hence we can take Π the path of Acp which consists first in reaching the optimal
reachable cycle and then cycling along this cycle. This path meets the requirement of the
proposition. �

7 Completeness of the corner-point abstraction

The aim of this section is to state the completeness of the corner-point abstraction. More
precisely, we will prove that for every infinite path of the corner-point abstraction, there are
real paths in the original automaton whose ratio is as close as we want to the ratio of the
given path in the corner-point abstraction.

Theorem 3 Let A be a bounded, strongly reward-diverging DPTA with non-negative re-
wards. Then, μ∗

A ≤ μ∗
Acp

.

The proof of this theorem will be done in two steps: we will first prove that we can
approximate paths in Acp by paths in A which are as close as we want to the original path
(Proposition 5). It will then be sufficient to prove that for each infinite path in Acp, under the

7Recall the property that if b > 0 and d > 0, then min( a
b
, c

d
) ≤ a+c

b+d
≤ max( a

b
, c

d
).
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strongly reward-divergence assumption, we can find a real path in A whose ratio is as close
as we want to the ratio of the given path in Acp (Proposition 6).

Proposition 5 Let A be a bounded DPTA. Let π : (�0,R0, α0) → ·· · (�n,Rn,αn) · · · be
a (possibly infinite) path in Acp. Let 0 < ε < 1

2 . There exists a real path γε : (�0, u0) →
·· · (�n, un) · · · in A such that ui ∈ Ri and ‖ui − αi‖∞ < ε for every i.

Proof Let v be a valuation. For any clock x, we define μv(x) = min{|v(x) − p| | p integer}
and for any pair of clocks (x, y), νv(x, y) = min{|v(x) − v(y) − p| | p integer}. We define
the diameter of v as

δ(v) = max({μv(x) | x clock} ∪ {νv(x, y) | x, y clocks}).

Proposition 5 will be a direct consequence of the following technical lemma.

Lemma 3 Consider a transition (�,R,α) → (�′,R′, α′) in Acp, take a valuation v ∈ R

such that δ(v) < ε and |v(x) − α(x)| = μv(x). There exists a valuation v′ ∈ R′ such that
(�, v) → (�′, v′) in A, δ(v′) < ε and |v′(x) − α′(x)| = μv′(x).

Proof We prove this lemma by distinguishing all the possible cases for a transition:

– Assume (�,R,α) → (�′,R′, α′) is a discrete transition which comes from some �
g,Y→ �′

of A. We thus have that R′ = [Y ← 0]R and α′ = [Y ← 0]α. Let us define v′ as [Y ←
0]v. Obviously v′ ∈ R′. If x ∈ Y , v′(x) = α′(x) = 0, thus 0 = μv′(x) ≤ μv(x). If x �∈
Y , v′(x) = v(x) and thus μv′(x) = μv(x). If x, y �∈ Y , νv′(x, y) = νv(x, y). If x, y ∈ Y ,
νv′(x, y) = 0. If x ∈ Y but y �∈ Y , νv′(x, y) = μv(y). Thus, we get that δ(v′) ≤ δ(v) < ε.
The second property can be obtained easily.

– Assume (�,R,α) → (�,R,α + 1) is an idling transition. In that case, we have that for
every x, {v(x)} = μv(x) > 0 (and also that νv(x, y) = |{v(x)} − {v(y)}|). We set v′ =
v + (1 − maxx(μv(x)) − miny(μv(y))). Let us illustrate this construction:

It is then easy to prove that v′ ∈ R′, δ(v′) = δ(v) < ε and for each clock x, μv′(x) =
|v′(x) − α′(x)| (this is because ε has been taken as strictly less than 1

2 ).
– Assume (�,R,α) → (�,R′, α) is an idling transition where R′ is the immediate time

successor of R. There are several cases:
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• The integer is “inside” the valuations and no value v(x) is an integer.

We then set y as being the one such that 1 − {v(y)} is positive and minimal. We
then define v′ as v′(x) = v(x) + 1 − {v(y)}. Of course, δ(v′) = δ(v) < ε, v′ ∈ R′ and
μv′(x) = μv(x)+1−{v(y)} = v(x)−α(x)+1−{v(y)} = v′(x)−α′(x) if {v(x)} < 1

2
and μv′(x) = μv(x) − (1 − {v(y)}) = α(x) − v(x) − 1 + {v(y)} = α′(x) − v′(x) other-
wise.

• The integer is “inside” the valuations and the set Z of clocks x such that v(x) is an
integer is non empty.

We then set y as being the one such that 1 − {v(y)} is positive and minimal. We then
define v′ as v′(x) = v(x)+ 1−{v(y)}

2 . As previously, it is easy to get that δ(v′) = δ(v) < ε,
v′ ∈ R′, and |α′(x) − v′(x)| = μv′(x) for every clock x.

• The integer is on the right of the valuations.

We set y the clock such that 1 − {v(y)} is minimal and we define v′ such that for every
clock x, v′(x) = v(x)+1−{v(y)}. We get that δ(v′) = δ(v)− (1−{v(y)}) < δ(v) < ε.
The rest is as previously.

• The integer is at the left corner of the valuations.

We choose d > 0 such that δ(v) + d < ε and we set v′ such that for each clock x,
v′(x) = v(x)+ d . In that case, we have δ(v′) = δ(v)+ d < ε. And everything else is as
before.

In all cases, we are done and the proof is finished. �
Using this lemma, we construct inductively a path γε as described above, at each step of

the construction we have that ‖vi − αi‖∞ ≤ δ(vi) < ε. This concludes the proof. �

We now use this result on paths to prove the following proposition on ratios.

Proposition 6 Let A be a bounded, strongly reward-diverging DPTA with non-negative
rewards. Let Π be an infinite path in Acp such that Ratio(Π) is defined. Then the following
holds: for any ε > 0, there exists a real path Γ ε such that |Ratio(Π) − Ratio(Γ ε)| < ε.
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Note that in case we have only non-strict constraints along the path accepting Γ in A,
Π corresponds to a real path in A, it thus corresponds to Γ ∗

A. Otherwise, the paths con-
structed in the following will give us an optimal family (Γ

∗,ε
A )ε>0 of schedules.

Proof Take ε > 0. Applying the previous lemma, we can find a real path Γ ε such that at
each step, the distance between the corner-point and the real valuation is strictly less than ε.
We have that Cost(Γ ε

n ) = Cost(Πn)+∑n

i=1 σi where each σi can be bounded by 2Cε where
C is the maximal cost labeling the automaton Acp. Similarly, we can write Reward(Γ ε

n ) =
Reward(Πn)+∑n

i=1 τi where each τi can be bounded by 2Cε. From Proposition 2, we have
that there exists λ and μ such that Reward(Πn) ≥ λn − μ. Compute

|Ratio(Γ ε
n ) − Ratio(Πn)| =

∣∣∣∣
Cost(Πn) + ∑n

i=1 σi

Reward(Πn) + ∑n

i=1 τi

− Cost(Πn)

Reward(Πn)

∣∣∣∣

=
∣∣∣∣
Reward(Πn)

∑n

i=1 σi − Cost(Πn)
∑n

i=1 τi

(Reward(Πn))(Reward(Πn) + ∑n

i=1 τi)

∣∣∣∣

≤ 2(2Cεn)(nC)

(λn − μ)(λn − μ − 2Cεn)

≤ 4C2ε
λ
2 ( λ

2 − 2Cε)
for some sufficiently great n.

Thus, we get that

|Ratio(Γ ε) − Ratio(Π)| ≤ 4C2ε
λ
2 ( λ

2 − 2Cε)
.

We are done and we have even constructed a family of optimal schedules (Γ ε)ε>0. �

Note also that in Acp (which is a finite automaton), optimal schedules are cycles for which
the ratio is defined [17, 18, 21]. The previous proposition thus proves the completeness of
the corner-point abstraction and concludes this section.

8 Complexity issues

In this section, we study the complexity of the optimal ratio problem and we prove that it is
PSPACE-complete.

Proposition 7 The optimal ratio problem for (strongly reward-diverging) DPTAs (with non-
negative rewards) is PSPACE-hard.

Proof The proof is done using a reduction on the reachability problem of timed automata,
which is known to be PSPACE-complete [4]. Let A = (L, �0,E, I,F ) be a timed automata
with F a set of final states. We transform A into a DPTA B = (L, �0,E ∪E′, I, c, r) where:

– E′ = {� → � | � ∈ F },
– c(�

g,Y−→ �′) = 2 and r(�
g,Y−→ �′) = 1 for every transition �

g,Y−→ �′ in E whereas we set
c(� → �) = r(� → �) = 1 for every � → � in E′.

We have that a final state of A is reachable if and only if the optimal ratio in B is 1. �
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For the upper bound complexity, we know that the optimal ratio problem for finite sys-
tems has a complexity O(n2m) where n is the number of vertices of the graph and m is the
number of edges of the graph (see [18]). Now, the size of the corner-point abstraction is ex-
ponential in the number of clocks of the system, thus we get that the optimal ratio problem
is in EXPTIME. However, we can do better and we get:

Proposition 8 The optimal ratio problem for strongly reward-diverging DPTAs with non-
negative rewards is in PSPACE.

Proof We fix a DPTA A and we consider its corner-point abstraction. We have proved that
optimal schedules in A correspond to optimal cycles in the corner-point abstraction. Each
state of Acp can be stored in polynomial space (see [4]). We first guess a cycle in Acp, its
length is at most exponential. Thus, computing its cost and reward can be done in polynomial
space (the cost and reward are linear in the number of states). This gives an upper bound
on the optimal ratio. The question is now: is there an other cycle which has a better ratio?
We generate nondeterministically an other cycle and compute its ratio as previously. If this
cycle is better, then the previous cycle was not the optimal one. The complexity of this last
step is in CO-NPSPACE, which is known to be equal to NPSPACE, i.e. PSPACE (see [27],
p. 153). The global complexity of this procedure is thus in NPSPACE, i.e. in PSPACE. �

9 Future work and conclusion

In this paper, we have shown that the optimal infinite scheduling problem is computable
for double-priced timed automata (and PSPACE-complete). We have reduced the problem to
the computation of optimal infinite schedules in (weighted) finite-state graphs. This prob-
lem is equivalent to finding optimal cycles in finite-state graphs, which can be done using
algorithms like Karp’s algorithm [21] and some of its extensions and improvements [17, 18].

However, there is still a number of issues which are open for future work. The proof
of computability, based on regions and corner-points, does not provide a realistic imple-
mentation strategy. We would like to obtain an efficient implementation based on zones and
on-the-fly exploration of the symbolic state-space. A restriction to a setting where one of the
prices (cost or reward) is uniform (same rate in all locations) may be particularly useful. Im-
plementations for this specific case could be much more efficient than those for the general
problem. An idea would then be to approximate optimal infinite schedules by working with
(repeated) cost horizons or by applying partitioning and refinement techniques, as done in
the tool Rapture [15, 16].

An extension of our present work would be to address the problem in the presence of
adversaries, even if it seems very difficult, more difficult than that of cost-optimal winning
strategies for (single-)priced timed automata with adversaries [5, 13, 22]. In the finite-state
setting, however, the problem has been solved [28].
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