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Abstract. Model checking is an effective way of comparing a system
description against its formal specification and search systematically for
errors. The method is gaining a lot of success by being integrated in
the hardware design process, and in development of complicated proto-
cols and software. Being an intractable problem, model checking is the
ground for very active research that is inspired by many different areas
in computer science.

1 Introduction

Model checking, suggested in the early 80s [4, 7, 15], is the automatic verification
of a (model of a) system against its formal specification. Model checking can
thus be seen as a more exhaustive validation attempt than testing, and, being
automatic, as a more practical method than theorem proving. Being a computa-
tionally intricate task, model checking promotes the study of different methods,
competing on efficiency in terms of time and memory use.

The goal of model checking is mainly to find errors during the process of
system design and development. Although an elevated assurance of correctness
is gained when errors are not found by model checking, this does not exclude the
existence of errors. Model checking can miss inconsistencies between the checked
model and the specification, or report spurious errors, called false positives. Er-
rors reported by model checking thus need to be further checked against the
actual implementation.

Model checking has some strict limitations. As one verifies a model of the
system rather than the system itself, discrepancies between the two may affect
the verification results. Similarly, the properties against which the system is to
be checked, written in some mathematical formalism (logic, automata), may not
precisely fit the intention of the less formal system requirements, given originally
in some natural language. Furthermore, the verification tool itself can be bogus.
Nevertheless, one should realize that the goal of model checking is to improve the
quality of the system and to search for errors, rather than stamping the system
with a seal of absolute guarantee against errors.

Model checking suffers from being an intractable problem. Although there are
many cases of applying model checking successfully, there are also many difficult
instances where one or more of the existing methods fails to work efficiently.
Several techniques for model checking compete on the size of systems that can be



verified given the available memory and reasonable execution time. Ezplicit state
space methods [19] examine the reachable states using search techniques; the
search space represents both the states of the model and the checked property.
Symbolic model checking [3] uses an efficient data structure called BDD to store
sets of states, and progresses from one set of states to another rather than state
by state. Bounded Model Checking [2] encodes a counterexample as a Boolean
formula and uses the power of modern SAT solvers. The latter approach conquers
new ground by using the impressive capabilities of SAT solvers enriched with
decidable theories in order to verify systems with an infinite state space.

2 DModeling

In order to validate a system using model checking tools, the system has first
to be modeled into the internal representation of that tool. (For a direct veri-
fication of finite state systems, see [12].) This can be done either manually, or
automatically by a compiler. In many cases, the internal representation used by
the tool is different from the original description of the system. The reason for
this is that internal formalisms of tools often reflect some constraints such as
dealing with finite states, and is also related to optimizations available by such
tools. Even when the same formalism is both used for defining the system and
for verification, the internal representation of the tool may differ from the way
the system is operating. Such subtleties must be considered by tool designers as
well as users; understanding their effect is important in analyzing the verification
results.

There are many ways to represent finite state systems. The differences are
being manifested in the kind of observations that are made about the possible
executions and the way the executions are related to one another. The modeling
also affects the complexity of the verification; it is tempting to use a modeling
formalism that is very expressive, however, there is a clear tradeoff between
expressiveness and complexity.

In order to model systems, we will assume some first order language F. A
transition system (V,S,1,T) has the following components:

V' A finite set of variables. The variables describe storage elements, including
communication media (message queues) and program counters pointing to
the current location in the code of each process. Each variable has some
given finite state domain.

S A set of states. Each state is an assignment from variables to their respective
domain. We will denote the fact that a state satisfies a first order formula ¢
from F by s = .

I is a unquantified first order formula of F called the initial condition. A state
s € S is initial if s = 1.

T is a finite set of transitions. Each transition 7 = en, — f; in T consists
of (1) an enabling condition en,, which is an unqauntified first order for-
mula of F, and (2) a multiple assignment f; of the form (v1,va,...v,) =
(e1,€e2,...ep), where v; are variables from V, and e; are expressions of F.



An execution of a transition system is a mazimal finite or infinite sequence
of states sg, s1, . . . satisfying the following conditions:

— 80 ': 1.

— For each ¢ > 0, there is some transition 7 € T such that s; = en,, and s;11 is
obtained from s; by applying the multiple assignment f; = (v1,va,...v,) =
(e1,€e2,...epn). That is, one first calculates all the expressions, then one per-
forms the assignments (the order is now unimportant). One often denotes
this by the notation s,11 = s;[x1/e1,22/ea, ..., 0n/Tn].

— Since an execution is maximal, it can be finite only if in the last state no
transition is enabled. It is sometimes convenient to work only with infinite
executions; then the last state in a finite execution is repeated indefinitely.

The use of the multiple assignments may seem questionable at first, as transitions
often represent small (atomic) actions of the system. However, one should realize
that even in a simple machine language instruction of a computer, it is often the
case that two objects are changing their values: usually at least one memory
place or a register or a flag, and in addition the program counter.

Example Let I bec=aANd=bAe=0andT = {r :¢c>0— (ce) =
(c—1l,e+1),72:d>0— (d,e):=(d—1,e+1)}.

This transition system adds to e the value of a + b (the variables a and b do
not change during the execution). The execution only terminates when both ¢
and d (with initial values as a and b, respectively) both reach 0.

Assume that initially ¢ = 2 and b = 1. There are multiple executions (in this
case, exactly three executions). At the initial state, both 74 or 72 are enabled. If
71 is picked up, then again there is a choice between 7 and 75. Such a choice of
several transitions from the same state is called a nondeterministic choice. One
of the executions, where 7y is chosen first, then 7o and then 7, again is as follows:

so:{a=2b=1,¢c=2,d=1,e=0)
s1:{a=2b=1c=1,d=1,e=1)
s2:{a=2b=1,c=1,d=0,e=2)
s3:{a=2b=1,c=1,d=0,e=3)

This execution model, called the interleaving model, can be used to represent
sequential, as well as concurrent executions. For concurrent systems, the transi-
tions of all the processes are put together in the same set of transitions 7. When
several transitions can be executed concurrently (i.e., independently), they are
enabled from the same state and by nondeterministic choice they will appear as
if executed one after the other in any order (being independent of each other, the
executing of one would not disable the other(s)). Nondeterminism can represent
in the interleaving model two different things: (1) the selection by some process
between different transitions that are enabled at the same time, and (2) the
different relative orders between the execution of independent transitions of dif-
ferent processes.



For an intuitive explanation of the interleaving view, assume that the order of
occurrences of transitions represent the moment when their effect is taking place.
(If there is no single instance where this happens, then the transition need to be
further partitioned, as discussed below.) If simultaneously terminating events is
possible, their execution order is indeed not important and their relative effect
commutes.

There are other models for concurrency that represent concurrent occurrence
in a more intuitive manner: the partial order semantics models concurrent oc-
currences of transitions as unordered, while sequentially occurrences are ordered
with respect to each other. It still allows nondeterministic choice, but distinguish
it from the choice of order between events. The use of this model comes at a high
complexity price for model checking [1,20]. For most purposes, the interleaving
model is sufficient and acceptable for modeling concurrent systems.

Ezxample. Consider a partial solution to the mutual exclusion problem as follows:

Py:: Lo:while true do Py:: Li:while true do
NCy:wait (Turn=0) NCy:wait (Turn=1)
CRy:Turn=1 od CR1:Turn=0 od

This little concurrent program, with two processes, can be modeled using the
following six transitions:

To: PCo = LO — PCo ‘= NCO

71: (pco = NCoy A Turn = 0) — pco := CRy

To: pcog = CRy — (peo, Turn) := (Lo, 1)

T3:pc1 = L1 — pey := NCy

T4: (pc1 = NCy ATurn =1) — pey := CRy

75: pc1 = CRy — (pey, Turn) := (L1,0)

The initial condition [ isTurn =0V Turn =1

Given a transition system, one can define its state graph, which is a graph of
states reachable from any of its initial state. Each directed edge can be annotated
by the transition that is executed to transform its incoming state into its outgoing
state. The state graph for the above transition system is given in Figure 1. Initial
states are marked with transitions with (nonedges) inwards pointing arrows. The
executions of the transition system are then the maximal sequences that start
with the initial states.

The modeling of the system is open for many modeling decisions. By making
the wrong decisions, the verification process is prone to overlooking errors or to
reporting spurious false positives. Even with the simple example of mutual ex-
clusion above, one already has a nontrivial modeling choice: the wait statement,
as modeled, allows progress exactly when the value of the Turn variable is set
by the other process (or initially) to the id of the current process. This models
a situation where a process can be preempted until some condition occurs. The
alternative is to model the wait statement as a busy waiting, looping until the
waited condition holds; we then need to add two transitions:

71": (peg = NCo A Turn = 1) — pey := NCy

74": (pcg = NCy A Turn = 0) — pcy := NCy



Fig. 1. State graph for mutual exclusion example

The state graph is now changed accordingly, with a self loop around the
states (Turn = 0, Lo, NC) and (Turn = 1, NCy, L1). This change affects the
properties of the model. Under the original model it holds that for every exe-
cution, both processes alternatively enter their critical section infinitely often in
alternation (this only works because both are always interested in entering their
critical section; this specific mutual exclusion solution has the defficiency that if
a process does not want to enter its critical section, the other process will also be
eventually blocked). With the busy waiting model, entering the critical section is
not guaranteed even once. Now, one may consider an execution where a process
is waiting for its turn forever, although enabled, as “unfair”. Indeed, a notion
of fairness, which will be described later, can be added to the model, ruling out
some executions. With such a fairness assumption, an infinite busy waiting loop
may be ruled out, maintaining again the property that the processes enter their
critical section infinitely often.

An important modeling decision is on the level of atomicity of the transi-
tions. According to the interleaving model, at each state, an enabled transition
is selected for execution and is performed entirely (atomically), without being
able to observe intermediate changes. If the level of atomicity is too fine, we
may needlessly increase the size of the state space and the memory required
for performing the verification. If the atomicity is too coarse, there may be ob-
servable state changes that are not captured by the transition system, including
additional interleaving that may be missed. Again, it is the job of the person
performing the modeling to make the right choice.

FEzample. Two processors want both to increment a shared variable x by 1.

Modeling this increment as a single atomic transition may reflect the behavior
of the actual system if, e.g., the variable z is implemented as a register (this is



possible, e.g., in the C language). On the other hand, it is also possible that
stored in some physical memory location is being first copied into an internal
register (in each process, separately), which is incremented before the new value
is being copied back to the memory location that holds x. In this case, if the
initial value is 0, both processes will read the value 0, store it, increment it, and
store 1 back to x; a loss of one increment.

Generating the state graph from the transition system can be done with a
search method, e.g., Depth First Search (DFS) or Breadth First Search (BFS),
starting at initial states and moving from one the to another by applying the
enabled transitions. The state graph can be used already to check for simple
properties. For example, one can check for deadlocks (states where no transition
is enabled and that are not intended to be terminating), whether some bad states
are reachable, or for dead code (code that is never executed).

The explicit state graph can become exponentially larger than the transition
system. Consider n processes, each with two states such that local variable z; is
either 0 or 1; this gives us 2" states. Deadlock detection in concurrent systems
is in PSPACE complete. The lower bound can be achieved through a binary
search for deadlock states from initial states. In this way, the state graph is not
explicitly constructed. The time complexity of this state efficient algorithm is,
unfortunately, even worst then performing the explicit search. Different model
checking techniques are used to try and avoid the full construction of the explicit
state space.

3 Specification

System specification can be seen as a contract between the consumer and the
system developer. Natural language is commonly used to describe requirements
from the system. It is susceptible to ambiguity. The use of formal specification
allows a unique interpretation, as well as developing model checking algorithms.
As in modeling, the use of different notations (natural language and a specifica-
tion formalism) may cause a potential discrepancy.

Although model checking was suggested already in the 80s, there is still no
consensus about the choice of specification formalism. One of the reasons for
this situation is the clear tradeoff between expressiveness of the formalism and
the complexity of the analysis. The natural tendency to allow a very expressive
formalism is countered by the need to provide efficient algorithms for checking
properties of the system.

One misleading measurement of complexity of the analysis is with respect to
the size of the specification. Indeed, this measure is meaningful within a fixed
specification formalism. However, it is often the case that when one formalism
allows writing some more compact specification for the same property, the com-
plexity of model checking properties in that latter formalism is correspondingly
higher. Thus, it is often a mistake to select a formalism because it allows a much
more compact representation of properties, or to select another formalism since
the model checking problem is of relatively lower complexity.



Within the interleaving semantics there is an important choice: according
to the linear view, we are interested in the properties that are common to all
the system executions (but we may restrict the executions using some semantic
constraints such as fairness assumptions, to be discussed later); according to
the branching view, we put all the interleaving in a branching tree that is ob-
tained by unfolding the state graph from the initial state(s) (a state can repeat
infinitely many times in the tree, even at the same level). This allows us to ob-
serve and reason about the branching points. The difference between these two
dichotomies, the linear and the branching view, has resulted a lot of interesting
research [6]. Time is usually abstracted away, and the progress from one state
to another is not done within equal time intervals.

Two ways of specifying properties according to the linear view is linear tem-
poral logic and Biichi automata. The use of logic has a declarative nature, while
the use automata has a more operational flavor. Engineers use both of these for-
malisms, although many of them still insist to write the specification in natural
language.

3.1 Linear Temporal Logic

Linear temporal logic (LTL) [14] describes the progress of a system along an
execution from one “world” (representing a state, when modeling a system) to
another. The word “linear” means that the worlds are arranged in a total order.
One of these worlds is minimal, while all the states are well founded (appear after
a finite number of successors) from that state. For simplicity, we will assume that
all executions are infinite, extending finite executions by repeating the last state
forever.

We first define linear temporal logic. A linear structure (W, R, wo, P, L) con-
sists of the following components:

W An infinite set of worlds.

R C W x W is a well founded total order between the worlds.

wo € W is the minimal world according to the R order.

P is the finite set of labels for worlds. These can be just program states, where
each world is mapped to exactly one state. More conveniently, instead of
mapping the worlds to states directly, we can map them to Boolean proposi-
tions representing properties of the state (p can represent e.g., the property
x > y). We will assume that each world is labeled with some subset of
propositions from P.

L : S+ 27 is the mapping from worlds to sets of labels.

A linear structure can then seen as a sequence wowiws .... In our context, it
represents the states in an execution of the modeled system, according to the
linear interleaving semantics interpretation.

The syntax of temporal logic adds, on top of the propositional operators —,
A, V, some modal operators that describe how the behavior changes with time:
O - nexttime, ¢-eventually, O-always, U-until. The syntax of the logic is defined
as follows, where p € P is a proposition:



pu=plopl(eVe)l(@Ap)| OelOp|Op|(pUe)

The semantics is defined recursively on suffixes of the model (sequence) o,
where o’ represents the suffix starting at the ith world (with o = ¢°). The first
state of a suffix ¢* will be denoted w;.

— Forpe P, o' =piff pe L(w;).

- azilz((p\/w) iffal:):goorai)_:’t/}.

— o' E(pAvy)iff o' Epand o' E 4.

— ot = = iff o £ .

— o' |= Oy iff there exists j such that j >4 and o7 = ¢.

— o' = Oy iff for all j such that j > i it holds that o7 = .

— o' = (U) iff there exists j such that j > i and ¢/ = ¢ and for all k such
that i < k < j it holds that o7 |= .

Finally, we denote o |= ¢ iff 0¥ = o.

Thus, 0 = O when ¢ holds for some suffix of o, while dually, ¢ | Op
when ¢ holds for every suffix of o. Let true be a shorthand for (p V —p) for
some arbitrary p € P. The operators ¢ and O are not necessary: O can be
expressed as trueldy, and Op can be expressed as —(trueld—¢). Sometimes a
dual for U, denoted R (for “release”) is added, such that @Ry = —(—pU—).
Defining termpoal formulas over the suffixes of a sequence o allows combining
the temporal operators. A useful combination is OO, which holds when ¢ holds
for infinitely many suffixes. Dually, ¢Op means that ¢ holds for all but a finite
number of suffixes. The operator () is sometimes removed; this has the effect of
not being able to distinguish (by means of LTL properties) between stuttering
executions, i.e., executions that differ only by the number of consecutive times
that the same labeling appear [10,13].

A system P satisfies an LTL property ¢ iff each execution o of P satisfies .
We then write P = ¢. It can be the case that neither P |= ¢ nor P = —.

3.2 Biichi Automata

In order to specify properties of the system using automata, where the accepted
words represent the allowed executions, we cannot use simple finite automata:
finite automata define languages over finite words, while our systems allow in-
finite executions. A Biichi automaton A = (S, Sy, X, d, F) is a finite automaton
over infinite words. It contains the following components:

S is a finite set of states.

So C S is the set of initial states.

XY is the finite alphabet of the automaton.

60 C S x XY x S is a nondeterministic transition relation.
F C S is the set of accepting states.



A run of an automaton A is an infinite alternating sequence sgposips ...
such that for each i > 0, (s;, pi, Si+1) € 0. A run is accepting if at least one of
the states appearing infinitely many times on it is in the set of accepting states
F. A Biichi automaton accepts (or recognizes) infinite words pgp; ... from X¢
such that there exists an accepting run sopps1p12 - - .. The language £(A) of an
automaton A consists of all the words from X“ accepted by A. To reason about
the executions of systems, we let X = 2F.

Deterministic Biichi automata, with a transition function § : S x X — S, are
strictly less expressive than nondeterministic Bilichi automata. To see this, con-
sider the language over X' = {a, b} with finitely many as. The Biichi automaton
in Figure 2 accepts this language, while there cannot be a deterministic automa-
ton for the same language. Note that for a deterministic Biichi automaton there
exists exactly one path per each input. Assume there exists such a deterministic
automaton. Consider a path containing only bs, denoted . This path reaches
an accepting state from F, since this word is in the language of the automaton.
Consider the prefix of this path that ends at the first time that an accept state
occurs. Then we append an a to that path and subsequently infinitely many bs.
Again this sequence is accepted and hence reach an accepting state after the a,
and we can cut it after when reaching that state. By repeating this, we obtain a
path with infinitely many as that accepts infinitely often; a contradiction.

Fig. 2. A nondeterministic automaton accepting words with finitely many as

4 Model Checking

Ezxplicit state model checking is based on a graph theoretic search performed over
the combined state space of the system and the checked property.

An LTL formula ¢ can be translated into a corresponding Biichi automaton
such that L(p) = L(A). We will later describe such a translation. Each state
graph can also be represented as a Biichi automaton B as well. The set of states
SB are the reachable states S of the system. For the convenience of dealing
only with infinite sequences, if the state graph includes states without successor
(deadlocks or termination), then we can add a self loop to that state. It is
convenient to add a new initial state ¢ with edges to all the initial states of the
state graph (satisfying the initial condition I). Each edge from a state s to a
state s’ is labeled L(s’), i.e., according to the latter state s’. Now, the accepting



states of B are all the states in S (namely, each infinite sequence is accepted.
This makes the accepting runs of the constructed Biichi automaton B correspond
to the executions of the system.

Now, let A, is an automaton with the same language as the LTL property
@, 1e., L(Ay) = L(p). Let B represent the executions of the system. Then for
the system to satisfy ¢, it is required that

L(B) € L(Ay) (1)

This is because all the sequences of the system (those accepted by B) must
satisfy ¢, and hence need to be in L(A,) = L(y¢). Language containment is
hard to perform. It is easier to perform automata intersection. Then instead of
translating ¢ to A, and checking for containment, one can translate —~¢ to A-,
and check whether

L(B) N L(A~p) =10 (2)

holds. Now (1) and (2) are equivalent. To see this, note that £(A-,) = L(A,).
In order to check condition (2), we need to know how to intersect two Biichi
automata, and how to check for emptiness of a Biichi automaton. Observe that
if the intersection is nonempty, it means that there is an execution of the sys-
tem (represented by the automaton B) that does not satisfy the property ¢ (is
accepted by the automaton A-,). Such a counterezample can be reported as a
result of the model checking.

The intersection, often called the product, of two Biichi automata A and B
is denoted by A x B. It satisfies L(A x B) = L(A) N L(B). Consider first the
simple case of intersecting two Biichi automata where A = (S4, S5t, 57, §4, FA)
and B = (SB S8, ¥ 68, SB). This is a special case of the intersection where all
the states of B are accepting, as in the above model checking case. The product
simulates the two automata running synchronously, where each input letter from
X causes a transition of both components. In this case, the acceptance is decided
by the first component of each pair:

— §AXB _ gA  gB
_ Sé‘\XB =S¢t x SB.
_ §AXB _ {((s,7), 0, (s',7"))| (5,00, 8) € SAN (r,a,r") € 53}.
_ pAXB _ pA LGB

The more general case of intersection, of A = (SA, 5’64, X, 64, FA) and B =
(8B, 8B 5 68 FP), is a bit more complicated. Consider two such automata in
Figure 3 over X = {a,b, c}. The language of the left automaton .4 consists of
words with infinitely many a’s. The language of the right automaton B consists
of words where the occurrences of b and a alternate, starting with a b, and any
number of cs can appear between each b and its subsequent a, or after the last
b. Clearly, the intersection has infinitely many bs and as alternating, with any
number of ¢s between a b and the subsequent a. The product of the states and
transition relation, (ignoring for the moment the acceptance issue, appears in
Figure 4. In the figure, only the states reachable from the initial state appear;
thus the states (go, ¢1) and (g1, go) were not included.



A naive attempt to define the accepting states, as those that have both an
accepting component from A and an accepting component from B, is incorrect.
It requires that acceptance by two automata, running synchronously, is done
each time simultaneously. This never happens in our example; thus both (go, go)
and (g1,¢1) would be nonaccepting (since gp and g; are nonaccepting compo-
nents), resulting in, erroneously, the empty intersection. Another naive solution
is to allow acceptance when one of the components is accepting. This will allow
incorrectly accepting sequences where one of the automata accepts only finitely
many times if the other still accepts infinitely often. In our example, this will
make both states in Figure 4 accepting and thus will accept erroneously also
sequences where the number of as and bs is finite; in fact, the language of the
incorrectly constructed automaton is equivalent to the language of B.

b,c b
b,c \ //\
() (@) )
a
a a

Fig. 3. Two automata to be intersected

(gOa qo0)

a b
c

Fig. 4. Product of the states in Figure 3

The solution for defining the acceptance states in the general case of a prod-
uct of Biichi automata is a bit more involved. In order to guarantee that both
components of the product will meet their accepting states infinitely many times,
one can observe the acceptance states of the components in alternation; wait for
the acceptance of one component, then the other component and so forth. There
is no worry about the situation where one component will accept several times



before the other one does: if there are infinitely many times each component
accepts, then we may decide to follow only a subset of these occurrences.

The construction takes two copies of the product without acceptance, as in
Figure 4. The initial states consist of the pairs of initial states of both components
of the first copy. When an accepting state of the first component in the first
copy is reached, the edges out of this state will direct the execution to the
corresponding successor state in the second copy. Similarly, when an accepting
state of the second component in the second copy is reached, the edges will
direct the execution to the corresponding successor of the first copy. Hence,
each time acceptance is reached in one of the copies, execution continues with
the other copy. Now acceptance is defined by using the accepting states of the
first component in the first copy (or, alternatively, the accepting states of the
second component in the second copy); it is sufficient to see these states infinitely
many times, since this also implies that the other accepting states where found
infinitely often (otherwise, we would have gotten stuck in the other copy).

For our example, we make two copies of the automaton in Figure 4 as in
Figure 5. The initial state is that of the first (left) copy. Since the state (go, qo)
has the accepting component gg € FA, its outgoing edge of b is directed towards
the corresponding state (g1, ¢1)’ in the second copy rather than towards (g1, q1)
in the first copy. Similarly, in the second copy we reach (g1, q1)’, where ¢, € F5,
and thus direct the edges labeled with a and with ¢ towards the corresponding
states in the first copy. Note that the state (go,qo)" of the second copy becomes
unreachable and can be removed.

Fig. 5. Intersection of the automata in Figure 3

Formally, given two automata .4 and B as above, both with nontrivial ac-
cepting states, the product automaton is the following:

— §AXB = §A x 8B x {0,1}.

— S3B = g x SB x {0}.

- ((9,0,9),, (¢, ¢, 7)) € 4*Biiff (g,,¢") € 6 and (¢, o, ¢') € 6® and exactly
one of the following cases holds:



1. i=0,g¢€ FA and j = 1 [move from 1st to 2nd copy],
2. i=1,q¢€ F5 and j = 0 [move from 2nd to 1st copy],
3. both case 1 and case 2 do not hold and ¢ = j.

— FAXB = P4 x 55 x {0}.

It is easy to extend this construction to the product of n automata.

The next problem is to check the emptiness of a Biichi automaton. Observe
that each infinite sequence containing only finitely many states has a suffix that
includes only states that appear infinitely many times. This means that in the
state graph of the automaton, these states are reachable from each other, i.e.,
they appear in a strongly connected component of such a graph, possibly part
of a bigger strongly connected component. It is sufficient then to construct the
a maximal strongly connected components, as in Tarjan’s algorithm [17], and
check weather there is such a component, reachable from some initial state, and
which includes some accepting state. This is a necessary and sufficient condition
for having an accepting sequence of the Biichi automaton: if such a reachable
component exists, one can easily construct a path from some initial state to an
accepting state within the component, and then a cycle from that state to itself.
This also means that if there is an accepting execution of the Biichi automaton,
then there is one that consists of a finite prefix and a recurring cycle of states.
Such a sequence is called ultimately periodic or lasso shaped. This means that in
case model checking of LTL or Biichi properties returns with finding a discrep-
ancy between the model of a system and the specification, the counterexample
can always be given as an ultimately periodic sequence. This can be presented
in a finitary way, containing two finite components: a prefix and a periodic part.

An alternative algorithm for checking emptiness of a Biichi automaton is
based on double DFS [5,9]. Instead of looking for strongly connected compo-
nents, one searches directly for an ultimately periodic sequence consisting of a
prefix followed by a cycle. The first DFS discovers the states of the automaton.
Whenever it backtracks to an accepting state (this means that this is the last
time that this node is kept in the search stack of the first DF'S), then the second
DFS is called. The second DFS looks for a path that terminates in a state that
is already in the search stack of the first DFS. If such a path is found, then a
counterexample can be reported: the first part is the prefix of that search stack
until that state; the periodic part is the content of the stack of the first DFS
from that state, concatenated with the content of the stack of the second DFS.
The first and second DF'S work as coroutines: if the second DFS fails to find the
required path, the first DF'S continues its search from the point it has stopped.
When the second DFS is called again, it maintains its hash table from the pre-
vious call, hence if a state that was accessed by it in some previous call appears
again, there is backtracking, rather than re-exploring states from there again.

The search for counterexamples using double DFS is often called on the fly
model checking. In many cases, when there is an error, it appears in many
executions and the search is found much earlier before completing the search of
the entire combined graph of the system and property. Another advantage of
this algorithm is that it is relatively efficient on memory use: one only needs to



keep the two DFS stacks and a hash table, which records whether a state has
already participated in the first or second (or both) DFS. In particular, there is
no need to store the edges.

Model checking for LTL properties can be done in space polynomial in the
size of both the property and of the transition system [19, 16]. To achieve this, one
does not construct first the Biichi automata for the state graph of the system and
for the translation of the property. Rather, one performs a binary search through
their combined state space for an ultimately periodic sequence. To perform that,
one needs to keep some states of the combined state space on a stack, and to be
able to check whether one such state is a successor of another.

Bounded model checking [2] avoids performing the search directly on the
search space. Instead, it encodes the existence of an ultimately periodic cycle
as a Boolean formula. Then SAT solving is used to check satisfiability of this
formula. Since SAT solvers require a fixed formula, it is important to establish a
good estimate (an overapproximation) on the size of the combined state space.

5 Translating from LTL to Biichi automata

The translation that will be described here allows converting any LTL formula
into a Biichi automaton such that both define the same language of execu-
tions [8]. This immediately means that Biichi automata are at least as expressive
as LTL. The converse does not hold: there are languages expressed using Biichi
automata that do not have an LTL property with the same language. A classical
example [21] is the language where p holds in all the even states (in the odd
states, p may hold or not; if p must further not hold in the odd states, we can
express this in LTL). The class of LTL formulas is in fact equivalent to a subset
of the Biichi automata that are called noncounting. Another characterization of
such languages is using star-free regular expressions that include concatenation,
complementation and union but not the recurrence operators. A third character-
ization for the languages of LTL formulas is as the languages expressed using first
order monadic logic over linear structures; the languages of Biichi automata are
as expressive as second order monadic logic. For a survey on these formalisms,
see [18].

Before making the translation, we first put the translated LTL formula in a
normal form. To do that, we first get rid of all the modal operators except U
and R. We then recursively push negation inwards based on the following logical
equalities:

= (e VY) = (me A )
— (e AY) = (mp vV —Y)
— ~(eUy) = (~pR~)
= (¢RY) = (~pUU—)
- o = .
After this transformation, negations can appear only next to propositional vari-

ables. This has the advantage that there is no need to complement automata
during the transformation, eliminating an operation that is very expensive.



The conversion will first construct a generalized Biichi automaton rather than
a Bilichi automaton. Such an automaton has several acceptance sets Fy, Fy, ..., F,.
In order to accept a run, at least one state out of each acceptance set must occur
infinitely many times. This is an intermediate representation that is convenient
for our translation algorithm. However, it does not provide any new expressive
power: a generalized Biichi automaton can be easily translated into a simple
Biichi automaton (with one set of accepting states). The construction is, in fact,
identical to the construction of a product of n Biichi automata with the same
set of states, but each with a different accepting set Fj.

A data structure called node, which is gradually transformed into an automa-
ton state, is used by this algorithm. Its structure appears in Figure 6. Such a
node contains a set of incoming edges. Special value called the initial marker
is also allowed in that field (visually, this can be denoted as an edge with no
predecessor). There are three further fields, each for a set of subformulas of the
translated formula:

New Subformulas that need to be satisfied from the current node and have not
yet been processed.

Old Subformulas that need to be satisfied from the current node and were
already processed.

Next Subformulas that need to be satisfied from the successor nodes to the
current one.

We start the algorithm with a node that contains the formula ¢ to be trans-
lated in New, and empty fields Old and Next. The incoming field includes exactly
the initial marker. Now, a formula is removed from the field New and is moved
to the field Old. Then the current processed node is subject to two kinds of
transformations depending on that subformula: (1) a splitting transformation,
for subformulas of an or characteristics, where two copies of the node are gener-
ated, with some further subformulas added to the fields New or Next, or (2) an
evolving transformation, for the other subformulas, where again the fields New
or Next can gain new subformulas.

Incoming

Old New

Next

Fig. 6. The data structure for a node

The subformulas with or characteristics are the following:



(o V1) Then ¢ is added to the New field in one of the splited copies, and 1 is
added to that field in the other copy.
(pUrh) Based on the following equivalence

(pUp) = (P V (¢ A O(pU))

we add in one of the copies 1) to New, and in the other copy both ¢ in New
and (pU1)) to Neat.
@Ry Based on the following equivalence

(eRY) = (P A (¢ VO(¥RY)))

and distributing the V over A, we add in one copy the subformulas ¢ and
¢ to the new field, and in the other copy, we add ¢ to New and (¢R) to
Next.

The first two splits in the translation of (aU(bUc)) appear in Figure 7.

]

(aU (bUc)

a (aU(bUc)) e " (bUc) (aU(bUc)
Split 1
(aU(bUc))
pli
b (aU(bUc) . (aU(bUc))
(bUc¢) (bUc)
(bUc¢)

Fig. 7. Two first splits in translating (aU(bUc))

The other subformulas are the following;:

(¢ A9p) Then both ¢ and ¢ are added to the New field.
O Then, ¢ is added to New.



p, or =p where p is a proposition Then, there is no subformula added to New
or Next.

When the field New of a node N becomes empty, we check whether a node of
the same values in the fields Old and Next already exists as an entry in a list of
States. If it does exist, we just add to the Incoming field of the version in States
the Incoming edges of N. Then we may still have some other nodes that are not
fully constructed (waiting in the recursion of this algorithm) to which we need
to return. If such an entry does not exist in States, then we add N to States. In
this case we also create a new node with the following values:

— The Incoming field contains a single edge, from N.
— The New field is the copy of the Nezt field of V.
— The Old and Next fields are empty.

The above description provides the graph structure for the automaton. The
elements in States are the states, and the Incoming edges mark the predecessor
relation between the edges. This is still not enough: the splitting due to until sub-
formulas takes care that the righthand side of such a subformula can be satisfied,
but does not guarantee that this is not delayed indefinitely. In order to guarantee
that for an until subformulas (plfp) the righthand side p will eventually happen,
a generalized Biichi condition is used. We do not need to worry about satisfying
(pUp) when (1) p holds from the current state, in this case (plpu) is already
satisfied, or (2) (plUp) is not required. Correspondingly, for each (plp) formula,
we construct a generalized Biichi condition consisting of the states where either
wis in Old or (pUp) is not in Old.

We now add a single initial state, and connect it to all the states with the
initial marker. We also label each edge from s to s’ with the propositions and
negated propositions that appear in the Old field of the target node s’. This
is a compact representation of the automaton with edges labeled with both
nonnegated and negated propositions, @1 C P and Q2 C P, respectively. In fact,
under this compact representation each edge represents all the edges marked with
Q@ such that @1 C Q C (P \ Q2). This captures all the cases where propositions
in P\ (@1 U Q2) are either nonnegated or negated.

6 Fairness

Already with the simple mutual exclusion example we saw that if waiting for
the T'urn variable to be set either to 0 or to 1 by the other process is modeled
by busy waiting, progress is not guaranteed. In fact, the other process may
be willing to make this change, but is blocked from commencing, since the busy
waiting process is exclusively and endlessly being selected to check for the waited
condition. This argument demonstrates a problem in the above definition of
the interleaving semantics: merely selecting at each state which transition to
execute may not always reflect well the behavior of the system. It is possible
that additional fairness constraints need to be imposed on the executions to



reflect the physical behavior in the real world. Although it is usually not desired
to include (the usually unavailable) timing information, fairness constraints rule
out some situations where some concurrent parts of the system wait indefinitely
for others.

There are many commonly used fairness constraints. Four such constraints
that are in common use and also demonstrate some available choices as follows:

Weak transition fairness It is impossible for a transition to be enabled forever
from some point on without being subsequently executed.

Weak process fairness It is impossible for at least one transition from some
process to be enabled forever from some point on forever without at least one
of them being subsequently executed. Note that this includes the situation
that these may be different transitions that are being enabled at different
times. This can happen if our model has shared variables on which the
execution of these transitions depend; the variables can be changed by other
processes.

Strong transition fairness If a transition is enabled infinitely often from some
point, then it must be consequently executed (infinitely often).

Strong process fairness If transitions of the same process (not necessarily each
time the same one) are infinitely often enabled, then at least one of them
will be executed eventually.

The situation in selecting the appropriate fairness constraint is similar to other
modeling issues, where an incorrect selection can miss some actual execution or
allow spurious ones.

One fairness constraint is stronger than another if each execution allowed by
the former constraint is also an execution allowed by the latter constraint. In this
case, under the stronger fairness, there are less (or the same) executions, which
means that more properties can hold. For example, strong transition fairness is
stronger than weak transition fairness (hence the words “strong” and “weak”).
This is because strong transition fairness rules out more executions than weak
transition fairness; it disallows not only situations when a transition is persis-
tently enabled from some point but is never executed, but also the case where a
transition is enabled infinitely often, and not continuously, yet is never executed.

Model checking under fairness depends on the fairness constraint assumed. In
general, it is easier to perform model checking for weak fairness than for strong
fairness [11]. For weak transition fairness, one has to find a reachable strongly
connected component with an accepting state such that for each transition, if
it is enabled in all the states in the component, then it is executed somewhere
inside the component. Similarly, for weak process fairness, for each process, if at
least one of its transitions is enabled in each state of the component, then it must
be executed inside the component. For strong transition and process fairness the
algorithm is more complicated and involves a repeated transformation of the
strongly connected components (in quadratic time [11]).

Alternatively, one can express a fairness assumption f as a property 9y, then
instead of model checking ¢, check ¥y — ¢. However, ¢; here is a very large



formula. Moreover, it needs to assert not only on states, but also on transitions,
which further reduce the efficiency of model checking.

7 Branching Specification

An alternative logic to LTL is a branching temporal logic called CTL (for Compu-
tational Tree Logic) [4]. This logic is defined over trees, representing the branch-
ing structure corresponding to the checked system and obtained by unfolding
the state graph from an initial state. The syntax of this logic is the following,
where ¢ are state properties and 1 are path properties:

pu=plopl(pVe)|(pAp)|En|An

n = Fp|Gpl|(pUp)

The semantics is defined over a tree structure 7. For state properties, this
is defined as follows, where s is some state in the tree, defining a subtree of 7°
with s being its root:

— Forpe P, sEpiff pe L(s).

— sk e iff s~ p.

sE(pVvy)iff s Epors k=1,

sE (@A) iff s =@ and s E .

— s |E Ev iff there exists a path o in the tree, starting with the state s such
that o = 1.

s |E Ay iff for all the paths o in the tree starting with the state s it holds

that o = 1.
For path formulas, let o be a path in the tree 7:

— 0 = Fo iff there exists some state s on o such that s = ¢.

— 0 = Gy iff for all the states s on o it holds that s = ¢.

— o E (eUr)) iff there exists a state s on o such that s = v, and for all the
states r that precede s on o, r = .

The state modalities E and A quantify, respectively, about the existence of
a path from the current state, or about all the paths from this state. The path
modalities G and F' correspond, respectively, to the LTL O and <. However, with
CTL, one must alternate between state modalities and path modalities. Thus,
one cannot express properties equivalent to the juxtaposition of two modalities,
such as the LTL property OC¢. An extension of CTL, called CTL* allows that.
Now we can express properties not only about all the executions but also about
some of the executions, or combine these two possibilities. Like in LTL, one can
define the release operator R as the dual of the until operator U, and one can
eliminate the operators G and F' by the use of until (or release).

An important property that we may want to express in this way is that
whatever choices are made in the execution, there is still a choice to go to a



state satisfying p. This is written as AGEFp. The predicate p may characterize
(hold in exactly) a “home” states, where one can restart the execution of the
system after some malfunction has happened. An example for such a home state
is in the design of spacecrafts. As a measure of regaining control from unwanted
situation, a spacecraft is often designed to always be able to turn the side with
light cells towards the sun and be receptive for updates transmitted from earth.

Model checking CTL has the nice property that it can be done in a com-
positional way directly on the state graph. This algorithm is performed in time
linear in the size of the checked CTL property (and also linear in the size of the
state space of the system). The states are already marked with the propositional
letters. Then the states are marked with a subformula or with its negation de-
pending on whether its subformulas are already marked. Accordingly, we mark
the states with (¢ A ) if we already mark them with ¢ and with . Similarly,
we mark a node with (¢ V ¢) if it is either marked with ¢ or is marked with .
We get negation for free: after taking care of the phase in the algorithm where
 is marked on all the states that satisfy it, the remaining states can be marked
with —p. The rest of the operators can be taken as pairs: EF, AF, EU, AU,
ER and AR.

Once we eliminate the G and the F' operators, we only need to show how
to deal with the until and release operators. Thus, we will show how to do the
model checking for formulas of the form E@Uvy and EpRy. In the following
algorithm, let S, be the set of states already marked as satisfying . Instead of
using a set of transitions, we use a relation R(s,s’) between the values of the
variables at the current state, and the value of the variables at the next state.
For expressing this relation, we need two copies of the variables, e.g., for each
variable z in the current state, there will be another variable x’ representing its
value in the next state. We can translate first each transition

T =€en: — (1}1,1}2,...,’0") = (617625"'5671)
into a relation

/ / / li
R (s,8):=en, Avi' =e1 Ava' =ea A Avy =ep

Then,
R(s,s") := \/ R.(s,s")
TeT

procedure CheckEU(S,,, Sy)
Q:=0; Q" = Sy;
while Q # Q' do

Q:=Q";

Q =QU{s|s € S, ANIs'(R(s,s") NQ(s))}
end while;

return(Q);



procedure CheckER (S, Sy)

Q:=8Q =8,;
while Q # Q' do
Q:=Q";
Q' :=QN{s|s €8y Vv (Is'(R(s,8) NQ(s)))}
end while;
return(Q)§

8 Symbolic Model Checking and BDD

The use of an explicit graph representation for model checking has the deficiency
that nodes in the search are individually stored and analyzed. Symbolic model
checking based on the BDD data structure [3] allows storing sets of states in
an efficient manner as a directed acyclic graph. This data structure allows per-
forming logical operations efficiently on sets of states, rather than state by state,
including the calculation of the predecessors to a set of states according to the
transition relation of the system.

An ordered Binary Decision Diagram (OBDD, but the “O” is often omitted)
is a directed acyclic graph with a single root, representing a Boolean expression.
Each nonleaf node has exactly two successors and is labeled with a Boolean
variable. There is a total order between the variables so that they appear along
each path from the root to the leafs in the same order; however, not all variables
must appear in every such path. The leafs represent the Boolean values 0 (false)
and 1 (true). Each nonleaf node has exactly two ordered edges: with the left
edge marked 0 and the right marked 1.

A BDD represents a Boolean function over the variables appearing in its
nonleaf nodes. To find out the Boolean value under some particular assignment,
one has to follow a path in the graph from the root to a leaf according to the
assignment: from every node x with value x that appears in the path, one must
go to the left if = is 0 and to the right if x is 1. If = does not appear in the path,
then the returned value under that path is independent on whether z is 0 or 1.

To take advantage of the BDD representation, one needs to minimize it to a
compact form. This is done by repeatedly using the following rules:

— If multiple edges point to isomorphic subgraphs, then one need to keep only
one copy of this subtree, redirecting these edges towards a single copy.

— If the left and the right outgoing edges of a node point to isomophic sub-
graphs, one can remove that node and direct its incoming edges directly
towards a single copy.

The left part of Figure 8 shows a BDD that is a full binary tree. The right part
of Figure 8 shows the result of applying the reduction to it.

One can now define Boolean operators on BDDs. After each such operation,
the BDD is reduced as explained above.

— f[0/z] and f[1/x], restricting the BDD to « having the value 0 or 1, re-
spectively. For the former operation, incoming edges to each node marked



x are redirected to the left outgoing edge of x and z is removed. For the
latter operation, the symmetric transformation is performed with the right
outgoing edge.

— Jzp is calculated as p[0/z] V p[1/z], i.e., two applications of the above op-
eration.

— Applying some Boolean operator f#g between two BDDs f and g. This uses
Shannon expansion:

f#g = (e A (fF[0/x]7#g[0/2)) v (2 A (f[1/2]#9[1/2]))).

Effectively this means that the calculation can be done recursively on the
two BDD graphs for f and g. At the level of the leafs, one applies directly
the Boolean function # to calculate the value. At a level of variable z, this
results in a left edge to the result of the recursive application on the left
subgraph, and a right edge to the result of the recursive application on the
right subgraph. It may happen that (due to reduction) a subgraph rooted
with a node z exists in one of the BDDs, either f or g, but not in the
other BDD. This means that this subgraph does not depend on the value
of z, and the next available node can be used instead. Since during this
construction the same subgraph can be constructed again and again, one
uses dynamic programming memoizing to prevent an explosion of the size of
the intermediate (before reduction) graph representation.

Sl

Fig.8. A BDD unreduced (left) and reduced (right)

Now the entire CTL model checking can be done with BDDs. The above
two procedures CheckEU and CheckER can be rewritten such that each set (in
particular, the set variables @ and Q') is represented as a BDD. The transition
relation R(s,s’) is also represented as a BDD between a copy of the variables
(say x, y and z) at the current state, and a tagged copy of the variables (say a’,
y' and 2’) at the next state. Then, all the operations are done between BDDs.
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