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Abstract 
 

In industry formal methods are becoming 
increasingly important for the verification of hardware 
and software designs. However current practice for 
specification of system and protocol functionality on 
high level of abstraction is textual description. For 
verification of the system behavior manual inspections 
and tests are usual means. To facilitate the 
introduction of formal methods in the development 
process of complex systems and protocols, two 
different tools evolved from research activities – 
UPPAAL and SpecEdit – have been investigated and 
compared regarding their concepts and functionality. 
For this purpose both tools were applied to 
comparable frameworks. 
 
1. Introduction 
 

Usually the development of complex telecommuni-
cation systems is split into a specification and an 
implementation phase, each performed by different 
groups of engineers. To guarantee a correct realization 
of the system requirements it is of high importance that 
the documents, which describe the intended system 
behavior, are complete and well defined. 
Specifications in natural language are not able to 
satisfy these claims since they tend to be ambiguous 
and their correctness cannot reliably be proven. As a 
consequence the implementing engineer must have 
deep knowledge about the desired system behavior and 
is forced to make own decisions about the system 
behavior – which might be different from the 
intentions of the specification engineer. Defects in 
specifications usually are discovered in late phases of 
the development process and their correction causes 
unforeseen costs and delays. Getting use of formal 
methods for the specification and verification of 

complex system and protocol functionalities is 
expected to improve and to shorten the whole 
development process and to lead to more reliable and 
competitive products. Formalized specifications are 
unambiguous and their correctness can be proven 
automatically through software tools. Their data are 
easier to manage and to reuse than documents with up 
to several thousand pages of plain text. As a first 
approach UPPAAL and SpecEdit were used to model 
and verify the behavior of existing system 
functionalities based on their informal specification.  
 
2. UPPAAL 
 

UPPAAL is a tool suite for modeling, simulation 
and verification of real-time systems jointly developed 
by the Universities of Uppsala (Sweden) and Aalborg 
(Denmark). [1] 

 

 
Figure 1. UPPAAL GUI 

 



The software is split into a graphical user interface 
(GUI) implemented in Java and a verification engine 
written in C++, both available for most common 
platforms. UPPAAL is designed for the formal 
verification of systems that can be represented as 
networks of timed automata extended with elementary 
and structured data types and channel synchronization. 
Model checking techniques are used to prove the 
correctness of the specification. It has been 
successfully applied in several industrial case studies 
concerning the verification of time critical applications 
like multimedia and communication protocols, e.g. [2]. 
 
2.1. System descriptions in UPPAAL 
 

UPPAAL is based on the theory of timed automata 
(TA), which are finite state machines (FSM) extended 
with clock variables. System descriptions consist of 
several networked automata while time progresses 
globally at the same pace, i.e. UPPAAL uses 
continuous time. Clock variables are used to represent 
time and permit measuring of time progress. Thus the 
behavior of a timed automaton can be restricted by 
clock constraints. As extension to timed automata, 
UPPAAL supports bounded integer variables, 
constants, Boolean, scalars and communication 
channels. Furthermore multi-dimensional arrays and 
C-like records containing these elementary data types 
may be declared. Besides the GUI, the tool suite 
provides a basic programming language for 
UPPAAL’s extended timed automata, which facilitates 
specifying systems without the graphical editor. An 
entire system description is composed of several 
concurrent processes and globally declared variables 
and functions. Basically the automaton has multiple 
locations with edges in between (also called 
transitions) to pass along from one to the other 
location. Beside the “normal” and initial locations 
there are urgent locations and the even more restrictive 
committed locations. Once the system is in an urgent 
or a committed location, time is not allowed to pass. 
Additionally a committed location must be left in the 
successor state otherwise the system is deadlocked. 
Special clock constraints on locations, so-called 
invariants, enforce progress in the system. Edges may 
be decorated with selects, guards, synchronizations 
and updates. The select label allows binding non-
deterministically certain values of scalar types to 
identifiers. These identifiers are available as variables 
within the other labels. A guard is a condition on 
variables and clocks saying when the respective edge 
is enabled. UPPAAL actually offers three kinds of 
communication channels to synchronize two or more 
processes: 

• binary synchronization: An edge labeled as sender 
synchronizes with another edge labeled as receiver 
– both processes take a transition at the same time. 

• broadcast synchronization: One sender can 
synchronize with multiple receivers. 

• urgent synchronization: Delays must not occur if a 
synchronization transition on an urgent channel is 
enabled, hence clock constraints are not allowed on 
these edges. 
One transition is non-deterministically chosen to 

execute if several combinations are enabled at the 
same point of time. Assignments to variables or clocks 
can be performed when a transition is taken (update). 
The ability to use C data types and expressions 
includes calls to user declared functions, which are 
evaluated as atomic statements. These functions can be 
used in updates on edges as well as in guards if their 
return value can be mapped to Boolean. They help to 
keep the system description clear and to reduce the 
need for committed locations. 
 
2.2. Simulation and formal verification 
 

UPPAAL provides an integrated simulation tool. It 
allows the user to examine the dynamic system 
behavior in a graphical manner – either interactively, 
i.e. the user chooses which enabled transition to take, 
or randomly to let the system run on its own. In 
addition execution traces can be loaded, saved and 
imported from the verifier to follow them step by step. 
In contrast to the formal verification, simulation can 
only explore a particular execution trace instead of the 
whole reachable state space. However, it is an 
inexpensive approach to fault detection, especially in 
early stages of defining a system concept, as well as 
for small systems. By exploring of the whole reachable 
state space UPPAAL’s integrated symbolic model 
checker proves the modeled system behavior against 
the desired behavior described in a set of requirement 
specifications. Requirement specifications (properties) 
can be defined using a subset of CTL (computation 
tree logic) restricted to operators for reachability, 
safety and liveness properties. In addition there is the 
possibility to search for deadlocks. 

The GUI provides an environment for managing 
queries and launching the verification. The verification 
engine itself can thereby be executed on the local 
workstation or on a (more powerful) remote system 
connected via TCP/IP. Several possible adjustments 
concerning the search order (breadth/depth first), the 
state space representation and reduction as well as the 
type of the diagnostic trace (shortest/fastest) are 
helping to optimize the verification results. Besides the 



conclusion that a certain property is or is not satisfied 
the model checker may create such a diagnostic trace 
as a witness for the correctness or incorrectness of the 
specific requirement. This trace can be loaded directly 
into the simulator for the subsequent system 
debugging. 

 
3. SpecEdit 
 

SpecEdit has been developed by Lucent 
Technologies Nürnberg as a tool solution for the 
compilation and maintenance of specifications based 
on the formal specification language ADeVA 
(Advanced Design and Verification of Abstract 
Systems) [3]. Initially it has been designed for the 
specification and verification of ASICs [4]. SpecEdit 
provides a platform for the structured management of 
specification data, proving their consistency and 
plausibility and rendering them into different models 
e.g. VHDL, C or SMV. These models as well as the 
original specification data allow further processing by 
other tools for code generation, model checking etc. 

 

 
Figure 2. SpecEdit GUI 

 
3.1. System descriptions in ADeVA 

 
The table based specification language ADeVA 

provides semantics for the formal specification of 
abstract system functionality and communication 
protocols. With ADeVA, the control flow of a system 
is modeled by asynchronous parallel automata and 
abstract data types. A system description consists of a 
set of user declared variables (also called signals) and 
several automata represented through two kinds of 
tables: Mode Transition Tables (MTT) and Data 
Transformation Tables (DTT).  

MTTs describe the behavior of state-machine 
driven signals. Hence, a particular signal value is also 
called state. The table shows the appropriate states as 
well as the conditions and the corresponding logical 
values causing state transitions. T/F stands for 
True/False and “-“ for “don’t care”. The ’@’ symbol is 
used to indicate an event, i.e. a change of the value 
either to True or False. Transitions are taken as soon 
as all conditions are fulfilled and without time 
consumption. All rows in an MTT are required to be 
disjoint, hence a non-deterministic choice between 
multiple possible transitions at a distinct state is 
prohibited. 

 
From To Condition1 Condition2 Condition3 

state_a state_b @T F - 

state_a state_c @T T - 

state_b state_c F @F T 

Figure 3. Mode transition table (MTT) 
 
As MTTs are not sufficient to model realistic 

systems, DTTs were introduced to describe the change 
in value of a data signal. DTTs can be interpreted in 
the same way like MTTs and they have to follow 
identical restrictions. The major difference between 
these two kinds of tables is, that regarding DTTs the 
previous value of the signal is not relevant. 

 
Output Value Condition1 Condition2 Condition3 

signal_a a @T T - 

signal_a b @T F T 

signal_a c - - @F 

Figure 4. Data transformation table (DTT) 
 
Basically ADeVA differentiates between three 

kinds of user declared system variables: input, internal 
and output signals. Supported data types are integer 
and Boolean as well as user defined types like 
enumeration, array and record. Input signals allow 
integrating external signals (e.g. user inputs) in the 
abstract model of a system. All variables are allowed 
as parameters for conditions. In case they aren’t 
already of type Boolean their value has to be mapped 
to the Boolean domain. In practice usually MTTs are 
used to model the behavior of a specific system 
component whereas signals for communication 
between these components are described in DTTs. 

 
3.2. Simulation and formal verification 

 
To ensure the consistency and correctness of all 

MTTs/DTTs SpecEdit offers static checks using 
satisfiability checking techniques. It proves (amongst 



others) the determinacy of state transitions, the 
satisfiability of transition conditions and advises 
against dead end states. For the dynamic verification of 
ADeVA specifications like simulation and model 
checking SpecEdit itself does not provide own 
features. Due to the integrated code generation tools, 
however, the models generated from ADeVA 
specifications can be further processed by other 
commercial or non-commercial applications. With the 
current SpecEdit version VHDL (for GateProp) [5], 
SMV (for NuSMV) [6] and C models (for VeriSoft) 
[7] may be created. In addition VHDL and SMV 
models can be used within a variety simulation tools. 
This leaves the choice to the user and keeps the system 
flexible and open for many purposes. 
 
4. UPPAAL and SpecEdit in comparison 
 
4.1. General 
 

One of the challenges concerning formal specifica-
tion and verification is to map the desired system 
behavior described in natural language to the formal 
concept of the according tool solution. This is difficult 
not only because of the ambiguousness of textual 
specifications and hence the broad scope of possible 
interpretations. Inherently the formal specification 
enforces engineers to formulate correct requirements 
and leads to less inconsistency. In case of functional 
system specifications on a high level of abstraction 
neither UPPAAL nor SpecEdit are designed for that 
purpose. Providing high-level abstraction facilities will 
reduce the complexity of system models. Based on 
experiences of several case studies (e.g. [5]) the 
following paragraphs describe the advantages and 
disadvantages of both tools with regard to the use for 
such high-level specifications. 
 
4.2. Tool concept 
 

First of all, one significant difference between 
UPPAAL and SpecEdit is, that UPPAAL is a 
monolithic system. That means all components (i.e. 
system editor, simulator and verification engine) are 
designed to work together and on one and the same 
underlying model. This is very comfortable for the 
user. Few tools for translating UPPAAL models to 
other languages exist but the UPPAAL developers do 
not distribute them. Since SpecEdit does not provide 
facilities for simulation and model checking it must be 
used together with other applications for that purpose. 
The integrated code generator ensures the mapping of 
the ADeVA tables to the semantics of the languages 

interpretable by the applied model checkers or 
simulators.  

 
4.3. Specification 
 

UPPAAL’s graphical editor allows modeling 
system behavior in a very intuitive and convenient 
manner. Additionally graphs of single automaton may 
be stored in a postscript file and thus integrated into 
documents. However, complex automata with a high 
level of alliance demonstrate the advantages of a table-
based system: the comparatively uncomplicated 
dealing with extensive specification data. These tables 
may also be exported and reused during the design and 
implementation process. A combination of both 
approaches would be appreciated as well as the 
possibility to model hierarchical automata structures - 
a desirable but missing feature in both tool solutions. It 
would significantly improve the handling of complex 
specifications and allows examining the system 
behavior on different levels of abstraction. 

An important fact concerning the model concepts of 
the tool is that UPPAAL allows non-determinism in its 
automata. That means a certain state can have multiple 
successor states, which may be reached under the same 
transition conditions. SpecEdit explicitly prohibits 
non-determinism in ADeVA models and it proves the 
determinacy of all tables. The possibility of having 
non-determinism in the formal specification may be of 
advance, but when the model is intended to be 
deterministic a check – like SpecEdit performs it – 
would be of avail. 

Another basic differentiation between the tools is 
the understanding of state transitions. In ADeVA all 
possible transition are taken as soon as the according 
conditions are satisfied (maximal progress). This is of 
advantage when modeling parallel working processes. 
On the other hand UPPAAL uses asynchronous 
composition – in every step it chooses one of the 
enabled edges to take. Additional, it is possible to 
model synchronous composition by synchronizing all 
edges in system via a broadcast channel. 
Unfortunately, these approaches are barely compatible 
and thus translating UPPAAL specifications into 
SpecEdit specifications and vice versa seems to be 
highly challenging. 

Templates are the way to model reusable 
components in UPPAAL. A comparable feature for 
SpecEdit is planned, but not yet available. This tool 
component will also facilitate the integration of 
ADeVA tables from other projects whereas UPPAAL 
templates are reusable only in the same project. 

As mentioned in section 3.1, SpecEdit allows 
declaring signals as input signals. The applied model 



checker can choose their according values non-
deterministically. However, not all verification tools 
support such dedicated input signals. The select on 
edges provides a comparable function in UPPAAL. 

In SpecEdit formal specification data can be 
explained by textual descriptions directly attached to 
the according MTTs and DTTs. This combination 
unites the comprehensibility of informal descriptions 
with the unambiguity of formal methods. The 
integrated document generator facilitates to create an 
entire document from all specification data. This will 
also be possible in future versions of UPPAAL. 
Despite this, introducing formal methods in the 
product development process requires a tighter 
integration with project management and document 
management tools. 

 
4.4. Simulation 
 

The integrated simulator is, compared to similar 
solutions, definitely an advantage of UPPAAL. It 
allows exploring the state space manually and 
following diagnostic traces step by step in an 
intuitional usable and clearly arranged environment. 
This is an enormous help to find flaws in the model or 
in the underlying textual system description. 

SpecEdit itself does not provide simulation 
facilities, but VHDL and SMV models generated from 
ADeVA tables can be processed in all prevalent 
VHDL/SMV simulators. To some extend these tools 
are distributed commercial and must be purchased. 

 
4.5. Formal verification 
 

Concerning the verification, unfavorable the set of 
temporal operators in UPPAAL is rather small and the 
inability to use them nested limits the expressiveness 
of the query language. To check more complex 
properties often the model has to be extended with 
locations or variables. Then again UPPAAL’s 
verification engine may be well used to track 
deadlocks. This is very useful when proving if a 
specific model is well defined and complete. In 
addition to that the model checker provides a lot of 
options that help to optimize the verification process 
and to decrease the time and memory consumption. 

SpecEdit’s integrated tools can perform static 
checks concerning the consistency and plausibility of 
ADeVA descriptions. For the dynamic verification of 
SpecEdit specifications commercial as well as free 
model checkers exists. This way there are a number of 
powerful property languages to choose from (e.g. 
CTL, LTL, PSL).  

 
4.6. Conclusion 
 

Formal specification and verification of complex 
systems requires a high level of abstraction to avoid 
state explosion. UPPAAL and SpecEdit were used to 
formalize textual system requirements of a 
telecommunication device on a high level of 
abstraction. Both tools originally were designed for 
different purposes, hence each demonstrated its own 
advantages. To specify such systems in an efficient 
manner a combination of the individual strengths of 
UPPAAL and SpecEdit would be appreciated. 

For instance the graphical editor of UPPAAL 
allows modeling system behavior in a very intuitive 
and convenient manner. In combination with its 
integrated simulator UPPAAL offers means to detect 
and investigate flaws in the model already during 
modeling. 

On the other hand SpecEdit with its table based 
specification language ADeVA and its integrated 
consistency and plausibility checks simplifies dealing 
with extensive specification data. It is convenient to 
decompose a specification into single requirements 
with text (as usual) but supplemented and concretized 
with formal specification data. This makes the 
specification easier to understand by other people 
while being able to utilize the formalized data. 

While UPPAAL has its own formal verification 
facilities integrated, SpecEdit provides code generators 
as interfaces to several external formal verification 
tools. It has been successfully demonstrated that both 
solutions are suitable for the formal verification 
ofabstract system specifications. The next challenge 
will be to integrate formal methods right into the 
specification process of future systems. 
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