
Formal Methods for Abstract Specifications – A Comparison of Concepts

Martin Instenberg, Axel Schneider, Sabine
Schnetter, Ulrich Heinkel

Lucent Technologies Network Systems
GmbH, Nürnberg

{instenberg, aschneider, sschnetter,
heinkel}@lucent.com

Kim G. Larsen, Gerd Behrmann
Aalborg University

kgl@cs.auc.dk, behrmann@cs.aau.dk

Abstract

In industry formal methods are becoming
increasingly important for the verification of hardware
and software designs. However current practice for
specification of system and protocol functionality on
high level of abstraction is textual description. For
verification of the system behavior manual inspections
and tests are usual means. To facilitate the
introduction of formal methods in the development
process of complex systems and protocols, two
different tools evolved from research activities –
UPPAAL and SpecEdit – have been investigated and
compared regarding their concepts and functionality.
For this purpose both tools were applied to
comparable frameworks.

1. Introduction

Usually the development of complex telecommuni-
cation systems is split into a specification and an
implementation phase, each performed by different
groups of engineers. To guarantee a correct realization
of the system requirements it is of high importance that
the documents, which describe the intended system
behavior, are complete and well defined.
Specifications in natural language are not able to
satisfy these claims since they tend to be ambiguous
and their correctness cannot reliably be proven. As a
consequence the implementing engineer must have
deep knowledge about the desired system behavior and
is forced to make own decisions about the system
behavior – which might be different from the
intentions of the specification engineer. Defects in
specifications usually are discovered in late phases of
the development process and their correction causes
unforeseen costs and delays. Getting use of formal
methods for the specification and verification of

complex system and protocol functionalities is
expected to improve and to shorten the whole
development process and to lead to more reliable and
competitive products. Formalized specifications are
unambiguous and their correctness can be proven
automatically through software tools. Their data are
easier to manage and to reuse than documents with up
to several thousand pages of plain text. As a first
approach UPPAAL and SpecEdit were used to model
and verify the behavior of existing system
functionalities based on their informal specification.

2. UPPAAL

UPPAAL is a tool suite for modeling, simulation
and verification of real-time systems jointly developed
by the Universities of Uppsala (Sweden) and Aalborg
(Denmark). [1]

Figure 1. UPPAAL GUI

The software is split into a graphical user interface
(GUI) implemented in Java and a verification engine
written in C++, both available for most common
platforms. UPPAAL is designed for the formal
verification of systems that can be represented as
networks of timed automata extended with elementary
and structured data types and channel synchronization.
Model checking techniques are used to prove the
correctness of the specification. It has been
successfully applied in several industrial case studies
concerning the verification of time critical applications
like multimedia and communication protocols, e.g. [2].

2.1. System descriptions in UPPAAL

UPPAAL is based on the theory of timed automata
(TA), which are finite state machines (FSM) extended
with clock variables. System descriptions consist of
several networked automata while time progresses
globally at the same pace, i.e. UPPAAL uses
continuous time. Clock variables are used to represent
time and permit measuring of time progress. Thus the
behavior of a timed automaton can be restricted by
clock constraints. As extension to timed automata,
UPPAAL supports bounded integer variables,
constants, Boolean, scalars and communication
channels. Furthermore multi-dimensional arrays and
C-like records containing these elementary data types
may be declared. Besides the GUI, the tool suite
provides a basic programming language for
UPPAAL’s extended timed automata, which facilitates
specifying systems without the graphical editor. An
entire system description is composed of several
concurrent processes and globally declared variables
and functions. Basically the automaton has multiple
locations with edges in between (also called
transitions) to pass along from one to the other
location. Beside the “normal” and initial locations
there are urgent locations and the even more restrictive
committed locations. Once the system is in an urgent
or a committed location, time is not allowed to pass.
Additionally a committed location must be left in the
successor state otherwise the system is deadlocked.
Special clock constraints on locations, so-called
invariants, enforce progress in the system. Edges may
be decorated with selects, guards, synchronizations
and updates. The select label allows binding non-
deterministically certain values of scalar types to
identifiers. These identifiers are available as variables
within the other labels. A guard is a condition on
variables and clocks saying when the respective edge
is enabled. UPPAAL actually offers three kinds of
communication channels to synchronize two or more
processes:

• binary synchronization: An edge labeled as sender
synchronizes with another edge labeled as receiver
– both processes take a transition at the same time.

• broadcast synchronization: One sender can
synchronize with multiple receivers.

• urgent synchronization: Delays must not occur if a
synchronization transition on an urgent channel is
enabled, hence clock constraints are not allowed on
these edges.
One transition is non-deterministically chosen to

execute if several combinations are enabled at the
same point of time. Assignments to variables or clocks
can be performed when a transition is taken (update).
The ability to use C data types and expressions
includes calls to user declared functions, which are
evaluated as atomic statements. These functions can be
used in updates on edges as well as in guards if their
return value can be mapped to Boolean. They help to
keep the system description clear and to reduce the
need for committed locations.

2.2. Simulation and formal verification

UPPAAL provides an integrated simulation tool. It
allows the user to examine the dynamic system
behavior in a graphical manner – either interactively,
i.e. the user chooses which enabled transition to take,
or randomly to let the system run on its own. In
addition execution traces can be loaded, saved and
imported from the verifier to follow them step by step.
In contrast to the formal verification, simulation can
only explore a particular execution trace instead of the
whole reachable state space. However, it is an
inexpensive approach to fault detection, especially in
early stages of defining a system concept, as well as
for small systems. By exploring of the whole reachable
state space UPPAAL’s integrated symbolic model
checker proves the modeled system behavior against
the desired behavior described in a set of requirement
specifications. Requirement specifications (properties)
can be defined using a subset of CTL (computation
tree logic) restricted to operators for reachability,
safety and liveness properties. In addition there is the
possibility to search for deadlocks.

The GUI provides an environment for managing
queries and launching the verification. The verification
engine itself can thereby be executed on the local
workstation or on a (more powerful) remote system
connected via TCP/IP. Several possible adjustments
concerning the search order (breadth/depth first), the
state space representation and reduction as well as the
type of the diagnostic trace (shortest/fastest) are
helping to optimize the verification results. Besides the

conclusion that a certain property is or is not satisfied
the model checker may create such a diagnostic trace
as a witness for the correctness or incorrectness of the
specific requirement. This trace can be loaded directly
into the simulator for the subsequent system
debugging.

3. SpecEdit

SpecEdit has been developed by Lucent
Technologies Nürnberg as a tool solution for the
compilation and maintenance of specifications based
on the formal specification language ADeVA
(Advanced Design and Verification of Abstract
Systems) [3]. Initially it has been designed for the
specification and verification of ASICs [4]. SpecEdit
provides a platform for the structured management of
specification data, proving their consistency and
plausibility and rendering them into different models
e.g. VHDL, C or SMV. These models as well as the
original specification data allow further processing by
other tools for code generation, model checking etc.

Figure 2. SpecEdit GUI

3.1. System descriptions in ADeVA

The table based specification language ADeVA

provides semantics for the formal specification of
abstract system functionality and communication
protocols. With ADeVA, the control flow of a system
is modeled by asynchronous parallel automata and
abstract data types. A system description consists of a
set of user declared variables (also called signals) and
several automata represented through two kinds of
tables: Mode Transition Tables (MTT) and Data
Transformation Tables (DTT).

MTTs describe the behavior of state-machine
driven signals. Hence, a particular signal value is also
called state. The table shows the appropriate states as
well as the conditions and the corresponding logical
values causing state transitions. T/F stands for
True/False and “-“ for “don’t care”. The ’@’ symbol is
used to indicate an event, i.e. a change of the value
either to True or False. Transitions are taken as soon
as all conditions are fulfilled and without time
consumption. All rows in an MTT are required to be
disjoint, hence a non-deterministic choice between
multiple possible transitions at a distinct state is
prohibited.

From To Condition1 Condition2 Condition3

state_a state_b @T F -

state_a state_c @T T -

state_b state_c F @F T

Figure 3. Mode transition table (MTT)

As MTTs are not sufficient to model realistic

systems, DTTs were introduced to describe the change
in value of a data signal. DTTs can be interpreted in
the same way like MTTs and they have to follow
identical restrictions. The major difference between
these two kinds of tables is, that regarding DTTs the
previous value of the signal is not relevant.

Output Value Condition1 Condition2 Condition3

signal_a a @T T -

signal_a b @T F T

signal_a c - - @F

Figure 4. Data transformation table (DTT)

Basically ADeVA differentiates between three

kinds of user declared system variables: input, internal
and output signals. Supported data types are integer
and Boolean as well as user defined types like
enumeration, array and record. Input signals allow
integrating external signals (e.g. user inputs) in the
abstract model of a system. All variables are allowed
as parameters for conditions. In case they aren’t
already of type Boolean their value has to be mapped
to the Boolean domain. In practice usually MTTs are
used to model the behavior of a specific system
component whereas signals for communication
between these components are described in DTTs.

3.2. Simulation and formal verification

To ensure the consistency and correctness of all

MTTs/DTTs SpecEdit offers static checks using
satisfiability checking techniques. It proves (amongst

others) the determinacy of state transitions, the
satisfiability of transition conditions and advises
against dead end states. For the dynamic verification of
ADeVA specifications like simulation and model
checking SpecEdit itself does not provide own
features. Due to the integrated code generation tools,
however, the models generated from ADeVA
specifications can be further processed by other
commercial or non-commercial applications. With the
current SpecEdit version VHDL (for GateProp) [5],
SMV (for NuSMV) [6] and C models (for VeriSoft)
[7] may be created. In addition VHDL and SMV
models can be used within a variety simulation tools.
This leaves the choice to the user and keeps the system
flexible and open for many purposes.

4. UPPAAL and SpecEdit in comparison

4.1. General

One of the challenges concerning formal specifica-
tion and verification is to map the desired system
behavior described in natural language to the formal
concept of the according tool solution. This is difficult
not only because of the ambiguousness of textual
specifications and hence the broad scope of possible
interpretations. Inherently the formal specification
enforces engineers to formulate correct requirements
and leads to less inconsistency. In case of functional
system specifications on a high level of abstraction
neither UPPAAL nor SpecEdit are designed for that
purpose. Providing high-level abstraction facilities will
reduce the complexity of system models. Based on
experiences of several case studies (e.g. [5]) the
following paragraphs describe the advantages and
disadvantages of both tools with regard to the use for
such high-level specifications.

4.2. Tool concept

First of all, one significant difference between
UPPAAL and SpecEdit is, that UPPAAL is a
monolithic system. That means all components (i.e.
system editor, simulator and verification engine) are
designed to work together and on one and the same
underlying model. This is very comfortable for the
user. Few tools for translating UPPAAL models to
other languages exist but the UPPAAL developers do
not distribute them. Since SpecEdit does not provide
facilities for simulation and model checking it must be
used together with other applications for that purpose.
The integrated code generator ensures the mapping of
the ADeVA tables to the semantics of the languages

interpretable by the applied model checkers or
simulators.

4.3. Specification

UPPAAL’s graphical editor allows modeling
system behavior in a very intuitive and convenient
manner. Additionally graphs of single automaton may
be stored in a postscript file and thus integrated into
documents. However, complex automata with a high
level of alliance demonstrate the advantages of a table-
based system: the comparatively uncomplicated
dealing with extensive specification data. These tables
may also be exported and reused during the design and
implementation process. A combination of both
approaches would be appreciated as well as the
possibility to model hierarchical automata structures -
a desirable but missing feature in both tool solutions. It
would significantly improve the handling of complex
specifications and allows examining the system
behavior on different levels of abstraction.

An important fact concerning the model concepts of
the tool is that UPPAAL allows non-determinism in its
automata. That means a certain state can have multiple
successor states, which may be reached under the same
transition conditions. SpecEdit explicitly prohibits
non-determinism in ADeVA models and it proves the
determinacy of all tables. The possibility of having
non-determinism in the formal specification may be of
advance, but when the model is intended to be
deterministic a check – like SpecEdit performs it –
would be of avail.

Another basic differentiation between the tools is
the understanding of state transitions. In ADeVA all
possible transition are taken as soon as the according
conditions are satisfied (maximal progress). This is of
advantage when modeling parallel working processes.
On the other hand UPPAAL uses asynchronous
composition – in every step it chooses one of the
enabled edges to take. Additional, it is possible to
model synchronous composition by synchronizing all
edges in system via a broadcast channel.
Unfortunately, these approaches are barely compatible
and thus translating UPPAAL specifications into
SpecEdit specifications and vice versa seems to be
highly challenging.

Templates are the way to model reusable
components in UPPAAL. A comparable feature for
SpecEdit is planned, but not yet available. This tool
component will also facilitate the integration of
ADeVA tables from other projects whereas UPPAAL
templates are reusable only in the same project.

As mentioned in section 3.1, SpecEdit allows
declaring signals as input signals. The applied model

checker can choose their according values non-
deterministically. However, not all verification tools
support such dedicated input signals. The select on
edges provides a comparable function in UPPAAL.

In SpecEdit formal specification data can be
explained by textual descriptions directly attached to
the according MTTs and DTTs. This combination
unites the comprehensibility of informal descriptions
with the unambiguity of formal methods. The
integrated document generator facilitates to create an
entire document from all specification data. This will
also be possible in future versions of UPPAAL.
Despite this, introducing formal methods in the
product development process requires a tighter
integration with project management and document
management tools.

4.4. Simulation

The integrated simulator is, compared to similar
solutions, definitely an advantage of UPPAAL. It
allows exploring the state space manually and
following diagnostic traces step by step in an
intuitional usable and clearly arranged environment.
This is an enormous help to find flaws in the model or
in the underlying textual system description.

SpecEdit itself does not provide simulation
facilities, but VHDL and SMV models generated from
ADeVA tables can be processed in all prevalent
VHDL/SMV simulators. To some extend these tools
are distributed commercial and must be purchased.

4.5. Formal verification

Concerning the verification, unfavorable the set of
temporal operators in UPPAAL is rather small and the
inability to use them nested limits the expressiveness
of the query language. To check more complex
properties often the model has to be extended with
locations or variables. Then again UPPAAL’s
verification engine may be well used to track
deadlocks. This is very useful when proving if a
specific model is well defined and complete. In
addition to that the model checker provides a lot of
options that help to optimize the verification process
and to decrease the time and memory consumption.

SpecEdit’s integrated tools can perform static
checks concerning the consistency and plausibility of
ADeVA descriptions. For the dynamic verification of
SpecEdit specifications commercial as well as free
model checkers exists. This way there are a number of
powerful property languages to choose from (e.g.
CTL, LTL, PSL).

4.6. Conclusion

Formal specification and verification of complex
systems requires a high level of abstraction to avoid
state explosion. UPPAAL and SpecEdit were used to
formalize textual system requirements of a
telecommunication device on a high level of
abstraction. Both tools originally were designed for
different purposes, hence each demonstrated its own
advantages. To specify such systems in an efficient
manner a combination of the individual strengths of
UPPAAL and SpecEdit would be appreciated.

For instance the graphical editor of UPPAAL
allows modeling system behavior in a very intuitive
and convenient manner. In combination with its
integrated simulator UPPAAL offers means to detect
and investigate flaws in the model already during
modeling.

On the other hand SpecEdit with its table based
specification language ADeVA and its integrated
consistency and plausibility checks simplifies dealing
with extensive specification data. It is convenient to
decompose a specification into single requirements
with text (as usual) but supplemented and concretized
with formal specification data. This makes the
specification easier to understand by other people
while being able to utilize the formalized data.

While UPPAAL has its own formal verification
facilities integrated, SpecEdit provides code generators
as interfaces to several external formal verification
tools. It has been successfully demonstrated that both
solutions are suitable for the formal verification
ofabstract system specifications. The next challenge
will be to integrate formal methods right into the
specification process of future systems.

5. References

[1] Behrman, David, Larsen: “A Tutorial on UPPAAL”,
LNCS 3158.

[2] Havelund, Soku, Larsen, Lund: “Formal Modelling and
Analysis of an Audio/Video Protocol: An Industrial Case
Study Using Uppaal”, In the proceedings of the 18th IEEE
Real-Time Systems Symposium, pp. 2-13, San Francisico, 3-5
December 1997.

[3] Haas, Gossens, Heinkel: “Semantics of a Formal Specifi-
cation Language for Advanced Design and Verification of
ASICs (ADeVA)”, 11th E.I.S.-Workshop, Erlangen, April
2003.

[4] Haas, Gossens, Heinkel: “Integration of Formal Specifi-
cation into the Standard ASIC Design Flow”, 7th

IEEE/IEICE International Symposium on High Assurance
Systems Engineering, Tokio, 2002.

[5] Schneider, Bluhm, Renner et al: “Formal Specification
and Verification of Abstract Telecommunication Protocol
Definitions”, 9th GMM-Workshop, Dresden, February 2006.

[6] Cimatti, Clarke, Giunchiglia et al: “NuSMV 2: An
OpenSource Tool for Symbolic Model Checking”,
International Conference on Computer-Aided Verification,
Copenhagen, July 2002

[7] Schock, Dinkel, Heinkel et al: “Comparison of
Techniques for the Automatic Verification of ADeVA
Specifications”, Dresdner Arbeitstagung Schaltungs- und
Systementwurf, Dresden, April 2005.

