
ICT-FP7-STREP-214755 /
QUASIMODO
3rd June 2011
Page 1 of 242

Project no.: ICT-FP7-STREP-214755

Project full title: Quantitative System Properties in Model-Driven Design

Project Acronym: QUASIMODO

Deliverable no.: D5.12

Title of Deliverable: Industrial Handbook
Contractual Date of Delivery to the CEC: Month 39
Actual Date of Delivery to the CEC: June 1, 2011
Organisation name of lead contractor for this deliverable: ESI
Author(s):
Brian Nielsen, Kim G. Larsen
Jan Tretmans

Participants(s): All Partners)
Work package contributing to the deliverable: WP 1-5
Nature: R
Version: 1
Total number of pages: 242
Start date of project: 1 Jan. 2008 Duration: 40 months

Project co-funded by the EC within the Seventh Framework Programme (2007-2013)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for consortium members (including the Commission Services)

Abstract:

Thus deliverable contains the latest draft of the Quasimodo Industrial Handbook. It is continuously
updated on the internal Quasimodo Web-pages, and will be printed by Springer Verlag, Automn
2011.

Keyword list: Modeling, Analysis, Testing, Synthesis, Timing, Probabilities, Performance
analysis, Tools, Case Studies

ICT-FP7-STREP-214755 / QUASIMODO Page 2 of 2 Confidential

Contents

1. Introduction by Brian Nielsen, Jan Tretmans, and Kim Larsen 1

2. Modelling Real-Time Systems using Uppaal by Frits Vaandrager 18

3. More Features in UPPAAL by Alexandre David and Kim G. Larsen 49

4. Industrial Application of Uppaal: The gMAC Synschronization Protocol by
Mathijs Schuts, Feng Zhu, Faranak Heidarian and Frits Vaandrager 77

5. Design of a Sage Real-Time Embedded System in Uppaal: The Self-
Balancing Scooter Case by Bert Bos, Jiansheng Xing, Teun van Kuppeveld,
and Marcel Verhoef 95

6. An Introduction to Schedulability Analysis using Timed Automata by Al-
exandre David, Arne Skou, and Kim Larsen 107

7. Schedulability Analysis using UPPAAL: The Herschel/Planck Satellite
Software Case by Marius Mikucionis, Brian Nielsen, Kim Larsen 119

New: Time and Cost Optimal Schedulling and Planning by Nicolas Markey,
Patricia Boyer and Kim G. Larsen 133

8. An Introduction to Automatic Synthesis of Discrete and Timed Control-
lers by Jean-Francois Raskin, Franck Cassez, Pierre-Alain Reynier, Kim Larsen133

9. Timed Controller Synthesis: An Industrial Case Study (The Hydac Case) by
Jean-Francois Raskin, Franck Cassez, Pierre-Alain Reynier, Kim Larsen 150

10. Probabilistic Analysis of Embedded Systems by Arnd Hartmanns, Joost-
Pieter Katoen, Holger Hermanns 170

11. Energy Consumption in the Chess WSN: A MoDeST Case Study by Haidi
Yue, Joost-Pieter Katoen, Holger Hermanns 184

12. Model-Based Testing by Jan Tretmans, Brian Nielsen 201

13. Model-Based Protocol Conformance Testing: The Case of the Chess
Wireless Sensor Network Node by Marcel Verhoef, Jan Tretmans, Axel Belin-
fante 226

14. Experiences with Formal Engineering: Model-Based Specification, Im-
plementation, and Testing of a Software Bus at Neopost by Mariëlle Stoelinga,
Marten Sijtema, Axel Belinfante and Lawrence Marinelli 226

15. Perspectives by Kim Larsen 240

2

Introduction

Kim G. Larsen and Brian Nielsen and Jan Tretmans

Abstract The engineering of high quality embedded systems is challenging due to
the ever inreasing demands for intelligent functionality that must operate efficiently
and correctly under tight resource constraints.

The resulting complexity and pressure for time to market calls for new engineer-
ing methods and tools that supports early and integrated analysis of the systems
behavior, performance, and reliability.

This handbook presents a set of promising advanced model-based engineering
techniques and tools that goes beyond functionality and also address quantitative
system properties. The book introduces specific techniques and tools for model-
based analysis, synthesis and testing of timed and stochastic system properties.
Moreover, it shows how to apply the techniques to solve complex industrial cast
studies.

The handbook is targeted towards the professional embedded systems engineer,
who would like to be introduced to promising advanced techniques for quantitative,
model-based analysis of embedded systems, what techniques are available, which
are mature enough to be applied, how they can be applied, and what benefits can
be expected from using such a method, technique, or tool. The book introduces
modelling and analysis from first principles, and advances this to more specialised
applications.

Brian Nielsen
Aalborg University, Aalborg, Denmark, e-mail: bnielsen@cs.aau.dk

Jan Tretmans
Embedded Systems Institute, Eindhoven, The Netherlands, e-mail: jan.tretmans@esi.nl

1

Page 1

2 Kim G. Larsen and Brian Nielsen and Jan Tretmans

1 Motivation

During the design and construction of a modern complex embedded system the
engineer determines the best way to turn the requirements into a system design and
further materialize this into a concrete implementation. At the same time he must
asses whether his solution proposals are safe, efficient, and reliable. The engineer
is thus continuously evaluating the consequences of different proposed solutions,
and is faced with a number of concrete questions about the design, algorithm, and
implementation.
Some examples of such questions that can be addressed by applying the techniques
proposed in this book are:

• Does a set of composed components correctly implement the desired behavior?
Are there unforeseen races or deadlocks? Is the end-to-end timing of the system
adequate to safely operate under the time constraints of the physical environ-
ment of the system. E.g., is it possible that a Segway may throw its user out of
balance?

• What collision rate can be expected for a given a wireless sensor network
medium access protocol? And what minimum gap separation should exist be-
tween two slots to avoid collision ?

• Is a collection of interaction tasks schedulable such that all tasks meet their
deadline? What is the slowest execution time that can be afforded while still
meeting deadlines?

• What is the best way to control a hydraulic pump safely while minimizing its
energy consumption?

• How should a set of tasks be mapped to a set of computational resources to
achieve optimal speed or minimal energy consumption?

It is inherent in embedded systems that they in addition to functional require-
ments have to meet a multitude of quantitative constraints. Whereas traditionally
development attention and effort has been focused on functional correctness of em-
bedded systems, i.e., qualitative properties such as correct system responses to given
stimuli, we currently see an increasing importance of quantitative properties1. These
properties include:

• precise timing behavior and sufficient performance
• low energy consumption
• efficient use of computation memory, communication, and other resources
• assumptions about arrival rates of triggers
• availability, and other probabilistic aspects

Quantitative properties are crucial for the overall functioning of embedded sys-
tems, yet, they are difficult to design, build, analyze, and test. In addition, the quest
for ever better products with stricter quantitative constraints, to be developed in less

1 In other literature quantitative properties are sometimes referred to as “non-functional “ or “extra-
functional” properties.

Page 2

Introduction 3

time and with less costs, puts high demands on the design and development process
of future embedded systems.

Model-based, or model-driven2 development and engineering approaches use
models, or abstractions, for designing, reasoning, and analysing systems.

It is e.g., seen in the European Artemis Industry Association’s research agenda as
a key enabler for the development of high-quality complex embedded systems[ARTEMIS SRA WG(????a),
ARTEMIS SRA WG(????b)]. During the last decade significant amounts of re-
search have been invested into methods, modeling tools, and powerful automated
analysis and synthesis tools. The approaches are also gaining popularity in the em-
bedded systems industry and is applied for specific tasks.

However, most attention has been focused until now on modeling and analyz-
ing functional, qualitative properties. Existing model-based approaches and tools
are rather limited in their handling of quantitative constraints. Hence, model-based
approaches must be extended to handle quantitative properties, in order to develop
embedded systems that are not only functionally correct but that also satisfy their
quantitative requirements.
It is the ambition of this book to introduce the reader to recent model-based meth-
ods, techniques and tools for the design, analysis, and testing of quantitative prop-
erties of embedded systems.More specifically, the book deals with

• modeling of different functional and quantitative aspects of embedded systems
like time, energy, cost, probability;

• techniques for analysing models with quantitative information;
• synthesis and generation of controllers for systems with quantitative con-

straints;
• testing and test generation for system implementations with respect to quanti-

tative models.

The book is intended for engineers and technical professionals involved in de-
signed, analyzing, and testing embedded systems in which quantitative aspects play
a major role. It is not intended to give a full scientific treatment of the area. Where
appropriate references to further publications, such as journal and conference pa-
pers, are made.

This chapter introduces the area of model-based, quantitative analysis of embed-
ded system. Moreover, it introduces the topics presented in the different chapters of
this book, the relations between the topics, and their dependencies, thus providing a
reading guideline for the book.

The remainder of the chapter is organized as follows. Section 2 gives the back-
ground for the book by characterizing the challenges of building embedded systems
that satisfy the multitude of quantitative design constraints. It describes how model-

2 We distinguish between model-based and model-driven development. In model-driven develop-
ment all development activities are centered around and driven by models with increasing amounts
of detail until code/hardware can be easily obtained. This represents a long term vision of a new
development approach, but is also a big step from current development practices. In model-based
development models are used to support development activities by automating specific tasks like
correctness checking, performance analysis, test generation etc.

Page 3

4 Kim G. Larsen and Brian Nielsen and Jan Tretmans

based development and the use of quantitative models may address these challenges.
This book has been written an outcome of a European research project, Quasimodo.
This is briefly described in Section 3. Section 4 describes the structure of the book
and contains reading guidelines.

2 Model-based, Quantitative Analysis of Embedded Systems

2.1 Embedded Systems
ToDo: ESI
research
agenda? :

ToDo: Artist
roadmap LNCS
3436? :

Embedded systems are systems in which a computer including software is embed-
ded in some technical or physical context or system. They are not always perceived
as computers: embedded computers may perform many tasks, but they are not al-
ways observed as such. The embedded computer controls the system, it observes
and checks its functioning, it makes calculations, de- and encodes data, it processes
data, e.g., obtained from the environment via sensors, and it influences the environ-
ment by controlling actuators.

There is a great variation of embedded systems; many we use on a daily basis
without really noticing it (when they work). Others are more exotic. They rage from
consumer products, like electric shavers, and washing machines, to professional
equipment like wafer scanners. Some are manufactured in hundred thousand copies
like mobile phones and television sets, whereas others are built only once, e.g., a
satellite or a storm surge barrier control system. For some embedded systems such
as DVD players, watches, or hearing aids, their malfunctioning is annoying and may
cost their manufacturers market share. But if a pacemaker or the braking system of
a car does not function as required, lives may be at stake, whereas an error in the
automatic pilot system of an aircraft or in the control of a nuclear power plant may
cause a catastrophy.

Thus, there are many different application domains, but the methods described in
this book are general and not targeted towards specific domains. Depending on the
risk of a particular product the methods may be more or less extensively applied.

Software in embedded systems shares many characteristics. A first important
characteristic of embedded systems is that hardware and software have to interact
with their technical and physical context in order to perform some task or provide
some service: multi-disciplinarity plays an important role. The development of an
embedded system requires the interaction of various technical disciplines such as
hardware and software engineering, electrical and electronic engineering, mechan-
ics and mechatronics, communication technology, (nuclear) physics, depending on
the application domain. Multi-disciplinarity makes designing embedded systems a
challenging task.

A second characteristic of embedded systems is that they are very often time
critical. Whereas a 2-second delay in the calculation of an insurance premium cal-
culation may annoy, a 2 second delay in delay in the trigger to close a valve in a

Page 4

Introduction 5

nuclear power plant can cause a catastrophy. Embedded systems are real-time sys-
tems.

In addition, in order to deal with different concurrent and interrelated tasks and
with different input streams, embedded systems are often realized as a large num-
ber of concurrent interacting software components individually tracking parts of
the environment state, and possibly running in parallel on multiple execution units.
concurrent. This gives rise to intricate communication and failure scenarios.

Embedded systems often have special purpose components and hardware, such
as special purpose sensors or actuators, adapted to specific contexts. Embedded sys-
tems also must be developed with limited resources and budget to meet selling cost
targets.

Therefore, embedded systems tend to quickly grow in their complexity, both in
the number of components of a system, and in the complexity of the individual com-
ponents. It is consequently very difficult to comprehend all the interactions between
the components, and in particular avoiding undesired interactions, such as heat pro-
duction or electromagnetic interference. ToDo: can we

really solve
this? :

2.2 Quantitative Properties

On the one hand, embedded systems must perform the function they are supposed to
do (functional requirements), e.g., open a valve under high temperature conditions,
or report the location of a flower-cart.

On the other hand, embedded systems must also satisfy a multitude of quantita-
tive constraints as illustrated by Figure 1, that determines how well it performs its
functions. By a quantitative constraints we mean a constraint that can be measured
and expressed as a number. Existing development techniques tend to emphasize
only functionality and is weak in correct construction of the quantitative aspects
[Henzinger and Sifakis(2006)]. ToDo: maybe use

[Henzinger and Sifakis(2007)]
instead? :

Environment assumptions
• Timing constraints
• Hybrid behavior
•Arrival rates Communication

Bandwidth

Memory

Power

Compute
resources

Service requirements
•QoS
•Availability

Memory

Cost•Availability
•Fault tolerance

Fig. 1: Quantitative Resources and Constraints in Embedded Systems

Page 5

6 Kim G. Larsen and Brian Nielsen and Jan Tretmans

A quantitative constraint occurs because the environment including users of the
systems has a number of demands on the resources of the system, whereas the sys-
tem has a limited set of available resources to perform its task.

One important quantitative aspect is the response time or latency of the system.
Since an embedded system interacts with a physical environment it needs to keep up
with this. In a hard real-time system no violations of deadlines can be tolerated, in a
firm real-time system deadline misses are very undesirable, but an occasional miss
is not catastrophic. In a soft real-time system most response times should be before
the deadline; sometimes the desired response times are further characterized by a
probability distribution of its response times with specified means and percentiles.ToDo:

continuous
signals :

Another example is throughput (number of tasks completed per time unit, num-
ber of packets sent or received per time unit). Sometimes the term “goodput” is
used to distinguish successfully completed tasks versus initiated tasks (to differen-
tiate e.g., bandwidth of correctly received messages versus bandwidth used by the
sender and wasted due to collisions and message corruption). Again requirements
can be formulated in worst-case or probabilistic terms.

Further, reliability parameters (like (mean) time between failures and (mean)
time to repair), and availability (the fraction of time the system is correctly oper-
ational) are also quantifiable, but probabilistic in nature.

During execution the system consumes various resources. This includes platform
resources such as CPU-time, memory, bandwidth, and energy. But it may also be
scarce resources of the system’s environment such as special lifting cranes, mixing
stations, or mechanical wear that vary depending on the reactions of the system.
The use of these/such resources can be quantified, and treated generally as different
kinds of costs.

It is interesting to note that there often are tensions between the different quanti-
ties, and consequently engineering trade-offs to be made. For instance, it is possible
to improve response time by using a faster processor (or using dynamic voltage scal-
ing) but at the cost of a superlinear increase in energy consumption. The latency of
a wireless sensor network may be improved but at a cost of increasing collision rate
and energy consumption.

It is an non-trivial engineering task to predict these quantities, and to optimize
and balance them.

To focus on quantitative aspects like performance, timeliness, and efficient
resource-usage, which are central to embedded systems, the models must provide
quantitative information such as information about timing, cost, data, stochastics
and hybrid phenomena.

2.3 Models and model-based development

In our basic approach for designing, analyzing, and testing embedded systems is
the use of models. A model is an abstract view of reality, in which essential proper-

Page 6

Introduction 7

ties are recorded, and other properties and details considered not important for the
problem at hand, are removed.

An every-day example of a model is a road map: a road map only contains lines
representing roads, and circles representing cities. The map abstracts from many
other details of reality, such as buildings, forests, railways, mountains, the width
and the kind of pavement of roads, et cetera. Such a map, i.e., a model, may very
well help with planning your trip by car from Brussels to Paris, because all rele-
vant details for such a trip are there. For planning a railway trip, however, or for
calculating the altitude difference between Brussels and Paris, such a road map is
useless. Another map, i.e., another model with other abstractions, is needed such as
a railway map, or a geographic map, respectively.

As another example consider civil engineers building large complex structures
like bridges. Here it is customary (mandatory) to use and analyze various model
before construction. For instance, a static load model is used to predict whether the
bridge can sustain itself and a certain number of cars. A dynamic model is used to
investigate the dynamic effects of wind and moving cars and trucks.

(a) Enginering model of a bridge. (b) A bridge implementation

Fig. 2: Civil engineering analogy.

In software engineering models nowadays emphasize the structure of the system
(i.e., the relationships between its components), but very little analysis, calculation,
and prediction about the behavior and performance of the system is being made.
Satirically 3 speaking, if software engineers made bridges they would start immedi-
ately by pouring concrete, and the next morning run a heavy truck onto the bridge to
test its load carrying capabilities. Most likely it crashes, so they rebuild the bridge
slightly stronger in the troublesome area. In contrast, using models for prediction is
part of any mature engineering discipline.

Models can be analyzed, they can be the basis for calculations, they can help
in understanding a problem, they can form the basis for constructing a system, for

3 Longman’s dictionary of contemporary English: a way of criticizing something such as a group
of people or a system, in which you deliberately make them seem funny so that people will see
their faults.

Page 7

8 Kim G. Larsen and Brian Nielsen and Jan Tretmans

testing it, or for diagnosing it, and when they are expressed in an executable lan-
guage, they can be simulated (simulation models). Models can be made a priori to
guide and analyze the design, or a posteriori to analyze, test, or diagnose an exist-
ing system. Different models can be made of the same system, each focusing on a
different kind of properties, e.g., a functional model, a performance model, or an
energy-consumption model.ToDo: Relate to

OMG’s MDA, and
AADL? :

�
�
�
�
�
�
�
�
�
�
�
�
�
�� A

A
A
A
A
A
A
A
A
A
A
A
A
AA

?

Analysis

Design

Implementation

Test & Measurement

Cost

High

Low

(a) Traditional

Analysis

Design

Implement.

Test

A
A
A
A
A
A
A
A
A
A
A
A
A
AA �

�
�
�
�
�
�
�
�
�
�
�
�
��

(b) Model-based.

Fig. 3: Effort and Cost in Model Based Development

In current development practice, comparatively more effort is spent in the later
development activities, and on testing in particular. Especially the quantitative prop-
erties are established by measurements and tests after the system has been built.
This is unfortunately, because corrections or pursuing alternatives require costly re-
design, re-implementation, and re-testing iterations. Moreover, it is well known that
defects are much more expensive to correct the later they are found (most costly
during deployment). This is schematically shown in Figure 3a.

It is the thesis that by putting more effort into early analysis and design explo-
ration less emphasis is required late because of less testing and tuning as depicted
in Figure 3b. The result is overall less cost.

In most projects, requirements change (or are discovered) during system develop-
ment. Model based development accommodates this well; obviously models must
be updated, but making these changes and (automatically) analyzing their conse-
quences is easier and cheaper at the level of models than on complete designs and
implementations.

It is beyond the scope of this book to discuss life cycle models like the V-model,
multiple-V, iterative, agile, etc. but we remark that model based development goes
well in hand with iterative and agile development methods. Models may be grown
and refined iteratively like other design and implementation artifacts.

Page 8

Introduction 9

A main benefit of model-based development is that given a concise model, ad-
vanced tools can analyze it and help automate a number of difficult engineering
tasks, see Figure 4.

Problem Domain

Requirements

Model(s)

Parameter ValuesProperties Test Cases Control Strategies
Schedules/Plans

Implementation
measurements
test results

Fig. 4: Establishment of quantitative properties using MDD.

Models are made by the engineer to examine the properties (derived from
problem- and application domain requirements) of a design or solution proposal
for the system he is building, and to gain confidence in its correctness and fidelity.

Given such a proposed model appropriately represented in a notation with precise
syntax and semantics, advanced design tools can interpret this, and automatically
check it against the (formalized) high-level properties and requirements the system
must satisfy. The engineer will consequently therefore have high confidence in how
to build the system correctly.

The properties that are shown to hold on the level of models will then also hold
on the implementation if it is carefully constructed from the models. Further, the
models can be used to determine values for important system parameters (Like time-
out values, slot durations, thresholds etc.) such that important safety and resource
constraints are met.

In many cases, these tools can help synthesize parts of the implementation such
as execution plans describing the order in which tasks must be performed to make

Page 9

10 Kim G. Larsen and Brian Nielsen and Jan Tretmans

best use of system resources, or control strategies that can be directly implemented
in the embedded controller. In some cases direct executable code can be obtained4.

Moreover, model-based testing can be used to relate the behavior of models to
that of real implementations. By generating test cases from the models and by exe-
cuting these against the implementation, confidence can be gained in the operation
of the actual implementation, and that the behavior of the implementation conforms
to that prescribed by the models.

Finally, information obtained from the actual implementation can be fed back
into the models and the resulting modified models can be used to re-check important
system properties.

In all cases the validity of the statements made on the basis of the models requires
that they correctly reflect the implementation, and contain the right assumptions.

2.4 Modeling and Analyzing Quantitative Properties

Although the modeling effort itself often spawns many interesting questions to a
design or solution strategy, the strongest gain comes when tools can interpret them
and compute useful and trustworthy analysis or synthesis results. It is therefore of
great importance that the models precisely and unambiguously capture functional
and quantitative behavior, and are accurately analyzable by computers. More or
less ad-hoc annotations to existing modeling frameworks, or simulations with fuzzy
semantics, does not satisfy these goals.

To this end the book is using automata extended with capabilities for expressing
timed, hybrid, priced, and probabilistic behavior as preferred notations. As a small
appetizer illustrating the kind of quantitative models used in this book, consider the
data transmission system depicted in Figure 5. It consists of a sender component
sending an amount of data to a receiver via a simple communication medium. The
goal is to transmit N chunks of data.

The behavior of the sender and receiver components is given by the automa-
ton in Figure 6. A transmission is successful when N chunks have been received
(counted by integer variables i and j). The medium accepts request for transmitting
data chunk from the sender and indicates to the receiver when the data chunk is
ready for delivery.

One basic model of the medium that reliably forwards the data chunk is given in
Figure 7a. However, this model abstracts away important aspects like transmission
time, error rate, and price. Figure 7b adds timing behavior by using a special “clock”
variable x and states that it takes between 5 to 10 time units to forward the message.

4 We note that in general code generation for complete complex embedded systems that meet
qualitative as well as quantitative constraints is difficult. Models for code generation typically need
to be very low-level and detailed as they must prescribe not only what the system is required to
do, but how it is going to achieve this. E.g., recognizing a car and checking the property that it can
go 200 km/h, is simpler than constructing one that will safely go 200 km/h. Yet, code generators
exists for a number of special cases.

Page 10

Introduction 11

Sender Receiver

Data_Req Data_Ind

Medium

Fig. 5: Structure of a simple transmission system

i++
DoneSending

i==N
Data_Req! Data_Req!

i<N

(a) Sender

j++

SuccessReceiving

j==NData_Ind? Data_Ind?

j<N

(b) Receiver

Fig. 6: Sender and Receiver Components

Figure 7a adds message loss probability by stating that with probability 0.1 the
medium silently moves back to the starting state. A final aspect of the medium
may be price of transmitting a message shown in Figure 7d. Price may represent
many different costs, e.g., as monetary cost or, as intended in the example, as energy
consumption tracked by the special cost variable.

Given precise models of these quantitative aspects, the following examples of
system properties can be answered automatically by analysis tools:

• What is the best- or worst-case total (successful) transmission time?
• What is the minumum probability of a successful transmission?
• What is the best- or worst-case energy consumption of a successful transmission?
• What is the average successful transmission time?

It is important to realize that not all interesting problems (esp. quantitative anal-
ysis) can be solved efficiently (or at all) by an algorithm realizable on a computer
(small or big). The necessary restrictions shows up in the syntax of the models and
in the tasks and problem sizes that are manageable by current tools. Therefore, cre-
ating analyzable models that reflects the aspects of interest requires insight and also
experience. This book therefore also provides advice for how to make analyzable
models.

Page 11

12 Kim G. Larsen and Brian Nielsen and Jan Tretmans

Data_Ind!

Data_Req?

(a) Basic

busyfree

x<=10

Data_Ind!
x>=5

x:=0
Data_Req?

(b) Timing

busyfree

W(9)

Data_Req?

Data_Ind!

W(1)

(c) Probabilities

x=0

busyfree

x<=10&&
cost_rate==1

Data_Ind!
x>=5

cost+=1

Data_Req?

cost+=4

(d) Prices

Fig. 7: Different Quantitative Aspects of a Simple Transmission Medium

3 The Quasimodo Project

This book is one of the results of the Quasimodo project. Quasimodo– Quantitative
System Properties in Model-Driven-Design of Embedded Systems – was a European
research project running from January 2008 until April 2011, and supported by the
European Union [?].

The principle aim of the project is to provide a coherent and scalable methodol-
ogy with a supporting collections of tool components that can be used to design re-
liable embedded systems that meet their requirements in a controlled and resource-
efficient way using a model-driven approach.

The main scientific challenges tackled in the project were:

1. How to improve the modeling of diverse quantitative information (real-time, hy-
brid, stochastic, and resource consumption) of embedded systems in convenient
models with theoretically well-founded semantics.

2. How to provide a wide range of efficient algorithmic techniques and symbolic
data structures for analyzing models with quantitative information and for estab-
lishing abstraction relations between them.
This is particularly challenging because many quantitative analysis problems
(esp. involving multiple quantities) are on border of what is computationally fea-
sible, either because they require algorithms of high complexity, or can right out
be proven to be uncomputable by any algorithm.

Page 12

Introduction 13

3. How to materialize the techniques in usable tools for analysis, test and con-
troller/code generation.

4. How to generate predictable code from quantitative models. The theoretical
framework of the quantitative models assumes infinitely fast hardware, infinitely
precise clocks, unbounded memory etc. In contrast real CPUs are subject to hard
limitations in terms of frequency and memory-size. Thus, how to guarantee that
properties established by a given model are also valid of its implementation is a
major challenge.

5. How to improve the overall quality of testing by using suitable quantitative mod-
els as the basis for generating sound and correct test cases.
Current industrial testing practice is often manual without effective automation
and is consequently rather error prone and costly: it is estimated that 30-70% of
the total development cost is related to testing.
Model-based testing is a novel approach to testing with high potential of improv-
ing cost and efficiency, but the techniques must be extended to quantitative mod-
els allowing generation, selection, execution and provision of coverage-measures
to be made.

In order to demonstrate their usefulness of the techniques, a further challenge is
to apply them to complex industrial case studies.

Quasimodo has developed new theories, techniques and tool components for ac-
curate and trustworthy analysis of quantitative constraints in model-driven devel-
opment of embedded systems, covering in particular real-time, hybrid, priced and
stochastic aspects. As a further result, the boundary of the quantitative problems
(both in terms of size and diversity) that can feasibly be algorithmically handled
has been significantly pushed. Moreover, a number of industrial case studies was
tackled where the developed techniques and tools were applied.

Quasimodo has thus advanced the state-of-the-art of models, tools and methods
for quantitative design, and a selection of the techniques are presented in this book.

The industrial partners of Quasimodo were

Hydac Electonic Gmbh (Germany): HYDAC operates worldwide, offering an ex-
tensive product range to cover all areas of fluid technology. The core competence
is the design and production of sensors and controllers that are specialized for the
extreme rough ambient conditions in hydraulic applications. These applications
require substantial know-how in design of safety critical software for industrial
and automotive purposes.

Chess B.V. (The Netherlands): Chess develops business critical embedded sys-
tems using novel ICT for high-tech customers in the various domains (banking,
insurance, transport, trade and industry). Chess believes strongly in advanced
research and development, and supports development by an “Innovation Team”.

Terma A/S (Denmark): Terma is a leading Danish company for developing mis-
sion critical solutions to the aerospace, defense, and security industry; by nature
these depend highly on correctness and robustness.

There were 8 academic partners. Aalborg University (Denmark, coordinator) has
particular expertise in techniques and tools for analyzing, testing and synthesizing

Page 13

14 Kim G. Larsen and Brian Nielsen and Jan Tretmans

real-time systems, and is a main developer of the timed automata based UPPAAL
tool suite.

The Embedded Systems Institute (The Netherlands) is a private/public research
with significant experiences in research based on industrial case studies, and in in-
dustrial collaboration and dissemination. Radboud University (The Netherlands) is
an expert in modeling and analyzing complex real-time systems, protocols and com-
ponents. University of Twente (The Netherlands) is strong in applications of formal
methods, especially testing, and the developer of the Torx model-based testing tool.

ENS-Cachan/CNRS (France) is focuses its research on the verification of criti-
cal software and systems, as has have very good reputation in the theory of timed
automata and priced extensions.

RWTH Aachen University (Germany) has expertise in integrating formal spec-
ification and analysis techniques with performance and dependability. Universität
des Saarlandes (Germany) has particular strengths in approximate, simulation-based
analysis techniques for stochastic timed systems, in combination with rigorous, real-
time model checking. Combineded these two groups are leading in analysis of prob-
abilistic and stochastic systems, and is behind several tools for their analysis, includ-
ing the MRMC and MODEST/MOTOR tool environments.

Université Libre de Bruxelles (Belgium) makes strong contributions to analy-
sis of complex hybrid systems, controller synthesis, and implementability of timed
automata on physical hardware.

Combined the partners have leading competences in developing embedded soft-
ware, a solid theoretical foundation, and a broad spectrum of techniques and tools
for quantitative analysis of embedded systems.

4 Overview of the Book

4.1 Contents

This book is divided into ?? chapters that covers 5 topics corresponding to different
goals of model-based development:

Modeling and model-checking (of timed systems): Chapter ?? introduces model-
ing and model-checking from first principles using the notion of timed au-
tomata and the UPPAAL tool. Chapter ?? introduces more advanced UPPAAL
features and shows how modeling the same problem can result in different mod-
els that more or less directly reflect the problem, and in models of very different
(state-space) sizes, and thus leading to more or less costly analysis. Chapter ??
presents an advanced industrial case study of analyzing clock synchronization
in a medium access protocol for wireless sensor networks. It both identifies a
flaw in the clock synchronization algorithm and proposes an alternative. Chap-
ter ?? reports on the experiences that have been obtained by (mainly) industrial
engineers from modeling and analyzing a self balancing scooter.

Page 14

Introduction 15

Schedulability analysis: This part proposes a model-based approach to schedu-
lability analysis, i.e., determining whether a set of (periodic) always meet their
deadlines even using their worst case execution time. Chapter ?? presents the
modeling framework, and Chapter ?? reports on the experiences of applying it to
time critical satellite software.

Controller synthesis: This part aims at explaining how model-based techniques
can be used to generate parts of the implementation, namely the heart of the
controller: the control strategy. Chapter ?? introduces the principles of controller
synthesis, and Chapter ?? shows a case study where a safe and energy optimal
controller for a hydraulic plastic molding machine has been algorithmically syn-
thesized.

Probabilistic modelling and performance analysis: Chapter ?? introduces the prin-
ciples of modeling (potentially timed) probabilistic and stochastic aspects of
embedded systems using the Modest language. Further it, shows how model-
checking and simulation tools can be used for performance analysis. The presen-
tation is accompanied by a small communication system example. Chapter ??
presents a case study of probabilistic analysis of the energy consumption in wire-
less sensor networks. It studies the trade-offs between latency and energy con-
sumption under different sending strategies.

Model-based testing: Chapter ?? presents the concept of model-based testing,
gently introduces the underlying theory and algorithms, and demonstrates its ap-
plication to a small example. Chapter ?? contains a case study of performing
real-time testing of the (MAC LAYER) a wireless sensor node.

System Engineering: Chapter ?? shows how (formal) model-based development,
especially emphasizing model-checking and model-based testing, can be used
during system development. The chapter is based on a case study where the goal
was to develop a server component of a software bus for shipping and mailing
applications.

Perspectives and outlook:

4.2 Reading guideline

Chapters are independently readable, but have strong connection. For each topic
there is a chapter that introduces the principles of the topic, and an application chap-
ter.

Readers inexperienced with modeling and model-checking is highly recom-
mended to start with reading Chapter ?? followed by Chapter ??.

If the goal is mainly performance modeling and analysis we recommend Chap-
ters ?? and ??.

If the aim is to gain insight into how model-based techniques can be used to aid
advanced engineering tasks, without necessarily fully understanding the underly-
ing techniques, the reader is recommended to go directly to reading the case study
chapters: ??, ??, ??, ??, and ??.

Page 15

16 Kim G. Larsen and Brian Nielsen and Jan Tretmans

4.3 Additional Resources

Accompanying this book is a website containing a selection of the models used in
this book. Also it provides links to tools, slides, etc.:

http://www.quasimodo.aau.dk/QuasimodoBook

4.4 Acknowledgments

The editors would like to thank the contributing chapter authors for their great effort.
Also we would like to thank the Quasimodo researchers for an inspiring project, and
for the many good technical presentations and discussions.

We would like to thank XXX for reading and commenting on the chapters.

Page 16

Introduction 17

References

[ARTEMIS SRA WG(????a)] ARTEMIS SRA WG (????a) The artemis strategic research
agenda. URL http://www.artemis-ia.eu/downloads/SRA_MARS_2006.pdf,
checked April 29, 2011

[ARTEMIS SRA WG(????b)] ARTEMIS SRA WG (????b) The artemis strategic research
agenda - design methods & tools. URL http://www.artemis-ia.eu/downloads/
RAPPORT_DMT.pdf, checked April 29, 2011

[Bouyssounouse and Sifakis(2005)] Bouyssounouse B, Sifakis J (2005) Embedded Systems De-
sign: The ARTIST Roadmap for Research and Development, Lecture Notes in Computer Sci-
ence, vol 3436. Springer

[Henzinger and Sifakis(2006)] Henzinger TA, Sifakis J (2006) The embedded systems design
challenge. In: Misra J, Nipkow T, Sekerinski E (eds) FM, Springer, Lecture Notes in Computer
Science, vol 4085, pp 1–15

[Henzinger and Sifakis(2007)] Henzinger TA, Sifakis J (2007) The discipline of embedded sys-
tems design. IEEE Computer 40(10):32–40

Page 17

Chapter 1
A First Introduction to Uppaal

Frits Vaandrager

Abstract This chapter provides a first introduction to the use of the model checking
tool Uppaal. Uppaal is an integrated tool environment that allows users to model the
behavior of systems in terms of states and transitions between states, and to simulate
and analyze the resulting models. Uppaal can also handle real-time issues, that is,
the timing of transitions. Using an example of a jobshop, we explain in a step by
step manner how one can make a simple Uppaal model, simulate its behavior and
analyze properties.

1.1 Introduction

1.1.1 Model Checking

Model checking [5, 3, 1] is a powerful technique for automated debugging of com-
plex reactive systems such as hardware components, embedded controllers and net-
work protocols. In model checking, specifications about a system are expressed as
(temporal) logic formulas, and efficient symbolic algorithms are used to traverse the
model defined by the system and check if the specification holds or not. In 2007,
E.M. Clarke, E.A. Emerson and J. Sifakis were awarded the ACM Turing Award for
their roles in developing model checking into a highly effective verification technol-
ogy, widely adopted in industry.

Model checkers allow one to analyze models that capture the dynamic behavior
of systems. These can be all sorts of systems: a network of computers or a printer, a
Sudoku puzzle or an ant colony, an autonomous robot or train control software, etc.
Actually, in principle any system can be analyzed using a model checker, as long

Frits Vaandrager
Institute for Computing and Information Sciences, Radboud University Nijmegen, Heijen-
daalseweg 135, 6525 AJ Nijmegen, The Netherlands, e-mail: F.Vaandrager@cs.ru.nl.

Page 18

2 Frits Vaandrager

as it has states and transitions between states. In order to illustrate the concept of
model checkers, we consider the following puzzle:

Six girls each know a secret. By means of a series of bilateral conversations
(regular phone conversations, say) they want to exchange all secrets. When-
ever two girls have a conversation they share all the secrets they know at the
time. How many conversations are needed before every girl knows every se-
cret?

Figure 1.1 shows a state-transition diagram or automaton for the simplified ver-
sion of the problem in which there are 3 girls. A state consists of a 3 by 3 matrix
knows that records for each girl the gossips she knows. If girl i knows the gossip
of girl j then we write a 1 in the entry for row i and column j: knows[i][j] == 1.
Otherwise we write a 0: knows[i][j] == 0. In the initial state, at the top of the dia-
gram, each girl only knows her own gossip, and hence there are 1’s on the diagonal
and 0’s elsewhere. Transitions between states occur whenever girls have a conver-
sation. In the initial state three transitions are possible: girls 1 and 2 call each other,

1

1

0

0

00

0

01

1

1

0

0

00

1

11

1

1

1

0

01

0

01

1

1

0

1

10

0

01

1

1

1

1

11

0

11

1

1

1

1

10

1

11

1

1

1

1

11

1

01

1

1

1

1

01

1

11

1

1

0

1

11

1

11

1

1

1

0

11

1

11

1

1

1

1

11

1

11

Fig. 1.1 State space for 3 gossiping girls.

girls 1 and 3 call each other, and girls 2 and 3 call each other. In the new states, the
rows for the corresponding girls are adjusted and all gossips are exchanged. Not all
conversations lead to a new state: sometimes a conversation does not produce any

Page 19

1 A First Introduction to Uppaal 3

new information for any of the participants, and there is just a loop from the state to
itself. Altogether 11 states can be reached starting from the initial state, and at least
3 conversations are needed before every girl knows every gossip.

Properties of state-transition diagrams can be described in the language of tem-
poral logic. For instance, if ϕ is a property of states, then the temporal logic for-
mula E� ϕ describes the property “there exists a path that leads to a state in which
ϕ holds”. Model checkers can compute whether a temporal logic formula holds
for (the initial state of) a given state-transition diagram. We can solve the gossip-
ing girls puzzle by asking a model checker to produce the shortest diagnostic trace
that shows that the formula E� “each girl knows each gossip” holds for the state-
transition model for 6 girls. In the syntax of the model checker Uppaal:

E<> forall (a : girls) forall (b : girls)
knows[a][b] == 1

Figure 1.2 shows the solution for the gossiping girls puzzle that was found by Up-
paal: at least 8 conversations are needed before every girl knows every secret. In fact,
the message sequence diagram displayed in Figure 1.2 has been directly generated
by the Uppaal tool.

Although utterly simple, the gossiping girls example already illustrates several
key features of model checkers:

1. No proofs. Mathematicians have established that, in general, n girls need at least
2n−4 conversations to exchange all gossips [8]. The result of [8] required inge-
nuity and hard work, whereas Uppaal produces its solution for the special case
n = 6 fully automatically.

2. Fast. Using his of her favourite model checker, an experienced user can construct
a model for the gossip puzzle within half an hour. Uppaal needs a few minutes to
finding the optimal solution for n = 6, and just a few seconds to find an optimal
solution for the cases n < 6.

3. Diagnostic counterexamples. Model checkers are very good at finding unex-
pected scenarios. When trying to solve the gossip puzzle, most people quickly
come up with a solution that requires 9 conversations. The optimal solution found
by Uppaal, which only requires 8 conversations, is tricky and much harder to find
for humans. In industrial applications, model checkers often produce unexpected
event orders that lead to an error state, fast solutions for scheduling problems, etc.
The diagnostic counterexamples produced by model checkers frequently provide
key insights in a design.

4. State space explosion. Since states of the model for n girls are n× n Boolean
matrices, the number of states of the model will be in the order of 2n2

and hence
grows exponentially in n. Using some special verification features (symmetry re-
duction and the sweepline method), Uppaal can handle up to 7 girls (see Chapter
2 Add ref). Despite these limitations, in practice we often see that analysis of
small instances of a parametrized model already produces important insights. It
is trivial to generalize the solution with 8 conversations for n = 6 of Figure 1.2
to a general solution with 2n− 4 conversations for n > 6. Similarly, if a design

Page 20

4 Frits Vaandrager

contains a flaw then usually this flaw can already be revealed by model checking
a small instance of the design.

1.1.2 Uppaal

This chapter provides a first introduction to the use of the model checking tool
Uppaal. Uppaal is an integrated tool environment that allows users to model the
behavior of systems in terms of states and transitions between states, and to simulate
and analyze the resulting models. Uppaal can also handle real-time issues, that is,
the timing of transitions. Using an example of a jobshop, we will explain in a step
by step manner how one can make a simple Uppaal model, simulate its behavior and
analyze properties.

Uppaal is available for free for non-commercial applications in academia and for
private persons via www.uppaal.org. For commercial applications a commercial
license is required, see www.uppaal.com. The software runs under Windows,

Fig. 1.2 Solution for gossiping girls puzzle found by model checker Uppaal.

Page 21

1 A First Introduction to Uppaal 5

Linux and Mac OS X. Installation is usually trivial. The only requirement is that Java
version 6 (e.g. J2SE Java Runtime Environment) or newer has been installed and
properly configured on the system. Uppaal is developed in collaboration between
the Department of Information Technology at Uppsala University in Sweden and
the Department of Computer Science at Aalborg University in Denmark, with input
from several other universities around the world (including the author’s group from
the Radboud University Nijmegen).

Uppaal is a toolkit with a wealth of possibilities to model and analyze systems. In
this chapter, we will restrict attention to the absolute basics. The next chapter of this
handbook will give an overview of some of the more advanced features of Uppaal.
More details and documentation can also be found on the Uppaal website and in
the tutorial paper [2] (the last article requires some background in formal methods).
The help menu within Uppaal also provides an excellent explanation of the various
features and possibilities of the tool. Actually, some text in this chapter has been
directly taken from the help menu.

There are numerous other model checkers that one can freely download from the
internet: Spin, Blast, MCRL2, Java Pathfinder, etc. We refer to [11] for an overview.
Advantages of Uppaal are the graphical user interface and the short learning curve.
After you have spent half a day on reading this tutorial and following the detailled
instructions for building and analyzing some simple models, you can already start
using the tool yourself.

1.2 A jobshop

We will now explain step by step how a simple production line can be modeled in
Uppaal. This example is due to Robin Milner; we have taken the following descrip-
tion and illustration of Figure 1.3 from [10]:

We suppose that two people are sharing the use of two tools — a hammer and
a mallet — to manufacture objects from simple components. Each object is
made by driving a peg into a block. We call a pair consisting of a peg and
a block a job; the jobs arrive sequentially on a conveyor belt, and completed
objects depart on a conveyor belt. The jobshop could involve any number
of people, whom we shall call jobbers, sharing more or fewer tools. In this
chapter, we assume a system with two jobbers and a hammer and a mallet. To
make the example more specific, we shall assume that the nature of the job
influences the jobber’s actions in a particular way. We suppose that he may
use two predicates easy and hard over jobs, to determine whether a job is easy
or hard or neither. He will do easy jobs with his hands, hard jobs with the
hammer, and other jobs with either hammer or mallet.

Page 22

6 Frits Vaandrager

Fig. 1.3 A jobshop (picture taken from [10]).

1.3 The system editor

After starting Uppaal, we see the window displayed in Figure 1.4. The Uppaal
graphical user interface consists of three main parts, accessible via three tabs in the
main window: the system editor, which can be used to construct models, the simu-
lator, in which the behavior of models can be simulated, and the verifier, in which
the behavior of models can be analyzed. In this subsection we discuss the system
editor, subsection 1.4 will present the simulator, and subsection 1.6 will present the
verifier. Upon starting Uppaal, at first the system editor is displayed.

A Uppaal model (called system) is defined as a composition of a number of ba-
sic components (called automata or processes). Automata are diagrams with states
(called locations) and transitions between states (called edges).

The system editor has four drawing tools for building automata, see Figure 1.5,
named Select, Location, Edge and Nail.

• The Select tool is used to select, move, modify and delete elements. Elements
can be selected by clicking on them or by dragging a rubber band around one or
more elements. Elements can be added or removed from a selection by holding
down the control key while clicking on the element. The current selection can be
moved by dragging them with the mouse. Double clicking an element brings up
a menu in which properties for that element can be specified. Right clicking an
element brings up a pop-up menu from which properties of the element can be
changed.

• The Location tool is used to add new locations. Simply click with the left mouse
button in order to add a new location. Be careful: if one clicks several times new
locations will be stacked on top of each other (a common mistake, leading to

Page 23

1 A First Introduction to Uppaal 7

Fig. 1.4 Uppaal after starting the toolkit.

Fig. 1.5 The four drawing tools Select, Location, Edge and Nail.

models with strange behavior). In order to move a location to another position or
to edit its properties, one first has to return to the Select tool.

• The Edge tool is used to add new edges between locations. Start the edge by
clicking on the source location, then click in order to place nails and finally click
the target location. The operation can be cancelled by pressing the middle or
right mouse button. It is possible to change the source and target of an edge by
moving the mouse to the beginning or end of an edge until a small circle appears
(the “nail”). Drag this circle to a new location in order to change the source or
target of the edge.

• The Nail tool is used to add new nails to an edge, that is, places where an edge
may change direction. Simply click and drag anywhere on an edge to add and
place a new nail.

We will now construct our first Uppaal model. In the field Name at the top of
the drawing window we enter the name of the first component (“template”) of our

Page 24

8 Frits Vaandrager

model: Jobber. Next we right click (with the Select tool) on the location which
Uppaal has already placed in the drawing window. We can then give this location a
name, for instance begin. Each automaton has at most one initial location, marked
by a double circle. During simulation or in verifications the automaton will always
start in this location. By checking the box Initial in the menu for a location, we
specify that this location is the initial location of the automaton. The menu contains
a couple of other fields and options (Invariant, Urgent and Committed), but for the
moment we will not use these.

Fig. 1.6 A first version of the model.

We can continue drawing and construct the automaton that is depicted in Fig-
ure 1.6. The first transition from the initial location corresponds to the moment when
a jobber picks a new job from the conveyor belt. There are three transitions possi-
ble since according to the informal specification there are three types of jobs: easy
jobs, hard jobs and jobs with average difficulty (neither easy nor hard). The next
transition corresponds to the moment at which the jobber grabs a tool (if needed)
and starts working on the job. In the case of a job with average complexity, there are
two possible transitions, depending on the tool that is selected. The third transition
corresponds to the moment that the jobs is done: the automaton returns to its initial
state and the jobber is ready for the next job.

Page 25

1 A First Introduction to Uppaal 9

At this point, we have not specified in our model how the choice between the
transitions from location begin to location easy, average or hard is made.
Also, we have not specified how the choice between the transitions from loca-
tion average to location work av mallet and work av hammer is made.
Choices for which the model does not specify how they are resolved are called
nondeterministic. Nondeterminism is very useful for maintaining a high level of
abstraction in descriptions of the behavior of physical systems and machines [6].

Fig. 1.7 Declaration of system components.

Once we have constructed the automaton of Figure 1.6, our first model is almost
ready. Click on System declarations in the left window. We now see a screen in
which one can list all the processes (automata) in a model. As shown in Figure 1.7,
we specify that our first model consists of two instances of the template Jobber,
called Jobber1 and Jobber2. So our model consists of two automata that, in-
tuitively, run in parallel. As we will see, a global state of the full model is fully
determined by the locations (states) of its components, and the transitions of the full
model are in direct correspondence with the edges (transitions) of its components.
By clicking on Tools in the menu bar at the top of the screen, and then on Check
Syntax, we may check whether a model is syntactically correct. If a model contains
mistakes, these will be underlined in red. A more detailed description of the errors
is provided in a window at the bottom of the screen (normally not visible, but one
can make it larger using the mouse).

1.4 The simulator

Once a model is syntactically correct, we can simulate it, that is, explore the state
space of the model in a step-by-step fashion, by selecting the tab Simulator. The
resulting screen is displayed in Figure 1.8. Uppaal makes two copies of the template

Page 26

10 Frits Vaandrager

Fig. 1.8 Screenshot of the simulator.

Jobber, one for each automaton instance. Using red dots the current location of
each automaton is highlighted. Initially, the current location of an automaton is its
initial location. In the simulation control panel on the left, we see that (due to nonde-
terminism) six transitions are possible from the initial state (three for each jobber).
When we select one of these transitions, the corresponding step in the automaton
diagram for Jobber1 or Jobber2 is colored red. Pressing the Next button causes
the simulated system to take the selected transition, and to update the current loca-
tion. Using the Prev button one can go to the previous step in a simulation trace,
with the Reset button one can bring the system back to its initial state, and with
the Replay button one can instruct Uppaal to automatically replay the current trace.
If we press the button Auto, then Uppaal starts executing randomly selected transi-
tions, one after the other. The speed of the simulation can be changed by moving the
arrow in between Slow and Fast. We can stop the random simulation by pressing the
Auto button again.

Page 27

1 A First Introduction to Uppaal 11

1.5 Channels

The simulator is very useful for obtaining insight in the behavior of a model and
finding mistakes. By playing with our first model in the simulator, we quickly dis-
cover that something is wrong: both jobbers can be in location work hard simul-
taneously. This should not be possible, since in this location both jobbers are using
the hammer, and there is only one hammer. Hence we need to refine/correct our
model.

In order to fix the model, we introduce separate templates for both the hammer
and the mallet. For each tool there are 2 locations: free or taken. The automaton
for a tool moves from location free to location taken when it is grabbed by one
of the jobbers. In order to model the synchronization between tools and jobbers,
we use the notion of (synchronization) channels from Uppaal. Once “a” has been
declared as a channel, transitions can be labeled with either a! or a?. This can be
done by double clicking (within the Editor) transitions with the Select tool, and then
writing a! or a? in the Sync field. When two automata synchronize on channel “a”,
this means that an a! transition of one automaton occurs simultaneously with an
a? transition of another automaton. An a! or a? transition can never occur on its
own: a! always has to synchronize with a?, and vice versa. If there is one automaton
S that can do an a! but two automata R1 and R2 that can do an a?, then there is
a nondeterministic choice and S can synchronize with either R1 or R2. The other
automaton has do something else or has to wait until the next a! synchronization
will be offered. In our jobshop example it does not matter which transition is labeled
with a! and which transition is labeled with a?. Often, we place the a! on a transition
of the component that takes the “initiative” for the synchronization. In the case of the
jobshop, the jobbers take the initiative to grab a tool, whereas the tools are passive
and just “wait” until someone is using them. Hence, we place the !’s in the template
for the jobbers, and the ?’s in the templates for the tools. Figure 1.9 shows the
adjusted model of the jobber, in which synchronization channels have been added.
Synchronization channels must also be declared. This can be done by clicking on the
(global) project Declarations in the window on the left, and inserting the following
text:

// Place global declarations here.
chan get_hammer, put_hammer, get_mallet, put_mallet;

If we simulate the extended model, we quickly see that in the new model “dead-
locks” are possible, states from which no transition is enabled. This occurs, for
instance, when both jobbers are in location hard and both want to perform a
get hammer! transition. But since there is no automaton that can perform a
matching get hammer?, the system comes to a crunching halt. In order to rule
out these deadlocks, we add new templates Hammer and Mallet (this can be done
by selecting the option Insert Template in the Edit menu). Figure 1.10 shows the def-

Page 28

12 Frits Vaandrager

work_hard

work_av_hammer

work_av_mallet

work_easy

hard

easy

average

begin

put_hammer!

put_hammer!

put_mallet!

get_hammer!

get_hammer!

get_mallet!

Fig. 1.9 Model of jobber, extended with synchronization labels.

initions of these templates.1 We add the new automata to the System declarations
via the text

system Jobber1, Jobber2, Hammer, Mallet;

We have now completed our first Uppaal model! We can open the model in the
simulator and convince ourselves that it indeed behaves as specified in the informal
description. Once we are satisfied with the model, we can save it by selecting in the
File menu the option Save System As.... Uppaal models are stored as .xml files.

takenfree

put_hammer?

get_hammer? takenfree

put_mallet?

get_mallet?

Fig. 1.10 Models of hammer and mallet.

1 Actually, it would be better to have just one template Tool, with two instances Hammer and
Mallet. It is possible to define this in Uppaal, but this involves adding channel names as param-
eters to a template. Since we prefer to explain the notion of template parameters in Section 1.9 of
this chapter, we introduce separate templates for hammer and mallet.

Page 29

1 A First Introduction to Uppaal 13

1.6 The verifier

The Simulator is extremely useful for playing with a model and obtaining insight,
but it does not answer questions like “Is it possible to reach a state in which (some
given) property Bad holds”? Even if we have not seen a Bad state after hours of
simulation, this does not guarantee that no such state exists! Fortunately, Uppaal’s
Verifier allows us to rigorously answer this type of questions.

Fig. 1.11 Screenshot of the Verifier.

1.6.1 Queries

Within the Verifier, we can specify a so-called Query, a property that may or may
not hold for a given model. By exhaustive exploration of the set of reachable states
(the “state space”), the Verifier can establish whether a Query is satisfied or not.
Figure 1.11 shows a screenshot of the Verifier. Queries often start with the symbols
“A[]”. This notation, which is taken from the field of temporal logic, means “In all
reachable states it is the case that”. Thus, for example, the query

Page 30

14 Frits Vaandrager

A[] not deadlock

states that in all reachable states of the system there is no “deadlock”. Recall that a
state has a “deadlock” if it has no outgoing transitions. Stated differently, the above
query asserts that in all reachable states at least one transition is possible. If we
type the query in the Query window of the Verifier and then press the Check button,
Uppaal explores all the reachable states to see if they have an outgoing transition. In
the case of our model this is indeed the case, and therefore Uppaal returns Property
is satisfied. This means that in each of the reachable states always either Jobber1
or Jobber2 can proceed.

A new query can be entered by pressing the Insert button, and typing the query
in the window Query. We may for instance enter the following text:

E<> (Jobber1.work_hard && Jobber2.work_hard)

Here the notation “E<>”, again taken from temporal logic, means “There exists a
reachable state such that”. The above query asserts that there exists a reachable state
in which that Jobber1 and Jobber2 are in location work hard, that is, both
jobbers are working on a hard job. Much of the syntax of Uppaal is similar to that
of common programming languages such as C, C++, Perl and Java. For instance,
&& denotes logical “and”: it combines two boolean values and returns true if and
only if both of its operands are true. When we ask Uppaal to check the above query,
the result is Property not satisfied. This is what we expect: if a jobber is working
on a hard job he is using the hammer, and since there is only one hammer, at most
one jobber can work on a hard job at a time. Note that Uppaal does not use any
clever form of reasoning to arrive at this conclusion. The tool just uses brute force
to explore all the reachable global states of the model and to check for each of these
states whether both jobbers are working on a hard job.

In the Uppaal help menu the full syntax for queries and expressions is described.
In this chapter, we only consider queries of the form A[]e and E<>e, where e is
an expression. An expression e consists of a boolean combination of atomic propo-
sitions. Atomic propositions can be of the form A.l, for A an automaton and l a
location. Such a proposition is true in a global state of the model if in this state au-
tomaton A is in location l. Table 1.1 gives some examples of boolean operators that
can be used in Uppaal. Further on in this chapter we will encounter other types of
properties.

Symbol Operator name Meaning
&& and e && f is true if both e and f evaluate to true
|| or e || f is true if e evaluates to true or f evaluates to true
== equality e == f is true if e and f evaluate to same value
imply implication e imply f is true if e evaluates to false or f evaluates to true
not negation not e is true if e evaluates to false

Table 1.1 Some logical operators in Uppaal

Page 31

1 A First Introduction to Uppaal 15

1.6.2 Diagnostic traces

We can ask Uppaal whether there exists a reachable state in which one jobber is
working on an average job with a mallet, and the other jobber is working on a
average job with the hammer:

E<> (Jobber1.work_av_mallet && Jobber2.work_av_hammer)

Uppaal then answers Property is satisfied. In this case, Uppaal can also provide a
concrete example that illustrates why the property holds, that is, a trace leading to
a state in which the first jobber is working on an average job using the mallet, and
the second jobber is working on an average job using the hammer. In order to let
Uppaal compute such an example, we choose under Options the entry Diagnostic
Trace and then select the option Shortest. If we now let Uppaal check the above
property again, it will again produce the answer Property is satisfied but in addi-
tion it will compute the shortest path (or trace) leading to a state in which both
Jobber1.work av mallet and Jobber2.work av hammer hold. The tool
asks whether it may store this path in the simulator. If we give Uppaal permission to
do this, we can replay the trace in the simulator. If we open the simulator, then we
see the final state of the trace in which Jobber1 is in location work av mallet
and Jobber2 is in location work av hammer. By pressing the Reset button we
go to the initial state of the trace, and by pressing the Replay button we tell Uppaal
to replay the trace within the simulator. We can also replay the trace step-by-step by
repeatedly pressing the lowest Next button.

In general, Uppaal can provide a diagnostic trace for E<> properties that hold,
and for A[] properties that do not hold. In the case of E<> properties that do
not hold, or A[] properties that hold, Uppaal can only report that it exhaustively
checked all the reachable states of the model and didn’t find anything. In the above
example of an E<> property, the diagnostic trace is rather trivial and consists of
only four transitions. However, in realistic models of industrial applications, diag-
nostic traces may describe tricky scenarios involving thousands of transitions. In
such cases, Uppaal’s ability to provide diagnostic traces is extremely useful. For
instance, if Uppaal tells us that a certain correctness property does not hold, an en-
gineer typically wants to know why this is the case.

1.6.3 Saving queries and traces

We can save queries by selecting in the File menu the option Save Queries As....
The queries are then saved as a text file with extension .q. If one opens a Uppaal
model model.xml, then automatically also the query file model.q is opened (if
it exists). Alternatively, one can open a query file by selecting in the File menu the
option Open Queries.... It is also possible to save traces by pressing the Save button
in the simulator. Traces are saved as (unreadable) text files with extension .xtr. A
trace file can be opened by pressing the Open button in the simulator.

Page 32

16 Frits Vaandrager

1.6.4 How many states are there?

Let us try to compute the total number of reachable states of our jobshop model.
Since each jobber is modeled by an automaton with 8 locations, and each tool is
modeled by an automaton with 2 locations, there are at most 8× 8× 2× 2 = 256
global states. However, many of these states can not be reached from the initial state:
they will never occur in any run of the system. In order to see this, observe that once
we know the state of the two jobbers, we also know the state of the two tools:

A[] Mallet.taken == (Jobber1.work_av_mallet
|| Jobber2.work_av_mallet)

A[] Hammer.taken == (Jobber1.work_av_hammer
|| Jobber1.work_hard
|| Jobber2.work_av_hammer
|| Jobber2.work_hard)

The first query states that the mallet is taken exactly when either the first or the
second jobber uses it for an average job. The second query states that the hammer
is taken exactly when either the first or the second jobber is using it for either an
average or a hard job. Since the locations of both mallet and hammer are fully de-
termined by the locations of the jobbers, this means that our model has at most
8×8 = 64 global states that are reachable from the initial state.

Five of these remaining 64 states can not be reached since the mallet and hammer
can only be used by one jobber at a time:

A[]
not (Jobber1.work_av_mallet && Jobber2.work_av_mallet)
&&
not (Jobber1.work_av_hammer && Jobber2.work_av_hammer)
&&
not (Jobber1.work_av_hammer && Jobber2.work_hard)
&&
not (Jobber1.work_hard && Jobber2.work_av_hammer)
&&
not (Jobber1.work_hard && Jobber2.work_hard)

All the other combinations of locations of Jobber1 and Jobber2 can be reached,
and so the total number of reachable states of our model is 64−5 = 59.2 For Uppaal
our model is really small: the program can easily handle models with thousands or
even millions of states. It is trivial to construct models that are so big that Uppaal
cannot handle them and, for instance, runs out of memory. For instance, if we mod-
ify our jobshop model and increase the number of jobbers to 100, then the size of
the state space becomes in the order of 8100 and too big for Uppaal.

2 Unfortunately, the regular version of Uppaal has no option to count the number of reachable
states in a model. Such an option is present however in the command line version of the verifier:
verifyta -u.

Page 33

1 A First Introduction to Uppaal 17

1.7 Variables

We will now describe how one can add integer variables to Uppaal models. The val-
ues of these variables can be tested and updated in transitions, and thus influence the
behavior. State variables are indispensable for modeling nontrivial systems and give
the Uppaal modeling language an expressive power that is comparable to simple
programming languages. To illustrate the use of state variables, we discuss a small
modification of the jobshop model:

We suppose that the jobbers stop with their work as soon as they have com-
pleted 10 jobs together.

In order to capture this additional requirement in our model, we add an integer
state variable that records how many jobs have been taken from the belt. This is
achieved by adding the following lines in the global project Declarations in the
window on the left in the Editor:

const int J = 10;
int[0,J] jobs;

In the first line, we declare an integer constant with value 10. As suggested by their
name, the value of constants always remains the same. In the second line an integer
variable jobs is declared with minimum value 0 and maximum value J. The value
of variables can be modified when transitions occur. By default, the initial value of
a variable is 0. The domain of integer variables in Uppaal is always bounded. If we
specify no bounds and simply declare

int jobs;

then implicitly the minimum value is −32768 and the maximum value is 32768.3

Whenever during exploration of the state space — either in the simulator or in the
verifier — a variable gets assigned a value outside its domain, this is referred to as
a “run time error” and an error message is generated.

Figure 1.12 shows an extension of the jobber model in which the variable jobs
is used. In the location begin, a jobber only accepts a new job when jobs < J.
In this case, the value of jobs is incremented by 1. We can implement this change
of the model by double clicking the transition from begin to easy, and then write
jobs < J in the field Guard of the resulting menu. In Uppaal, a transition can only
be taken if its guard evaluates to true (if no guard is specified then we assume it
equals true). In the field Update of the transition, we specify that the value of
jobs must be incremented by 1 whenever the transition is taken. This is done by
writing jobs++, using syntax that has been taken from the programming language
C. Alternatively, we can also write jobs = jobs+1 or jobs := jobs+1 (this all
means the same). We also add an extra location done to the model, and a transition

3 Like in C, Uppaal uses 16-bit int’s, including 1 bit to represent the sign.

Page 34

18 Frits Vaandrager

from begin to done, which is taken whenever jobs has reached the value J and all
jobs are done.

jobs++

jobs++

jobs++

jobs<J

jobs<J

jobs<J

jobs==J

average

easy

hard

begin

put_hammer!

put_hammer!

work_harddone

work_easy

work_av_hammer

work_av_mallet

get_mallet!

get_hammer!

put_mallet!

get_hammer!

Fig. 1.12 Model of jobber in which exactly J jobs are carried out.

When we now start the simulator, we see a separate window in which, for each
state, the value of the state variable jobs is listed. Using the verifier, we can estab-
lish that the model of Figure 1.12 satisfies exactly the same correctness properties
as the model of Figure 1.9, except for the property

A[] not deadlock

which is no longer satisfied. When the jobbers have finished J jobs and have moved
to location done, no further transitions are possible and therefore a deadlock state
has been reached.

Observe that in the modified model, both jobbers together perform J jobs. This
is because jobs is a global variable that can be tested and updated by both jobbers.
In Uppaal, we can also declare local variables, which can only be used by one
automaton. When in the Editor we click on the “+” symbol at the left of the template
Jobber, a new line Declarations appears below Jobber. When we select this line,
we can declare local variables for the template. For instance, by moving the line

int[0,J] jobs;

from the global declarations section to the local declarations section of template
Jobber, we give Jobber1 and Jobber2 each their own, local copy of variable
jobs. The result is that both Jobber1 and Jobber2 have to perform J jobs, instead
of J jobs together.

Page 35

1 A First Introduction to Uppaal 19

Uppaal has a rather extensive syntax for the expressions in guards and updates. It
is possible to declare arrays and Boolean variables, and a user can even define new
“record” types and new functions. The syntax for doing this is very similar to the
syntax of programming languages such as C and Java. For an overview of the syntax
we refer to Chapter 2 of this handbook Add ref and to the help menu of Uppaal:
click on Language Reference and then on Expressions.

1.8 Time and clocks

In the design and analysis of real systems, timing aspects often play a role. Some-
times we may abstract from quantitative timing, and only consider the ordering of
events, but often timing information has to be included in the model in order to be
able to answer certain questions. For instance, we may need to establish not only
that a certain location can be reached, but also how fast. In the case of our jobshop,
the following question could arise. Uppaal has been more or less designed to answer
this type of questions.

We suppose that a jobber needs (at least) 5 seconds for an easy job, 10 seconds
for an average job using the hammer, 15 seconds for an average job using the
mallet, and 20 seconds for a hard job. We suppose that the jobs arrive in the
following order: H, A, H, H, H, E, E, A, A, A, where E denotes an easy job, A
an average job, and H a hard job. How much time do the two jobbers need (at
least) to complete the 10 jobs?

1.8.1 Modeling the conveyor belt

Before we add timing to our model, we first add an automaton that describes the
behavior of the conveyor belt. The belt was not included in our first model (there
was no reason for adding it) but in order to answer the question about timing, the
order in which jobs arrive appears to be relevant. In order to model incoming jobs,
we declare three new channels jobE, jobA en jobH, which correspond to the arrival
of easy, average, and hard jobs, respectively. The automaton Belt, which is depicted
in Figure 1.13, describes the behavior of the conveyor belt that delivers the 10 jobs in
the specified order. By adding automaton Belt to the model in System declarations
and by labeling the outgoing transitions of location begin of the jobber automaton
of Figure 1.9 in the obvious way with the synchronization channels jobE?, jobA?
en jobH?, we model that the jobbers have to deal with the specified sequence of 10
jobs.

Page 36

20 Frits Vaandrager

jobH!

jobE! jobE!jobH!

jobH!

jobH!

start

end

jobA!

jobA!

jobA!

jobA!

Fig. 1.13 Model of conveyor belt that delivers 10 jobs.

1.8.2 Clocks and lower bounds on timing

In the models that we have constructed thus far, time is not modeled explicitly. In
Uppaal we assume that transitions occur instantaneously and do not take time. Time
may only elapse when all automata in the model are waiting in a location. When-
ever we want to model an activity that takes time, we can do this by introducing two
consecutive transitions, one corresponding to the start of the activity, and another
corresponding to the end of it. Often, models only contain transitions that corre-
spond to either the beginning or the end of an activity that has a duration. If we want
to be really precise then, for instance, we could say that the jobH! transition corre-
sponds to the moment when a jobber starts to pick a hard job from the conveyor belt,
the get mallet transition corresponds to the moment when a jobber starts grab-
bing the mallet and the put mallet transition corresponds to the moment when a
jobber ends the activity of putting the mallet back on the table again.

If we want to specify lower and upper bounds on the time that an automaton may
stay in a certain location, we can do this in Uppaal using so-called clocks. A clock
is a special type of variable, whose domain consists of the set of nonnegative real
numbers. Just like other variables, clocks can be declared either as a global variable
(which can be tested and updated by all automata) or as a local variable (which can
only be used by one automaton). In the initial state, all clocks have value 0. When
an automaton is waiting in a location and time elapses then the values of its clocks
increase. More precisely, when t time units pass then the values of all clocks in the
model increase with t. Thus, all clocks are “perfect” and increase at exactly the same
rate as real-time. In reality, of course, no clock is 100% perfect, but in our modeling
language it is convenient to use the idealization of perfect clocks to specify upper
and lower bounds on the timing of transitions.

Page 37

1 A First Introduction to Uppaal 21

x:=0

x>=15

x:=0

x:=0

x>=10

x>=5

x>=20

jobE?

x:=0
begin

average

easy

put_hammer!

put_hammer!

put_mallet!

work_av_hammer

work_hard

hard

work_av_mallet

work_easy

jobA?

get_hammer!

get_hammer!

get_mallet!

jobH?

Fig. 1.14 Model of jobber extended with a clock.

Figure 1.14 shows a model of the jobber that has been extended with the new
synchronization channels jobE?, jobA? and jobH?, and also with a clock variable
x. Clock x has been declared by adding the following line to the local Declarations
section of template Jobber:

clock x;

When a jobber moves from location easy to location work easy, that is, starts
to work on an easy job, clock x is reset to 0 via an update x := 0. Subsequently,
the guard of the outgoing transition of work easy tests whether x >= 5. In this
way, we enforce that this transition may only occur once the automaton has been
in location work easy for at least 5 time units. This corresponds to our assumption
that a jobber needs at least 5 time units to complete a simple job. In a similar way
we model that the automaton spends at least 10, 15 and 20 time units in locations
work av hammer, work av mallet and work hard, respectively.

In the resulting model, Jobber1 and Jobber2 both have a local clock variable
x that records how long they have been working on a certain job. Each time when
a jobber starts with a new job its local clock is reset to 0. In order to record the
total amount of time that has elapsed, we also introduce a global clock now, which
is never reset. As a result, the global declarations look as follows:

chan jobE, jobA, jobH,
get_mallet, get_hammer, put_mallet, put_hammer;

clock now;

Page 38

22 Frits Vaandrager

We can ask Uppaal whether there exists a state in which all the 10 jobs have been
delivered and both jobbers have returned to their initial state (that is, all the jobs
have been completed):

E<> (Belt.end && Jobber1.begin && Jobber2.begin)

When Uppaal computes a diagnostic trace which demonstrates that this property
is satisfied, this will, in general, not be the shortest trace. After all, we have only
specified lower bounds for the timing in our model and no upper bounds. Thus the
belt may wait indefinitely before delivering a job, a jobber may dawdle for days
before he starts with the job, and for years before completing it. However, if we
select in the menu Options under Diagnostic Trace the option Fastest, then Uppaal
will produce the fastest execution that leads to the specified state. In the simulator
we can see that in the final state of this execution now >= 100. This means that
the jobbers need at least 100 time units to complete the 10 jobs. The easiest way
to understand the schedule that has been computed by Uppaal is via the so-called
“message sequence chart” in the lower right window of the simulator: here we see
which jobber handles which job. Figure 1.15 visualizes this fastest schedule in an

Fig. 1.15 Fastest schedule for completing the 10 jobs.

even more compact way as a “Gantt chart”.4 We see that one jobber is permanently
busy with the hammer, whereas the other jobber has a relaxed schedule in which
he is idling most of the time but also completes some jobs with his hands or with
the mallet. It is easy to come up with an equally fast schedule in which the work
load is more evenly distributed. We may decide, for instance, to give the third job to
Jobber2.

4 Figure 1.15 was constructed manually. Effort is underway to extend Uppaal with a feature for
automatic visualization of traces using Gantt charts.

Page 39

1 A First Introduction to Uppaal 23

1.8.3 Upper bounds on timing

We have seen that lower bounds on timing can be specified with the help of clock
constraints in guards. For example, the constraint x >= 5 in the guard of the transi-
tion from work easy to begin indicates that this transition can only be taken once
the jobber has spent at least 5 time units in location work easy. In practice, we often
need to prove upper bounds on timing: an airbag needs to inflate within a few mi-
croseconds after a collision has been detected, a soccer playing robot must quickly
react when the ball is nearby, etc. In our jobshop example, the following question
may arise:

We suppose that a jobber needs at most 7 seconds for an easy job, 12 seconds
for an average job with the hammer, 17 seconds for an average job with the
mallet, and 22 seconds for a hard job.

How much time do the two jobbers need at most to complete the 10 jobs,
assuming that a jobber picks a new job from the belt as soon as he is ready to
work on it, and that he grabs a tool that allows him to do a job as soon as it
becomes available?

In Uppaal we can specify upper bounds on timing, using so-called “invariants”.
When we double click the location work easy, a window appears with a field In-
variant. By entering x <= 7 in this field, we specify that in this location the value
of x will always be at most 7. In other words, a jobber needs at most 7 time units
to complete a simple job. If more than 7 time units have elapsed then the jobber
has left location work easy. In Figure 1.16 upper bounds of 7, 12, 17 and 22
have been added for locations work easy, work av hammer, work av mallet and
work hard, respectively. In addition, an upper bound of 0 has been added for loca-
tion easy. This models the assumption that when a jobber has picked an easy job
from the belt he starts working on it right away. We could have enforced this upper
bound by resetting clock x upon entering location easy, in combination with an
invariant x<= 0 for this location. But Uppaal supports a simpler way of specifying
the same requirement: if we double clock the location easy we can check the field
Urgent. If a location is Urgent then this means that time can not elapse within this
location, and hence a transition to another location will occur immediately.

After all these modifications of the model, it is still not possible to infer an upper
bound on the time need to complete all jobs. The reason is that workers may wait
indefinitely before picking the next job from the belt, and they may wait indefinitely
before grabbing a tool. We have not yet modelled the requirement that jobbers grab
jobs and tools as soon as they can. A convenient way to eliminate idling is by making
the synchronizations for grabbing a job or tool “urgent”. When a synchronization
channel is urgent, this means that whenever a synchronization with this channel is
enabled, time can not advance and a transition has to be taken immediately. We can
specify this in Uppaal by changing the declarations of the channels as follows:

Page 40

24 Frits Vaandrager

x>=15

x>=5

x:=0

x:=0

jobA?

x>=20

jobE?

x>=10
jobH?

x:=0

x:=0
begin

average

easy

x<=22

x<=12

x<=17

work_av_hammer

work_hard

hard

work_av_mallet

work_easy

get_mallet!

put_hammer!

put_hammer!

x<=7

get_hammer!

put_mallet!

get_hammer!

Fig. 1.16 Model of jobber with upper bounds on timing.

urgent chan jobE, jobA, jobH, get_mallet, get_hammer;
chan put_mallet, put_hammer;

Note that there exists a subtle difference between the use of urgent locations and
urgent synchronizations. If we would make location begin of the jobber template
urgent rather than channels jobE, jobA and jobH, a problem would arise in a state
where a jobber is in location begin but no further jobs are on the belt and hence no
jobE, jobA or jobH synchronizations are offered: in such a state there would be no
possibility for time to progress and there would be a “time deadlock”. Clearly, such
a model is not realistic. Likewise, a time deadlock would arise if we would make
location hard urgent rather than channel get hammer.

Observe that in the model of Figure 1.16, a jobber may spend in between 5 and 7
time units in location work easy. We have not specified in our model any further
information about the time needed to complete an easy job: this choice is fully
nondeterministic. Maybe a jobber usually completes an easy job within 6 time units
but sometimes needs more time when he is tired. Maybe one jobber always complete
a job within 5.731 time units, whereas another jobber always needs at least 6.194
time units. Maybe jobbers will always complete easy jobs within 5.5 and 5.8 time
units, but we have not carried out the exact measurements and want to be on the safe
side. The ability to have nondeterminism in the timing of transitions is an extremely
useful feature of timed automata, which makes it possible to describe systems and
reason about them at a high level of abstraction.

Whereas the Verifier has an option to compute the fastest execution leading to
a certain state, there is no corresponding option to compute the slowest execution.
Nevertheless, we can compute this slowest execution via a few successive approx-

Page 41

1 A First Introduction to Uppaal 25

imations. Uppaal can conform our guess that after 200 time units all jobs will be
completed, that is, that the following property is satisfied:

A[] now>=200 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

We even have

A[] now>=150 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

but not

A[] now>=110 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

So the jobbers need at most between 110 and 150 time units to complete all the
jobs. By doing a “binary search” and reducing the size of the interval step by step,
we may infer that the following property is satisfied:

A[] now>=127 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

but the next property is not:

A[] now>=126 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

Hence, the diagnostic trace for the last property gives the slowest possible schedule,
which takes exactly 126 time units. In this schedule, the final transitions from the
jobbers back to the begin state are missing, but these transitions take no time. So
even when the jobbers always start working on jobs as soon as they can, and imme-
diately grab tools whenever they become available, the worst case schedule is still
26 time units slower than the fastest schedule from Figure 1.15. Figure 1.17 visu-
alizes the slowest schedule as a Gannt chart. At time 0, Jobber1 grabs the first

Fig. 1.17 Slowest schedule for completing the 10 jobs.

(hard) job, and Jobber2 grabs the second (average) job. Of course, in any rea-
sonable scenario, Jobber1 would use the hammer and Jobber2 the mallet. But

Page 42

26 Frits Vaandrager

in the worst case scenario of Figure 1.17, Jobber2 gets the hammer, and hence
Jobber1 has to wait. Until time 78 one jobber is using the hammer while the
other jobber is idling. At the end of the schedule, after Jobber2 has finished job
9, Jobber2 is still working for some time on job 10 using the mallet.

1.9 Parameters and arrays

In this section, we will discuss two useful features of Uppaal, that allow us to de-
scribe our jobshop model more compactly: template parameters and arrays.

1.9.1 Parameters

In the jobshop model, we have defined a single template Jobberwith two instances
Jobber1 and Jobber2. Likewise, we would like to have a single template Tool
with two instances Hammer and Mallet. It is possible to define this in Uppaal
using the notion of Parameters. Parameters can be declared to have either call-by-
value or call-by-reference semantics, that is, a template may have access to either
a local copy of the argument or to the original. The syntax is taken from C++,
where the identifier of a call-by-reference parameter is prefixed with an ampersend
in the parameter declaration. Clocks and channels must always be call-by-reference
parameters.

get? taken

put?

free

Fig. 1.18 Generic model of template Tool.

Figure 1.18 shows the definition of the generic template Tool. In the field Pa-
rameters at the top of the Editor tab, we declare the two channel names that are used
as parameters in this template:

urgent chan &get, chan &put

In the System declarations section, we can now define Hammer and Mallet as
instances of Tool:

Hammer = Tool(get_hammer,put_hammer);
Mallet = Tool(get_mallet,put_mallet);

Page 43

1 A First Introduction to Uppaal 27

The old templates Mallet and Hammer can be deleted via the Remove template
option in the Edit menu. Our new model has exactly the same behavior (in terms of
global states and transitions) as the old model, but due to the use of parameters the
definition has become shorter.

1.9.2 Arrays

The model of the belt of Figure 1.13 is not easy to extend or reuse: each time we
want to study a new arrival pattern of jobs, we have to redraw the automaton. This
is cumbersome, especially if we want to schedule a batch with a large number (say
hundreds) of jobs. It is also more natural to define the arrival pattern as a data
structure rather than as a control structure (automaton). We can describe the job
arrival pattern as a (constant) integer array as follows:

const int E=0;
const int A=1;
const int H=2;

const int J=10;
const int[0,2] jobs[J] = {H,A,H,H,H,E,E,A,A,A};

Uppaal does not support enumerated types and therefore we use 0 to encode easy
jobs (E), 1 to encode average jobs (A), and 2 to encode hard jobs (H). As before, the
integer constant J denotes the total number of jobs in the batch. The one dimensional
constant array jobs specifies the arrival pattern of jobs (which is identical to the
pattern in Figure 1.13). The size of the array equals J (counting from 0 to J−
1) and the range is the set {0,1,2} or equivalently {E,A,H}. Figure 1.19 shows a
generic model for the Belt template that uses the information from the array jobs
to generate the appropriate sequence of jobE!, jobA! and jobH! transitions. The
automaton uses an auxiliary variable

int[0,J] i;

that records the number of jobs that has been delivered thus far. Again, the new
model has exactly the same behavior (in terms of global states and transitions) as
the old model, but due to the use of arrays the definition has become shorter and
easier to reuse.

1.10 What is a good model?

After having presented the basic functionality of the Uppaal tool, we want to con-
clude this chapter with some general recommendations for constructing models. To
some extent, building good models is an art. Dijkstra’s motto “Beauty is our busi-
ness” [4] applies to models as well as to programs. Nevertheless, we can state seven

Page 44

28 Frits Vaandrager

jobA!

i++

jobH!

jobE!

i<J && jobs[i]==H

i<J && jobs[i]==Ai++

i<J && jobs[i]==E

i++

Fig. 1.19 Generic model of template Belt.

criteria for good models.5 These criteria are in some sense obvious, and any person
with experience in modelling will often try to adhere to them. Often some criteria
are hard to meet and typically several of them are conflicting. In practice, a good
model is often one which constitutes the best possible compromise, given the cur-
rent state-of-the-art of tools for modelling and analysis.

1. A good model has a clearly specified object of modelling, that is, it is clear what
thing the model describes. The object of modelling can be (a part of) an existing
artefact or physical system, but the object may also be a document that informally
specifies a system or class of systems (for instance a protocol standard), and it
may even be a collection of ideas of a design team about a system they construct,
expressed orally and/or by some drawings on a whiteboard.
In the case of our jobshop example, the object of modelling is the informal spec-
ification that is contained in the grey boxes throughout this chapter.

2. A good model has a clearly specified purpose and (ideally) contributes to the
realization of that purpose. Possible purposes include: communication between
stakeholders about a design, a specification of a system, verification of spe-
cific properties (safety, liveness, timing,..), analysis and design space exploration,
code generation, and test generation. A model can be descriptive or prescriptive.
If a model has to serve several distinct purposes then often it is better to construct
multiple models rather than one.
The only purpose of the jobshop models constructed in Sections 1.3 up to 1.7
is to explain the use of the Uppaal tool. The models in Section 1.8 serve the
additional purpose that they help us to answer the timing related questions stated
in the grey boxes.

3. A good model is traceable: each structural element of a model either (1) cor-
responds to an aspect of the object of modelling, or (2) encodes some implicit
domain knowledge, or (3) encodes some explicit additional assumption. Addi-
tional assumptions are for instance required when a protocol standard is incom-
plete (e.g., it does not specify how to handle certain events in certain cases).
Links between the structural elements of the model and the aspects of the ob-
ject of modelling should be clearly documented. A distinction must always be

5 Most of these criteria are described by Mader, Wupper and Boon [9]. We refer to [9] for further
links to related work in the areas of software engineering, requirements analysis, and design.

Page 45

1 A First Introduction to Uppaal 29

made between properties of (a component of) a model and assumptions about
the behavior of its environment.
Our jobshop models are traceable: in the text we explain for each element in a
model how it relates to the informal specification.

4. A good model is truthful (or valid): relevant properties of the model should also
carry over to (hold for) the object of modelling. Typically, for each (relevant)
behavior of the object of modelling there should be a corresponding behavior of
the model. In the construction of models often idealizations or simplifications
are necessary in order to allow for the use of a certain modeling formalism or
in order to be able to analyze the model. In these cases, the model may not be
entirely truthful. The modeller should always be explicit about such idealiza-
tions/simplifications, and have an argument why the properties of the idealized
model still say something about the artefact. In the case of quantitative models
this argument will typically involve some error margin. In the case of timed au-
tomata models it frequently occurs that a model “overapproximates” reality and
that, due to nondeterminism, certain behaviors that are possible in the model are
not possible for the artefact.
The untimed model of Section 1.7 is certainly truthful to the informal specifica-
tion of Milner listed in the grey box in Section 1.2. However, in the timed model
of Section 1.8 there is at least one idealization that is not entirely realistic. Our
model assumes that it takes no time to grab a job from the conveyor belt. Or more
precisely: that no time elapses between starting to pick a job from the belt and
starting to pick a tool. Since a job consists of both a peg and a block, it is reason-
able to assume that a jobber needs both hands to grab a job from the conveyor
belt. Hence it is not possible to grab a job and a tool simultaneously, and if we
really want our model to be thruthful, we should add extra transitions that corre-
spond to the end of the activity to grab a job, and we should give lower and upper
bounds for the duration of this activity. In the jobshop example the criterion of
thruthfulness collides with our next criterion of simplicity: in order to keep our
model simple we compromised a bit on thruthfulness.

5. A good model is simple (but not too simple). Occam’s razor is a principle partic-
ularly relevant to modelling: among models with roughly equal predictive power,
the simplest one is the most desirable. Hence, the number of states and state vari-
ables should be as small as possible, and the level of atomicity of transitions
should be as coarse grained as possible (but not coarser), i.e., the number of tran-
sitions should be minimal given the intended use of the model. Preferably, things
should be written only once, and one should avoid ugly encodings. Preferably,
the model uses stable, well-defined and well-understood concepts and semantics.
The model of Section 1.9 is almost maximally simple. We would have liked
to simplify the automaton of Figure 1.19 even further so that it only has one
transition instead of three. But this is not possible since Uppaal does not allow
data parameters for synchronization channels.

6. A good model is extensible and reusable, that is, it has been designed to evolve
and be used beyond its original purpose. Typically, if one defines models in
a modular and parametric way this allows for dimensioning, future extensions

Page 46

30 Frits Vaandrager

and modifications, especially if modules have well-defined interfaces. Ideally, a
model should not just describe the specific system at hand: by appropriate instan-
tiation and dimensioning it should be possible to model a whole class of similar
systems.
Our jobshop model can be extended or reused in several ways: we can easily in-
crease the number of jobbers and tools, modify the sequence of jobs, and modify
the timing parameters. What can not be changed so easily are the assumptions on
which tools can be used for which jobs. The next chapter presents a more generic
version of the jobshop model in which variations of these assumptions can be
trivially modified. However, this requires the use of some advanced modelling
features, which are explained in the next chapter.

7. A good model has been designed and encoded for interoperability and sharing
of semantics. Model-driven development of an embedded system typically leads
to a plethora of models, all presenting different views on and abstractions of
the system. If a model is not somehow linked to other models, its usefulness
will be limited. Ideally therefore, the relationships between all models should be
properly defined, for instance via formal refinement relations.
In this chapter, we have not addressed issues of interoperability and sharing. We
refer to chapters XX and YY add refs of this handbook for a description of
various links between Uppaal and other model based development tools. In a
more realistic version of the jobshop example, in which for instance the jobbers
are replaced by robots, one of the things one could do is to take the schedules
computed by Uppaal and translate these to control programs for the robots. Such
an approach (using Uppaal) is described for instance in [7]. (and Chapter XX?)

Clearly, there are many relationships and dependencies between the criteria. If a
model is traceable, that is, links between the structural elements of the model and
the aspects of the object of modelling are clearly documented, then chances increase
that the model will be truthful. Also, if a model has been set up in a modular way,
then one may apply a divide-and-conquer strategy both for establishing truthfulness
of the model and for analysis.

biosection??

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, Cambridge, Mas-
sachusetts, 2008.

2. G. Behrmann, A. David, and K.G. Larsen. A tutorial on Uppaal. In M. Bernardo and F. Cor-
radini, editors, Formal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software Systems, SFM-
RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume 3185 of Lecture
Notes in Computer Science, pages 200–236. Springer, 2004.

3. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge, Mas-
sachusetts, 1999.

Page 47

1 A First Introduction to Uppaal 31

4. W.H.J. Feijen, Gasteren A.J.M. van, D. Gries, and J. Misra, editors. Beauty is our business
— A Birthday Salute to Edsger W. Dijkstra, Texts and Monographs in Computer Science.
Springer-Verlag, 1990.

5. O. Grumberg and H. Veith, editors. 25 Years of Model Checking: History, Achievements,
Perspectives, volume 5000 of Lecture Notes in Computer Science. Springer, 2008.

6. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, 1985.

7. T. Hune, K.G. Larsen, and P. Pettersson. Guided synthesis of control programs using Uppaal.
Nord. J. Comput., 8(1):43–64, 2001.

8. C.A.J. Hurkens. Spreading gossip efficiently. Nieuw Archief voor Wiskunde, 5/1(2):208–210,
June 2000.

9. A. Mader, H. Wupper, and M. Boon. The construction of verification models for embedded
systems. Technical Report TR-CTIT-07-02, Centre for Telematics and Information Technol-
ogy, University of Twente, The Netherlands, 2007.

10. R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs,
1989.

11. Wikipedia. List of model checking tools, February 2011. http://en.wikipedia.org/
wiki/List_of_model_checking_tools.

Page 48

Chapter 1
More Features in UPPAAL

Alexandre David, Kim G. Larsen

Abstract Following the introduction to the model checking tool UPPAAL of the
previous chapter, this chapter presents a number of additional modeling and veri-
fication features offered by the tool. These features include in particular a C-like
imperative language with user-defined types and functions, allowing for readable
and compact models with reusable updates of discrete variables. Using an example
of a Train Gate, we demonstrate the use(fulness) of these features. Also, the chapter
presents the full query language of UPPAAL covering both safety, liveness and time-
bounded liveness properties, again illustrated using the Train Gate example. Finally,
directions are given on modelling choices and use of verification options that may
improve time- and/or space-performance of the UPPAAL verifier

1.1 The Train Gate

In the previous chapter the basic modelling formalism of UPPAAL was presented:
automata interacting over channels and extended with (integer) variables and clocks.
For the ease of modeling, the full formalism of UPPAAL allows for structured vari-
ables (arrays and records) together with a C-like imperative language for their up-
dates. To present and illustrate the use(fulness) of these features we use an example
of a Train Gate. This example was originally presented in [27] as a number of trains
running on seperate tracks, but – for economical reasons – having to cross a com-
mong bridge. The challenge is to model the timing behaviour of the trains, as well as
to design (and verify) a controller that will stop and (re)start trains in an appropriate
manner, e.g. to avoid trains colliding on the common bridge.

Alexandre David and Kim G. Larsen
Department of Computer Science, Aalborg University, Selma Lagerlöfsvej 300, 9220 Aalborg,
Denmark e-mail: adavid,kgl@cs.aau.dk

1

Page 49

adavid,kgl@cs.aau.dk

Fig. 1.1 The train gate problem. Trains run on their own tracks except on the bridge. Trains may
be stopped before 10 time units, after which they must proceed to the bridge. If stopped a train will
take some time to reach the bridge (7–15 time units). Crossing takes some time (3–5 time units).

A Simple Railway Control System [27]: We consider a railway control system
to automatically control trains passing a critical point such as a bridge. The
idea is to use a computer to guide trains from several tracks crossing a single
bridge instead of building many bridges. Obviously, a safety property of such
a system is to avoid the situation where more than one train are crossing the
bridge at the same time.

Figure 1.1 depicts the problem of trains (here only 4) crossing a bridge. Initially
trains are far enough from the bridge and are in a Safe state. At some point a train
is approaching the bridge (state Approaching). The gate controller has then 10 time
units to stop it. After this time the train has too much inertia to be stopped safely
and must proceed to the bridge. It will take 20 time units to reach the bridge. If the
train is stopped (state Stop) then it will be restarted again eventually (state Start) and
it will take between 7 and 15 time units to reach the bridge. A train can be stopped
at any time before 10 time units and so we model this non-determinism. When a
train crosses the bridge it takes between 3 and 5 time units and we want as a safety
property that only one train at a time has access to the bridge. After crossing, a train
will go to its safe state again.

From the modelling point-of-view, this cyclic behaviour models different trains
arriving on the same track. In addition, the behaviour of all the trains is the same
and we only need a way to distinguish them, typically with a unique identifier. The
model will then consist of a number of train instances derived from the same tem-
plate and a gate controller.

2

Page 50

1.2 User-Defined Types

In programming languages types allow for static checks to be performed, for
ensuring that variables and expressions are used in a manner that will not lead
to domain incompatibility in the sense that an operation is applied to a value
that is not in its domain of arguments. The ability to define new types allow the
user to identify and name value domains that are not primitive of the language
being used, say “stacks” of characters equipped with operations for clearing,
pushing, and popping a stack, selecting the top component, and testing for
emptiness. For the modelling formalisms of UPPAAL a similar design decision
has been taken.

The gate controller will typically need a queue to keep track of stopped trains and
restart them. Trains are distinguished with a unique identifier whose range is defined
by the total number of trains. It is natural and safe from a modelling point-of-view
to declare a type for this identifier being a bounded integer. Furthermore we can
structure the queue into one type that contains an array and a length. User-defined
types are declared with the syntax

typedef type name;

where the type can be a bounded integer (int[min,max]) or a structure declared as

struct { type1; type2; . . .}
In our example, the global declaration contains the following:

const int N = 6;
typedef int[0,N-1] id_t;

chan appr[N], stop[N], leave[N];
urgent chan go[N];

Here id t is the type for identifiers that is used as argument for the template of
trains. In addition, arrays of channels are declared for the communication between
the gate and every train. Furthermore, the template of the gate has its own local
declarations:

typedef struct {
id_t list[N];
int[0,N] len;

} queue_t;

queue_t q;

The type queue t defines the domain of queues as records consisting of an array
of identifiers and an associated length. The variable q over this type constitutes the
actual queue to be used by the gate. Being declared locally, both queue t and q
are only visible within the gate template.

Figure 1.2 shows the templates used for the trains (a) and the gate (b). The train
template has the argument const id t id that defines its identifier. Its states

3

Page 51

x=0

x<= 15x<=20

leave[id]!

stop[id]?

appr[id]!

z=0

x=0,z=0

x=0

x=0

go[id]?

x>=3

x>=7

x<=10

x>=10

x<=5

Appr Start

Safe Cross

Stop

leave[e]?

stop[tail()]!appr[e]?

enqueue(e) dequeue()

e : id_t

go[front()]!

e : id_t

appr[e]?

e : id_t
q.len == 0

Occ

q.len > 0 e == front()

enqueue(e)

Free

(a) (b)

Fig. 1.2 Template for the trains (a) and the gate (b).

correspond to the states in Fig. 1.1. The communication with the gate is done
with the channels with this identifier. When trains are approaching, the gate con-
troller is notified with appr[id]! and when they leave the bridge they notify with
leave[id]!. The gate controller can stop a train and then restart it. Trains listen
on stop[id]? and go[id]? for this purpose. The different timing constraints of
Fig. 1.1 are modelled with invariants on states and guards. Trains have a local clock
x for this purpose (the purpose of the additional clock z will be explained later).

The gate controller uses and manipulates its queue structure in the automaton.
When trains are approaching the controller enqueues their identifiers and dequeues
them when they leave the bridge. If trains are approaching when the bridge is oc-
cupied (state Occ) they are stopped and their identifiers enqueued. The model is
made more compact by using the so-called select statement e: id t to unfold the
corresponding edge with e ranging over the type id t. More details on this useful
feature will be given in section 1.4. To keep the template readable, queueing and
dequeuing are performed with the help of user-defined functions, as will be detailed
in the next section 1.3.

We note that one location of the gate is marked with “C” indicating that it is Com-
mitted. If a location is Committed then this means that time can not elapse within
this location, similar to the condition for Urgent locations (see section ??). However,
for Committed locations transitions are in addition restricted only to those leaving
committed locations. This removes interleaving between processes and allows the
user to model atomic sequences of actions to do, e.g., a multicast 1.

1 Broadcast channels are supported and are declared by prefixing the channel declaration by broad-
cast.

4

Page 52

1.3 User-defined functions

As a recommendation to the programmer, in its formulation by Benjamin C.
Pierce [24], the Abstraction Principle reads: “Each significant piece of func-
tionality in a program should be implemented in just one place in the source
code. Where similar functions are carried out by distinct pieces of code, it is
generally beneficial to combine them into one by abstracting out the varying
parts”.

With the availability of discrete variables (integer, boolean and even structured vari-
ables as well as variables over user-defined types), their updates quickly become
more involved, e.g., inserting an element into a sorted array. Updates of discrete
variables take place on transitions as sequences of simple assignments. Instead of
using complex automata to encode an update (even using committed states for that
purpose), it is far more convenient, compact, and efficient to use a function that
can pack complex control flow constructs such as nested conditional statements and
loops. Thus, concerning the imperative part of a model UPPAAL provides support
for the principle of abstraction.

For managing the queue of train identifiers of the gate controller we use functions
to queue, dequeue, and access the tail and front of the queue. The declaration is
shown in figure 1.3. C-like syntax is used with the extension of references (like in
C++) and without pointers. Enqueuing adds an element at the end of the queue and
increases the length of the queue. Dequeuing removes the front element and shifts
all the elements. Here we point out the final reset of the last element to zero. From
a programming point of view this reset seems completely superfluos as this element
is no longer part of the queue and will have no effect on the subsequent behaviour.
In fact an optimizing compiler would most likely remove the reset. However, in a
model checker this reset to a default value is key to limit the state-space explosion
problem. If we were not reseting here, the queue would remember the last element
that was there, even though it is no longer in the queue and has no relevance for the
future behaviour of the system. Thus states that are behaviourally equivalent, would
be different, thus impacting the performance of the model-checker (you may want
to check the validity of this claim yourself!). The functions for reading the front and
tail elements of the queue are straight-forward.

While writing these functions in C is simple, implementing the same functional-
ity in “pure” timed automata with simple updates is complex and error prone (but
possible).

5

Page 53

// Put an element at the end of the queue
void enqueue(id_t element)
{

q.list[q.len++] = element;
}

// Remove the front element of the queue
void dequeue()
{

int i = 0;
q.len -= 1;
while (i < q.len)
{

q.list[i] = q.list[i + 1];
i++;

}
q.list[i] = 0;

}

// Returns the front element of the queue
id_t front()
{

return q.list[0];
}

// Returns the last element of the queue
id_t tail()
{

return q.list[q.len - 1];
}

Fig. 1.3 Declaration of the functions used locally by the gate controller.

1.4 Select label

The gate controller of figure 1.2.(b) is using a select statement. This statement has
the effect of duplicating the edge into several instances with the variable(s) used in
the select taking values over the specified range(s), which in fact could be any type
(here id t). This construct is useful for models with a parameterised number of
processes having to synchronise. Arrays of channels can be used for that purpose,
e.g. allowing in our example the controller to know with which train it is synchro-
nising and subsequently store its identifier in its queue. This can also be interpreted
as message passing using (here) the appr channel that carries the identifier of the
approaching train. Fig. 1.4 shows the window used to edit that edge. The variable e
declared in the select label has its scope on all the labels of that edge, here it is used
in both the guard and synchronisation labels.

6

Page 54

Fig. 1.4 Window for editing edges showing the different editable labels.

1.5 The Simulator Revisited

Having now completed the modeling of the Train Gate example, the first thing to ex-
amine the behaviour using the simulator of UPPAAL. Figure 1.5 shows a screenshot
of the simulator, while simulating an instance of the Train Gate with six trains. From
the simulation of the Jobshop example of the previous chapter, we recognize vari-
ous parts of the simulator tab. The left part allows the user to control the simulation
by choosing transitions and playing traces. The right part shows the automata with
the active locations and the transitions that are taken, and below them a message
sequence chart that shows the synchronisations between the automata.

However, whereas the center part of the simulator tab was completely empty for
the Jobshop example, it now contains quite some information. In fact the center part
provides information about the current value of variables and clocks. The user may
select which information (s)he wants to pay attention to during a given simulation,
by hiding (or viewing) processes and variables using the View menu.

Turning to the information offered for clocks, we see that the simulator does not
exhibit concrete (real) values for the clocks but rather a collection of constraints
on individual clocks, e.g. x ≤ 4, or constraints on clock differences, e.g. x− y < 10.
This reflects the fact, the model checking engine of UPPAAL does not perform state-
space exploration based on concrete states with concrete values of clocks (which
would be impossible due to the uncountably many such values) but rather based on
sets of clock values described by such simple constraints. Sets of clock valuations
described by constraints on clocks and clock differences are called zones, and may
be represented in a canonical manner by so-called difference bound matrices (DBM),
where entries bi, j describe the upper bound on a clock difference x i−x j. In the View
menu, the amount of information presented for clocks in the center part may be

7

Page 55

Fig. 1.5 Screenshot of the simulator running of the train-gate example.

affected. When the option Full DBM is selected, the all constraints present in the
DBM will be shown. When the option is not selected, a reduced (but semantically
equivalent) list of constraint is shown.

Thus, the model checking engine as well as the simulator of UPPAAL operates
on symbolic states being tuples of the form (L,Z,V), where L is the location vector
(active locations for all automata), Z is a zone, and V is the variable vector (values of
all the integers). Figure 1.6 illustrates the sequence of symbolic states encountered
during simulation of a simple timed automaton with two clocks x and y. As indicated
in (a) simulation starts from the initial state where both x and y has the value 0.

• (a) From the intial state it is possible to delay and reach all states that respect the
invariant of the initial location (i.e. x ≤ 4). As the two clocks x and y increase in
perfect synchrony, the resulting zone may be describe by the constraints: x = y
and x ∈ [0,4].

• (b) Taking the transition that resets the clock y results in the zone described by
y = 0 and x ∈ [0,4]

• (c) From each of these clock values (or points) delaying is again possible (except
for x = 4,y = 0), which gives the zone described by the constraints y ≥ 0 and
y ≤ x and x ∈ [0,4].

• (d) Finally, taking the transition guarded by y >= 2 adds this constraint resulting
in the zone described by y ≥ 0 and y ≤ x and x ∈ [2,4].

Internally in the tool, these logical constraints are represented as a matrix with
one extra special reference clock used for lower and upper bounds on individual
clocks, e.g., x ∈ [0,4]. This representation also explains the limitation on the syntax
for guards, namely they must be a conjunction of constraints of the form x i−x j ≤ bi j

8

Page 56

x

y

0 4 x

y

0 4 x

y

0 4 x

y

0

x<=4

4

y=0

2

y>=2

(a) (b) (c) (d)

x<=4

y=0
y>=2

x<=4

y=0
y>=2

x<=4

y=0
y>=2

Fig. 1.6 Exploration of symbolic states. Starting from the origin (0,0), (a) shows all the states
reachable by delaying, (b) depicts the reset on the clock y, (c) shows a subsequent delay, and (d)
shows the states that can take a transition guarded by y ≥ 2.

(or a strict inequality). Within the simulator of UPPAAL, when selecting a transition,
the variable view is updated to the symbolic state that can take that transition and
the constraints change. When a transition is taken, the constraints are updated to
reflect the resets and the delay that follows.

1.6 Queries Revisited

In the previous chapter, we considered basic UPPAAL queries of the types A[] φ
and E<> φ for specifying safety and reachability properties of the job-shop example.
As stated, these notations come from the field of temporal logic:

In a temporal logic we can then express statements like ”I am always hungry”,
”I will eventually be hungry”, or ”I will be hungry until I eat something”.

Temporal logic has found an important application in formal verification,
where it is used to state requirements of hardware or software systems. For
instance, one may wish to say that whenever a request is made, access to a
resource is eventually granted, but it is never granted to two requestors simul-
taneously.

Two early contenders in formal verifications were Linear Temporal Logic, LTL
(Amir Pnueli and Zohar Manna) and Computation Tree Logic, CTL (Edmund
Clarke and E. Allen Emerson). In this section we will detail the full query language
of UPPAAL, which is in fact a subset of CTL. Figure 1.7 illustrates the five formula-
types supported by UPPAAL: A[]φ , E<>φ , A<>φ , E[]φ and (φ � ψ). The main
restriction compared to full CTL is that UPPAAL does not allow nesting of formula,
i.e. in the above ψ or φ must be state predicates refering only to locations, clocks
and variables.

9

Page 57

A[] ϕ

A<> ϕ

E<> ϕ

E[] ϕ

ψ

ϕ ϕ

ϕ

ψ ϕϕ

ϕ
ϕ

ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ

ϕ

ϕ

ϕϕ

ϕ

ϕ

ϕ

ϕ

(a) (b) (c)

(d) (e)

�

Fig. 1.7 The different types of logic formulas supported by UPPAAL.

1.6.1 Reachability

Reachability properties are of the form E<> φ and mean there exists some path
on which φ holds at some state (Fig. 1.7.(b)). Reachability properties are useful
for checking that models proposed at early design stages possess expected basic
behaviours and to ask for diagnostic traces to confirm and study this more closely.
For the Train Gate example such sanity properties could be:

E<> Gate.Occ
E<> Train(0).Cross
E<> Train(1).Cross
E<> Train(0).Cross and Train(1).Stop
E<> Train(0).Cross and (forall(i:id_t) i!=0 imply Train(i).Stop)

serving to check that the gate can be occupied, that trains 0 or 1 can cross, that train 0
can cross while train 1 is stopped, and that train 0 can cross while all other trains are
stopped. In the last property – expected but maybe difficult to exhibit using manual
or random simulation – forall is used over a range of indices.

1.6.2 Safety

Safety properties are of the form A[] φ and mean that for all paths and for all
states on those paths φ holds (Fig. 1.7.(a)). We note that E<> ¬φ = ¬ A[] φ ,
which means that E<> ¬φ gives a counter example in terms of a trace to a state that
does not satisfy φ . For the Train Gate example expected safety properties are:

A[] forall (i:id_t) forall (j:id_t) \
Train(i).Cross && Train(j).Cross imply i==j

10

Page 58

A[] not deadlock

Here the first safety property expresses that the gate controller correctly implements
mutual exclusion of the bridge, in that no two different trains can be in the crossing
simultaneously. The nested usage of the forall construct ranging over id t, ensures
that the formula correctly (and conviniently) expresses mutual exclusion regardless
of the number of trains.

Other properties that also fall within the category of safety properties are of the
form E[] φ , that means there exists a path on which φ always holds (Fig. 1.7.(e)).

1.6.3 Liveness

Whereas safety properties are usefull for expressing “that something bad will never
happen”, they are not sufficient for ensuring that a designed system is adequate.
Given the Train Gate example it is utterly simple to obtain a safe system guarantee-
ing no crashes on the bridge: simply use a gate controller that will stop all trains!
Clearly, this is not satisfactory.

What is needed is the additional ability to express liveness properties of a system
in the sense “that something good is guaranteed to eventually happen”. The first
liveness property has the form A<> φ expressing that for all paths φ eventually
holds (Fig. 1.7.(d)). We note that E[] ¬φ = ¬ A<> φ , which means that E[] ¬φ
gives a counter example to the liveness property A<> φ in the form of an infinite
path (witnessed as a loop) or a path that ends on a deadlock on which φ does not
hold.

The second, and particularly useful, liveness property has the form φ --> ψ and
should be read as φ leads to ψ . In fact this property is equivalent to (and a short-
hand for) the formula A[](φ imply A<> ψ), and means that whenever φ holds
for a state, then ψ will always hold eventually for all paths starting from that state
(Fig. 1.7.(c)). More interestingly is its usage as a time bounded liveness property
with the help of an observer as shown in Fig. 1.16.(a) of Section 1.9.

In our Train Gate example, we may want to ensure that whenever a train is ap-
proaching it eventually will be at crossing. This will clearly rule out the inadequate
solution of a controller which (purposely) stops all train, or wrongly implemented
controllers under which some trains might get stuck in the queue.

Train(0).App --> Train(0).Cross
Train(1).App --> Train(1).Cross
Train(2).App --> Train(2).Cross
...

1.6.4 Bounded Liveness and Performance Evaluation

Having studied the correctness of the model, we may be interested in its perfor-
mance. Though it is essential to know that trains approaching will eventually reach

11

Page 59

the crossing, we may additionally want to obtain lower and upper bounds on the time
between trains being in the Appr and Cross locations. For this, we add a clock z to
the model as shown in Fig. 1.2. The clock is reset whenever a train is approaching2.
To determine the relevant time-bounds we perform a binary search using properties
of the type

A[] Train(0).Cross imply Train(0).z <= UP
A[] Train(0).Cross imply Train(0).z >= LOW

with UP and LOW being constants used in the binary search, e.g., 1000, 500, 250,
125, . . . Adding an extra clock to the model that is reset when we want to mea-
sure some time and asking a safety or reachability property on a specific state is a
technique used for bounded liveness. We note that this is cheaper than liveness.

As an attractive alternative to performing the (manual) binary search, we may use
the queries inf{Pr}:exp and sup{Pr}:exp, which returns the infimum (supre-
mum) of the expression exp over all reachable states satisfying the state predicate
Pr. For the Train Gate example the queries

inf{Train(0).Cross}: Train(0).z
sup{Train(0).Cross}: Train(0).z

will give us the desired time-bounds directly for this clock in the state Train(0).Cross.
The state predicate is optional and not putting the brackets at all is the same as hav-
ing true as the predicate. The bounds are here 7 ≤ z ≤ 125 for 6 trains.

We could also have used a stop-watch, which is sometimes simpler, i.e., by
adding the invariant z’==0 to the state Safe to stop the clock and reseting it when
entering this state. Then we would ask sup: Train(0).z, which gives the same
upper bound. We note that using stop-watches makes the reachability problem unde-
cidable but UPPAAL uses an over-approximation technique so the result is reliable.
In this example, the bound is exact but it could have been looser.

1.7 Verification Options

The model checking technology comes with the curse of state space explosion, i.e.
the number of states to be explored tend to grow exponentially with the number of
components (automata, clocks, variables, etc.) of the model. Development of tech-
niques for state-space representation and exploration for making model checking
efficient in practice is an extremely active area. Benefitting from (and contributing
to) this research, UPPAAL offers a number of verification options to affect the repre-
sentation and exploration of the verirication engine. These are available in the GUI
under the Options menu.

2 The reset to Safe is to reduce the state-space and has an impact because as the clock is used in
the property, it is always active.

12

Page 60

1.7.1 Search Order

Fig. 1.8 Search order options.

The classical search ordering depth-
first and breadth-first search are sup-
ported, as well as random depth-first
(Fig. 1.8). In scheduling models where
one solution is wanted, depth-first (or
random depth-first) will typically be
the most efficient option. There is an-
other option available in the 4.1.x ver-
sions, closest to target first. This is an
experimental heuristic used to guide
the search.

1.7.2 State Space Reduction

Fig. 1.9 State space reduction options.

These options are used to reduce the size
of the stored state-space (Fig. 1.9). No op-
timisation can be chosen (none), commit-
ted states may not be stored unless they
start a loop (conservative), only states start-
ing loops will be stored (aggressive), or no
state at all will be stored (extreme). The
last option should be used with caution and
is useful only when the model guarantees
progress or is acyclic.

1.7.3 State Space Representation

These options specify how to store individual state (Fig. 1.10.(a)). The option DBM
uses the canonical matrix representation of constraints known as difference bound
matrix. The option Compact Data Structure computes a reduced set of necessary
constraints to store, which costs time but reduces memory footprint. The option
Under approximation activate the bit-state hashing technique where every state is
stored as one bit in a big hash table whose size is specified in the Hash table size
option (Fig. 1.10.(b)). Finally the option Over approximation merges states together
internally using an over-approximation technique (known as convex-hull), which
reduces the number of states.

13

Page 61

(a) (b)

Fig. 1.10 State space representation (a) and hash table size (b) options.

1.7.4 Diagnostic Trace

Fig. 1.11 Diagnostic trace options.

To obtain a trace, a different option than
“none” should be selected. When this is done,
only one property at a time may be checked.
Some trace may be obtained, or the shortest
possible trace w.r.t. the number of steps, or
the fastest w.r.t. time.

1.7.5 Extrapolation

Fig. 1.12 Extrapolation options.

Our verifier is using a symbolic technique
to explore the state-space: rther than operat-
ing on concrete states with concrete values
of clocks, the symbolic technique operates
on sets of clock values (so-called zones)
represented by constraints on clocks, x ≤ c,
and constraints on clock differences ,x −
y ≤ c. When analysing a particular timed
automaton, static analysis will reveal that
for each clock x there is a threshold value
cx above which the exact value of x is irrelevant for the behaviour of the timed au-
tomaton. This observation is crucial for abstractions (widening) of zones to obtain
a finite symbolic state-space. This is in essence what the extrapolation does. It turns
out there are different proposals for exptrapolation, that will be either exact or an
over-approximation depending on the type of constraints used in the model. It is rec-
ommended to leave that option to automatic. The other settings are none (may pre-
vent termination), difference (a more expensive operation useful when constraints of

14

Page 62

the form x− y ≤ c are used), local (the default), and lower/upper (an optimisation
applicable for certain models).

1.7.6 Reuse

When checking consecutive reachability or safety properties, the model-checker
may reuse the generated states if that option is selected. We note that alternating
reachability and liveness property will cancel the benefit of that option.

1.7.7 Impact

Table 1.1 shows the impact of some of these options on a few examples that can be
found on http://www.uppaal.org under examples/benchmarks. The example csma is
a collision detection protocol, here with 10 nodes. Then we experiment with Fis-
cher’s protocol, a mutual exclusion protocol with 10 nodes here. Finally we use a
token ring FDDI (fiber distributed data interface) protocol with 25 nodes. The prop-
erties checked here are safety properties and the depth-first search option makes
the search a lot slower. This is explained by inclusion of symbolic states that will
not be effective with that order. However, in other cases where a simple schedule
is wanted, this order will work well. Deactivating compact data-structures will in-
cur a small speed improvement and a large loss in memory compared to the default
setting. The aggressive state-space representation stores fewer states and can some-
times (in these cases) give speed improvements. This is explained by the inclusion
check that is done on fewer states.

def dfs S2 -C
csma-10 5.8s 115s 5.6s 5.1s

15.4M 16.5M 15.4M 24.6M
fischer-10 24.7s 111s 21.2s 20.6s

23.9M 21.2M 15M 30.6M
fddi-25 4.4s * 2.5s 3.8s

13.7M * 10.9M 29M

Table 1.1 Performance comparison with different options. The option def corresponds to the de-
fault setting, which is breadth-first search, compact data structure, and conservative state-space
representation. The option dfs only changes the search order to depth-first. The option S2 is the
default setting changed with aggressive state-space representation. Finally the option -C is the de-
fault setting without the compact data-structure. We show results in seconds and MBytes obtained
on a PentiumD running at 2.8GHz. The entries ’*’ mark an experiment that was stopped because
it was taking more than 3 minutes.

15

Page 63

1.8 Gossipping Girls: A Case-Study for Efficient Modelling

In this section we iterate over different versions of models to solve the gossipping
girls problem (mentioned in the previous chapter), a notoriously difficult combi-
natorial problem. The goal is to expose the inherent limits of the model-checking
technique, known as state-space explosion, and see how to change a model to im-
prove performance.

The gossiping girls problem. Let n girls have each a private secret they wish to
share with each other. Every girl can call another girl and after a conversation,
both girls know mutually all their secrets. The problem is to find out how many
calls are necessary so that all the girls know all the secrets. A variant of the
problem is to add time to conversations and ask how much time is necessary
to exchange all the secrets, allowing concurrent calls.

The basic formulation of the problem is not timed and is typically a com-
binatorial problem with a string of n bits that may take (at most) 2 n values for
every girl. That means we have in total a string of n2 bits taking 2n2

values (in
product with other states of the system).

1.8.1 Modelling in UPPAAL

We face choices regarding the representation of the secrets and where to store them.
Every girl keeps track of her known secrets. The natural encoding would be to use an
array of booleans. One could think of using a more compact encoding by choosing to
use one integer to do so and to manage the bits manually as booleans. This limits the
model to the number of bits available but as we have seen from the complexity, the
state-space explodes too quickly for this to be a limiting factor. We will explore both
encodings to see that the “optimized” version using integers is in fact not convenient
at all for further refinements of the model. The second choice is where to store the
messages, in one shared table or locally with every girl. The models described here
can be found at http://www.cs.aau.dk/˜adavid/GossippingGirls/.

In the following sub-sections we present different versions of the model. They
will all use these common global declarations:

const int GIRLS = 4;
typedef int[0,GIRLS-1] girl_t;
chan phone[girl_t], reply[girl_t];

The declaration of the constant GIRLS allows us to scale the model easily. Notice
that it is possible to declare that arrays of channels are indexed by a given type,
which implicitly gives them the right size. This is useful for an optimization seen
later.

16

Page 64

The girl template is named Girl and has girl t id as parameter. A first version of
the the template is shown in figure 1.13. Every girl has a different ID. The system
declaration is simply: system Girl;. This makes use of the auto-instantiation fea-
ture of UPPAAL. All instances of the template Girl ranging over its parameters are
generated. The number of instances is controlled by the constant GIRLS.

Reply Listen

Ringing

reply[g]?
listen()

reply[g]!
talk()

j : girl_t

phone[j]?
listen(),
g = j

j : girl_t
id != j
phone[j]!
g = j,
talk()

start()

Fig. 1.13 First attempt for modelling the gossipping girls. The model consists in different instances
of the same template with different identifiers to differentiate the girls. This is the template of a
girl, taking as argument an identifier of type girl t.

The template of a girl uses functions on its transitions to handle communica-
tion. It is good practice to use such function to improve readability of the model
and to make it more flexible. We will change the internal data-structures and imple-
mentation of these functions but still keep the same automaton. Since the identifier
parameter is a template argument, its scope is the whole template, which means it
can be used directly in any local function. Here the start() function will initialize the
girl with her unique secret (which depends on her identifier). The functions talk()
and listen() aure used to send and receive secrets to and from other girls. The syn-
chronization is done with the channels corresponding to other girls. We note that for
replying, a girls needs to remember who she talked to so the model keeps track of
that with a local variable girl t g.

1.8.2 Representing Secrets With Boolean Arrays

We need to encode message passing between different processes, which is not di-
rectly supported by UPPAAL. To do so, the standard way is to declare a temporary
shared variable. In addition, this variable is prefixed with the keyword meta, which
means that it is a special temporary variable that will not be part of the states. This
means that users should never refer to it between two states. Its value is only reliable
on one given transition (possibly involving several edges in case of a synchroniza-
tion).

17

Page 65

We add to the global declarations meta bool tmp[girl t]; to encode message pass-
ing. The functions mentioned previously are implemented as follows:

bool secrets[girl_t];
void start() { secrets[id] = true; }
void talk() { tmp = secrets; }
void listen() { for(i:girl_t) secrets[i] |= tmp[i]; }

In this version we use assignment between arrays for talk(). The function listen()
uses an iterator. The template automaton is given in figure 1.13 and is common
for both versions gossip1 (boolean encoding) and gossip0 (integer encoding). This
first attempt captures the fact that we want the model to be symmetric with respect
to sending and receiving and is quite natural with symmetric uses of talk() and
listen().

Initialisation is done by setting secret id to true. The initial committed location
ensures all girls are initialised before they start to exchange secrets. Then we have
a standard message passing using a shared variable with the receiver merging the
secrets sent with her own (logical or).

1.8.3 Representing Secretes With Integers

This time we add meta int tmp; to pass integer messages between the girls.
The functions are now implemented as follows to manage the integers’ bits:

int secrets;
void start() { secrets = 1 << id; }
void talk() { tmp = secrets; }
void listen() { secrets |= tmp; }

Initialisation is done here by setting bit id to one. The other functions are similar to
the boolean encoding but manipulating all bits at once this time.

1.8.4 Basic Improvements

Basic optimisations of a model.

1. Avoid useless interleavings by using committed locations.
2. Make sure to model exactly what you need and not more.
3. Use active variable reduction, which is to reset a variable to a fixed known

value, whenever its value is not relevant to the current state.

Let us now apply and illustrate the above basic optimization rules using the Gossip-
ing Girls example:

18

Page 66

1. The intermediate state Listen should be made committed otherwise all interleav-
ing of half-started and complete calls will occur.

2. One select statement is enough because we are modelling something else here,
namely girl id selects a channel indexed by j and any other girl that selects the
same channel index can communicate with girl id.

3. The local variable g contributes badly to the state-space when its value is not
relevant, i.e., the previous communication does not need to be kept. We can set it
in a symmetric manner upon the start and reset it after communication to id.

The updated model is shown in Fig. 1.14. This update is for both boolean (gos-
sip3) and integer (gossip2) encodings. The template keeps as an invariant that the
variable g is always equal to id whenever it is not sending. In addition, when a
channel j is selected, then it corresponds to exactly girl j. Only one committed
location is enough but it is a good practice to mark them both. It is more explicit
when we read the model. The previous versions could only be checked up to 4 girls,
now we can check 5 within roughly the same time. This is a very good improvement
considering the exponential complexity of the problem.

Reply Listen

Ringing

reply[g]?
listen(),
g = id

reply[id]!
talk()

phone[id]?
listen()

j : girl_t
id != j
phone[j]!
g = j,
talk()

start(),
g = id

Fig. 1.14 Improved model of the gossipping girls.

1.8.5 Abstracting The Communication Protocol

We can abstract which communication line is used by declaring only one channel
chan call. Since the semantics says that any pair of enabled edges (call!,call?) can
be taken, we do not need to make an extra select. In addition, processes cannot
synchronise with themselves so we do not need this check either. The downside is
that we lose the information on the receiver from the sender point of view. We do
not need this in our case. We can get rid of the local variable g as well. We can also
simplify the communication protocol by merging the sequence listen()-talk() into
one function and simplify listen() to a simple assignment since we know that the

19

Page 67

message already contains the sent secrets. The global declaration is updated with
only chan call; for the channel. The updated automaton is depicted in Fig. 1.15.

Listen

Ringing

listen()

call?
exchange()

call!
talk()

start()

Fig. 1.15 Abstract model of the gossipping girls.

The integer version of the model (gossip4.xml) has the following local functions:

int secrets;
void start() { secrets = 1 << id; }
void talk() { tmp = secrets; }
void exchange() { secrets = (tmp |= secrets); }
void listen() { secrets = tmp; }

The boolean version of the model (gossip5.xml) is changed with the functions:

bool secrets[girl_t];
void start() { secrets[id] = true; }
void talk() { tmp = secrets; }
void exchange() { for(i:girl_t) tmp[i] |= secrets[i];

secrets = tmp; }
void listen() { secrets = tmp; }

The exchange function could have been written as follows:

void exchange() {
for(i:girl_t) secrets[i] = (tmp[i] |= secrets[i]);

}

which is almost the same. The difference is that the number of interpreted instruc-
tions is lower in the first case. It is possible to further optimise the model by having
one parameterised shared table and avoid message passing all-together. We leave
this as an exercise for the reader but we notice that this change destroys the nice
design with the local secrets to each process.

1.8.6 Verification

We check the reachability property that all girls will eventually know all secrets. For
the integer version of the model, the property is:

20

Page 68

E<> forall(i:girl_t) forall(j:girl_t)
(Girl(i).secrets & (1 << j))

We can write a shorter but less obvious equivalent formula that takes advantage of
the fact that 2GIRLS − 1 generates a bit mask with the first GIRLS bits set to one:

E<> forall(i:girl_t)
Girl(i).secrets == ((1 << GIRLS)-1)

The formula for the boolean version is:

E<> forall(i:girl_t) forall(j:girl_t)
Girl(i).secrets[j]

The formulas use the for-all construct, which gives compact formulas that automat-
ically scale with the number of girls in the model. The version with the integers
checks with a bit mask that the bits are set.

Table 1.2 shows the resource consumption for the different models with different
number of girls. Experiments are run on an AMD Opteron 2.2GHz with UPPAAL

rev. 2842. The results show how important it is to be careful with the model and to
optimise the model to reduce the state-space whenever possible. We notice that the
model is not even using clocks. The model with integers is faster due to its simplicity
but consumes marginally less memory. The two last models (gossip6 and gossip7)
are discussed in the next paragraph.

Girls 4 5 6 7
gossip0 0.6s/24M 498s/3071M - -
gossip1 1.0s/24M 809s/3153M - -
gossip2 0.1s/1.3M 0.3s/22M 71s/591M -
gossip3 0.1s/1.3M 0.5s/22M 106s/607M -
gossip4 0.1s/1.3M 0.2s/22M 37s/364M -
gossip5 0.1s/1.3M 0.3s/22M 63s/381M -
gossip6 0.1s/1.3M 0.1s/1.3M 3.4s/29M 399s/1115M
gossip7 0.1s/1.3M 0.1s/1.3M 0.3s/21M 29s/108M

Table 1.2 Resource consumption for the different models with different number of girls. Results
are in seconds/M-bytes.

1.8.7 Improving Verification with Symmetry and Progress
Measures

UPPAAL features two major techniques to improve verification. These techniques
concern directly verification and are orthogonal to model optimisation. The first is
symmetry reduction. Since we designed our model to be symmetric from the start,
taking advantage of this feature is done by using a scalar set for the type girl t. The
second feature is the generalised sweep-line method. We need to define a progress
measure to help the search. Furthermore, only the model with booleans is eligible

21

Page 69

for symmetry reduction since we cannot access individual bits in an integers in a
symmetric manner (using scalars).

Symmetry reduction. This technique exploits the structure of states in order
to identify symmetries that occur during verification, in order to minimize
the states-space that needs to be considered. The intuition behind symmetry
reduction is that the order in which state components (automata, variables,
clocks, etc) are stored in a state-vector does not influence the future behaviour
of the system. Ideally, the reduced state-space will have only one state repre-
senting each symmetry equivalence class. As an example consider a protocol
with n functionally identical nodes to implement a mutual exclusion. The only
difference between the nodes is their respective identifier. It is not relevant to
distinguish configurations where node 1 is in state A, node 2 in state B, and
node 3 in state C from configurations where node 2 is in state A, node 3 in
state B, and node 1 in state C. What matter is the number of nodes being in
state A, state B and state C (respectively). This technique has the potential of
giving an exponential gain in both time and memory.

In UPPAAL [17] symmtry reduction is activated whenever a scalar set is
declared. A scalar set is a set of different scalar values that can only be com-
pared for equality. A variable of a given scalar set type can only be set to
another variable of the same scalar set type. Arithmetic operations that would
break symmetry are not supported.

Sweep line method [11]. In models where it is possible to define some progress
in the exploration, UPPAAL can save memory by “forgetting” past states if
it knows it is progressing forward in the exploration. The technique works
by declaring some progress measures that are used by the model-checker to
delete states and save memory when it knows that it is making progress.

The only change required to take advantage of symmetry reduction is for the
definition of the type girl t. We use a scalar set for the new model (gossip6):

typedef scalar[GIRLS] girl_t;

To activate the sweep-line optimisation, we need to define a progress measure
that is cheap to compute and relevant to help the search. It is important that it is
cheap to compute since it will be evaluated for every state. To do so, we add int m;
to the global declarations, we add the progress measure definition after the system
declaration:

progress { m; }

Finally, we compute m in the exchange function as follows:

void exchange() {
m = 0;
for(i:girl_t) {

22

Page 70

m += tmp[i] ˆ secrets[i];
tmp[i] |= secrets[i];

}
}

This measure counts the number of new messages exchanged per communication.
The two last experiments in table 1.2 show that these features give gains with an-
other order of magnitude both in speed and memory. The model still explodes ex-
ponentially, which we cannot avoid given its nature.

1.9 Modelling Tips

In this last section we summarize some of the modelling patterns that we have been
using in our examples as well as present some additional ones.

1.9.1 Active variables

When the value of a variable is not important for the model, one should alwaysreset
it to a default value, e.g., 0. This is what list[i] = 0; does in the dequeue
function of the Train Gate example. If this statement is not here the model still works
but states will keep memory of the last train that was in the queue, thus increasing
the state-space needlessly. The same principle should be applied to all integers.

1.9.2 Value passing

Sometimes it is useful to have one process send a value to another. There are two
ways to do that. The first is to use a meta variable. Such a variable is not part of the
state and can be used only as a temporary place-holder on one transition. Its value is
not reliable between two states. Typically the sender process synchronises with a c!
and writes on a meta variable. Then the receiver process reads it when synchronising
with a c?. Here c is a channel. In practice the instructions are executed first on the
c! side, which explains why this trick works. A variant of this is to write directly
the value into the destination variable on the sender or receiver side if the variables
are shared. The drawback is that this makes for less modular modelling. The second
way to encode value passing is to use arrays of channels. This is recommended for
small ranges. One would declare chan c[5]; and then send i with c[i]!. The
trick is on the receiver where select is used with i : int[0,4]. The receiver can
then receive with c[i]?.

23

Page 71

1.9.3 Multi-cast

In cases when we want to synchronise from one process to several processes ei-
ther from one central sender or in a chain, the following pattern should be used.
Every step of the synchronisation should use a different channel and every interme-
diate location should be committed. Committed locations forbid interleaving with
other non-committed locations. In a given committed state (i.e., a location vector,
a variable vector, and a zone), only the transitions from its committed locations are
allowed. In case of synchronisation, leaving one committed location (as part of the
synchronisation) is enough.

1.9.4 Urgent transitions

The only way to model urgent transitions in UPPAAL is to use urgent channels. The
question remains how to model a simple transition that we want to be urgent by
itself? Simply add a dummy process with a self loop synchronising with go! on an
urgent channel. The transition we want to be urgent synchronises with go?. We note
that if the guard on that transition evaluates to false then delay is allowed (unless the
state itself is urgent or committed).

1.9.5 Model Decoration and Monitors

Sometime the temporal formulas supported by the query language of UPPAAL are
too limited. In such cases, an automaton acting as a monitor with an accepting or
error state can help checking more complex properties involving causality between
values and variables and time.

Using model decoration and monitor is a general technique that consists in
adding to the original model variables or a whole automaton to monitor the
state of the system. This can be used in different ways to measure delays or to
detect error states with some complex causality relationship.

As an example, let us suppose that we want to check a bounded liveness property
of the form φ �≤t ψ , i.e., whenever φ holds for a state then ψ will eventually hold
on all paths starting from that state within t time units. It is not possible to check
this property directly using only the formulas supported. Instead we use a monitor
automaton following the pattern shown in figure 1.16.(a). The states marked φ are
those for which φ should hold, similarly for ψ . The booleanb is set to true or false in
the monitor. Not shown in the automaton are the guards to go between the states that
should monitor the conditions φ and ψ . Those transitions should be made urgent.

24

Page 72

The bottom (dark) states are the states for which the check is active (b is true). The
property to check is then A[](b imply z<= t).

A model can also be checked for non-zenoness with the help of an observer. In
timed automata, it is allowed to have behaviours that will let an infinite amount
of transitions to be fired (take actions) within a finite amount of time. This can be
done by looping or blocking time with invariants and not using resets. Unless proper
guards are used, this may happen but it is seldom a desirable property of the model.
By using the observer of figure 1.16.(b) (let us call it Obs) in parallel with the reset
of the model, one can check the property Obs.A --> Obs.B. In the automaton
C is a constant set to a good value w.r.t. the rest of the model. The value itself is not
very important as long as it is strictly positive.

A model is zeno if it allows an infinite number of discrete transitions to take
place in a finite amount of time. In other words, it contains a loop where time
does not diverge. This is an undesirable behaviour for a real system but it is
very easy to obtain with timed automata. It is sometimes useful to check that
a model does not allow such behaviours.

b=true
z=0

b=false b=false

¬φ

φ ¬ψ

ψ
x==C
x=0

x<=C

A B
C

(a) (b)

Fig. 1.16 Patterns for checking bounded liveness (a) and non-zeno behaviours (b).

1.10 Extensions of the Formalism

The UPPAAL tool suite has been specialised to different application domains. Here
we mention its different variants.

CORA is a specialised version of UPPAAL that implements guided and minimal
cost reachability algorithms [4, 5, 21]. It is suitable in particular for solving cost-
optimal schedulability problems [2, 6]. The extension consists in adding a special
cost variable to the model. The variable is put on location in conjunction with
existing invariants in a cost rate expression of the form cost’ == expr where
expr is an expression that evaluates to a non-negative integer. In addition transition
updates may have discrete cost increases with expressions of the form cost +=
expr with the same kind of expression.

25

Page 73

TRON [20, 22] is a testing tool suited for black-box conformance testing [25, 19]
of timed systems. It is mainly targeted for embedded software commonly found in
various controllers. Testing is done online in the sense that that tests are derived,
executed, and checked while maintaining the connection to the system in real-time.

TIGA [3] is a specialisation of UPPAAL designed to verify systems modelled as
timed game automata where a controller plays against an environment. The tool
synthesises code represented as a strategy to meet control objectives [14, 1, 23, 26].
The control objectives are specified as until or weak-until properties that are the
more general forms of reachability and safety. The tool is based on an on-the-fly
algorithm [9] and has be applied to industrial case studies [18, 10]. The tool can
also handle timed games with partial observability [8] and has been extended [7] to
check for simulation of timed automata and timed game automata.

PORT [15] is a version targeted to component-based modelling and verification.
Its interface is developed as an Eclipse plug-in. The tool supports graphical mod-
elling of internal component behaviour as timed automata and hierarchical compo-
sition of components. It is able to exploit the structure of such systems and apply
partial order reduction techniques successfully [16].

ECDAR [13, 12] is a specialisation of TIGA that implements a recent specifica-
tion theory that combines notions of specifications with a satisfaction relation, a
refinement relation and a set of operators supporting stepwise design. The operators
supported are composition, conjunction, and quotient. Specifications and implemen-
tations are given as timed I/O automata.

References

1. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller Synthesis for Timed Automata. In
Proc. IFAC Symp. on System Structure & Control, pages 469–474. Elsevier Science, 1998.

2. G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader. Scheduling lacquer production by
reachability analysis – a case study. In Workshop on Parallel and Distributed Real-Time
Systems 2005, pages 140–. IEEE Computer Society, 2005.

3. Gerd Behrmann, Agnes Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and
Didier Lime. UPPAAL-TIGA: Time for playing games! In Proceedings of the 19th Interna-
tional Conference on Computer Aided Verification, number 4590 in LNCS, pages 121–125.
Springer, 2007.

4. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, and Judi
Romijn. Efficient guiding towards cost-optimality in UPPAAL. In T. Margaria and W. Yi, ed-
itors, Proceedings of the 7th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, number 2031 in Lecture Notes in Computer Science, pages
174–188. Springer, 2001.

5. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed automata. In
Maria Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli, editors, Proceedings of
the 4th International Workshop on Hybris Systems: Computation and Control, number 2034
in Lecture Notes in Computer Sciences, pages 147–161. Springer, 2001.

6. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling using priced
timed automata. ACM SIGMETRICS Perform. Eval. Rev., 32(4):34–40, 2005.

26

Page 74

7. Peter Bulychev, Thomas Chatain, Alexandre David, and Kim G. Larsen. Efficient on-the-fly
algorithm for checking alternating timed simulation. In Proceedings of the 7th International
Conference on Formal Modeling and Analysis of Timed Systems, number 5813 in LNCS, pages
73–87. Springer, 2009.

8. F. Cassez, A. David, K. G. Larsen, D. Lime, and J.-F. Raskin. Timed control with observation
based and stuttering invariant strategies. In Proceedings of the 5th International Symposium on
Automated Technology for Verification and Analysis, volume 4762 of LNCS, pages 192–206.
Springer, 2007.

9. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime. Effi-
cient on-the-fly algorithms for the analysis of timed games. In CONCUR’05, volume 3653 of
LNCS, pages 66–80. Springer–Verlag, August 2005.

10. Franck Cassez, Jan J. Jessen, Kim G. Larsen, Jean-François Raskin, and Pierre-Alain Reynier.
Automatic synthesis of robust and optimal controllers. In Proceedings of the 12th Interna-
tional Conference on Hybrid Systems: Computation and Control, volume 5469 of LNCS, pages
90–104. Springer, 2009.

11. Søren Christensen, Lars Michael Kristensen, and Thomas Mailund. A sweep-line method for
state space exploration. In Tiziana Margaria and Wang Yi, editors, TACAS, volume 2031 of
Lecture Notes in Computer Science, pages 450–464. Springer, 2001.

12. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. EC-
DAR: An environment for compositional design and analysis of real time systems. In Pro-
ceedings of ATVA 2010, page to appear, 2010.

13. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski. Timed
i/o automata: a complete specification theory for real-time systems. In HSCC, pages 91–100.
ACM, 2010.

14. L. De Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic Algorithms for Infinite-State
Games. In Proc. 12th Conf. on Concurrency Theory (CONCUR’01), volume 2154 of LNCS,
pages 536–550. Springer, 2001.

15. John Håkansson, Jan Carlson, Aurelien Monot, Paul Pettersson, and Davor Slutej.
Component-Based Design and Analysis of Embedded Systems with UPPAAL PORT. In
ATVA, pages 252–257, 2008.

16. John Håkansson and Paul Pettersson. Partial Order Reduction for Verification of Real-Time
Components. In Proc. of the 5th Int. Conf. on FORMATS, LNCS, pages 211–226. Springer-
Verlag, 2007.

17. Martijn Hendriks, Gerd Behrmann, Kim Guldstrand Larsen, Peter Niebert, and Frits W.
Vaandrager. Adding symmetry reduction to uppaal. In Kim Guldstrand Larsen and Peter
Niebert, editors, FORMATS, volume 2791 of Lecture Notes in Computer Science, pages 46–
59. Springer, 2003.

18. Jan Jakob Jessen, Jacob Illum Rasmussen, Kim G. Larsen, and Alexandre David. Guided
controller synthesis for climate controller using UPPAAL-TIGA. In Proceedings of the 19th
International Conference on Formal Modeling and Analysis of Timed Systems, number 4763
in LNCS, pages 227–240. Springer, 2007.

19. Moez Krichen and Stavros Tripakis. Model Checking Software, volume 2989 of LNCS, chapter
Black-Box Conformance Testing for Real-Time Systems, pages 109–126. Springer-Verlag,
2004.

20. K.G. Larsen, M. Mikučionis, and B. Nielsen. Online Testing of Real-time Systems Using
UPPAAL. In FATES’04, LNCS, pages 79–94, Linz, Austria, September 2004.

21. Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul Petters-
son, and Judi Romijn. As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In G. Berry, H. Comon, and A. Finkel, editors, Proceedings of CAV 2001,
number 2102 in Lecture Notes in Computer Science, pages 493–505. Springer, 2001.

22. Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Testing real-time embedded software
using uppaal-tron: an industrial case study. In the 5th ACM international conference on Em-
bedded software, pages 299 – 306. ACM Press New York, NY, USA, September 18–22 2005.

27

Page 75

23. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In Proc. 12th Symp. on Theoretical Aspects of Computer Science (STACS’95), volume 900,
pages 229–242. Springer, 1995.

24. Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
25. Jan Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University of Twente,

1992.
26. S. Tripakis and K. Altisen. Controller synthesis for discrete and dense-time systems. In

Proc. World Congress on Formal Methods in the Development of Computing Systems (FM’99),
volume 1708 of LNCS, pages 233–252. Springer, 1999.

27. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-Time Commu-
nicating Systems By Constraint-Solving. In Dieter Hogrefe and Stefan Leue, editors, Proc. of
the 7th Int. Conf. on Formal Description Techniques, pages 223–238. North–Holland, 1994.

28

Page 76

Chapter 1
An Industrial Application of Uppaal:
The Chess gMAC WSN Protocol∗

Mathijs Schuts, Feng Zhu, Faranak Heidarian†, and Frits Vaandrager

Abstract We report on an industrial application of the timed automaton model
checking tool UPPAAL in the area of wireless sensor networks (WSN). We con-
structed a detailled UPPAAL model of the gMAC clock synchronization algorithm
for a WSN architecture that has been developed by the Dutch company Chess. Using
the UPPAAL model checker, we established that in certain cases a static, fully syn-
chronized network may eventually become unsynchronized if the current algorithm
is used, even in a setting with infinitesimal clock drifts.

1.1 Introduction

Wireless sensor networks consist of autonomous devices that communicate via radio
and use sensors to cooperatively monitor physical or environmental conditions. The
Dutch company Chess has developed a wireless sensor network architecture in the
context of the MyriaNed project. To experiment with its designs, Chess currently
builds prototypes and uses advanced simulation tools. However, due to the huge
number of possible network topologies and clock speeds of nodes, it is difficult to
discover flaws in the clock synchronization algorithm via these methods.

Timed automata model checking has been succesfully used for the analysis of
worst case scenarios for protocols that involve clock synchronization, see for in-
stance [3, 7, 19]. To enable model checking, models need to be more abstract than
for simulation, and also the size of networks that can be tackled is much smaller.

Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box
9010, 6500 GL Nijmegen, The Netherlands, e-mail: M.Schuts@student.ru.nl,FengZu@
student.ru.nl,faranak@cs.ru.nl,F.Vaandrager@cs.ru.nl.

∗ This is an adaptation of a paper that appeared earlier as [15].

† Research supported by NWO/EW project 612.064.610 Abstraction Refinement for Timed Sys-
tems (ARTS).

Page 77

2 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

However, a big advantage is that the full state space of the model can be explored
and worst case scenarios can be found. Within the context of the Quasimodo project,
Chess therefore proposed the analysis of gMAC, the clock synchronization algo-
rithm for its wireless sensor networks, as a case study for timed automata tech-
nology. An informal description of the case study was made available by Chess as
a deliverable of the project [14]. Figure 1.1 displays a sensor node developed by
Chess on which the gMAC algorithm runs.

Fig. 1.1 Chess MyriaNode 2.4 Ghz wireless sensor node

Model checking projects are often carried out a posteriori: the artefact exists
and has been documented in some manual of protocol standard. An advantage of
such projects is that the object of modelling is clear and stable. A disadvantage
may be that the potential impact of the work is limited. The Chess case study is
an example of a situation in which timed automata technology has been applied
during the design of a new system. In such case studies, the object of modelling is
a moving target, which changes every week or sometimes every day. Also, there is
not a single document describing the whole design in a consistent manner. In fact,
certain aspects of the design only exist in the developers mind. The goal of our
research was to find out whether state-of-the-art model checking technology is able
to contribute during the design if this type of embedded real-time systems.

We constructed a detailed model of the gMAC algorithm using the input lan-
guage of the timed automata model checking tool UPPAAL [2]. Our objective was to
build a faithful model of the clock synchronization algorithm as presented in [14].
Nevertheless, our model does not incorporate some features of the full algorithm
and network, such as dynamic slot allocation, synchronization messages, uncertain
communication delays, and unreliable radio communication. At places where the
informal specification of [14] was incomplete or ambiguous, the engineers from
Chess kindly provided us with additional information on the way these issues are
resolved in the current implementation of the network [20].

The clock synchronization algorithm that is used in the current implementation
of Chess is an extension of the Median algorithm of [17]. This algorithm works
reasonably well in practice, but by means of simulation experiments, Assegei [1]
already exposed some flaws in the algorithm: in some test cases where new nodes
join or networks merge, the algorithm fails to converge or nodes may stay out of

Page 78

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 3

sync for a certain period of time. Our analysis with UPPAAL confirms these results.
In fact, we demonstrated that the situation is even worse: in certain cases a static,
fully synchronized network may eventually become unsynchronized if the Median
algorithm is used, even in a setting with infinitesimal clock drifts.

In Section 1.2, we explain the gMAC algorithm in more detail. Section 1.3
describes our UPPAAL model of gMAC. In Section 1.4, the analysis results are
described. Finally, in Section 1.5, we draw some conclusions. In this paper, we
assume that the reader has a basic knowledge of the timed automaton tool UP-
PAAL. For a detailed account of UPPAAL, we refer to the first two chapters of
this handbook. The UPPAAL model described in this paper is available at http:
//www.mbsd.cs.ru.nl/publications/papers/fvaan/chess09/.

1.2 The gMAC Protocol

In this section we introduce the gMAC protocol as it has currently been implemented
by Chess.

1.2.1 Background

The algorithm that we consider is part of the Medium Access Control (MAC) layer,
which is responsible for the access to the wireless shared channel. Within its so-
called gMAC protocol, Chess uses a Time Division Multiple Access (TDMA) pro-
tocol. Time is divided in fixed length frames, and each frame is subdivided into slots
(see Figure 1.2). Slots can be either active or sleeping (idle). During active slots, a

Fig. 1.2 The structure of a time frame

node is either listening for incoming messages from neighboring nodes (RX) or it is
sending a message (TX). During sleeping slots a node is switched to energy saving
mode. Since energy efficiency is a major concern in the design of wireless sensor
networks, the number of active slots is typically much smaller than the total number

Page 79

4 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

of slots (less than 1% in the current implementation). The active slots are placed in
one contiguous sequence which currently is placed at the beginning of the frame.
A node can only transmit a single message per time frame, during its TX slot. The
protocol takes care that neighboring nodes have different TX slots.

One of the greatest challenges in the design of the MAC layer is to find suitable
mechanisms for clock synchronization: we must ensure that whenever some node
is sending all its immediate neighbors are awake and listening. Sensor nodes come
equipped with a crystal clock, which may drift. This may cause the TDMA time
slot boundaries to drift and thus lead to situations in which nodes get out of sync. To
overcome this problem nodes will have to adjust their clocks now and then. Also,
the notion of guard time is introduced: at the beginning of its TX slot, a sender
waits a certain amount of time to ensure that all its neighbors are ready to receive
messages. Similarly, a sender does not transmit for a certain amount of time at the
end of its TX slot. In order to save energy it is important to reduce these guard
times to a minimum. Many clock synchronization protocols have been proposed
for wireless sensor networks, see e.g. [16, 4, 17, 11, 1, 10, 13]. However, these
protocols (with the exception of [17, 1] and possibly [13]) involve a computation
and/or communication overhead that is unacceptable given the extremely limited
resources (energy, memory, clock cycles) available within the Chess nodes.

1.2.2 The Synchronization Algorithm

In each frame, each node broadcasts a single message to its neighbors. The timing of
this message is used for synchronization purposes: a receiver may estimate the clock
value of a sender based on the time when the message is received. Thus there is no
need to send around (logical) clock values. In the current implementation of Chess,
clock synchronization is performed once per frame using the following algorithm
[1, 20]:

1. In its sending slot, a node broadcasts a packet which contains its transmission
slot number.

2. Whenever a node receives a message it computes the phase error, that is the
difference (number of clock cycles) between the expected receiving time and the
actual receiving time of the incoming message. Note that the difference between
the current slot number of the sender and the current slot number of the receiving
node must also be taken into account when calculating the phase errors.

3. After the last active slot of each frame, a node calculates the offset from the
phase errors of all incoming messages in this frame with the following algorithm:

if (number of received messages == 0)
offset = 0;

else if (number of received messages <= 2)
offset = phase error of first received message * gain;

else
offset = median of all phase errors * gain

Page 80

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 5

Here gain is a coefficient with value 0.5, used to prevent oscillation of the clock
adjustment.

4. During the sleeping period, the local clock of each node is adjusted by the com-
puted offset obtained from step 3.

In situations when two networks join, it is possible that the phases of these net-
works differ so much that the nodes in one network are in active slots whereas the
nodes in the other network are in sleeping slots and vice versa. In this case, no mes-
sages can be exchanged between two networks. Therefore in the Chess design, a
node will send an extra message in one (randomly selected) sleeping slot to increase
the chance that networks can communicate and synchronize with each other. This
slot is called the synchronization slot and the message is in the same format as in
the transmission slot. The extreme value of offset can be obtained when two net-
works join: it may occur that the offset is larger than half the total number of
clock cycles of sleeping slots in a frame. Chess uses another algorithm called join
to handle this extreme case. We decided not to model joining of networks and syn-
chronization messages because currently we do not have enough information about
the join algorithm.

1.2.3 Guard Time

The correctness condition for gMAC that we would like to establish is that whenever
a node is sending all its neighbors are in receiving mode. However, at the moment
when a node enters its TX slot we cannot guarantee, due to the phase errors, that
its neighbors have entered the corresponding RX slot. This problem is illustrated in
Figure 1.3 (a). Given two nodes 1 and 2, if a message is transmitted during the entire
sending slot of node 1 then this message may not be successfully received by node
2 because of the imperfect slot alignment. Taking the clock of node 1 as a reference,
the clock of node 2 may drift backwards or forwards. In this situation, node 1 and
node 2 may have a different view of the current slot number within the time interval
where node 1 is sending a message.

To cope with this problem, messages are not transmitted during the entire sending
slot but only in the middle, as illustrated in Figure 1.3 (b). Both at the beginning and
at the end of its sending slot, node 1 does not transmit for a preset period of g
clock ticks, in order to accomodate the forwards and backwards clock drift of node
2. Therefore, the time available for transmission equals the total length of the slot
minus 2g clock ticks.

1.2.4 Radio Switching Time

The radio of a wireless sensor node can either be in sending mode, or in receiv-
ing mode, or in idle mode. Switching from one mode to another takes time. In the

Page 81

6 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

Fig. 1.3 The need for introducing guard times

current implementation of the Chess gMAC protocol, the radio switching time is
around 130µsec. The time between clock ticks is around 30µsec and the guard time
g is 9 clock ticks. Hence, in the current implementation the radio switching time is
smaller than the guard time, but this may change in future implementations. If the
first slot in a frame is an RX slot, then the radio is switched to receiving mode some
time before the start of the frame to ensure that the radio will receive during the
full first slot. However if there is an RX slot after the TX slot then, in order to keep
the implementation simple, the radio is switched to the receiving mode only at the
start of the RX slot. Therefore messages arriving in such receiving slots may not be
fully received. This issue may also affect the performance of the synchronization
algorithm.

1.3 Uppaal Model

In this section, we describe the UPPAAL model that we constructed of the gMAC
protocol.

We assume a finite, fixed set of wireless nodes Nodes = {0, . . . ,N− 1}. The
behavior of an individual node id ∈ Nodes is described by five timed automata
Clock(id), Receiver(id), Sender(id), Synchronizer(id) and Controller(id). Figure 1.4
shows how these automata are interrelated. All components interact with the clock,
although this is not shown in Figure 1.4. Automaton Clock(id) models the hard-
ware clock of node id, automaton Sender(id) the sending of messages by the radio,
automaton Receiver(id) the receiving part of the radio, automaton Synchronizer(id)
the synchronization of the hardware clock, and automaton Controller(id) the control
of the radio and the clock synchronization.

Table 1.1 lists the parameters that are used in the model (constants in UPPAAL
terminology), together with some basic constraints. The domain of all parameters is
the set of natural numbers. We will now describe the five automaton templates used
in our model.

Page 82

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 7

Fig. 1.4 Message flow in the model

Parameter Description Constraints
N number of nodes 0 < N
C number of slots in a time frame 0 < C
n number of active slots in a time frame 0 < n≤ C
tsn[id] TX slot number for node id 0≤ tsn[id] < n
k0 number of clock ticks in a time slot 0 < k0

g guard time 0 < g
r radio switch time 0≤ r
min[id] minimal time between two clock ticks of node id 0 < min[id]
max[id] maximal time between two clock ticks of node id min[id]≤max[id]

Table 1.1 Protocol parameters

Clock

Timed automaton Clock(id) models the behavior of the hardware clock of node
id. The automaton is shown in Figure 1.5. At the start of the system state variable
csn[id], that records the current slot number, is initialized to C− 1, that is, to the
last sleeping slot. Hardware clocks are not perfect and so we assume a minimal
time min[id] and a maximal time max[id] between successive clock ticks. Integer
variable clk[id] records the current value of the hardware clock. For convenience
(and to reduce the size of the state space), we assume that the hardware clock is
reset at the end of each slot, that is after k0 clock ticks. Also, a state variable csn[id],
which records the current slot number of node id, is updated each time at the start
of a new slot.

Sender

The sending behavior of the radio is described by the automaton Sender[id] shown
in Figure 1.6. The behavior is rather simple. When the controller asks the sender
to transmit a message (via a start sending[id] signal), the radio first switches to
sending mode (this takes r clock ticks) and then transmits the message (this takes
k0−2 ·g ticks). Immediately after the message transmission has been completed, an

Page 83

8 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

tick[id]!
x >= min[id]X0

csn[id]:=C−1

x := 0,
clk[id] := (clk[id] + 1) % k0,
csn[id]:= (clk[id]==0)?((csn[id]+1)%C):csn[id]

x <= max[id]

Fig. 1.5 Automaton Clock[id]

counter := 0

counter++
counter++

end_sending[id]!

start_message[id]!

end_message[id]!

tick[id]?
tick[id]?

start_sending[id]?

Switching_on_TX Sending

counter := 0

counter == r

Idle

counter == k0 − 2*g

Fig. 1.6 Automaton Sender[id]

end sending[id] signal is sent to the controller to indicate that the message has been
sent.

Receiver

The automaton Receiver[id] models the receiving behavior of the radio. The automa-
ton is shown in Figure 1.7. Again the behavior is rather simple. When the controller
asks the receiver to start receiving, the receiver first switches to receiving mode (this
takes r ticks). After that, the receiver may receive messages from all its neighbors.
A function neighbor is used to encode the topology of the network: neighbor(j, id)
holds if messages sent by j can be received by id. Whenever the receiver detects the
end of a message transmission by one of its neighbors, it immediately informs the
synchronizer via a message received[id] signal. At any moment, the controller can
switch off the receiver via an end receiving[id] signal.

Page 84

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 9

end_receiving[id]?

urg!message_received[id]!

start_receiving[id]?

tick[id]?

neighbor(j,id)

counter++

counter:=0

end_message[j]?

Switching_on_RXReceiving

Idle

sender[id] := j

counter==r

j:Nodes

Fig. 1.7 Automaton Receiver[id]

Controller

The task of the Controller[id] automaton, displayed in Figure 1.8, is to put the radio
in sending and receiving mode at the appropriate moments. Figure 1.9 shows the
definition of the predicates used in this automaton. The radio should be put in send-
ing mode r ticks before message transmission starts (at time g in the transmission
slot of id). If r > g then the sender needs to be activated r−g ticks before the end of
the slot that precedes the transmission slot. Otherwise, the sender must be activated
at tick g− r of the transmission slot. If the first slot in a frame is an RX slot, then
the radio is switched to receiving mode r time units before the start of the frame
to ensure that the radio will receive during the full first slot. However if there is an
RX slot after the TX slot then, as described in Section 1.2.4, the radio is switched
to the receiving mode only at the start of the RX slot. The controller stops the radio
receiver whenever either the last active slot has passed or the sender needs to be
switched on.

go_receive()

go_sleep() || go_send()

start_sending[id]!
go_send()

Radio_RX

Idle
end_sending[id]?

end_receiving[id]!

start_receiving[id]!

Radio_TX

Fig. 1.8 Automaton Controller[id]

All the channels used in the Controller[id] automaton (start sending, end sending,
start receiving, end receiving and synchronize) are urgent, which means that these
signals are sent at the moment when the transitions are enabled.

Page 85

10 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

bool go_send(){return (r>g)
?((csn[id]+1)%C==tsn[id] && clk[id]==k0-(r-g))
:(csn[id]==tsn[id] && clk[id]==g-r);}

bool go_receive(){return
(r>0 && 0!=tsn[id] && csn[id]==C-1 && clk[id]==k0-r)
|| (r==0 && 0!=tsn[id] && csn[id]==0)
|| (0<csn[id] && csn[id]<n && csn[id]-1==tsn[id]);}

bool go_sleep(){return csn[id]==n;}

Fig. 1.9 Predicates used in Controller[id]

Synchronizer

Finally, automaton Synchronizer[id] is shown in Figure 1.10. The automaton main-
tains a list of phase differences of all messages received in the current frame, using
a local array phase errors. Local variable msg counter records the number of mes-
sages received.

offset := compute_phase_correction(),
clk[id] := (csn[id]*k0 + offset)%k0,
csn[id] := (csn[id]*k0 + offset)/k0,
clear_messages()

store_phase_error(sender[id]) message_received[id]?

urg!

tick[id]?

csn[id] == (C+n)/2 && has_message()

Fig. 1.10 Automaton Synchronizer[id]

void store_phase_error(int sender)
{
phase_errors[msg_counter] =

(tsn[sender] * k0 + k0 - g)
- (csn[id] * k0 + clk[id]);

msg_counter++
}

Fig. 1.11 Function used in Synchronizer[id]

Whenever the receiver gets a message from a neighboring node (message received[id]),
the synchronizer computes and stores the phase difference using the function
store phase error at the next clock tick. Here the phase difference is defined as the

Page 86

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 11

expected time at which the message transmission ends (tsn[sender] * k0 +
k0 - g) minus the actual time at which the message transmission ends (csn[id]
* k0 + clk[id]), counting from the start of the frame. The complete definition
is listed in Figure 1.11. Recall that in our model we abstract from transmission de-
lays.

As explained in Section 1.2.2, the synchronizer computes the value of the phase
correction (offset) and adjusts the clock during the sleeping period of a frame.3

Hence, in order to decide in which slot we may perform the synchronization, we
need to know the maximal phase difference between two nodes. In our model, we
assume no joining of networks. When a node receives a message from another node,
the phase difference computed using this message will not exceed the length of an
active period. Otherwise one of these two nodes will be in sleeping period while the
other is sending, hence no message can be received at all. In practice, the number of
sleeping slots is much larger than the number of active slots. Therefore it is safe to
perform the adjustment in the middle of sleeping period because the desired property
described above holds. When the value of gain is smaller than 1 the maximal phase
difference will be even smaller.

The function of compute phase correction implements exactly the algorithm
listed in Section 1.2.2.

1.4 Analysis Results

In this section, we present some verification results that we obtained for simple
instances of the model that we described in Section 1.3. We checked the following
invariant properties using the UPPAAL model checker:

INV1 : A[] forall (i: Nodes) forall (j : Nodes)
SENDER(i).Sending && neighbor(i,j)imply RECEIVER(j).Receiving

INV2 : A[] forall (i:Nodes) forall (j:Nodes) forall (k:Nodes)
(SENDER(i).Sending && neighbor(i,k) && SENDER(j).Sending

&& neighbor(j,k)) imply i == j

INV3 : A[] not deadlock

The first property asserts that always when some node is sending, all its neighbors
are listening. The second property states that never two different neighbors of a
given node are sending simultaneously. The third property states that the model
contains no deadlock, in the sense that in each reachable state at least one component
can make progress. The three invariants are basic sanity properties of the gMAC
protocol, at least in a setting with a static topology and no transmission failures.

We used UPPAAL on a Sun Fire X4440 machine (with 4 Opteron 8356 2.3 Ghz
quad-core processors and 128 Gb DDR2-667 memory) to verify instances of our

3 Actually, in the implementation the offset is used to compute the corrected wakeup time, that is
the moment when the next frame will start [20]. In our model we reset the clock, but this should
be equivalent.

Page 87

12 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

model with different number of nodes, different network topologies and different
parameter values. Table 1.2 lists some of our verification results, including the re-
sources UPPAAL needed to verify if the network is synchronized or not. In all ex-
periments, C = 10 and k0 = 29.

Clearly, the values of network parameters, in particular clock parameters min and
max, affect the result of the verification. Table 1.2 shows several instances where the
protocol is correct for perfect clocks (min = max) but fails when we decrease the
ratio min

max . It is easy to see that the protocol will always fail when r ≥ g. Consider
any node i that is not the last one to transmit within a frame. Right after its sending
slot, node i needs r ticks to get its radio into receiving mode. This means that —
even with perfect clocks — after g ticks another node already has started sending
even though the radio of node i is not yet receiving. Even when r < g, the radio
switching time has a clear impact on correctness: the larger the radio switching
time is, the larger the guard time has to be in order to ensure correctness. Using
UPPAAL, we can fully analyze line topologies with at most seven nodes if all clocks
are perfect. For larger networks UPPAAL runs out of memory. A full parametric
analysis of this protocol will be challenging, also due to the impact of the network
topology and the selected slot allocation. Using UPPAAL, we discovered that for
certain topologies and slot allocations the Median algorithm may always violate
the above correctness assertions, irrespective of the choice of the guard time. For
example, in a 4 node-network with clique topology and min and max of 100.000
and 100.001, respectively, if the median of the clock drifts of a node becomes −1,
the median algorithm divides it by 2 and generates 0 for clock correction value and
indeed no synchronization happens. If this scenario repeats in three consecutive time
frames for the same node, that node runs g = 3 clock cycles behind and gets out of
sync.

Another example in which the algorithm may fail is displayed in Figure 1.12.
This network has 4 nodes, connected by a line topology, that send in slots 1, 2, 3,
1, respectively. Since all nodes have at most two neighbors, the Median algorithm

tsn[0]=1

Node 0 Node 1 Node 2 Node 3

tsn[1]=2 tsn[2]=3 tsn[3]=1

Fig. 1.12 A problematic network configuration

prescribes that nodes will correct their clocks based on the first phase error that they
see in each frame. For the specific topology and slot allocation of Figure 1.12, this
means that node 0 adjusts its clock based on phase errors of messages it gets from
node 1, node 1 adjusts its clock based on messages from node 0, node 2 adjusts
its clock based on messages from node 3, and node 3 adjusts its clock based on
messages from node 2. Hence, for the purpose of clock synchronization, we have
two disconnected networks! Thus, if the clock rates of nodes 0 and 1 are lower
than the clock rates of nodes 2 and 3 by just an arbitrary small margin, then two
subnetworks will eventually get out of sync. These observations are consistent with

Page 88

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 13

N/n Topology g r min
max

CPU Time Peak Memory Usage Sync

3/3 clique 2 0 1 1.944 s 24,180 KB YES
3/3 clique 2 0 100,000

100,001 492.533 s 158,064 KB NO
3/3 clique 2 1 1 1.976 s 68.144 KB YES
3/3 clique 2 0 100,000

100,001 116.68 s 68,144 KB NO
3/3 line 2 0 1 1.068 s 68,144 KB YES
3/3 line 2 0 100,000

100,000 441.308 s 68,144 KB NO
3/3 line 2 1 1 1.041 s 68,144 KB YES
3/3 line 2 1 100,000

100,000 99.274 s 68,144 KB NO
3/3 clique 3 0 1 1.851 s 28,040 KB YES
3/3 clique 3 0 100,000

100,001 575.085 s 272,312 KB NO
3/3 clique 4 0 350

351 115.166 s 516,636 KB NO
3/3 clique 4 0 351

352 147.864 s 630,044 KB YES
3/3 clique 3 2 1 1.827 s 24,184 KB YES
3/3 clique 3 2 100,000

100,001 109.633 s 26,056 KB NO
3/3 clique 4 2 100,000

100,001 533.345 s 350,504 KB NO
3/3 clique 5 2 587

588 72.473 s 332,552 KB NO
3/3 clique 5 2 588

589 99.101 s 407,884 KB YES
3/3 clique 3 5 1 0.076 s 21,884 KB NO
3/3 line 3 0 1 1.05 s 23,348 KB YES
3/3 line 3 0 451

452 29.545 s 148,012 KB NO
3/3 line 3 0 452

453 35.257 s 148,012 KB YES
3/3 line 3 2 1 1.052 s 22,916 KB YES
3/3 line 3 2 100,000

100,001 82.383 s 78,360 KB NO
3/3 line 4 2 100,000

100,001 414.201 s 53,752 KB NO
3/3 line 5 2 453

454 33.16 s 147,796 KB NO
3/3 line 5 2 454

455 38.811 s 162,184 KB YES
3/3 line 3 5 1 0.048 s 78,360 KB NO
4/4 clique 3 0 1 231.297 s 1,437,643 KB YES
4/4 clique 3 0 450

451 Memory Exhausted
4/4 clique 3 2 1 229.469 s 1,438,368 KB YES
4/4 clique 3 2 100,000

100,001 14,604.531 s 2,317,040 KB NO
4/3 line 3 0 1 4.749s s 94,748 KB YES
4/3 line 3 0 450

451 Memory Exhausted
4/3 line 3 2 1 4.738 s 94,748 KB YES
4/3 line 3 2 100,000

100,001 1,923.655 s 1,264,844 KB YES
5/5 clique 3 0 1 Memory Exhausted
5/5 clique 3 2 1 Memory Exhausted
5/3 line 3 0 1 46.54 s 249,976 KB YES
5/3 line 3 2 1 46.489 s 250,880 KB YES
6/3 line 3 0 1 508.19 s 2,316,416 KB YES
6/3 line 3 2 1 502.871 s 2,317,040 KB YES
7/3 line 3 0 1 Memory Exhausted
7/3 line 3 2 1 Memory Exhausted

Table 1.2 Model checking experiments

Page 89

14 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

results that we obtained using UPPAAL. If, for instance, we set min[id] = 99 and
max[id] = 100, for all nodes id then neither INV1 nor INV2 holds. In practice, it is
unlikely that the above scenario will occur due to the fact that in the implementation
slot allocation is random and dynamic. Due to regular changes of the slot allocation,
with high probability node 1 and node 2 will now and then adjusts their clocks based
on messages they receive from each other.

However, variations of the above scenario may occur in practice, even in a setting
with dynamic slot allocation. In fact, the above synchronization problem is also not
restricted to line topologies. We call a subset C of nodes in a network a community
if each node in C has more neighbors within C than outside C [12]. For any network
in which two disjoint communities can be identified, the Median algorithm allows
for scenarios in which these two parts become unsynchronized. Due to the median
voting mechanism, the phase errors of nodes outside a community will not affect the
nodes within this community, independent of the slot allocation. Therefore, if nodes
in one community A run slow and nodes in another community B run fast then the
network will become unsynchronized eventually, even in a setting with infinitesimal
clock drifts. Figure 1.13 gives an example of a network with two communities.

Fig. 1.13 Another problematic network configuration with two communities

Using UPPAAL, we succeeded to analyze instances of the simple network with
two communities displayed in Figure 1.14. The numbers on the vertices are the node
identifiers and the transmission slot numbers, respectively. Table 1.3 summarizes the
results of our model checking experiments.

Page 90

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 15

Fig. 1.14 A network with two communities that we analyzed using UPPAAL

g r
Fast Clock Slow Clock CPU Time Peak Memory UsageCycle Length Cycle Length

2 0 1 1 Memory Exhausted
2 0 99 100 457.917 s 2,404,956 KB
2 1 99 100 445.148 s 2,418,032 KB
3 0 99 100 416.796 s 2,302,548 KB
3 2 1 1 Memory Exhausted
3 2 99 100 22.105 s 83,476 KB
3 2 451 452 798.121 s 3,859,104 KB
3 2 452 453 Memory Exhausted
4 0 99 100 424.935 s 2,323,004 KB
4 1 99 100 464.503 s 2,462,176 KB
4 2 99 100 420.742 s 2,323,952 KB

Table 1.3 Model checking experiments of a network with two communities

We still need to explore how realistic our counterexamples are. We believe that
network topologies with multiple communities occur in many WSN applications.
Nevertheless, in practice the gMAC protocol appears to perform quite well for static
networks. It might be that problems do not occur so often in practice due to the
probabilistic distributions of clock drift and jitter.

1.5 Conclusions

We presented a detailled UPPAAL model of relevant parts of the clock synchroniza-
tion algorithm that is currently being used in a wireless sensor network that has
been developed by Chess [14, 20]. The final model that we presented here may look
simple, but the road towards this model was long and we passed through numer-
ous intermediate versions on the way. Using UPPAAL, we established that in certain
cases a static, fully synchronized network may eventually become unsynchronized

Page 91

16 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

if the current Median algorithm is used, even in a setting with infinitesimal clock
drifts.

In [8], we proposed a slight variation of the gMAC algorithm that does not have
the correctness problems of the Median algorithm. However, our algorithm may
be of practical interest (although certainly some changes are required). Assegei [1]
proposed and simulated three alternative algorithms, to be used instead of the Me-
dian algorithm, in order to achieve decentralized, stable and energy-efficient syn-
chronization of the Chess gMAC protocol. It should be easy to construct UPPAAL
models for Assegei’s algorithms: basically, we only have to modify the definition
of the compute phase correction function. Recently, Pussente & Barbosa
[13], also proposed a very interesting new clock synchronization algorithm — in a
somewhat different setting — that achieves an O(1) worst-case skew between the
logical clocks of neighbors. Much additional research is required to analyze correct-
ness and performance of these algorithms in the realistic settings of Chess with large
networks, message loss, and network topologies that change dynamically. Starting
from our current UPPAAL model, it should be relatively easy to construct models
for the alternative synchronization algorithms in order to explore their properties.

Analysis of clock synchronization algorithms for wireless sensor networks is an
extremely challenging area for quantitative formal methods. One challenge is to
come up with the right abstractions that will allow us to verify larger instances of
our model. Another challenge is to make more detailled (probabilistic) models of
radio communication and to apply probabilistic model checkers and specification
tools such as PRISM [9] and CaVi [5].

Several other recent papers report on the application of UPPAAL for the analysis
of protocols for wireless sensor networks, see e.g. [6, 5, 18, 8]. In [21], UPPAAL is
also used to automatically test the power consumption of wireless sensor networks.
Our paper confirms the conclusions of [6, 18]: despite the small number of nodes
that can be analyzed, model checking provides valuable insight in the behavior of
protocols for wireless sensor networks, insight that is complementary to what can
be learned through the application of simulation and testing.

In order to keep up with the design team, it is essential to have frequent meetings
between the modeler and the designers. Preferably, the modeler should be part of
the design team and work at the same location.

Acknowledgements We are most grateful to Frits van der Wateren for his patient explanations
of the subtleties of the gMAC protocol. We thank Hernán Baró Graf for spotting a mistake in an
earlier version of our model, and Mark Timmer for pointing us to the literature on communities in
networks. Finally, we thank the anonymous reviewers for their comments.

References

1. F.A. Assegei. Decentralized frame synchronization of a TDMA-based wireless sensor net-
work. Master’s thesis, Eindhoven University of Technology, Department of Electrical Engi-
neering, 2008.

Page 92

1 An Industrial Application of Uppaal: The Chess gMAC WSN Protocol 17

2. G. Behrmann, A. David, and K.G. Larsen. A tutorial on Uppaal. In M. Bernardo and F. Cor-
radini, editors, Formal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software Systems, SFM-
RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume 3185 of Lecture
Notes in Computer Science, pages 200–236. Springer, 2004.

3. J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K.G. Larsen, F. Larsson, P. Pettersson, and
Wang Yi. Verification of an audio protocol with bus collision using UPPAAL. In R. Alur and
T.A. Henzinger, editors, Proceedings of the 8th International Conference on Computer Aided
Verification, New Brunswick, NJ, USA, volume 1102 of Lecture Notes in Computer Science,
pages 244–256. Springer-Verlag, July/August 1996.

4. R. Fan and N.A. Lynch. Gradient clock synchronization. Distributed Computing, 18(4):255–
266, 2006.

5. A. Fehnker, M. Fruth, and A. McIver. Graphical modelling for simulation and formal analysis
of wireless network protocols. In M. Butler, C.B. Jones, A. Romanovsky, and E. Troubitsyna,
editors, Methods, Models and Tools for Fault Tolerance, volume 5454 of Lecture Notes in
Computer Science, pages 1–24. Springer, 2009.

6. A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of the lmac protocol for
wireless sensor networks. In J. Davies and J. Gibbons, editors, Integrated Formal Methods,
6th International Conference, IFM 2007, Oxford, UK, July 2-5, 2007, Proceedings, volume
4591 of Lecture Notes in Computer Science, pages 253–272. Springer, 2007.

7. K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formal modeling and analysis of an au-
dio/video protocol: an industrial case study using uppaal. In Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS ’97), December 3-5, 1997, San Francisco, CA, USA,
pages 2–13. IEEE Computer Society, 1997.

8. F. Heidarian, J. Schmaltz, and F.W. Vaandrager. Analysis of a clock synchronization proto-
col for wireless sensor networks. In A. Cavalcanti and D. Dams, editors, Proceedings 16th
International Symposium of Formal Methods (FM2009), Eindhoven, the Netherlands, Novem-
ber 2-6, 2009, volume 5850 of Lecture Notes in Computer Science, pages 516–531. Springer,
2009.

9. M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0: A tool for probabilistic model
checking. In Proceedings of the 1st International Conference on Quantitative Evaluation of
Systems (QEST04), pages 322–323. IEEE Computer Society, 2004.

10. C. Lenzen, T. Locher, and R. Wattenhofer. Clock synchronization with bounded global and
local skew. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 509–518. IEEE Computer Society,
2008.

11. L. Meier and L. Thiele. Gradient clock synchronization in sensor networks. Technical Report
219, Computer Engineering and Networks Laboratory, ETH Zurich, 2005.

12. M.E.J. Newman. Detecting community structure in networks. The European Physical Journal
B, 38:321–330, 2004.

13. R.M. Pussente and V.C. Barbosa. An algorithm for clock synchronization with the gradient
property in sensor networks. Journal of Parallel and Distributed Computing, 69(3):261 – 265,
2009.

14. QUASIMODO. Preliminary description of case studies, January 2009. Deliverable 5.2 from
the FP7 ICT STREP project 214755 (QUASIMODO).

15. M. Schuts, F. Zhu, F. Heidarian, and F.W. Vaandrager. Modelling clock synchronization in the
Chess gMAC WSN protocol. In S. Andova et.al, editor, Proceedings Workshop on Quantita-
tive Formal Methods: Theory and Applications (QFM’09), volume 13 of Electronic Proceed-
ings in Theoretical Computer Science, pages 41–54, 2009.

16. B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchronization for wireless sensor
networks: a survey. Ad Hoc Networks, 3(3):281 – 323, 2005.

17. R. Tjoa, K.L. Chee, P.K. Sivaprasad, S.V. Rao, and J.G Lim. Clock drift reduction for rel-
ative time slot tdma-based sensor networks. In Proceedings of the 15th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC2004), pages
1042–1047, September 2004.

Page 93

18 Mathijs Schuts, Feng Zhu, Faranak Heidarian, and Frits Vaandrager

18. S. Tschirner, L. Xuedong, and W. Yi. Model-based validation of qos properties of biomedical
sensor networks. In L. de Alfaro and J. Palsberg, editors, Proceedings of the 8th ACM & IEEE
International conference on Embedded software, EMSOFT 2008, Atlanta, GA, USA, October
19-24, 2008, pages 69–78. ACM, 2008.

19. F.W. Vaandrager and A.L. de Groot. Analysis of a biphase mark protocol with Uppaal and
PVS. Formal Aspects of Computing Journal, 18(4):433–458, December 2006.

20. F. van der Wateren. Personal communication, April 2009.
21. M. Woehrle, K. Lampka, and L. Thiele. Exploiting timed automata for conformance testing

of power measurements. In J. Ouaknine and F. W. Vaandrager, editors, Formal Modeling
and Analysis of Timed Systems, 7th International Conference, FORMATS 2009, Budapest,
Hungary, September 14-16, 2009. Proceedings, volume 5813 of Lecture Notes in Computer
Science, pages 275–290. Springer, 2009.

Page 94

Design of safe real-time embedded systems in
UPPAAL

Bert Bos, Teun van Kuppeveld, Marcel Verhoef and Jiansheng Xing

Abstract In this chapter we discuss a case study inspired on an example from
industrial practice, the development of a self-balancing scooter. It has been carried
out to evaluate the use of timed automata, whereby the design of the discrete control
software, including fault handling, was modelled using UPPAAL. The case study
taught us that the specification could be made more precise due to the development
of a UPPAAL model of the system behaviour and that the resulting implementation
worked “first time right’, according to what was specified in the model. The case
study showed that a supposedly simple system unveils its complexity already at this
level of abstraction and the model was needed to simplify this structure.

1 Introduction

System specifications are generally written as text documents, supported by figures
to show the desired system behaviour. It appears that many behavioural questions
remain unasked and lead to modifications during test and integration phase. What
we demonstrate is that modelling such requirements unveils issues that were not
foreseen in the specifications, but are important for the user behaviour and to clarify
the structure of the solution. Note that many time projects initially focus on the
main and desired system behaviour and while adding more and more detail into
the system description, incorporate system behaviour related to start-up, shutdown
and reaction to unsafe situations is added later and informally. However Start-up,
shutdown, and safety reactions have a high impact on the user perception of the

Bert Bos, Teun van Kuppeveld, Marcel Verhoef
Chess Embedded Technology, Lichtfabriekplein 1, 2031 TE Haarlem, The Netherlands, e-mail:
Bert.Bos@chess.nl, e-mail: Teun.van.Kuppeveld@chess.nl and e-mail: Marcel.Verhoef@chess.nl

Jiansheng Xing
University of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, To
Be Written, The Netherlands, e-mail: xingj@ewi.utwente.nl

1

Page 95

2 Bert Bos, Teun van Kuppeveld, Marcel Verhoef and Jiansheng Xing

system, as we will illustrate in our example. We will also show that preparing a
state model of the system behaviour helps to structure and complete the system
behavioural descriptions, and could be done as part of the system level design. This
work focuses on system level design, in particular on the interaction between user
and system. We intend to model the system behaviour for both nominal and for
non-nominal situations.

1.1 Approach followed

We took the self-balancing scooter as a system to experiment with, as this was used
before in a case study about heterogeneous design [1, 2]. The result of that study was
a working self-balancing scooter [3] such that the real-time control for forward and
backward movement worked properly. This is the system behaviour as seen from
the point of view of control engineering. However it is , without proper switch-on /
switch-off functions, left/right steering or any form of safety handling, which shows
as system behaviour to the user. We modelled this system behaviour in Uppaal [4]
in order to define and to verify the behaviour.

2 Self-balancing scooter – case study description

The system under study is a self-balancing scooter. In our case we assume a self-
balancing scooter with the following additional technical properties:

1. For the implementation of the system control a distributed control platform was
foreseen, i.e. that the control electronics is divided over two identical parts, one
for each wheel. Each unit performs real-time / continuous time control for one
wheel individually. The system behaviour, being distributed over two controllers
introduces some interesting complications, for instance controllers need to agree
on when to start or stop powering the wheels.

2. The self-balancing scooter is equipped with one power supply, one sensor plat-
form, one on/off switch and one steering lever. The sensor platform exists of a
steering joystick, an acceleration sensor and a gyroscope. Both control electron-
ics need to be fed by the voltage supply and sensor platform.

3. The control electronics should be based on a FPGA. This is not essential, but is
useful to know.

4. Ideally, the system should not be switched on or off by the user, but switches on
and off ”automatically”. In this paper we simplified this an on/off switch con-
trolled by the user.

5. The system should not harm the user. Safety measures must be foreseen. The
motors may be powered when all conditions are safe and need to be unpowered
when an unsafe situation is detected.

Page 96

Design of safe real-time embedded systems in UPPAAL 3

The following figure shows a simplified overview of the mechanical system.

Fig. 1 Synoptic view of the self-balancing scooter

2.1 Informal description of the system behavior

The system behaviour is defined in three use cases:

1. A user scenario to describe the use of the scooter from start of a ride to the finish.
2. A safety scenario, to identify an unsafe situation, react on it and, if possible, how

to recover from it.
3. Distributed control, to describe process in the two identical controllers.

2.1.1 User scenario

The ultimate goal is to treat the self-balancing scooter as a classical bicycle, i.e.
grab it from the storage, the vehicle detects by itself that the user intends to ride on
it so, power the electronics and when safe, start balancing by powering the motors.
In the current intermediate step we ask the user to toggle a switch to power the
controller electronics. The user holds the vehicle vertical for some time after which
the electronic controller powers the motors and the user can step on the vehicle
for a ride. To stop using the vehicle, the user simply steps off and switches off the
electronics. To control the motion of the vehicle the user leans forward or backward

Page 97

4 Bert Bos, Teun van Kuppeveld, Marcel Verhoef and Jiansheng Xing

to move in the forward or backward direction. The user operates a left/right joystick
for the left/right rotation.

2.1.2 Safety scenario

Safety is modelled fairly binary: safe or un-safe. Several parameters may lead to an
un-safe situation, for instance motor current too high, lean angle too large, battery
charge too low, safety key pulled out and data communication errors. We decided
to monitor these parameters, and signal an alarm if the pre-set threshold is violated.
The handing for all alarms is then identical: immediately stop powering both motors,
so that they are in free running mode. Note that breaking the motors in case of the
self-balancing scooter is not a good idea, as you would hit the floor harshly. After
an alarm occurred and the motors are unpowered, the system should return to a state
from where it may recover after the cause of the error has disappeared.. The safety
scenario deals with signaling an alarm, react on it and recover from that alarm.
During this process new alarms may pop up and must be dealt with.

2.1.3 Distributed control

As stated before, each wheel has its own control electronics. Both controllers re-
ceive sensor data and determine individually the signal (power) to their motor. The
real-time control is handled autonomously by each of the two controllers. Also the
power-on, power-down and (un-) powering the motors are handled autonomously
by each of the controllers. However, the controllers need to interact to synchronise
their actions: both controller start to (un-) power their motor simultaneously un-
power the motors simultaneously in case of an error. Simultaneously means within
a limited number of clock cycles. The use case is as follows. A controller powers up
after the on/off switch was set to on. After power up it checks whether it is safe to
start to power the wheel. In case that it is safe to start it informs the other controller
about this and waits for the complementary signal from the other controller. . After
both controllers are ready to power the motor, they will do so and start to run the
real-time control. When a controller detects an error, it will stop powering its motor
and inform the other controller. Note that detection of an error includes receiving an
error signal from the other controller..

2.2 Electronics setup

A block diagram of the electronics is shown in figure 2. It consists of two, three
phase, Brush-less DC motors of which the angular position is determined by Hall
sensors. Each of the motors is powered through an H-bridge, which serves as a
power amplifier between the FPGA and the motor. The FPGA board (FPGA = Field

Page 98

Design of safe real-time embedded systems in UPPAAL 5

Programmable Gate Array) is the programmable logic that runs the commutation,
the real time control and the system behaviour logic. The FPGA also reads the sen-
sor and input data and forwards this to the other FPGA board such that both con-
trollers operate based on the same information. The FPGA boards are connected by
a parallel bus interface with error detection.

Fig. 2 Overview of the self-balancing scooter electronics architecture

3 UPPAAL model of the self-balancing scooter case study

The Uppaal model evolved several times and was simplified over time, taking away
unnecessary processes, moved to focus on distributed system control and makes a
clear distinction between the environment and the to be developed control software.

Note that the system design involves a multidisciplinary view regarding the elec-
tronics, the controller design, and system behaviour .All aspects may be changed to
optimise for the desired system behaviour. After having developed and implemented
an untimed Uppaal model, we completed a timed automata model in Uppaal.

The following paragraphs give a description of the Uppaal model and verification
results of the timed Uppaal model.

Page 99

6 Bert Bos, Teun van Kuppeveld, Marcel Verhoef and Jiansheng Xing

3.1 The environment model

The environment model models that parts that interface with the controller software.
These are a user, hardware peripherals and failures.

3.1.1 User

The user process models the behaviour of the user during nominal behaviour and
it triggers abnormal behaviour. With Ignition! the user toggles the discrete control
from IDLE state to CHECK state or from any of the discrete control states back to
IDLE. After switching on, the user must hold the vehicle upright to let the controller
power the motors. The transition angle = 0 is used to simulate holding the self-
balancing scooter upright.

Fig. 3 UPPAAL user model

The user may cause an accident and fall, in which case the vehicle angle becomes
too large. This is modelled with the transition angle = 2 setting the angle to a larger
angle, for example 0.2rad. Similarly, when the driver falls off he/she will unplug
the Safety Key. The person, holding the vehicle pulls out the safety key, using the
transition Sa f etyKey = false. Both the transitions that simulate en error set a
global clock to 0, to measure the time needed between causing an error and the
system reaching a safe mode. Either one of the error transitions fire, meaning a
single failure is modelled.

Page 100

Design of safe real-time embedded systems in UPPAAL 7

3.1.2 Safety switch

The safety switch is the electronics that closes and opens the power lines to the
motor. The controller for start-up and shutdown normally does the operation of
this switch. In case of emergency, the safety monitor process overrules the con-
troller. The idea is that in case of an emergency, the vehicle control should go to
the safest situation. Instead of locking (braking) we have chosen to let the wheels
rotate freely. That means that the power lines to the motor will be switched to open
loop. The safety switch process models the closing and opening of the switch. In
the nominal behaviour, the discrete control opens and closes this switch with the
open? and close? events. The safety monitor can override normal control and open
the switch, with the error? event. A Boolean signal enable telling other parts (the
controller) whether the safety switch is in the OPEN or in the CLOSE state. A
timer openDelay models the time needed to open the safety switch.

Fig. 4 UPPAAL safety switch model

3.2 The system model

The system model models the desired system behaviour. It consists of two processes:
a controller and a safety monitor. These are two independent processes, while in
particular the safety monitor should not be hindered by the control process. Also the
hardware on which the safety monitor will be executed runs independent from the
other electronics and will continue to operate even when the control

3.2.1 The controller

The Controller automaton models the software that controls one motor of the ve-
hicle. It starts from the situation that the main power switch has been switched on
and the electronics is powered. The IDLE state is the initial state from where the
control starts. The user toggles with the ignition switch (ignition? event) to start the
use of the self balancing scooter. The controller gets into the CHECK state to verify
whether all signals are safe (the safety monitor process condition not unsafe and the

Page 101

8 Bert Bos, Teun van Kuppeveld, Marcel Verhoef and Jiansheng Xing

vehicle must be hold upright by the user (sbsAngle ¡= 1). If the conditions are met
then the state may progress to the state SYNCHRONISE. In this state, both left and
right controller signal that they are in this state and wait until this signal from the
other side, to simultaneously progress to the DRIVE state. This last transition closes
the safety switch and thus powers the motor.

Fig. 5 UPPAAL controller model

The controller not in IDLE state should return to the CHECK state when unsafe
becomes true. The user must be able to toggle the ignition switch in each of the
states, which makes the controller to return to the IDLE state. This ignition has been
blocked for the transition from DRIVE to IDLE in case of an error to give preference
to the state change from DRIVE to CHECK in case of an error. A transition was
added to the DRIVE state to lower the battery level every 1 time unit. This battery
reduction could have been modelled in other states as well, but as the motors are the
main power consuming devices this was simplified to model the power consumption
in the DRIVE state only.

Page 102

Design of safe real-time embedded systems in UPPAAL 9

3.2.2 The safety monitor

The safety monitor monitors parameters that determine the safe/unsafe state of the
vehicle. In case that an unsafe situation occurs, the safety motor changes from safe
to unsafe and opens the safety switch. This idle state is unsafe. The only initial
activity that can take place is to verify all inputs and bring the safety monitor to a
safe state. This will allow closing the safety switch.

The safety monitor automaton simulates the software and hardware that monitors
the safety related parameters and in case of an out of bounds of a variable or an
unplugged Safety Key or an error detected on the other side. It will force the safety
switch to open on its transition from SAFE to UNSAFE.

Note that the monitored variables are modelled as signals not as events. For an
event to take place both sides, the sender and the receiver, must be available to pass
the transition. In physics the event of a Safety Key being pulled out or an angle out
of bounds will not wait for the state machine to allow this error to happen; it just
happens.

Fig. 6 UPPAAL safety monitor model

After detection of an error moves the safety monitor to an intermediate state,
from which it progresses with opening the safety circuit with an event (openSafety-
Circuit!) The safety monitor ends in the UNSAFE state. After the unsafe situation
disappears, the safety monitor returns to the SAFE state via an intermediate state to
wait for the other side to be safe as well. The safety monitor will not close the safety
circuit, but only enable the discrete control to close the safety circuit.

Page 103

10 Bert Bos, Teun van Kuppeveld, Marcel Verhoef and Jiansheng Xing

3.3 Putting it all together

The system is assembled from the processes that were described in the previous
paragraphs. The model describes the combination of environment and discrete con-
trol. The processes are given in table 1. It shows that the user and the ignition switch
are common for left and right wheel, while the safety switch, safety monitor, control
occur twice.

Fig. 7 UPPAAL controller model

3.4 Model verification

A first set of properties were verified from initial conditions that are related to an
idle vehicle to the state transitions from the IDLE state via the ignition transition
until the DRIVE state for both controllers.

• The controller should be free from deadlocks (A[] not deadlock)
• In case one of the controllers is not in the DRIVE state, the other should not stay

in the DRIVE state (A¡¿ not DC R.Drive imply not DC L.Drive).
• There exists a path such that both controllers are in the DRIVE state (E¡¿

DC L.Drive && DC R.Drive)
• The controller stops at the energylevel = 10. That is A[] energylevel ¿= 10 passes,

while A[] energylevel ¿ 10 fails. This shows that the battery will reach a minimum
level and the controller stops at the prescribed level.

Error handling is crucial for this system and was the reason to start modelling the
system formally. Most important is the case where the vehicle is in the DRIVE state
and an error occurs. Therefore the model was initialised in the DRIVE state for both
controllers and the user triggers an error with pulling the Safety Key.

E¡¿ (SafwtyKey==false && DC L.Check && DC R.Check) && faultReaction
¡ 6

Page 104

Design of safe real-time embedded systems in UPPAAL 11

• That the time between detecting an error and being into CHECKING sate is
small, i.e. the only actions that the timed automata take is the transition to the
CHECKING state. for both sides..

• To prove that as soon as the safety monitor detects an error, it will open the safety
switch. For both wheels within the minimum time needed for this.

4 Implementation

The implementation is closely related to the untimed Uppaal model [5].
In the implementation, the Safety Key is a strap around the drivers wrist, ending

in a connector bridge. Falling off the vehicle will remove the bridge and open a
signal loop, which gives the Safety Key disable signal to the safety monitor.

The sensors were, for practical reasons connected to the left side controller and
the readings were forwarded from left to right. To be certain about the integrity of
the signals on the right hand side a CRC check was added and a time out was used
to know that sensor readings were received on the right hand side. Both the CRC
error and the missing sensor reading for one time slot trigger an error to the safety
monitor.

5 Conclusions

In the Chess case study with the self balancing scooter we learned the following:

• Simply drawing up an Uppaal model as part of the system design already helps
to complete the behavioural description at system level or at least shows hidden
complexity.

• Running the simulations and formally verifying the model shows specification
errors very early in the development process and avoids finding these mistakes
during test and integration.

• The model forces the developer to think about the system behaviour and about
the software structure. A complex s model is fairly quickly changed to find a
simpler one. The modelling exercise and explaining the model to others forced
us to clearly define the states for the discrete control and safety monitor.

• The model helps to specify the system behaviour, in particular switch on / switch
off and safety handling and recovery. These parts of system behaviour are of-
ten postponed to the design and implementation phase and by that time not well
designed due to time constraints. Also these aspects are then designed at engi-
neering level, while they are crucial for the user experience. Structural changes
to simplify the the software structure are avoided.

• The setup is also such that it can cope with more than one error the time, or react
properly on an additional error while handling the current ones. This is manly due
to the independent detection of errors, proceed to run the controller after all error

Page 105

12 Bert Bos, Teun van Kuppeveld, Marcel Verhoef and Jiansheng Xing

have disappeared, and due to the somewhat rigid, simple strategy of reacting to
all errors in the same manner.

• The system level design of the electronics, such as communication between the
FPGA boards was partly determined by the information needed in the Uppaal
model, i.e. the Uoaal model leaned us which information was minimally needed
to make the distributed contro possible.

• The modeller needs a high level of abstract thinking to imagine the system be-
haviour as timed automata.

6 References

[1] T. Van Kuppeveld, Model-based redesign of a self-balancing Scooter (University
Twente, August 2007). [2] A.M., Bos, Modelling multibody systems in terms of
bond graphs, with application to a motorcycle, (Ph.D. thesis, University Twente, The
Netherlands, ISBN 90-9001442-X, 1986) [3] J. Simons, Hardware ontwikkeling en
besturing voor de step (Hogeschool Amsterdam, 2007). [4] G. Behrmann, A. David,
and K. G. Larsen, A tutorial on Uppaal (17th November 2004) [5] R.P., Verstraten,
Self balancing scooter (December 15, 2009)
To Be Added.

Page 106

An Introduction to Schedulability

Analysis Using Timed Automata

Alexandre David Kim G. Larsen Arne Skou

1 Introduction

Embedded systems involve the monitoring and control of complex physical pro-
cesses using applications running on dedicated execution platforms in a resource
constrained manner in terms of for example memory, processing power, band-
width, energy consumption, as well as timing behavior.

Viewing the application as a collection of (interdependent tasks) various
scheduling principles may be applied to coordinate the execution of tasks in
order to ensure orderly and efficient usage of resources. Based on the physical
process to be controlled, timing deadlines may be required for the individual
tasks as well as the overall system. The challenge of schedulability analysis is
now concerned with guaranteeing that the applied scheduling principle(s) ensure
that the timining deadlines are met.

For schedulability analysis of single processor systems, a number of industri-
ally applied tools exists benefiting from great succes in real-time scheduling theo-
ries; results intiated in the 1970ies and the 1980ies, and by now well-established.
However these theories and tools have become seriously challenged by the rapid
increase in the use of multi-cores and multiprocessor system-on-chips (MPSoC).

In this chapter we will present a framework for schedulability analysis based
on timed automata which overcome the limitation to single-processor architec-
tures, while providing absolute guarantees: if after model checking no violations
of deadlines have been found, then it is guaranteed that no violations will occur
during execution. In this approach, the (multiprocessor) execution platform,
the tasks, the interdependencies between tasks, their execution times, and map-
ping to the platform are modeled as timed automata [1] allowing efficient tools
such as Uppaal [7] to verify schedulability using model checking.

The chapter offers a Uppaal modeling framework (download from [4]), that
may be instantiated to suit a variety of scheduling scenarios, and that can be
easily extended. In particular, the framework includes:

• A rich collection of attributes for tasks, including: off-set, best and worst
case execution times, minimum and maximum interarrival time, deadlines,
and task priorities.

• Task dependencies.

1

Page 107

• Assignment of resources, for example processors or busses, to tasks.

• Scheduling policies including First-In First-Out (FIFO), Earliest Deadline
First (EDF), and Fixed Priority Scheduling (FPS).

• Possible preemption of resources.

The combination of task dependencies, execution time uncertainty and pre-
emption makes schedulability of the above framework undecidable [6]. However,
the recent support for stopwatch automata [3] in Uppaal leads to an efficient
approximate analysis that has proved adequate on several concrete instances as
demonstrated in [5].

The outline of the remainder of the chapter is as follows: in Section 2 we
give an introduction to the types of schedulability problems considered, in Sec-
tion 3 we provide provide the Uppaal modeling framework. Following this we
show in Section ?? how to instantiate the framework for a number of different
schedulability problems by way of an example system. Finally, we conclude the
paper in Section 4.

2 Schedulability Problems

At the core of any schedulability problem are the notions of tasks and resources.
Tasks are jobs that require the usage of resources for a given duration after which
tasks are considered done/completed. The added constraints to this basic setup
is what defines a specific schedulability problem. In this section, we define a
range of classical schedulability problems.

2.1 Tasks

A schedulability problem always consists of a finite set of tasks that we consis-
tently will refer to as T = {t1, t2, ..., tn}. Each task ti has a number of attributes
that we refer to by the following functions:

• initial offset: T → N — Time offset for initial release of task.

• bcet: T → N≥0 — Best case execution time of task.

• wcet: T → N≥0 — Worst case execution time of task.

• min period: T → N — Minimum time between task releases.

• max period: T → N — Maximum time between task releases.

• offset — The time offset into every period, before the task is released.

• deadline: T → N≥0 — The number of time units within which a task
must finish execution after its release. Often, the deadline coincides with
the period.

2

Page 108

• priority — Task priority.

These attributes are subject to the obvious constraints that bcet(t) ≤wcet
(t) ≤ deadline(t) ≤ min period(t) ≤ max period(t). The periods are ignored
if the task is non-periodic.

The interpretation of these attributes is that a given task ti cannot execute
for the first offset (ti) time units and should hereafter execute exactly once
in every period of period (ti) time units. Each such execution has a duration
in the interval [bcet (ti),wcet (ti)]. The reason why tasks have a duration
interval instead of a specific duration is that tasks are often complex operations
that need to be executed and the specific computation of a task depends on
conditionals, loops, etc. and can vary between invocations. Furthermore, for
multi-processor scheduling, considering only worst-case execution times are not
is insufficient as deadline violations can result from certain tasks exhibiting
best-case behavior.

We say that a task t is ready (to execute) at time τ iff:

1. τ ≥initial offset(t)

2. t has not executed in the given period dictated by τ .

3. All other constraints on t are satisfied. See 2.2 for a discussion on task
constraints.

2.2 Task Dependencies

Task execution is often not just constrained by periods, but also by interdepen-
dencies among tasks., for example because one task requires data that is com-
puted by other tasks. Such dependencies among a set of tasks T = {t1, t2, ..., tn}
are modelled as a directed acyclic graph (V,E) where tasks are nodes (i.e.,
V = T) and dependencies are directed edges between nodes. That is, and edge
(ti, tj) ∈ E from task ti to task tj indicates that task tj cannot begin execution
until ti has completed execution.

2.3 Resources

Resources are the elements that execute tasks. Each resource uses a scheduler
to determine which task gets executed on a given resource at any point in time.
Resources are limited by only allowing the execution of a single task at any
given time.

Tasks are a priori assigned to resources. For a set of resourcesR = {r1, ..., rk}
and a set of tasks T = {t1, ..., tn}, we capture with the function assign : T → R.

In a real-time system, resources function as different types of processors,
communication busses, etc. Combined with task graphs we can use tasks and
resources to emulate complex systems with such task interdependency on dif-
ferent processors. For example, if we want to model two tasks ti and tj with
dependency ti → tj , but the tasks are executed on different processors and tj

3

Page 109

needs the results of ti to be communication across a data bus, we introduce an
auxiliary task tic that requires the bus resource and update the dependencies
to ti → tic → tj . We illustrate this concept in ... ??

Scheduling Policies In order for a resource to determine which task to ex-
ecute and which tasks to hold, a resource applies a certain scheduling policy
implemented in a scheduler. Scheduling strategies vary greatly in complexity
depending on the constraints of the schedulability problem. In this section we
discuss a subset of scheduling policies for which we have included models in our
scheduling framework.

• First-In First-Out (FIFO) Ready tasks are added to a queue in the
order they become ready.

• Earliest Deadline first (EDF) Ready tasks are added to a sorted list
and executed in the order of earliest deadline.

• Fixed Priority Scheduling (FPS) Each task is given an extra attribute,
priority, and ready tasks are executed according to the highest priority.

Schedulers operate in such a manner that resources are never idle while there
are ready tasks assigned to them. That is, as soon a task has finished execution
a new task is set for execution.

Preemption Resources come in two shapes, preemptive and non-preemptive.
A non-preemptive resource means that once a task has been assigned to execute
on a given resource, that task will run until completion before another task is
assigned to the resource. Preemption means that a task assigned to a resource
can be temporarily halted from execution if the scheduler decides to assign
another task to the resource. We say that the first task has been preempted. A
preempted task can later resume execution for the remainder of its duration.

Preemption allows for greater responsiveness to tasks that are close to miss-
ing their deadline, but that flexibility is on behalf of increased complexity of the
schedulability analysis. The framework we define in the following section will
include a model for schedulability analysis with preemption.

2.4 Schedulability

Now, we define what it means for a system to be schedulable. A system of tasks
with constraints and resources with scheduling policies is said to be schedulable
if no execution satisfying the constraints of the system violates a deadline.

3 Framework Model in Uppaal

In this section, we describe our Uppaal framework for analyzing the scheduling
problems defined in Section 2. The framework is constructed such that a model

4

Page 110

of a particular scheduling problem consists of two different timed automata
templates: A generic task template and a scheduler. The scheduler has an
internal queue that is used to implement different types of scheduling policies.
We describe the templates in this order.

3.1 Modeling Idea

In our scheduling model that is based on [2], we have a number of tasks modeled
by a Task template and one or more schedulers modeled by a Scheduler tem-
plate. The idea here is that we need one scheduler per process and the scheduler
decides which task to run.

ready[id]!

run[id]?

done[id]!

ErrorRunning

Ready

t>D[id]

t=0

t>=E[id]

t>D[id]
ax==C[id]

ax=0

Idle
t<=L[id]

ax<=C[id]

running=front(),
dequeue()

enqueue(e)

running=0

enqueue(e)

ready[e]?

done[running]?

running=front(),
dequeue()

run[front()]!

ready[e]?

run[front()]!

e:id_t
len==0

e:id_t

Free

len>0

Occupied

(a) (b)

Figure 1: Task (a) and scheduler (b) templates.

The model depicted in Figure 1 naturally divides the scheduling problems
in to tasks that are controlled by a scheduler. Each task has its own id. In
addition the model defines global tables for the release time, computation time,
and deadline of every task. In the task template (a) a task id is released between
L[id] and E[id], its computation time is C[id], and its deadline D[id].

As a first step, we model non-preemptive tasks. Initially a task is Idle and
when it is ready to execute, it signals itself to the scheduler using the channel
synchronization ready[id]!. Then it waits to be run by the scheduler, which is
done by the synchronization run[id]?. Finally, when it is done it signals itself
to the scheduler with done[id]!.

The scheduler keeps a queue of ready tasks internally. The queue is manipu-
lated with the function calls enqueue(e) (to enqueue a task e) and dequeue().
Tasks are read with front(). The scheduling policy is implemented in the en-
queuing function. The scheduler starts in Free. When it receives a ready task
with ready[e]? (for some e), it goes to an intermediate state after queuing
the task. Then runs it with run[front()]!, and it ends in the Occupied state.
The task is dequeued from the queue to avoid interference from other tasks that

5

Page 111

Listing 1: Type and constant array definitions.

1 typedef int [0,N−1] id t
2

3 const int E[N] = { 200, 200, 100, 100 };
4 const int L[N] = { 400, 200, 200, 100 };
5 const int D[N] = { 400, 200, 200, 100 };
6 const int C[N] = { 50, 40, 20, 10 };
7 const int P[N] = { 0, 1, 2, 3 };

will arrive and be queued while it is executing. The scheduler keeps track of
the current running task. If more tasks are incoming while the scheduler is oc-
cupied, they are queued. The scheduler is signaled with done[running]? once
the task has finished its execution.

With this model, schedulability can be verified with the following CTL query:

A[] forall(i : id id) not Task(i).Error

That is, is it always the case that on all execution paths no task will ever be in
the Error location?

This is the basic model we use in our framwork and we show how it can
be extended to multi-processor scheduling with resource sharing or preemptive
scheduling. Before making these extensions, we introduce some of the data-
structures and functions used in the model.

3.2 Data Structures

For a scheduling problem with N tasks T = t0, ..., tn−1 we define the type id t

as shown at the top of listing 1. This type is given as argument to the tasks
that can use this identifier to access their parameters defined in the constant
arrays that follow the type declaration. These arrays define for every task with
its identifier id, its ready interval between E[id] and L[id], its deadline D[id],
its computation time C[id], and its priority P[id].

3.3 Scheduling Policies

In this section we describe how we model fixed priority scheduling (FPS) and
how to extend it to other types of policies. The idea is that tasks that become
ready signal themselves to the scheduler that enqueues them in its internal task
queue. The scheduler sorts its queue according to a policy and picks the tasks
from the front to execute them. Optionally it can stop and run them later.
This is illustrated in Fig. 2. In our model we have one such queue per scheduler
represented as an array of id t. We note that we could instead have one global
array, depending on the modelling goal if several schedulers are used, e.g., to
model distributed systems.

The array has an associated length variable to keep track of the number
of queued tasks and the policy is implemented in the enqueue function. This

6

Page 112

T1

T2

Tn

Tasks

Scheduler

2 4 1 3

Task queue ordered
according to priorities

ready
done

run

Figure 2: Synchronization between tasks and a scheduler. The scheduler en-
queues ready tasks and run the tasks at the front of its internal queue.

function inserts a new task at the right position in the queue, respecting the
priority order. Dequeueing consists of removing the front element. Queueing
and dequeueing involve shifting the elements in the array. We take particular
note on the reset list[i] = 0 done in dequeueing to keep unused entries at a
fixed value (here 0) to avoid unnecessary state-space explosion. Not doing so
would mean that the state remembers the history of the queue, which is not
needed. The code is given in listing 2.

In addition the scheduler defines the variable running to keep track of the
current running task. To extend this model to different scheduling policies, one
would have to mainly change the enqueueing function.

3.4 Modelling Resource Sharing

To model resource sharing we can extend the model presented in Fig. 1.(a) with
an array of booleans to represent if some resource is available or taken. We
consider that every task needs one resource to run, which is defined in another
array (need) as shows in listing 3.

The array need specifies which resource is needed. The boolean array
resource models their availability. The functions are called by the tasks with
their identifiers as argument. The function available return true if the re-
source of task id is available or false otherwise, the function take takes the
needed resource, and release releases it. We note that the code contains as-
sertions to ensure that the model is consistent, e.g., a resource is taken only if
it was available. Figure 3 shows the extension of our previous task template to
use these functions. A task is run only if its resource is available, in which case
the resource is taken and released when then task completes. This is not very
interesting with only one non-preemptive scheduler but we can run two sched-
ulers instead to see the effect. Figure 4 shows Gantt charts of such executions
first with one scheduler and then with two schedulers. Tasks 2 and 3 never
run at the same time and one is always blocked while the other holds a shared

7

Page 113

Listing 2: Functions to manage the task queue and implement the scheduling
policy.

1 id t list [N];
2 int [0,N] len ;
3 id t running;
4

5 // Enqueue w.r.t . the priority .
6 void enqueue(id t element)
7 {
8 int tmp;
9 list [len++] = element;

10 if (len > 0)
11 {
12 int i = len − 1;
13 while(i > 1 && P[list[i]] > P[list [i−1]])
14 {
15 tmp = list [i−1];
16 list [i−1] = list [i];
17 list [i] = tmp;
18 i−−;
19 }
20 }
21 }
22 // Remove the front element of the queue.
23 void dequeue()
24 {
25 int i = 0;
26 len −= 1;
27 while (i < len)
28 {
29 list [i] = list [i + 1];
30 i++;
31 }
32 list [i] = 0;
33 }
34 // Return the front element of the queue.
35 id t front ()
36 {
37 return list [0];
38 }

8

Page 114

Listing 3: Implementation of the shared resource between different tasks.

1 const id t need[N] = { 0, 1, 2, 2 };
2 bool resource [N];
3

4 bool available (id t id)
5 {
6 return ! resource [need[id]];
7 }
8 void take(id t id)
9 {

10 assert (! resource [need[id]]);
11 resource [need[id]] = true;
12 }
13 void release (id t id)
14 {
15 assert (resource [need[id]]);
16 resource [need[id]] = false ;
17 }

resource. The other tasks can run in parallel, provided that one scheduler is
available.

run[id]?

done[id]!

t>=E[id]
ready[id]!

ErrorRunning

t=0

ax=0,
take(id)

available(id)

ax==C[id]

t>D[id]

t>D[id]release(id) Ready

ax<=C[id]

t<=L[id]
Idle

Figure 3: Task template extended with resource sharing.

3.5 Modelling Preemptive Scheduling

In the case of preemptive scheduling we want the scheduler to stop the current
executing task and let another task with higher priority run instead. To do
that, we can use stop-watches. Fig. 5 shows how we extend both the scheduler
and the original task model of Fig. 1.

First the scheduler will keep the running task at the front of its queue and

9

Page 115

Task(0)
Task(1)
Task(2)
Task(3)

0 45 89 134 178 223 267 312 356 401 445 490 534 579 623 667 712 756 801 845 890

Task2(0)
Task2(1)
Task2(2)
Task2(3)

0 71 142 212 283 354 424 495 565 636 707 777 848 918 989 1060

Figure 4: Gantt charts that show the run with one and two schedulers with
resource sharing.

remove it when it has terminated. This simplifies the handling of new incoming
tasks. When tasks arrive while the scheduler is busy, it immediately stops the
running tasks with stop[running]! and go back to its previous intermediate
state from which it picks the task at the front of the queue to run. Since the
newly arrived tasks is enqueued according to its priority, we pick the current
highest priority task every time.

Second, on the task model, we use stop-watches. When a running task is
stopped, it goes to a stopped state with the invariant ax’==0 that effectively
stops the clock that measures the current computation time. From this state,
it can resume execution if it gets signaled with run[id]? by the scheduler.
We add an additional transition to detect if the task violates its deadline while
stopped.

4 Conclusion

We have provided a framework allowing the modeling and analysis of a variety of
schedulability scenarios. In particular, our framework supports multi-processor
systems, rich task models with timing uncertainties in arrival- and execution-
times, possible dependencies, a range of scheduling policies, and possible pre-
emption of resources.

The support of approximate analysis of stopwatch automata in Uppaal 4.1
is key to the successful schedulability analysis.

Furthermore, the uncertainty on the periods used in our framework could
be generalized to more general task arrival where a separate process determines
the arrival of tasks. Such situations can be modeled using the structure of
our framework by letting the starting of periods be dictated through channel
synchronization with the model controlling arrival times. Even with such liberty,
the overapproximation is still finite and termination is guaranteed.

The scheduling framework provided in this paper is structured such that
adaptation can be made to accommodate other scheduling polices and inter-task

10

Page 116

ax<=C[id] Error

t<=L[id]

ax’==0

Running

ready[id]!

stop[id]?

run[id]?

run[id]?

t=0

ax=0

done[id]!

t>=E[id]

ax==C[id]

t>D[id]

Ready

Idle

t>D[id]

Stopped

t>D[id]

run[front()]!

ready[e]?

ready[e]?

stop[running]!

running=front()

Free

e:id_t

done[running]?

Occupied

run[front()]!

e:id_t

len>0

len==0

running=0,
dequeue()

running=front()
enqueue(e)

enqueue(e)running=0

(a) (b)

Figure 5: Extensions of the task (a) and scheduler (b) templates to model
preemptive scheduling.

constraints. The former can be achieved by adding another policy model simi-
larly to the three built-in policies FIFO, FPS, and EDF. The latter is achieved
through the use of the function calls new period, dependencies met, and com-
pleted.

Acknowledgements

The authors would like to thank Marius Mikučionis for providing the format for
listing Uppaal code.

References

[1] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science (TCS), 126(2):183–235, 1994.

[2] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal schedul-
ing using priced timed automata. ACM SIGMETRICS Perform. Eval. Rev.,
32(4):34–40, 2005.

[3] Franck Cassez and Kim Guldstrand Larsen. The impressive power of stop-
watches. In Catuscia Palamidesi, editor, 11th International Conference on
Concurrency Theory, (CONCUR’2000), number 1877 in Lecture Notes in
Computer Science, pages 138–152, University Park, P.A., USA, July 2000.
Springer-Verlag.

11

Page 117

[4] UPPAAL Scheduling Framework
. http://www.uppaal.com/SchedulingFramework, Jan. 2009.

[5] Aske Brekling Jan Madsen, Michael R. Hansen. A modelling and analysis
framework for embedded systems. Chapter 3 in this book.

[6] Pavel Krcál and Wang Yi. Decidable and undecidable problems in schedula-
bility analysis using timed automata. In Kurt Jensen and Andreas Podelski,
editors, TACAS, volume 2988 of Lecture Notes in Computer Science, pages
236–250. Springer, 2004.

[7] UPPAAL. http://www.uppaal.com, Jan. 2005.

12

Page 118

http://www.uppaal.com/SchedulingFramework
http://www.uppaal.com

Schedulability Analysis of Herschel/Planck
Software Using Uppaal

Marius Mikučionis and Kim G. Larsen and Brian Nielsen

Abstract This chapter shows how UPPAAL is applied in schedulability analysis of
satellite attitude and orbit control software used in Herschel/Planck mission. Our
method transforms the schedulability analysis into reachability analysis performed
by UPPAAL. The chapter briefly describes the schedulability requirements and elab-
orates on the modeling framework designed to handle single processor hardware
with a fixed priority preemptive scheduler, detailed task specifications, two resource
sharing protocols and voluntary task suspension. The results include qualitative an-
swers (whether the system is schedulable) as well as quantitative (response and
blocking time estimates) which are comparable with classical response-time analy-
sis.

Key words: schedulability analysis, timed automata, stop-watch automata, model-
checking, verification

1 Introduction

The goal of schedulability analysis is to check whether all tasks finish before their
deadline. Traditional approaches like [Burns(1994)] provide generic frameworks
which assume worst-case scenario where consecutive response-times are calculated
and compared with deadlines. Often, such conservative scenarios are never realized
and thus negative results from such analysis may be too pessimistic. The idea is

Marius Mikučionis
Aalborg University, Aalborg, Denmark, e-mail: marius@cs.aau.dk

Kim G. Larsen
Aalborg University, Aalborg, Denmark, e-mail: kgl@cs.aau.dk

Brian Nielsen
Aalborg University, Aalborg, Denmark, e-mail: bnielsen@cs.aau.dk

1

Page 119

2 Marius Mikučionis and Kim G. Larsen and Brian Nielsen

to base the schedulability analysis on a system model with possibly more details,
taking into account specifics of individual tasks. In particular this will allow a safe
but far less pessimistic schedulability analysis to be settled using real-time model
checking. Moreover, the model-based approach provides a self-contained visual rep-
resentation of the system with formal, non-ambiguous interpretation, simulation and
other possibilities for verification and validation.

Our model-based approach is motivated by and carried out on example applica-
tions in a case study of Herschel-Planck satellite system. Compared with classical
response-time analysis our model-based approach is found to uniformly provide
less pessimistic response-time estimates and allow to conclude schedulability of all
tasks, in contrast to negative results obtained from the classical approach.

1.1 The Herschel-Planck Mission

The Herschel-Planck mission consists of two satellites: Herschel and Planck. The
satellites have different scientific objectives and thus the sensor and actuator con-
figurations differ, but both satellites share the same computational architecture. The
architecture consists of a single processor, a real-time operating system (RTEMS),
a basic software layer (BSW) and an application software (ASW).

The goal of the study is to show that ASW tasks and BSW tasks are schedulable
on a single processor with no deadline violations. The tasks use preemptive fixed
priority scheduler and a mixture of priority ceiling and priority inheritance protocols
for resource sharing and extended deadlines (beyond period). In addition, some tasks
need to interact with external hardware and effectively suspend their execution for a
specified time. Due to suspension, this single-processor system has some similarity
to multi-processor systems since parts of activities are executed elsewhere and the
classical worst-case response-time analysis (applicable to single-processor systems)
is pushed to its limits. One of the results of [Palm(2006)] is that one task may miss
its deadline on Herschel (and thus the system is not schedulable) but this violation
has never been observed in neither stress testing nor deployment.

Figure 1 shows the parameters which describe each periodic task: period defines
how often the task is started, offset – how far into the cycle the task is started (re-
leased), deadline is measured from the instance when task is started and worst-case
execution time within deadline.

WCET

Deadline

Offset

release

WCRT

Period

time

Fig. 1: Task time bounds.

Page 120

Schedulability Analysis of Herschel/Planck Software Using Uppaal 3

Some tasks access shared resources and those are protected by semaphore lock-
ing to ensure exclusive usage. Sometimes tasks use resources repeatedly (locking
and unlocking several times). When the resource semaphore is locked, a task may
suspend its execution by calling hardware services and waiting for the hardware to
finish thus temporarily releasing the processor for other tasks. The processor may
be released multiple times during one semaphore lock. In response-time analysis,
the processor utilisation is computed by dividing the sum of worst-case execution
times by the duration of analysed time window.

Table 1 shows the description of the primary functions task from [Palm(2006)].
The task consists of six activities. Each activity is described by two numbers: CPU
time / BSW service time (BSW service time is included in CPU time), followed
by resource usage pattern if any. The resource usage is described by the following
parameters:

LNS – total number of times the CPU has been released while the resource was
locked (task suspension count).
LCS – total time the CPU has been released while the resource was locked (task
suspension duration).
LC – total time the resource has been locked.
MaxLC – the longest time the resource has been locked.

For example “Data processing” takes 20577µs in total, from which it has locked
the resourceIcb R for 1600µs, and from which CPU has been released (execution
suspended) for 1200µs.

Table 1: The sequence of primary functions task from [Palm(2006)].

Primary Functions
- Data processing 20577/2521

Icb R(LNS: 2, LCS:1200, LC: 1600, MaxLC: 800)
- Guidance 3440/0
- Attitude determination3751/1777

Sgm R(LNS: 5, LCS:121, LC: 1218, MaxLC: 236)
- PerformExtraChecks 42/0
- SCM controller 3479/2096

PmReq R(LNS: 4, LCS:1650, LC: 3300, MaxLC: 3300)
- Command RWL 2752/85

2 Model-Checking Schedulability Methodology

The main idea is to translate schedulability analysis problem into a reachability
problem for timed automata and use the real-time model-checker UPPAAL to check
that none of the deadlines are violated, derive worst-case blocking and response-

Page 121

4 Marius Mikučionis and Kim G. Larsen and Brian Nielsen

times and processor utilization. We refer to the previous chapter for UPPAAL con-
cepts.

Figure 2 shows the work-flow of response-time analysis (performed by Terma
A/S) and schedulability analysis using UPPAAL: the task timing informations are
obtained from ASW and BSW documentation, worst-case execution times (WCET)
of BSW are obtained from BSW documentation [Terma A/S(Issue 9)] and ASW
timings are obtained from simulation measurements. In addition the UPPAAL model
uses information about the individual task flows, i.e. the timing of resource locks,
CPU execution and suspension.

Response

Analysis

Time

Properties
schedulable?

CPUtimes

Blocking(i)

WCRT(i)

WCET(i)

Offset(i)

Period(i)

ASW:

Deadline(i)

Task flow(i)

Simulation

measurements

& calculations

Properties
schedulable?

CPUtimes

Blocking(i)

WCRT(i)

Uppaal

Checker

Model

WCET(i)

Offset(i)

Period(i)

BSW:

Deadline(i)

BSW STSB

Documentation

Fig. 2: Work-flow of schedulability analysis.

The UPPAAL framework consists of the following process models: a fixed prior-
ity preemptive CPU scheduler, a number of task models, and one process for ensur-
ing global invariants. We provide different templates for task models: one for peri-
odic tasks and several for tasks with dependencies, all of which are parameterised
with explicit sequence of task actions and may be customised to a particular resource
sharing protocol. We also investigate the scalability of the approach by allowing dif-
ferent best-case execution times (BCET) as a percentage discount from WCET. In
practice it is possible to put realistic BCETs, but we choose this parametrisation for
the sake of systematic exploration. Our approach uses the same task descriptions
as [Palm(2006)].

The following outlines the main modelling ingredients:

• One template for the CPU scheduler.
• One template for the “idle” task to keep track of CPU usage times.
• One template for all BSW tasks, where resources are locked based on priority

inheritance protocol.
• One template for theMainCycle ASW task, which is released periodically, starts

other ASW tasks and locks resources based on the priority ceiling protocol.

Page 122

Schedulability Analysis of Herschel/Planck Software Using Uppaal 5

• One template for all other ASW tasks, which are released by synchronisations,
and locks resources based on priority ceiling protocol.

• Task specialisation is performed during process instantiation by providing indi-
vidual list of operations encoded into aflowarray.

• Each task (either ASW or BSW) uses the following clocks and data variables:

– Task and its clocks are parameterised by an identifierid.
– A local clockx controls periodic releases of the task. The task then moves to

an error state ifx is greater than its deadline.
– A local clocksubcontrols progress and execution of individual operations.
– A local integeric is an operation counter.
– The worst-case response-time for taskid is modelled by a stopwatchWCRT[id]

which is reset when the task is started and is allowed to progress only when
the task is ready (global invariantWCRT[id]′ == ready[id] ensures that). The
worst-case response-time is estimated as maximum value ofWCRT[id].

– An error location is reachable anderror variable is set totrue if there is a
possibility to finish after deadline.

Further we explain the most important model templates, while the complete
model is available for download at http://www.cs.aau.dk/∼marius/Terma/ .

2.1 Scheduler Model

Figure 3a shows the model of the scheduler. In the beginning, the Scheduler ini-
tialises the system (computes the current task priorities by computing default prior-
ity based onid and starts the tasks with zero offset) and in locationRunningwaits
for tasks to become ready or current task to release the CPU resource. When some
task becomes ready, it adds itself to thetaskqueue and signals on theenqueue
channel, thus moving the Scheduler to locationSchedule. From the location
Schedule, the Scheduler compares the priority of a current taskcprio[ctask]
with the highest priority in the queuecprio[taskqueue[0]] and either returns
to Running (nothing to reschedule) or preempts the current taskctask, puts it
into taskqueue and schedules the highest priority task fromtaskqueue.

A task releases the CPU by a signalrelease[CPU R], in which case the
Scheduler pulls the highest priority task fromtaskqueue and optionally notifies
it with broadcast synchronisation on channelschedule.

Thetaskqueue always contains at least one ready task:IdleTask. Figure 3b
shows howIdleTask reacts to Scheduler events. It also computes the CPU usage
time using stopwatchusedTime and the total CPU load is then calculated as
usedTime

globalTime.

Page 123

6 Marius Mikučionis and Kim G. Larsen and Brian Nielsen

main()

cprio[ctask]>=
cprio[taskqueue[0]]

Preempt

Running

Schedule

taskqueue[0]>0 &&
cprio[ctask]<
cprio[taskqueue[0]]

preempt[ctask]!

enqueue[id]?

schedule[ctask]!

release[CPU_R]?
add(taskqueue, id)runs[ctask]=0,

ctask=poll(taskqueue)

id: taskid_t

runs[ctask]=1

add(taskqueue,ctask),
runs[ctask]=0,
ctask=poll(taskqueue)

initialize!

(a) Template for CPU scheduler.

preempt[0]?

schedule[0]?

idleTime’==0
CPUIdleCPUUsed

usedTime’==0

(b) Idle task model.

Fig. 3: Models for CPU scheduler and the simplest task.

2.2 Tasks Templates

Task template is a generalization of a task process. We provide three task tem-
plates which share the same timed automata structure except some minor differ-
ences: BSW (started periodically, uses priority inheritance), ASW (started by other
task, uses priority ceiling) and MainCycle (started periodically, starts other tasks
and uses priority ceiling). The templates are instantiated with a concrete task de-
scription: period, offset, deadline and resource usage sequence we call task flow.

Figure 4 shows a template used byMainCycle which is started periodically. At
first MainCycle waits for Offset time to elapse and moves to locationIdle
by setting the clockx to Period. Then the process is forced to leave theIdle
location immediately, to signal other ASW tasks, add itself to the ready task queue
and arrive to locationWaitForCPU. WhenMainCycle receives notification from
the scheduler it moves to locationGotCPU and starts processing commands from
theflowarray.

Declaration of task flow array type is shown in Fig. 5a:flow t is an array of
operationsoperation t, and operations are tuples of operation typeoptype t,
resource identifierresid t and a timing argumenttime t which is an inte-
ger.Figure 5b shows the beginning of the flow for the primary function task.

There are four types of operations:

1. LOCK is executed from locationtryLock where the process attempts to ac-
quire the resource. It blocks if the resource is not available and retries by adding
itself to the processor queue again when the resource is released. It continues to
locationNext by locking the resource if the resource is available.

2. UNLOCK simply releases the resource and moves on to locationNext. The
implementation of locking and unlocking for both protocols is straightforward
and fits into 28 lines of code.

Page 124

Schedulability Analysis of Herschel/Planck Software Using Uppaal 7

WaitForCPU WaitForCPU2

Suspended

Finishing

Blocked

Computing

Next
Error tryLock

x<=Offset

job[id]<=WCET

starting
x<=Period

sub<=
flow[ic].delay

sub’==runs[id]
&& sub<=0

sub’==runs[id] &&
sub<=flow[ic].delay

x>Deadline

runs[id] &&
END!=flow[ic].cmd &&
x<=Deadline COMPUTE==

flow[ic].cmd
runs[id] &&
sub>=flow[ic].delay−
 flow[ic].delay*BCD/100

SUSPEND==
flow[ic].cmd

LOCK==
flow[ic].cmd

UNLOCK==flow[ic].cmd !avail(flow[ic].res)

avail(flow[ic].res)

GotCPU

x>Deadline

x>Deadline

x>Deadline

Idle

sub==flow[ic].delay

runs[id] &&
END==flow[ic].cmd &&
x<=Deadline

x==Period

x>Deadline

x==Offset

runs[id] &&
job[id]>=WCET−
 WCET*BCD/100 &&
x<=Deadline

sub=0

error=1 unlockCeil(flow[ic].res, id),
ic++, sub=0

susp[id]=false,
ic++, sub=0

ic++, sub=0

susp[id]=true,
sub=0

error=1

x=0, job[id]=0,
WCRT[id]=0, ready[id]=1

blocked[id]=0

lockCeil(flow[ic].res, id),
ic++, sub=0

ic=0, job[id]=0,
WCRT[id]=0, ready[id]=0

blocked[id]=1

schedule[id]?

release[CPU_R]!

schedule[id]?

enqueue[id]!

StartASW!

enqueue[id]!

StartASW!

error=0

error=1

enqueue[id]!

error=1

release[flow[ic].res]!

release[flow[ic].res]?

release[CPU_R]!

release[CPU_R]!

Fig. 4:MainCycle task: periodically starts ASW functions.

optypet ::= END | COMPUTE| LOCK |
UNLOCK | SUSPEND

resid t ::= Icb R | Sgm R | PmReqR |
Other R

time t ::= int[0, 10000000]
operationt ::= optypet resid t time t

flow t ::= operationt*

(a) Declaration of task flow type.

ic: cmd: res: delay:
0 LOCK Icb R 0
1 COMPUTECPU R 400
2 SUSPEND CPU R 1200
3 UNLOCK Icb R 1200
4 COMPUTECPU R 20177

.
18 END

(b) Flow of primary functions task.

Fig. 5: Structure and an instance of task flow.

3. SUSPEND releases the processor for the specified amount of time, adds itself to
the queue and moves to locationNext. The task progress clockjob[id] is not
increasing but the response measurement clockWCRT[id] is.

4. COMPUTE makes the task stay in locationComputing for the specified dura-
tion of CPU time, i.e. the clocksub is stopped whenever the task is preempted
(runs[id] is set to 0). Once the required amount of CPU time is consumed, the
process moves on to locationNext. For scalability study we relax the guard by
BCD percent of time, allowing the task to finish slightly earlier than WCET.

From locationNext, the process is forced by theruns[id] invariant to continue with
the next operation: if it is not the END and it is running, then it moves back to
GotCPU to process next operation, and it moves toFinishing if it’s the END. In
theFinishing location the process consumed CPU for the remaining time so that
the complete WCET is exhausted and then it moves back toIdle. From locations

Page 125

8 Marius Mikučionis and Kim G. Larsen and Brian Nielsen

Next andFinishing the outgoing edges are constrained to check whether the
deadline has been reached since the last task release (whenx was set to 0), and
edges force the process intoError location ifx> Deadline.

The flow for MainCycle is trivial: it computes for its WCET while keeping a
lock onSgm R. A more sophisticated example of flow is shown in Listing 1 where
the timing numbers are taken from description in Table 1: the task attempts to lock
the resourceIcb R, when the resource is locked it actively uses the CPU for 400µs
(because according to the description the resource is locked for 1600µsand CPU is
not used for 1200µsdue to suspension), then CPU is suspended for 1200µs,Icb R
is released and CPU is used for the remaining task execution.

Listing 1: The data processing part of operation flow forPrimaryF task.
�

const ASWFlow t PF f = { // Primary Functions ,−−−−− Data processing:
{ LOCK, Icb R, 0 }, // 0) acquire lock on IcbR
{ COMPUTE, CPUR, 1600−1200}, // 1) execute with IcbR being locked
{ SUSPEND, CPUR, 1200}, // 2) suspend/ release CPU, while IcbR is locked
{ UNLOCK, Icb R, 0}, // 3) release lock on IcbR
{ COMPUTE, CPUR, 20577−(1600−1200)}, // 4) execute without IcbR
...

};
� �

The template for BSW tasks is almost the same asMainCycle, except that 1)
BSW tasks do not have to start other ASW tasks and thus fromIdle they go di-
rectly to WaitForCPU with enqueueing edge, 2) instead of the ceiling protocol
(lockCeilandunlockCeil) it uses priority inheritance (lockInhandunlockInh) and 3)
it boosts the owners priority by callingboostPrio(flow[ic].res,id) on the edge from
tryLock toBlocked. BSW tasks have their own local clockx, whileMainCycle
shares itsx with other ASW tasks.

We use only LCS (CPU suspension time while resource is locked) and LC (total
locking time) from Table 1, where we assume that LC−LCS is the CPU busy time
while the resource is locked.

Listing 1 shows an example of detailed control flow structure forPrimaryF task,
where the numbers mean the time duration and comments relate each step to an item
in Table 1.

2.3 System Model Instantiation

Listing 2 shows how tasks are instantiated with task identifier, offset, period, flow,
deadline and shared ASW clock. In total there are 32 tasks, where id=13 is reserved
for priority ceiling.

Listing 2: Task instantiation.
�

// taskid , Offset ,Period , flow , WCET, Deadline
RTEMS RTC = BSW(1, 0, 10000, WCETf, 13, 1000);
AswSyncSyncPulselsr=BSW(2, 0,250000, WCETf, 70, 1000);
Hk SamplerIsr = BSW(3,62500,125000, WCETf, 70, 1000);
...

mainCycle = MainCycle(16,20000,250000, 400, 230220, ASWclock);

Page 126

Schedulability Analysis of Herschel/Planck Software Using Uppaal 9

...
primaryF = ASW(21,StartASW,Done, PFf, 34050, 59600, ASWclock);
...

Bkgnd P = BSW(33, 0,250000, WCETf, 200, 250000);
� �

Listing 3 shows system declaration with a . The variablecycle counts cy-
cle number as an heuristic progress measure which allows UPPAAL to use the
sweep-line method to reduce the verification memory consumption. The cycle
is incremented after a period of 250ms and is being reset after some specified
CYCLELIMIT in theGlobal process. The processGlobal also takes care of global
invariants onjob[i] andWCRT[i] stopwatches of each taski.

Listing 3: System declaration using UPPAAL priorities.
�

system Scheduler , RTEMSRTC, AswSyncSyncPulselsr, HkSamplerIsr, SwCycCycStartIsr,
SwCyc CycEndIsr, Rt1553Isr, Bc1553Isr, SpwIsr, ObdhIsr, RtSdbP 1, RtSdbP 2, RtSdbP 3,
FdirEvents , NominalEvents1, mainCycle, HkSamplerP 2, HkSamplerP 1, Acb P, IoCycP,
primaryF, rCSControlF, ObtP, Hk P, StsMonP, TmGenP, SgmP, TcRouterP, CmdP,
NominalEvents2, secondF1, secondF2, BkgndP, IdleTask , Global;

progress { cycle ; }
� �

TIME<=LIMIT &&
globalTime<=cycle*CYCLE &&
forall(i: taskid_t) job[i]’==runs[i] &&
forall(i: taskid_t) WCRT[i]’==ready[i]

globalTime==cycle*CYCLE
&& cycle==CYCLELIMIT

globalTime==cycle*CYCLE
&& cycle<CYCLELIMIT

cycle=1, globalTime=0,
usedTime=0, idleTime=0,
WCRT[0]=0

Done?

cycle++

Fig. 6:Global process enforce invariants on stopwatches and cyclic progress.

2.4 Verification Queries

The following is a list of queries used to check schedulability properties:

• Check if the system is schedulable (the error state is not reachable):
E<> error

• Check if any task can be blocked at all:E<> exists(i:taskid t) blocked[i]
• Find the total worst CPU usage:sup: usedTime, idleTime
• Find the worst-case response-times:sup: WCRT[0], WCRT[1], ... WCRT[33]
• Find worst-case blocking times, whereB[i] is a stopwatch growing when taski is

blocked:sup: B[0], B[1], B[2], ... B[33]

A sup-query explores the entire reachable state space and computes the maximum
(supremum) value of an argument expression. This is particularly useful for com-
puting several bounds at once.

Page 127

10 Marius Mikučionis and Kim G. Larsen and Brian Nielsen

3 Results

Our results provide three important pieces of information: visualisation of a sched-
ule in a Gantt chart, worst-case response-times estimates and CPU utilisation and
verification benchmarks.

A Gantt chart can be used to visualise a trace of the system, thus providing a rich
picture for inspection. For example, the generated Gantt chart in Figure 7 shows that
Cmd P is blocked more than 5 times during the first cycle, while blocking times for
PrimaryF (21) andStsMon P (25) are significantly long only starting from the
second cycle.

T(0)

T(1)

T(2)

T(3)

T(4)

T(5)

T(6)

T(7)

T(8)

T(9)

T(10)

T(11)

T(12)

T(13)

T(14)

T(15)

T(16)

T(17)

T(18)

T(19)

T(20)

T(21)

T(22)

T(23)

T(24)

T(25)

T(26)

T(27)

T(28)

T(29)

T(30)

T(31)

T(32)

T(33)

R(0)

R(1)

R(2)

R(3)

R(4)

R(5)

R(6)

0 7624 15248 22871 30495 38118 45742 53366 60989 68613 76236 83860 91484 99107 106731 114354 121978 129601 137225 144849 152472 160096 167719

Fig. 7: Gantt chart of the first cycle, generated by UPPAAL TIGA: task T(i) is green
when ready, blue – executing, red – blocked, cyan – suspended, resource R(j) is blue
when locked and owner uses CPU, green – locked but the owner is preempted, cyan
– locked but owner is suspended.

In [Palm(2006)] the CPU utilisation for a 20-250ms window is estimated as
62.4%. Our estimate for the entire worst-case cycle is 63.65% which is slightly
larger, possibly due to the fact that it also includes the consumption during the 0-
20ms window. See [Mikǔcionis et al(2010)Mikǔcionis, Larsen, Rasmussen, Nielsen, Skou, Palm, Pedersen, and Houg
for additional insight on how the cycle limit affects verification resources and re-
sults.

Table 2 shows the worst-case response-times obtained from UPPAAL analysis
with 0%, 5% and 10% BCET deviation from WCET in comparison with response-

Page 128

Schedulability Analysis of Herschel/Planck Software Using Uppaal 11

times acquired by Terma. We note that in all cases the WCRT estimates pro-
vided by UPPAAL are smaller (hence less pessimistic) than those originally ob-
tained [Palm(2006)]. In particular, we note that the taskPrimaryF (task 21) is found
to be schedulable using model-checking with up to 10% deviation for best-case exe-
cution times, but most probably not schedulable from 14% (a trace leading to dead-
line violation is found), in contrast to the original negative result obtained by Terma.

Table 2: Specification, blocking and worst-case response-times of individual tasks.

Specification WCRT
ID Task Period WCET Deadline Terma 0% 5% 10%
1 RTEMS RTC 10.000 0.013 1.000 0.050 0.013 0.013 0.013
2 AswSyncSyncPulseIsr 250.000 0.070 1.000 0.120 0.083 0.083 0.083
3 Hk SamplerIsr 125.000 0.070 1.000 0.120 0.070 0.070 0.070
4 SwCycCycStartIsr 250.000 0.200 1.000 0.320 0.103 0.103 0.103
5 SwCycCycEndIsr 250.000 0.100 1.000 0.220 0.113 0.113 0.113
6 Rt1553Isr 15.625 0.070 1.000 0.290 0.173 0.173 0.173
7 Bc1553Isr 20.000 0.070 1.000 0.360 0.243 0.243 0.243
8 Spw Isr 39.000 0.070 2.000 0.430 0.313 0.313 0.313
9 Obdh Isr 250.000 0.070 2.000 0.500 0.383 0.383 0.383

10 RtSdbP 1 15.625 0.150 15.625 4.330 0.533 0.533 0.533
11 RtSdbP 2 125.000 0.400 15.625 4.870 0.933 0.933 0.933
12 RtSdbP 3 250.000 0.170 15.625 5.110 1.103 1.103 1.103
14 FdirEvents 250.000 5.000 230.220 7.180 5.553 5.553 5.553
15 NominalEvents 1 250.000 0.720 230.220 7.900 6.273 6.273 6.273
16 MainCycle 250.000 0.400 230.220 8.370 6.273 6.273 6.273
17 HkSamplerP 2 125.000 0.500 62.500 11.960 5.380 7.350 8.153
18 HkSamplerP 1 250.000 6.000 62.500 18.460 11.615 13.653 14.153
19 Acb P 250.000 6.000 50.000 24.680 6.473 6.473 6.473
20 IoCyc P 250.000 3.000 50.000 27.820 9.473 9.473 9.473
21 PrimaryF 250.000 34.050 59.600 65.47 54.115 56.382 58.586
22 RCSControlF 250.000 4.070 239.600 76.040 53.994 56.943 58.095
23 Obt P 1000.000 1.100 100.000 74.720 2.503 2.513 2.523
24 Hk P 250.000 2.750 250.000 6.800 4.953 4.963 4.973
25 StsMonP 250.000 3.300 125.000 85.050 17.863 27.935 28.086
26 TmGenP 250.000 4.860 250.000 77.650 9.813 9.823 9.833
27 SgmP 250.000 4.020 250.000 18.680 14.796 14.880 14.973
28 TcRouterP 250.000 0.500 250.000 19.310 11.896 11.906 14.442
29 Cmd P 250.000 14.000 250.000114.920 94.346 99.607 101.563
30 NominalEvents 2 250.000 1.780 230.220102.760 65.177 69.612 72.235
31 SecondaryF 1 250.000 20.960 189.600141.550 110.666 114.921 122.140
32 SecondaryF 2 250.000 39.690 230.220204.050 154.556 162.177 165.103
33 Bkgnd P 250.000 0.200 250.000154.090 15.046 139.712 147.160

On a Linux server with Intel Xeon E5420 2.5GHz processor UPPAAL takes
2min 40s to verify that the system is schedulable, 6min 30s to find WCRTs with
0% BCET deviation. In case of 10% BCET deviation it took slightly over 6 days
to establish schedulability and slightly over 7 days of 6 parallel runs to find all
WCRTs. Table 3 shows the amount of verification resources UPPAAL requires to
verify schedulability with different task execution time windows and model time
limits. In this study we used compact data structure (CDS) to store the clock val-
uations in contrast to difference bound matrices (DBM) in previous study, which
explains why the verification is slower, but the memory usage is limited and varies
very little across model time limits.

Page 129

12 Marius Mikučionis and Kim G. Larsen and Brian Nielsen

In addition UPPAAL reported that the system is not schedulable when the task
execution time window is larger than 14%. We found that the cycle limit granularity
(used to define the progress measure) affects performance as well as the outcome:
the larger cycles lead to error state being reachable because larger cycles result in
the coarser stop-watch over-approximation. For example, binary search method re-
vealed that with a 20% task execution window the error is reachable within the first
250ms period when the cycle is larger than 8017msand otherwise it is not. However
the error is reachable in the second 250ms period even if the cycle is as small as 2ms
(verification took 24 hours).

Table 3: Verification statistics for different task execution time windows and explo-
ration limits: the percentage denotes difference between WCET and BCET, limit is
in terms of 250ms cycles (∞stands for no limit, i.e. full exploration), memory in
MB, time in seconds.

limit 0% 5% 10% 14%
states mem time states mem time states mem time, s states mem time

1 1300 51.2 1.47 485077 83.0 903.1 1481162 124.1 4962.83348246 186.9 23986.5
2 2522 53.7 2.45 806914 96.8 1619.9 2414679 139.7 7755.25253778 198.7 33299.2
4 4981 54.5 4.62 1499700 97.2 2881.8 4421630 138.3 13720.09231399 274.6 51176.6
8 9928 54.7 8.48 2828776 97.8 5325.1 9093562 156.5 31122.318240030 364.6 102932.4

16 19805 55.3 16.11 5366015 112.0 9952.017798572 176.0 60124.535432003 520.4 158816.7
∞ 196336 58.8 159.6452728344 553.9 97507.4181869652 1682.2 530604.9error may be reachable

4 Discussion

We have shown how UPPAAL can be applied for schedulability analysis of a sys-
tem with a single CPU, fixed priorities preemptive scheduler, mixture of periodic
tasks and tasks with dependencies, and mixed resource sharing protocols. Worst-
case response-times (WCRT), blocking times and CPU utilisation are estimated by
using model-checker according to detailed task models. Our modelling patterns use
stopwatches in a simple and intuitive way. A break-through in verification scalabil-
ity for large systems (more than 30 tasks) is achieved by employing the sweep-line
method.

The task templates are demonstrated to be generic through many instantiations
with arbitrary computation sequences and specialised for particular resource shar-
ing. The framework is modular and extensible to accommodate a different scheduler
and control flow can be expanded with additional instructions if some task algorithm
is even more complicated. In addition, UPPAAL allows easy visualisation of the
schedule in Gantt chart and the system behaviour can be examined in both symbolic
and concrete simulators.

The case study results include a self-contained non-ambiguous model which for-
malises many informal assumptions described in [Palm(2006)] in human language.
The verification results demonstrate that the timing estimates correlate with figures

Page 130

Schedulability Analysis of Herschel/Planck Software Using Uppaal 13

from the response-time analysis [Palm(2006)]. The worst-case response-time ofPri-
maryF is indeed very close to its deadline, but overall, all estimates by UPPAAL are
lower (more optimistic) and they all (WCRT21 in particular) are below deadlines,
whereas the classical response-time analysis found thatPrimaryF may not finish
before deadline and does not provide any more insight on how the deadline is vio-
lated or whether such behaviour is realizable.

By relaxing the lower bound of task execution time we showed that the system is
probably not schedulable if BCET deviates from WCET by 15% or more. We found
that it is better to start exploration with small task execution windows with large
progress cycles first and limit the model time (effectively limiting the verification
resources), then progress gradually with larger windows and then use smaller cy-
cles to refine over-approximation. The large task execution windows (e.g. 20% with
small progress cycles, or simple case of 50% with large cycles) can take days just to
find the error and potentially much longer if there is no error.

We plan to conduct a similar study to allow sporadic tasks and apply statistical
model-checking methods to investigate the probability of deadline violation as a
cheaper means to detect errors.

So far we have not addressed margin analysis (as part of response-time analy-
sis), but we see no principle obstacle to use the binary search method to find upper
bounds for task execution times.

4.1 Related Work

Process algebraic approach has resulted in many methods for specification and
schedulability analysis of real-time systems. For example [Ben-Abdallah et al(1998)Ben-Abdallah, Choi, Clarke, Kim,
provide an overview of this long tradition.

In [Waszniowski and Hanźalek(2008)] it is shown how a multitasking application
running under a real-time operating system compliant with an OSEK/VDX standard
can be modelled by timed automata. Use of this methodology is demonstrated on
an automated gearbox case study and the worst-case response-times obtained from
model-checking is compared with those provided by classical schedulability analy-
sis showing that the model-checking approach provides less pessimistic results due
to a more detailed model and exhaustive state-space exploration.

The Times tool [Amnell et al(2002)Amnell, Fersman, Mokrushin, Pettersson, and Yi]
can be used to analyse single processor systems, however it supports only highest
locker protocol (simplified priority ceiling protocol) [Fersman(2003)]. Approaches
like [Bøgholm et al(2008)Bøgholm, Kragh-Hansen, Olsen, Thomsen, and Larsen] and
[Brekling et al(2009)Brekling, Hansen, and Madsen] provides external transforma-
tion into UPPAAL [Behrmann et al(2004)Behrmann, David, and Larsen] timed-automata
for schedulability analysis.

Page 131

14 Marius Mikučionis and Kim G. Larsen and Brian Nielsen

References

[Amnell et al(2002)Amnell, Fersman, Mokrushin, Pettersson, and Yi] Amnell T, Fersman E,
Mokrushin L, Pettersson P, Yi W (2002) TIMES – a tool for modelling and implementation of
embedded systems. In: TACAS ’02: Proceedings of the 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Springer-Verlag, London, UK,
pp 460–464

[Behrmann et al(2004)Behrmann, David, and Larsen] Behrmann G, David A, Larsen K (2004) A
tutorial on Uppaal. Lecture Notes in Computer Science pp 200–236

[Ben-Abdallah et al(1998)Ben-Abdallah, Choi, Clarke, Kim, Lee, and Xie] Ben-Abdallah H,
Choi JY, Clarke D, Kim YS, Lee I, Xie HL (1998) A process algebraic approach to
the schedulability analysis of real-time systems. Real-Time Systems 15:189–219, URL
http://dx.doi.org/10.1023/A:1008047130023, 10.1023/A:1008047130023

[Bøgholm et al(2008)Bøgholm, Kragh-Hansen, Olsen, Thomsen, and Larsen] Bøgholm T,
Kragh-Hansen H, Olsen P, Thomsen B, Larsen KG (2008) Model-based schedulability
analysis of safety critical hard real-time java programs. In: Bollella G, Locke CD (eds)
JTRES, ACM, ACM International Conference Proceeding Series, vol 343, pp 106–114

[Brekling et al(2009)Brekling, Hansen, and Madsen] Brekling A, Hansen M, Madsen J (2009)
Moves – a framework for modelling and verifying embedded systems. In: Microelectronics
(ICM), 2009 International Conference on, pp 149–152, DOI 10.1109/ICM.2009.5418667

[Burns(1994)] Burns A (1994) Preemptive priority based scheduling: An appropriate engineering
approach. In: Principles of Real-Time Systems, Prentice Hall, pp 225–248

[Fersman(2003)] Fersman E (2003) A generic approach to schedulability analysis of real-time
systems. Acta Universitatis Upsaliensis

[Mikučionis et al(2010)Mikǔcionis, Larsen, Rasmussen, Nielsen, Skou, Palm, Pedersen, and Hougaard]
Mikučionis M, Larsen KG, Rasmussen JI, Nielsen B, Skou A, Palm SU, Pedersen JS,
Hougaard P (2010) Schedulability analysis using uppaal: Herschel-planck case study. In:
Margaria T (ed) ISoLA 2010 – 4th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation, Springer, vol Lecture Notes in Computer
Science

[Palm(2006)] Palm S (2006) Herschel-Planck ACC ASW: sizing, timing and schedulability anal-
ysis. Tech. rep., Terma A/S

[Terma A/S(Issue 9)] Terma A/S (Issue 9) Software timing and sizing budgets. Tech. rep., Terma
A/S

[Waszniowski and Hanźalek(2008)] Waszniowski L, Hanzálek Z (2008) Formal verification of
multitasking applications based on timed automata model. Real-Time Systems 38(1):39–65

Page 132

Chapter 1
An Introduction to Automatic Synthesis of
Discrete and Timed Controllers

Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

1.1 Introduction

In this chapter, we introduce models and algorithms for the automatic synthesis of
controllers for discrete and timed (infinite state) systems. The techniques that we ex-
pose here are based on the game metaphor [5, 4]: when designing an embedded con-
troller, you can see the controller as interacting with its environment. As the actions
taken by the environment are uncontrollable, those actions should be considered as
adversarial. Indeed, a controller should be correct no matter how the environment
in which it operates behaves. The models, algorithms and tools presented here are
applied to an industrial case study in the next chapter. This case study was provided
to us by HYDAC ELECTRONIC GMBH within the Quasimodo project.

The objective of the chapter is to allow the reader to understand timed game
automata [3] as a model for solving timed control problems. With this objective in
mind, we define the notions of game graphs, controllable and uncontrollable actions,
strategies, and winning objectives. We also give a gentle introduction to the main
algorithmic ideas that are used to solve games played on graphs. Those techniques
are used in the tool UPPAAL -TIGA [1]. A good understanding of the techniques
used in UPPAAL -TIGA should help the users when modeling control problems and
formulating queries about their models.

The chapter is organized as follows. In section 1.2, we introduce an example of
a timed control problem called the‘Chinese juggler control problem”. This example
allows us to illustrate the game metaphor for formalizing the timed control problem.
In Section 1.3, we introduce the basic definitions underlying the game approach to
controller synthesis. In Section 1.4, we outline two algorithms that are used to solve
(untimed) reachability and safety games respectively. In Section 1.5, we show how
the concepts developed in Sections 1.3 and 1.4 can be extended to timed systems.
In Section 1.6, we summarize the main ideas underlying the algorithms for solving
timed games. In Section 1.7, we give an introduction to the tool UPPAAL -TIGA and

1

Page 133

2 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

show how to model and automatically solve the Chinese juggler control problem
with timed game automata.

1.2 The Chinese juggler control problem

In this section, we introduce a running example that we use later in this chapter
to illustrate how timed controllers can be automatically synthesized using the tool
UPPAAL -TIGA. The example also allows us to illustrate the game metaphor for
controller synthesis that underlies the development of the theory in Sections 1.3
and 1.4.

A Chinese juggler has to spin plates that are on sticks to prevent them from
falling, see Fig. 1.1 for an illustration. Assume, for our example, that the juggler
wants to handle two plates, calledPlate 1 andPlate 2 . Plates crash after a
while if they are not spun. Initially, each plate is spinning on its stick and the spin
is fast enough so that they will stay stable for at least 5 seconds. The juggler has to
maintain them stable for as long as possible (forever if possible). For that, the juggler
can spin each plate but he can spin only one of the plates at a time. When he decides
to spinPlate i ∈ {1,2}, he should do it for at least 1 time unit. If he decides to do
it for t time units thenPlate i stays stable for 3 time units if 1≤ t ≤ 2, and for 5
time units ift > 2.

Now, assume that there is also a mosquito in the room. When the mosquito
touches one of the two plates, it reduces the spinning of the plate, and as a result its
remaining stability time is decreased by 1 time unit. When the mosquito touches the
plate, it gets afraid and this guarantees that it will not touch any plate again before
D time units have elapsed (after that amount of time the mosquito has forgotten and
he is not afraid any more).

We want to answer the following question(CP):

Given a value forD, does the Chinese juggler have a way to spin the plates so that none of
the two plates ever falls down no matter what the behavior of the mosquito is ?

Let us first try to understand how this timed control problem can be seen as a
two player game. In the system underlying our example, we have several compo-
nents: the Chinese juggler, the plates, and the mosquito. Clearly, only the behavior
of the Chinese juggler is under control. The plates and the mosquito are part of the
environment: when a plate has not been spun enough, it can fall at any time, and the
behavior of the mosquito is out of control of the juggler, i.e. the mosquito decides
when it touches plates. As a consequence, we can see the control problem asoppos-
ing two players: on one hand the Chinese juggler (Player 1), and on the other hand
the plates and the mosquito (Player 2).

During this game, at any point in time, the Chinese juggler may decide to spin
one of the two plates. If he decides to do so, he will do it for at least one time
unit. Then either he decides to continue to spin the plate, or to stop and remain idle
for a while, or to start spinning the other plate. The alternatives that are offered to

Page 134

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 3

Fig. 1.1 A Chinese juggler (cartoon courtesy of Jean Cardinal.)

the juggler along time can be understood asmovesin the underlying game. The
mosquito, if it has not touched a plate in the precedingD time units, may decide to
touch one of the two plates whenever it wishes to do so. Again, those alternatives
can be seen as moves in the underlying game. Similarly, when a plate does not spin
fast enough then it may crash at any moment. To summarize, the only moves that
we control are the moves of the Chinese juggler, they are the moves of Player 1,
all the other moves areuncontrollable, they are the moves of Player 2. We must be
prepared to face all the moves available to the mosquito and to the plates.

Second, we need to understand what theobjectivesof the two players are. The
objective of the Chinese juggler is to avoid the plates to crash. For the objective of
the plates and the mosquito (Player 2), it may not be as clear. The mosquito flies
randomly in the room and touches one of the plates on occasion. But clearly, we
want to devise a strategy for the Chinese juggler such that,whatever the behavior of
the mosquito is(within the hypothesis that it does not touch twice the plates within
less thanD time units), the plates never crash. So, even if we do not know exactly the
intention (or the exact specification) of the mosquito, it is safe to be prepared for the
worst case scenario. So the kind of game that we consider arezero sum games: a set
of behaviors (of the system) is identified as good for Player 1, and the complement
of this set (all other behaviors) are considered as good for Player 2.

1.3 Control as a two-player games

Now that we agree that control problems can be seen as two-player games, we in-
troduce the precise definitions underlying the theory of two-player games played
on graphs. Later we extend those notions with dense time. After presenting timed
games, we show how to model the Chinese juggler problem with timed game au-

Page 135

4 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

tomata and how we can answer question (CP); moreover if the answer is yes we
also show how to synthesize automatically a winning strategy for the Chinese jug-
gler using the tool UPPAAL -TIGA.

1.3.1 Game structures

A game structureis a tupleG = (L, ℓinit,Act1,Act2,E) whereL is a finite (non-
empty) set of locations,ℓinit ∈ L is the initial location of the game,Act1 andAct2
are the two disjointsets of actionsfor Player 1 (the controller) and Player 2 (the
environment) respectively, andE ⊆ L×Act1 ∪Act2× L is a set of edgesbetween
the locations of the game labelled by actions that belong either to Player 1 or to
Player 2. Intuitively, edges labeled with elements fromAct1 belong to Player 1 and
are controllable (represented by plain arrows) while edges labeled by elements from
Act2 belong to Player 2 and are uncontrollable (represented by dashed arrows). We
let Enabledi(ℓ) be the set of actions of Playeri ∈ {1,2} available at locationℓ
i.e.Enabledi(ℓ) = {α ∈ Acti | ∃(ℓ,α, ℓ′) ∈ E}.

We require that for allℓ ∈ L, Enabled1(ℓ) 6= ∅, so that Player 1 is always able
to propose an action to play in any location of the game.

Example 1.Fig. 1.2 depicts a game structure. The set of locations isL= {L0,L1,L2,
L3}. In locationL0, Player 1 can choose between actiona or actionb, while Player 2
can choose between actionu1 and actionu2.L0 (inner circle) is the initial location of
the game. The edge(L0,a,L1) belongs to Player 1 and the edge(L0,u1,L1) belongs
to Player 2. �

a

u1

b

u2

b

a L1

L0

L2

L3
u3

a

a,bb

u1,u2,u3

Fig. 1.2 An example of a game structure

The way players are playing on a game structureG = (L, ℓinit,Act1,Act2,E) is
defined as follows. Initially, a pebble lies onℓinit, the initial location of game. Then
the game is played in rounds. Let us assume that, for the current round, the pebble
lies on locationℓ ∈ L. Then, first, Player 1 chooses some actionα ∈ Enabled1(ℓ).

Page 136

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 5

Then Player 2 decides where to move the pebble onto the successor locations ofℓ

while respecting the following rule: for moving the pebble she uses either an edge
labeled with an action ofAct2 or an edge1 labeled with the actionα chosen by
Player 1. By interacting in such a way for an infinite number of rounds, Player 1
and Player 2 are constructing aplay. Formally a playρ = ℓ0ℓ1 . . . ℓn . . . of the game
structureG is an infinite sequence of locations. We letρ [i] = ℓi , i ≥ 0 and denote
Play(G) for the set of plays ofG.

Example 2.Let us illustrate the notion of play using the example of Fig. 1.2. AsL0
is the initial location of the game structureG, the pebble initially lies onL0. Then
Player 1 is asked to make a choice among the actions that are available for her in
locationL0. This set is{a,b}. Assume that she choosesa. In this case, there are two
possibilities. Either, Player 2 chooses to let Player 1 play and the pebble is moved
using an edge labeled with the lettera. In our example, there is only one such edge,
and so the pebble is moved on locationL1. By this interaction, a finite prefixL0L1
of play is built. Or, Player 2 chooses to overtake Player 1 and to playu2; in that case,
the finite prefixL0 L2 of a play is built. Assume that the second situation applies.
Then a new round starts inL2. In that location, there is no uncontrollable transition,
so if Player 1 choosesa then the pebble is moved toL3 and if she choosesb, it is
moved toL0, etc. �

1.3.2 Winning objectives and strategies

We have seen that the interaction between Player 1 (the controller) and Player 2
(the environment) on a game structureG= (L, ℓinit,Act1,Act2,E) generates a play
which is an infinite sequenceℓ0ℓ1 . . . ℓn . . . of locations in the game graph, i.e. the
sequence of locations traversed by the pebble during the course of the game. Such a
sequence models one behavior of the system under control, and this behavior could
be considered as agoodbehavior or as abadbehavior depending on what we expect
from our system2. In the game terminology, such a classification of good and bad
behaviors leads to the notion of winning objective. Awinning objectivefor a game
structureG is a set of infinite sequences of locations, the intention being that such
sequences represent the good behaviors of the system.

Example 3.Assume that in our running example, Player 1 has the objective to reach
the set of locations{L3,L4}. In this case the winning objective will contain all the
playsℓ0ℓ1ℓ2 . . . ℓn . . . such thatℓi = L3∨ ℓi = L4 for somei ≥ 0. �

In the example above, the winning objective is a so-calledreachability objective
as it specifies a set of locations that we want to visit. In this chapter, we concentrate
on two classes of objectives:reachabilityandsafety. Given a set oftarget locations

1 There might be more than oneα-successor ofℓ. In this case, Player 2 resolves the non-
deterministic choice of theα-successor.
2 As stated earlier, we play zero-sum games and in this case a play is either good or bad.

Page 137

6 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

T ⊆ L, we define the set of winning plays of thereachability objective defined by
T as the set of playsReachG(T) = {ρ ∈ Play(G) s.t.∃i ≥ 0 ·ρ [i] ∈ T}. Given a set
of safelocationsS⊆ L, we define the set of winning plays of thesafety objective
defined by Sas the setSafeG(S) = {ρ ∈ Play(G) s.t.∀i ≥ 0·ρ [i]∈ S}. In the sequel,
we often useObj to represent a set of winning plays.

The winning objective specifies what the good plays for Player 1 are. Those
good behaviors can be enforced by the controller (Player 1) if she has a strategy
to force the play to be within the winning objective no matter what the strategy
played by Player 2 is (so without the help of Player 2). For the later definition to
be completely clear, we need to define more precisely what astrategyis. In our
games, a strategy for Player 1 determines what actions fromAct1 to pick during
the course of the game. In general, a strategy may depend on the history of the
game for deciding what the good action to play is. Nevertheless, for reachability
and safety objectives, the situation is simpler and it can be shown that strategies that
only depend on the current position of the pebble are sufficient: those strategies are
called “memoryless” strategies. So, in this chapter we concentrate on such simple
strategies. We now define them formally. A(memoryless) strategyfor Player 1 is
a functionλ1 : L → Act1, i.e. it is a function that given the current locationℓ ∈ L
chooses an actionλ1(ℓ) ∈ Enabled1(ℓ) for Player 1.

Let us now define the possible behaviors in the game structureG= (L, ℓinit,Act1,
Act2,E) when Player 1 plays according to the strategyλ1. Remember that Player 1,
in the game above, chooses an action at each round. Then Player 2 chooses between
the edges labeled by this action or labeled with one of her own actions. The set of
behaviors in this case is thus the set of paths that start inℓinit and use only edges that
are either labeled with actions of Player 2 or labeled with actions that are prescribed
by the strategyλ1. We can also see a strategy for Player 1 as cutting out edges of
Player 1 that are not chosen by the strategy. Let us define that formally. We call the
outcome of the strategyλ1 in the gameG= (L, ℓinit,Act1,Act2,E) the set of plays

Outcome(G,λ1) = {ρ | ∀i ≥ 0,∃a∈ λ1(ρ [i])∪Act2 · (ρ [i],a,ρ [i +1]) ∈ E}.

A strategyλ1 is winningfor the objectiveObj in G if Outcome(G,λ1)⊆ Obj.

Example 4.Let us consider again the example of Fig. 1.2. Assume that the winning
objective for Player 1 is to reach locationL3, i.e.Obj= ReachG({L3}). Let us con-
sider the strategyλ1 defined as follows:L0 7→ b, L1 7→ b, L2 7→ a, andL3 7→ a. It
should be clear that no matter how Player 2 plays when the play starts inL0, the
result of the interaction with this strategyλ1 is a play that reachesL3. For exam-
ple, let us consider the following scenario: inL0, instead of playingb as chosen by
Player 1, Player 2 moves the pebble to locationL1. From there, instead of playingb
as asked by Player 1 (this would lead directly toL3), Player 2 moves the pebble to
L2. FromL2, Player 1 choosesa and Player 2 has no other choices than to move the
pebble toL3. So, under any adversarial behavior of Player 2, Player 1 can force the
pebble to reach locationL3. As a consequence,λ1 is a winning strategy for Player 1
to win the reachability game defined by the objectiveObj= ReachG({L3}). �

Page 138

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 7

1.4 Solving two-player games

In the previous section, we have defined two-player game structures, reachability
and safety winning objectives, strategies for Player 1, and we have explained when
a strategy for Player 1 is winning. In this section, we introduce the basic ideas that
are underlying algorithms for solving games with safety and reachability objectives.

To understand the basic ideas behind the algorithms for solving reachability and
safety games, we must first concentrate on what happens in one round, i.e. we need
to consider one-step objectives. Aone step objectiveis defined by a set of locations
T ⊆ L. In a locationℓ∈ L of the gameG= (L, ℓinit,Act1,Act2,E), Player 1 wins the
one step objectiveT if there exists an actionα ∈ Act1 such that all edges labeled by
α and all edges labeled withAct2 actions lead to a location inT, i.e.ℓ is such that

∃α ∈ Act1 · ∀β ∈ Act2∪{α} · ∀(ℓ,β , ℓ′) ∈ E : ℓ′ ∈ T.

In that case, we say thatℓ is a controllable predecessorof T, and we denote by
CPre(T) the set of locations that are controllable predecessors ofT.

Example 5.To illustrate the definition ofcontrollable predecessors, we use Fig. 1.3.
First, let us consider the set of locationsT1 = {L1,L3}. The locationL0 is a con-
trollable predecessor ofT1. Indeed, inL0 if Player 1 choosesa, no matter what is
the choice of Player 2 (to move the pebble using an edge labeled witha or to play
an edge labeled with her own actions) the pebble will be either inL1 orL3 after the
round, so it will lie inT1. Second, let us consider the set of locationsT2 = {L1,L2}.
The locationL0 is not a controllable predecessor ofT2. Indeed, neithera nor b en-
sures that the pebble will lie inT2 as Player 2 can choose to go toL3 usinga or u2 in
the first case, and Player 2 can decide to go toL1 usingu1 in the second case. �

a

b

a

L2

L1

L3

u1

L0

u2

Fig. 1.3 Controllable and uncontrollable predecessors

Now that we understand what it means for a locationℓ to be a controllable pre-
decessor of a set of locationsT, we provide algorithms to solve reachability and
safety games. Let us start with reachability games. LetG= (L, ℓinit,Act1,Act2,E)

Page 139

8 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

be a two-player game structure andObj= ReachG(T) be the reachability objective
for Player 1.

The algorithm that computes the set of winning locations for the reachability ob-
jectiveReachG(T) works by induction on the number of rounds needed for Player 1
to win. Clearly, all the locations inT are winning in 0 rounds, let us denote this
set of locations byW0. Now, it should be clear that the set of controllable predeces-
sors ofT are locations that are winning in 1 step. By taking the union of this set
with W0, we obtain the set of locations from which Player 1 can force a visit toT
in 0 or 1 rounds, i.e.W1 =W0∪CPre(W0). Generalizing this reasoning, we get that
Wi =Wi−1∪CPre(Wi−1), i ≥ 1 is the set of locations from which Player 1 can force a
visit to the setT in less thani rounds. Clearly, we have thatW0 ⊆W1 ⊆ ·· · ⊆Wi ⊆ L.
As L is a finite set, the monotonic sequence ofWi reaches a fixed pointW for some
k ≤ |L| andW =Wk =Wk−1. The setW is the set of locations from which Player 1
has a strategy to force a visit toT in a finite number of steps. Ifℓinit ∈W then Player
1 has a winning strategy from the initial location of the game. From the computation
of this sequence, we can extract a winning strategy for all locations inW as follows.
Let ℓ ∈ W be such thatℓ ∈ Wi , i ≥ 1 andℓ 6∈ Wi−1. Defineλ1(ℓ) to be any action
a sucha ∈ Act1 and all the edges labeled witha that leave the locationℓ go to a
location that belongs to the setWi−1; because of the definition ofWi andCPre, such
an actiona is guaranteed to exist.

Example 6.Let us consider again the example of Fig. 1.2 with the reachability ob-
jectiveObj= ReachG({L3}). LetW0 = {L3}, and let us compute the set of control-
lable predecessors ofW0. The locationsL2 andL3 are controllable predecessors of
W0. SoW1 = {L2,L3} is the set of locations from which Player 1 can ensure a visit
in {L3} in 0 or 1 rounds. It should be clear from the computation of the controllable
predecessors ofW0 that Player 1 has to choose the actiona when the pebble lies on
L2. This gives a winning strategy for Player 1 inL2. Now, let us consider the loca-
tions that are controllable predecessors ofW1. This set is{L1,L2,L3}. Indeed inL1
Player 1 can chooseb and in this case, either Player 2 moves the pebble toL3 using
edge(L1,b,L3) or she moves the pebble toL2 using the edge labeled byu3. In the
two cases, the pebble lies on{L2,L3} when starting the next round of the game. If
we continue like that we obtain that all the locations ofG are winning for the objec-
tiveObj and in the process we can construct a winning strategy for Player 1.�

Let us now turn to safety games. Remember that in a safety game defined by a
setS⊆ L of locations, Player 1 has the objective to stay within setS forever, i.e.
Obj = SafeG(S). Let us define, as for reachability, a sequence of sets of locations
that approximate the set of winning locations for Player 1. Clearly,W0 = S is the set
of locations from which Player 1 can ensure to stay withinS for at least 0 rounds.
Now,W1 =W0∩CPre(W0) is the set of locations from which Player 1 can ensure to
stay withinSfor at least 1 round, and more generally,Wi =Wi−1∩CPre(Wi−1), i ≥ 1
is the set of locations from which Player 1 can ensure to stay withinS for ta leasti
rounds. Clearly, we have thatL ⊇ W0 ⊇ W1 ⊇ ·· · ⊇ Wi ⊇ ·· · ⊇ ∅. As L is a finite
set, we must reach a fixed pointW for somek ≤ |L| andW = Wk = Wk−1, and so
the sequence eventually stabilizes on the set of locations from which Player 1 can

Page 140

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 9

force to stay withinS forever, i.e. on the set of locations from which Player 1 has a
strategy to win the safety game defined byS.

Example 7.Let us consider again example of Fig. 1.2 but now with the objective
Obj= SafeG({L0,L2}). So the objective for Player 1 is now to avoid locationsL1 and
L3. Let us compute the sequence of sets of locations that approximate the winning
set for Player 1. By definition of this sequence,W0 = {L0,L2}. Let us compute the
controllable predecessors of this set of locations:CPre(W0) = {L2}. Indeed,L0 is
not a controllable predecessor of{L0,L2} as, fromL0, Player 2 can force to move
the pebble onto the locationL1 by choosing to play the edge labeled byu2. While
L2 is a controllable predecessor of the setW0 as inL2 Player 1 can move the pebble
onto the locationL0 ∈ {L0,L1} by playing the actionb, soW1 = {L2}. And clearly,
CPre(W1) =∅. So, there is no location inG from which Player 1 can ensure to stay
within {L0,L2} forever and Player 1 cannot win the game.

Let us now change the objective and considerObj= SafeG({L0,L1,L2}). We start
the computation withW0 = {L0,L1,L2}, and computeW1 =W0∩CPre(W0). All the
edges leavingL0 reach a location inW0 soL0 ∈CPre(W0), in L1 all edges of Player 2
and all edges of Player 1 labeled witha reach a location inW0 soL1 ∈ CPre(W0),
and inL2 all edges of Player 2 and all edges of Player 1 labeled withb reach a
location inW0 soL2 ∈ CPre(W0). The sequence of sets stabilizes asW1 = W0, and
so Player 1 has a strategy to win the safety objectiveObj= SafeG({L0,L1,L2}) from
all locations in{L0,L1,L2}. �

Remark 1.The main drawback of the algorithms that we have outlined above is that
they compute winning information about locations that are not necessarily reachable
by an interaction between Player 1 and Player 2 from the initial location. In practice,
that can deteriorate the performances of the algorithms. There are solutions to avoid
that problem, see for example the on-the-fly algorithm of [2], but the description of
those solutions goes beyond the objectives of this introduction.

1.5 Adding time to game structures

To add time to game structures, we adapt the syntax of timed automata as defined in
Chapter XXX and partition discrete transitions as controllable and uncontrollable.
A timed game automatonG= (L, ℓinit,X, Inv,Act1,Act2,E) is a structure, where:

• L is a finite set of discrete locations andℓinit is the initial location of the timed
game;

• X is a finite set of clocks, and we denote byConstr(X) the set ofclock con-
straints, i.e. conjunctions of atomic constraints of the formsx ∼ c or x− y∼ c,
wherec∈N andx,y∈ X;

• Inv : L → Constr(X) is a function that labels each locationℓ∈ L with an invariant
Inv(ℓ) that restricts the possible values that clocks inX can take when the control
of the automaton is in locationℓ,

Page 141

10 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

• Act1 are the actions of Player 1,Act2 are the actions of Player 2 such thatAct1∩
Act2 =∅, andE ⊆ L× (Act1∪Act2)×Constr(X)×2X ×L is the set of discrete
transitions of the timed game. A tuple(ℓ,α,φ ,R, ℓ′) ∈ E is a transition that goes
from locationℓ to locationℓ′, that is labeled with actionα (if α ∈ Act1 then
the transition is controllable, otherwise it is uncontrollable), with guardφ (the
transition can be taken only if the values of clocks satisfy the guard), and reset
setR (the clocks in the setR are reset when the transition is taken).

x=0

x<=1

x<1

x<1
L5 (Goal)L1

L4

L2

L3

x<=1

x<=2
L0 x>1

x>=2

Fig. 1.4 An example of a timed game automaton

Example 8.An example of a timed game automaton is given in Fig. 1.4. The only
syntactical difference with plain timed automata is induced by the partition of the
alphabet of labels for the transitions: the transitions labeled with an element ofAct1
belong to Player 1, and the transitions labeled with an element ofAct2 belong to
Player 2. As for untimed games, the edges controlled by Player 1 are depicted by
plain edges, and the edges controlled by Player 2 are depicted as dashed edges.

A state of a timed automaton is a pair(ℓ,v), whereℓ is a location andv is a
valuation for the clocks, i.e. a functionv : X →R≥0 that assigns to each clockx∈ X
a positive real numberv(x). In a timed automaton, when the automaton is in a state
(ℓ,v), time can elapse as long as it does not violateInv(ℓ) (the invariant that labels
ℓ). For example in the timed game automaton of Fig. 1.4, from state(L0,v) with
v(x) = 1, time can elapse fort time units if 1+ t ≤ 2, in that case state(L0,v′) is
reached withv′(x) = v(x)+ t.

A transition(ℓ1,a,φ ,R, ℓ2) can be taken in state(ℓ,v) wheneverℓ= ℓ1, the guard
φ is satisfied byv, which is denoted byv |= φ , and the clock valuationv[R := 0],

Page 142

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 11

which maps a clockx ∈ X \R to v(x), and a clockx ∈ R to 0, is such that it satis-
fies Inv(ℓ2), i.e.v[R := 0] |= Inv(ℓ2). For instance, in the timed game automaton of
Fig. 1.4, in state(ℓ0,

1
2), Player 2 can take the uncontrollable transition toℓ2 as the

guard onx is satisfied (12 < 1.) The state that is reached after this transition is the
pair (ℓ2,0) as the clockx is reset by this transition.

For a more systematic presentation of the semantics of timed automata, the reader
is referred to Chapter XXX. In this section, we focus on intuitions and do not always
give all the formal definitions.

1.5.1 Rounds in timed games

Remember thatuntimedtwo-player games are played for an infinite number of
rounds. Each round is played as follows: Player 1 chooses one actionα ∈ Act1
among the actions that label the controllable transitions leaving the location where
the pebble lieson , and then Player 2 moves the pebble by using a transition that is
labeled either byα or by an action fromAct2 (an uncontrollable transition.)

In timed games, we additionally need to know at what time Player 1 wants to
play. So in addition to an action to play, Player 1 chooses a delayt. Then given a
pair (t,α), Player 2 either decides to wait fort time units and to take a transition
that is labeled with the letterα ∈ Act1, and for which the guard on the transition is
satisfied, or Player 2 decides to wait for a delay oft ′ ≤ t and use a transition labeled
by an action fromAct2, and for which the guard evaluates to true.

Example 9.Let us consider the timed game automaton of Fig. 1.4. As in this exam-
ple, there are at most one controllable and one uncontrollable transition out of each
location, we did not give names to the transitions. This example is a timed game
automaton with a reachability objective for Player 1: her objective is to reach the lo-
cation labeled withgoal. Initially the pebble lies onL0 and the value of the clockx
is equal to 0. Let us assume that Player 1 proposes to wait exactly for 1 time unit
and to take the transition that leads toL1. In this case, the two following scenarios
are possible. Either Player 2 lets time elapse for at least 1 time unit, the value of the
clock x is then equal to 1, and the pebble can be moved on locationL1 as proposed
by Player 1 (indeed, the guardx ≤ 1 is satisfied.) Or, Player 2 decides to wait for
t < 1 time units, and to move the pebble to locationL2 using the uncontrollable edge
from L0 toL2. Again, this is possible because after waiting fort < 1 time units, the
value ofx is less than 1 time unit, and so the guardx< 1 on the transition fromL0
to L2 is satisfied.

Assume for now that Player 2 follows the second scenario. The pebble is now
lying onL2 and the value of clockx is equal to 0 (as it has been reset when moving
the pebble using the transition fromL0 toL2.) From that position, let us assume that
Player 1 chooses to wait for12 time units and proposes to move to locationL3. As
there is no alternative for Player 2, time elapses for1

2 time units, and the pebble is
moved fromL2 toL3.

Page 143

12 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

From there, Player 1 chooses to wait for1
2 time units and proposes to move the

pebble toL1. Again, as there is no alternative for Player 2, time elapses for1
2 time

units and the pebble is moved fromL3 to L1. When the pebble arrives onL1, the
value of the clockx is equal to1

2 +
1
2 = 1. Then Player 1 chooses to wait say for

11
4 time units and to move the pebble to locationgoal. This is a valid move as the

value ofx is then equal to 1+11
4 = 21

4 and so the guardx ≥ 2 is satisfied, again
as Player 2 has no other alternatives, the pebble is moved on locationgoal, and the
play is winning for Player 1. �

When moving the pebble according to the rules defined above, atimed playof

the form(ℓ0,v0)
(t0,e0)
−−−→ (ℓ1,v1)

(t1,e1)
−−−→ . . .

(tn−1,en−1)
−−−−−−→ (ℓn,vn)

(tn,en)
−−−→ . . . is generated

by the interaction between the two players. In this timed play, each(ti ,ei) specifies
the time that has elapsed and the transition that has been taken during the roundi.

As for untimed games, objectives are defined by a set of discrete locationsT ⊆ L
of the automaton that Player 1 wants to reach for reachability games, or by a set
of discrete locationsS⊆ L in which Player 1 wants to stay in for safety games.
For reachability and safety objectives, it can be shown that Player 1 has a winning
strategy if and only if she has a winning memoryless strategy [3]. For timed games,
a memoryless strategyis a functionλ1 : L×R≥0

|X| → R≥0 ×Act1 that specifies,
given the current state of the game(ℓ,v), the timet ∈ R≥0 to wait and the action
α ∈ Act1 to play.

1.6 Solving two-player timed games

We have seen that, in the case of untimed games, reachability and safety objec-
tives can be solved using a notion ofcontrollable predecessors. This notion can be
extended to timed games. Again, we do not formalize all the details here but we
give enough intuition so that the reader can understand the main ideas behind the
algorithms for solving timed games.

Intuitively, a state(ℓ,v) is a controllable predecessor of a set of statesT =
{(ℓ0,v0),(ℓ1,v1), . . . ,(ln,vn), . . .}, if there existα ∈ Act1 and a delayt ∈ R≥0 such
that the following four conditions hold:

1. for all delayst ′, 0≤ t ′ ≤ t, v+ t ′ |= Inv(ℓ), i.e. time can elapse from(ℓ,v) for t
time unit without violating the invariant labelingℓ;

2. there exists a transitione= (ℓ,α,φ ,R, ℓ′) such thatv+ t |= φ andv+ t[R := 0] |=
Inv(ℓ′), i.e. there is a transition labelled withα that can be taken aftert time
units;

3. for all transitionse= (ℓ,α,φ ,R, ℓ′) such thatv+ t satisfiesφ , (ℓ′,v+ t[R := 0])
belongs toT, i.e. any choice of a transition labelled withα taken aftert time
units leads toT;

4. for all transitionse= (ℓ,u,φ ,R, ℓ′) and delayst ′ such that 0≤ t ′ ≤ t, u ∈ Act2,
andv+ t ′ satisfiesφ , then(ℓ′,v+ t ′[R := 0]) belongs toT, i.e. any uncontrollable
transition that can be taken withint time units leads toT.

Page 144

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 13

The sets of states that we have to handle are infinite, so they cannot be repre-
sented in extension. We need a symbolic data structure able to represent infinite
sets. Those sets can be represented symbolically using formulas in an adequate con-
straint language. All sets manipulated during the computation of the timed control-
lable predecessors are representable by union of clock constraints. To illustrate the
use of clock constraints and how the computation of the controllable predecessor in
the timed setting is done, we consider our running example of Fig. 1.4.

L0

(0)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3

L1

(1)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3

L2

(2)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3

L3

(3)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3
• • •

Fig. 1.5 Computation of the timed controllable states.

Example 10.The computation of the set of winning states is depicted in Fig. 1.5.
The first part of the picture, marked(1), depicts the set of states of the form(L1,v)
with v≥ 1. All those states are winning in 1 step because whenx≥ 1, the uncontrol-
lable transition fromL1 toL2 cannot be taken by Player 2 (as it is guarded byx< 1),
and by waiting until clockx reaches a value equal to or greater than 2, Player 1 can
move the pebble fromL1 to locationgoal. The part marked(2) of the picture depicts
the set of states that are winning in at most 2 discrete steps. The states that have been
added are controllable predecessors of the states that are winning in 1 step. First, let
us consider(L0,v) with v(x) = 1. This state is winning as, on the one hand, none of
the uncontrollable transitions is enabled in this state, and on the other hand, the con-
trollable transition fromL0 toL1 is enabled, and when it is taken the game reaches
a winning state (in 1 step.) Second, consider the set of states(L3,v) with v(x) ≤ 1.
From all those states, Player 1 can wait untilx= 1 and then she can take the control-
lable transition toL2, reaching a set of winning states in 1 step. The states depicted
in part(3) and(4) are computed in a similar manner. �

1.7 The Chinese juggler control problem in UPPAAL -TIGA

UPPAAL -TIGA is a tool developed at Aalborg University. It handles timed game
automata as presented in the previous section. The tool can be downloaded from
http://www.cs.aau.dk/ ˜ adavid/tiga/download.html .We refer the
reader to the user manual for details about the features and the usage of UPPAAL -
TIGA in practice. In this section, we show how to model the Chinese juggler control
problem with timed game automata. We use screenshots from the tool to illustrate

Page 145

14 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

its user interface. The interested reader can download the UPPAAL -TIGA model of
our running example fromhttp://... .Kim, can we add this

on the tiga web site
???

Note that for the sequel, we assume that the reader is familiar with notation of the
UPPAAL tool as described in Chapter YY. The models that are used here are game
extensions of the UPPAAL models, we make it clear what are those extensions in
the sequel.

1.7.1 Modeling of the components

A timed game in UPPAAL -TIGA is modeled compositionally by defining timed
game automata that specify the behavior of the components of the system. This mod-
eling approach is similar to the one used for regular models in UPPAAL (see Chap-
ter YY for additional material on compositional modeling). As in UPPAAL models,
components in UPPAAL -TIGA synchronize using shared events (implemented by
channels). For the rest of this section, we assume that the reader is familiar with this
modeling paradigm.

Fig. 1.6 shows the timed automaton model forPlate i ∈ {1,2}. The timed game
automaton has the set of locations{Stable,Spinning,Longspinning,Crashed}.
The locationStable intends to model the situation when the plate is stable, the lo-
cationCrashed models the situation when the plate has crashed,Spinning mod-
els the situation when the juggler does spin the plate spin for a timet ≤ STABSHORT

seconds (whereSTABSHORTis a constant equal to 2), andLongspinning when
the juggler does spin the plate for more thanSTABSHORTseconds.

mosquito?

stopspin? stopspin?

x=0
StabTime =3,
x=0

startspin?

Crashed

Stable

Spinning Longspinning

StabTime = StabTime−1

x >= StabTime

StabTime>0

StabTime=5,
x=0

x<=STABSHORT

x==STABSHORT

Fig. 1.6 A model for the plate.

Page 146

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 15

The automaton uses one clockx. The use ofx is twofold. First, when the control
is in locationStable , the variablex records the time elapsed since the plate was
last spun by the juggler. When the control is inSpinning or Longspinning , x
records the time elapsed since the plate has last been spun under the impulsion of
the juggler. Let us now have a look at the transitions between control locations.

First, we consider the uncontrollable transitions. There are two uncontrollable
transitions that leaveStable . The self loop is taken whenever the mosquito
touches the plate (this is ensured by the synchronization on the eventmosquito?).
The effect is to substract value 1 from the integer variableStabTime that models
the length of the time interval during which the plate is guaranteed to stay stable
without being spun by the juggler. This can be done only if the guardStabTime> 0
is true (making sure that the value ofStabTime cannot become negative.)

The uncontrollable transition going fromStable to Crashed can be taken (by
Player 2) whenever the value of the clockx exceeds the time for which the plate is
guaranteed to be stable (since the last time it has been spun by the juggler.) As this
transition is uncontrollable, Player 2 can decide to take it at any time when the guard
is true. Player 2 may not take the transition immediately when the guard becomes
true but we cannot rely on this: that is why it is an uncontrollable transition in our
model.

Second, we consider the controllable transitions. The transition between loca-
tionsSpinning andLongspinning is taken exactly when the value ofx is equal
to STABSHORT. It accounts for the fact that the juggler is spinning the plate for an
interval of more thanSTABSHORTseconds. In fact, the behavior of this transition
is deterministic and so it could have been defined as uncontrollable, that would not
make any difference. The other three controllable transitions are related to actions
controlled by the juggler. When the plate isStable , the juggler can decide to give
it more spinning by emitting the eventstartspin! . This has the effect to trigger
this transition (reception of the eventstartspin!) and to move the control to
locationSpinning . The control leaves the locationSpinning :

• either because the juggler has decided to stop spinning (eventstopspin?)
beforeSTABSHORTseconds, in that case, the control moves back to location
Stable , the clockx is reset, and the interval for which the plate is guaranteed
to be stable is 3 seconds (updateStabTime=3),

• or because the juggler has spun the plate forSTABSHORTseconds, and the
control moves toLongspinning . This later location is left when the event
stopspin? occurs, in that case the control moves back toStable and the
plate is guaranteed to be stable for 5 seconds (updateStabTime=5).

This template timed game automaton is instantiated twice, one time forPlate
1 and one time forPlate 2 .

We can now have a look at the other components of our model. Fig. 1.7 depicts
a model of the mosquito. The mosquito can at any time touch one of the two plates
provided that he has not touched a plate within the lastD times units (this is forced
by the guardy≥ D). This last constraint is enforced using the clocky which is reset
each time a plate is touched. The self-loop is labeled with the eventmosquito!

Page 147

16 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

mosquito!

y=0y >= D
startspin!

stopspin!

Turn

z=0
z>=1

Wait

Fig. 1.7 A model for the mosquito Fig. 1.8 A model for the juggler

which is either received by Plate 1 or Plate 2. The transition is uncontrollable as it
belongs to the mosquito and not to the controller that we want to synthesize.

Finally, the juggler is modeled by the timed automaton given in Fig. 1.8. The
juggler can be in two different states that are modeled by two locations:Wait mod-
els the situation when the juggler does not spin any of the two plates,Turn models
the situation when the juggler spins one of the plates. The eventsstartspin!
andstopspin! are synchronized with either Plate 1 or Plate 2. Clockz is used to
express that the juggler should spin a plate for at least 1 time unit.

1.7.2 Analysis of the model

We can now analyze the model of the Chinese Juggler presented above with the tool
UPPAAL -TIGA. We want to determine if the Juggler has a strategy to win the timed
game for the safety objective ‘none of the two plates ever crashes””. This control
objective is expressed by the following expression in the UPPAAL -TIGA syntax:

control: A[] not (Plate1.Crashed or Plate2.Crashed)

This formula asks to find a control strategy (keywordcontrol) for the juggler
such that on all resulting plays (modalityA), it is always the case (modality[]) that
(Plate1.Crashed or Plate2.Crashed) is false.

If we impose to the mosquito to stay away from the two plates for at leastD = 2
seconds after touching one of the plates, then the Juggler has a strategy to win.
UPPAAL -TIGA is able to determine that property, and furthermore, the tool also
synthesizes a winning strategy. The strategy that the tool synthesizes is as follows:.... Kim, can you pro-

vide a picture of the
winning strategy for
the parameters as de-
scribed above ?

Now, if we setD = 1, then the Juggler does not have a strategy to win as the
mosquito can act very fast.

1.8 Conclusion

In this chapter, we have introduced the basic concepts and algorithmic ideas that
underly the automatic synthesis of discrete and timed controllers for systems mod-
eled by game automata and timed game automata. We have shown that the game

Page 148

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 17

metaphor is natural to model control problems. Even if those ideas are relatively
recent, they have been implemented into the tool UPPAAL -TIGA and they can be
applied to interesting case studies.

In the next chapter, we show how to use UPPAAL -TIGA to automatically syn-
thesize a controller to regulate a pressure accumulator and to optimize its energy
consumption.

References

1. Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! InCAV - International Con-
ference on Computer Aided Verification, volume 4590 ofLecture Notes in Computer Science,
pages 121–125. Springer, 2007.

2. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. InCONCUR - International
Conference Concurrency Theory, volume 3653 ofLecture Notes in Computer Science, pages
66–80. Springer, 2005.

3. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems. In E.W. Mayr and C. Puech, editors,STACS - Theoretical Aspects of Computer
Science, volume 900 ofLecture Notes in Computer Science, pages 229–242. Springer-Verlag,
1995.

4. Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. InPOPL - Annual
Symposium on Principles of Programming Languages, pages 179–190. ACM Press, 1989.

5. Peter J. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete-event
processes.SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

Page 149

Chapter 1
Timed Controller Synthesis:
An Industrial Case Study

Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

1.1 Introduction

The design of controllers for embedded systems is a difficult engineering task. Con-
trollers have to enforce properties like safety properties (e.g. “nothing bad will hap-
pen”), or reachability properties (e.g. “something good will happen”), and ideally
they should do that in an efficient way, e.g. consume the least possible amount of
energy. The foundations of automatic synthesis of discrete and timed controllers
have been presented in the preceding chapter 1. In this chapter, we illustrate the
application of these approaches with an industrial case study provided by the HY-
DAC ELECTRONIC GMBH company in the context of the European research project
Quasimodo [?]. We present in the sequel how to use (in a systematic way) the tool
UPPAAL-TIGA [?] (see chapter 1 for an introduction to the tool) for the synthesis,
together with tools for the verification and the simulation of a provable correct and
near optimal controller for real industrial applications.

Pump

Reservoir

Accumulator

Machine/Consumer

Vmax

Vmin

+2.2 litres/second

Fig. 1.1 Overview of the system.

The system to be controlled is depicted in Fig. 1.1 and is composed of:

1

Page 150

2 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

1. a machine which consumes oil,
2. a reservoir containing oil,
3. an accumulator containing oil and a fixed amount of gas in order to put the oil

under pressure, and
4. a pump.

When the system is operating, the machine consumes oil under pressure out of the
accumulator. The level of the oil, and so the pressure within the accumulator (the
amount of gas being constant), can be controlled using the pump to introduce addi-
tional oil in the accumulator (increasing the gas pressure). The control objective is
twofold: first the level of oil into the accumulator (and so the gas pressure) which
is controlled using the pump must be maintained within a safe interval; second the
controller should try to minimize the level of oil such that the accumulated energy
in the system is kept minimal (a lower level of oil, and thus a lower gas pressure,
reduces the wear on the pump and minimizes energy consumption). The maximum
output rate of the pump is 2.2litre/sec, whereas the maximum rate of the consumer
is 2.5litre/sec: proper operation of the pump should thus anticipate the maximum
rate of the machine and pump oil in in advance to ensure that the pressure stays with
the given bounds.

To solve the HYDAC ELECTRONIC GMBH control problem, we use three com-
plementary tools for three different purposes: UPPAAL-TIGA for synthesis, the tool
PHAVER [?, ?] for verification, and SIMULINK [?] for simulation. In this chapter,
we are mainly interested in the synthesis step. For this phase, we show how to con-
struct a (game) model of this case study which has the following properties:

• it is simple enough to be solved automatically using algorithmic methods imple-
mented into UPPAAL-TIGA;

• it ensures that the synthesized controllers can be easily implemented, because it
is robust.

To meet those two requirements, we consider an idealized version of the environ-
ment in which the controller is embedded, but we put additional constraints into the
winning objective of the controller that ensure the robustness of winning strategies.
As the winning strategies are computed on a simplified model of the system, we
show how to embed automatically the synthesized strategies into a more detailed
model of the environment, and how to automatically prove their correctness using
the tool PHAVER [?, ?] for analyzing hybrid systems. While the verification model
allows us to establish correctness of the controller that is obtained automatically
using UPPAAL-TIGA, it does not allow us to learn its expected performance in an
environment where noise is not completely antagonist but follows some probabilis-
tic rules. For this kind of analysis, we consider a third model of the environment and
we analyze the performance of our synthesized controller using SIMULINK.

To show the advantages of our approach, we compare the performances of the
controller we have automatically synthesized with two other control strategies. The
first control strategy is a simple two-point control strategy where the pump is turned
on when the volume of oil reaches a floor value and turned off when the volume of

Page 151

1 Timed Controller Synthesis: An Industrial Case Study 3

oil reaches a ceiling value. The second control strategy is a strategy designed by the
engineers at HYDAC ELECTRONIC GMBH with the help of SIMULINK.

Structure of the chapter

In section 1.2, we present in more details the HYDAC ELECTRONIC GMBH control
problem. In section 1.3, we present our construction of a suitable abstract model
of the system, and the strategy we have obtained using the synthesis algorithm of
UPPAAL-TIGA. In section 1.4, we embed the controllers into a continuous hybrid
model of the environment and use the tool PHAVER to verify their correctness
and robustness: we prove that strategies obtained using UPPAAL-TIGA are indeed
correct and robust. In section 1.5, we analyze and compare the performances in term
of mean volume of the three controllers using SIMULINK.

1.2 The Oil Pump Control Problem

In this section, we describe the components of the HYDAC ELECTRONIC GMBH
case study and describe the different constraints they must satisfy. In addition, we
provide a first model of these components, using hybrid automata notations. Though
we will not use these models in the sequel to synthesize controllers (synthesis on real
hybrid systems is very costly and beyond the scope of any tool), they offer a very
precise specification of the system. Then we explain the control objectives for the
system to design.

1.2.1 The Machine

The oil consumption of the machine is cyclic. One cycle of consumption, as given by
HYDAC ELECTRONIC GMBH, is depicted in Fig. 1.5. Each period of consumption
is characterized by a rate of consumption mr (expressed as a number of litres per
second), a time of beginning, and a duration. We assume that the cycle is known
a priori: we do not consider the problem of identifying the cycle (which can be
performed as a pre-processing step). At time 2, the rate of the machine goes to
1.2l/s for two seconds. From 8 to 10 it is 1.2 again and from 10 to 12 it goes up to
2.5 (which is more than the maximal output of the pump). From 14 to 16 it is 1.7 and
from 16 to 18 it is 0.5. Even if the consumption is cyclic and known in advance, the
rate is subject to noise: if the mean consumption for a period is c l/s (with c > 0), in
reality it always lies within that period in the interval [c− ε,c+ ε], where ε is fixed
to 0.1 l/s. This property is noted F.

Page 152

4 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

Fig. 1.2 The Machine Fig. 1.3 The Accumulator

Fig. 1.4 Model of the pump Fig. 1.5 Model of the scheduler

To model the machine, we use a timed automaton with 2 variables. The discrete
variable mr models the consumption rate of the machine, and the clock variable t
is used to measure time within a cycle. The variable mr is shared with the model
of the accumulator. The timed automaton is given in Fig. 1.2. The noise on the rate
of consumption is modeled in the model for the accumulator (see Fig. 1.3). We
indicate for each location of the timed automaton its invariant in square brackets.
For instance, one can stay in location i1 as long as the value of the clock t is less
than or equal to 2.

1.2.2 The Pump

The pump is either On or Off, and we assume it is initially Off. The operation of
the pump must respect the following latency constraint: there must always be two
seconds between any change of state of the pump, i.e. if it is turned On (respectively
Off) at time t, it must stay On (respectively Off) at least until time t +2: we note P1
this property. When it is On, its output is equal to 2.2l/s. We model the pump with a
two-state timed automaton given in Fig. 1.4 with two variables. The discrete variable
pr models the pumping rate of oil of the pump, and is shared with the accumulator.
The clock z ensures that 2 t.u. have elapsed between two switches.

1.2.3 The Accumulator.

To model the behavior of the accumulator, we use a one-state hybrid automaton
given in Fig. 1.3 that uses four variables. The variable v models the volume of oil
within the accumulator, its evolution depends on the value of the variables mr (the
rate of consumption depending of the machine) and pr (the rate of incoming oil from
the pump). To model the imprecision on the rate of the consumption of the machine,
the dynamics of the volume also depends on the parameter ε and is naturally given
by the differential inclusion dv/dt ∈ [pr−m−r (ε), pr−m+

r (ε)] with m./
r (x) =mr ./ x

if mr > 0 and mr otherwise. The variable Vacc models the accumulated volume of oil
along time in the accumulator. It is initially equal to 0 and its dynamic is naturally
defined by the equation dVacc/dt = v.

Page 153

1 Timed Controller Synthesis: An Industrial Case Study 5

1.2.4 The Control Problem

The controller must operate the pump (switch it on and off, respecting the latency
constraint) to ensure the two main requirements:

• (R1): the level of oil v(t) at time t (measured in litres) into the accumulator must
always stay within two safety bounds [Vmin;Vmax], in the sequel Vmin = 4.9l and
Vmax = 25.1l;

• (R2): a large amount of oil in the accumulator implies a high pressure of gas in the
accumulator. This requires more energy from the pump to fill in the accumulator
and also speeds up the wear of the machine. This is why the level of oil should
be kept minimal during operation, in the sense that

∫ t=T
t=0 v(t)dt, that is Vacc(T),

is minimal for a given operation period T .

While (R1) is a safety requirement and so must never be violated by any controller,
(R2) is an optimality requirement and will be used to compare different controllers.

Note that as the power of the pump is not always larger than the demand of
the machine during one period of consumption (see Fig. 1.5 between 10 and 12),
some extra amount of oil must be present in the accumulator before that period of
consumption to ensure that the amount of oil stays above Vmin (requirement R1) is
not violated1.

1.2.5 Additional Requirements on the Controller

When designing a controller, we must decide what are the possible actions that the
controller can take. Here are some considerations about that. First, as the consump-
tions of the machine may deviate slightly from the ideal values (this is called noise),
it is necessary to allow the controller to check periodically the level of oil in the
accumulator (as it is not predictable in the long run). Second, as the consumption
of the machine has a cyclic behavior, the controller should use this information to
optimize the level of oil. So, it is natural to allow the controller to take control de-
cisions at predefined instants during the cycle. Finally, we want a robust solution in
the sense that if the controller has to turn the pump on (or off) at time t, it can do it a
little before or after, that is at time t±∆ for a small ∆ without impairing safety. This
robustness requirement will be taken into account in the synthesis and verification
phases described later.

1 It might be too late to switch the pump on when the volume reaches Vmin and so the controller
may have to anticipate.

Page 154

6 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

1.2.6 Two existing solutions

In the next sections, we will show how to use synthesis algorithms implemented
in UPPAAL-TIGA to obtain a simple but still efficient controller for the oil pump.
This controller will be compared to two other solutions that have been previously
considered by the HYDAC ELECTRONIC GMBH company.

The first one is called the Bang-Bang controller. Using the sensor for oil volume
in the accumulator, the Bang-Bang controller turns on the pump when a floor vol-
ume value V1 is reached and turns off the pump when a ceiling volume value V2 is
reached. The Bang-Bang controller is thus a simple two-point controller, but it does
not exploit the timing information about the consumption periods within a cycle.

To obtain better performances in term of energy consumption, engineers at HY-
DAC ELECTRONIC GMBH have designed a controller that exploit this timing. This
second controller is called the Smart controller and works as follows [?]: in the
first cycle the Bang-Bang controller is used and the pressure p(t) is measured, the
corresponding volume v(t) is computed and recorded every 10ms. According to the
sampled values v(t) computed in the initial cycle, an optimization procedure com-
putes the points at which to start/stop the pump on the next cycle (this optimization
procedure was given to us in the form of a C code executable into SIMULINK; un-
fortunately we do not have a mathematical specification of it). On this next cycle
the values p(t) are again recorded every 10ms which is the basis for the computa-
tion of the start/stop commands for the next cycle and so on. If the pressure leaves a
predefined safety interval, the Bang-Bang controller is launched again. Though sim-
ulations of SIMULINK models developed by HYDAC ELECTRONIC GMBH reveal
no unsafe behaviour, the engineers have not been able to verify neither its correct-
ness nor its robustness. As we will see later, this strategy (we use the switching
points in time obtained with SIMULINK when the C code is run) is not safe in the
long run in presence of noise.

1.3 The UPPAAL-TIGA Model for Controller Synthesis

The hybrid automaton model presented in the previous section can be interpreted
as a game in which the controller only supervises the pump. In this section, we
show how to automatically synthesize, from a game model of the system and using
UPPAAL-TIGA, an efficient controller for the Hydac case study. UPPAAL-TIGA
is a recent extension of the tool UPPAAL which is able to solve timed games (see
chapter 1 for a presentation of the tool).

Page 155

1 Timed Controller Synthesis: An Industrial Case Study 7

1.3.1 Game Models of Control Problems

While modeling control problems with games is very natural and appealing, we
must keep in mind several important aspects. First, solving timed games is com-
putationally hard, so we should aim at game models that are sufficiently abstract.
Second, when modeling a system with a game model, we must also be careful about
the information that is available to each player in the model. The current version
of UPPAAL-TIGA offers games of perfect information (see [?] for steps towards
games for imperfect information into UPPAAL-TIGA.) In games of perfect infor-
mation, the two players have access to the full description of the state of the system.
For simple objectives like safety or reachability, the strategies of the players are
functions from states to actions. To follow such strategies, the implementation of
the controller must have access to the information contained in the states of the
model. In practice, this information is acquired using sensors, timers, etc.

1.3.2 The UPPAAL-TIGA Model

We describe in the next paragraphs how we have obtained our game model for the
hybrid automaton of the HYDAC ELECTRONIC GMBH case study. First, to keep
the game model simple enough and to remain in a decidable framework2, we have
designed a model which: (a) considers one cycle of consumption; (b) uses an ab-
stract model of the fluctuations of the rate; (c) uses a discretization of the dynamics
within the system. Note that since the discretization impacts both the controller and
the environment, it is neither an over- nor an under-approximation of the hybrid
game model and thus we can not deduce directly the correctness of our controllers.
However, our methodology includes a verification step based on PHAVER which
allows us to prove this correctness. Second, to make sure that the winning strategies
that will be computed by UPPAAL-TIGA are implementable, the states of our game
model only contain the following information, which can be made available to an
implementation:

• the volume of oil at the beginning of the cycle; we thus only measure the oil once
per cycle, leading to more simple controllers.

• the ideal volume as predicted by the consumption period in the cycle;
• the current time within the cycle;
• the state of the pump (on or off).

Third, to ensure robustness of our strategies, i.e. that their implementations are cor-
rect under imprecision on measures of volume or time, we consider some margin
parameter m which roughly represents how much the volume can deviate because
of these imprecision in the measure. We will consider values in range [0.1;0.4]litre
for measurement imprecision.

2 The existence of winning strategies for enriched timed games with extra cost variables in unde-
cidable, see [?].

Page 156

8 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

done=true

y==2*D y==4*D

V_rate−=17V_rate+=5 V_rate+=12

V_rate+=25

y==18*D y==16*Dy==20*D

y==8*D y==10*D

y==14*D

y==12*D

y<2*D

V_rate−=13V_rate+=12V_rate−=12 V_rate−=12

y<=8*D y<=10*D y<=12*D

y==20*D && final_Noise()

y<=4*Dy<=2*D

Noise(6*D)

DONE

y<=20*D

bad

y<=14*Dy<=16*Dy<=20*D y<=18*D

y<4*D

y<20*D y <18*D

Noise(time−2*D) Noise(time−D*6) Noise(time−D*6)

y<10*Dy<8*D

y<16*D

y<12*D

y<14*D

Noise(2*D)

Noise(time−D*8) Noise(time−D*8)Noise(10*D)

Fig. 1.6 Model of the cyclic consumption of the machine

OFF ON
z<2*D || i>=N

update_pump?

z<2*D || i>=N

update_pump?

z>=2*D

update_pump?

V_rate-=pump_rate,z=0,
stop[i]=time,i++

z>=2*D && i<N

update_pump?

V_rate+=pump_rate,z=0,
start[i]=time update_val()

update_pump!

V=D*V0

t=0

t==1

update_cy!

t<=0

t<=1

END

INIT

t==1 && not done

t==1

t<=1

t==0

t==0
&& done

t<=1

Fig. 1.7 Model of the pump Fig. 1.8 Model of the scheduler

Global Variables

First, we discretize the time w.r.t. ratio stored in variable D, such that D time units
represent one second. Second, we represent the current volume of oil by the variable
V. We consider a precision of 0.1l and thus multiply the value of the volume by 10
to use integers. This volume evolves according to a rate stored in variable V rate
and the accumulated volume is stored in the variable V acc3. Finally, we also use
an integer variable time which measures the global time since the beginning of the
cycle.

The Model of the Machine

The model for the behaviour of the machine is represented on Fig. 1.6. Note that all
the transitions are uncontrollable (represented by dashed arrows). The construction

3 To avoid integers divisions, we multiply all these values by D.

Page 157

1 Timed Controller Synthesis: An Industrial Case Study 9

of the nodes (except the middle one labelled bad) follows easily from the cyclic
definition of the consumption of the machine. When a time at which the rate of con-
sumption changes is reached, we simply update the value of the variable V rate.
The additional central node called bad is used to model the uncertainty on the value
of V due to the fluctuations of the consumption of the machine. This noise is not
related with the parameter m introduced previously as it concerns some possible
fluctuations in the consumption rate of the machine around its nominal rate. The
function Noise (Fig. 1.9) checks whether the value of V, if modified by these fluc-
tuations in the consumption rate of the machine, may be outside the safe interval
[Vmin + 0.1,Vmax− 0.1] 4. The function final Noise (Fig. 1.9) checks the same but
for the volume obtained at the end of cycle and against the interval represented by
V1F and V2F. Note that this modelling allows in some sense to perform partial
observation using a tool for games of perfect information. Indeed, the natural mod-
elling would modify at each step the actual value of the variable V and the strategies
would then be aware of the amount of fluctuations. In our model the ideal value of
V is predictable because it directly depends on the current time and from the point
of view of the controller it does not give any information about the fluctuation.

The Model of the Pump

The model for the pump is represented on Fig. 1.7 and is very similar to the timed
automaton given on Fig. 1.4. Note that the transitions are all controllable (plain
arrows) and that we impose a bit more than P1 as we require that 2 seconds have
elapsed at the beginning of the cycle before switching on the pump. Moreover, an
additional integer variable i is used to count how many times the pump has been
started on. We use parameter N to bound this number of activations, which is set to
2 in the following. Note also that the time points of activation/deactivation of the
pump are stored in two vectors start and stop.

bool Noise(int s){
// s is the number of t.u. of consumption
return (V-s<(Vmin+1)*D|V+s>(Vmax-1)*D);}

bool final_Noise(){
// 20*D t.u. of consumption in 1 cycle
return (V-20*D<V1F*D|V+20*D>V2F*D);}

void update_val(){
int V_pred = V;
time++;
V+=V_rate;
V_acc+=V+V_pred;

}

Fig. 1.9 Functions embedded in UppAal Tiga models

4 For robustness, we restrain safety constraints to m = 0.1 l.

Page 158

10 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

The Model of the Scheduler

We use a third automaton represented on Fig. 1.8 to schedule the composition. Ini-
tially it sets the value of the volume to V0 and then it repeats the following ac-
tions: it first updates the global variables V, V acc and time through function up-
date val. Then the scheduling is performed using the two channels update cy5

and update pump. When the end of the cycle of the machine is reached, the corre-
sponding automaton sets the Boolean variable done to true, which forces the sched-
uler to go to location END.

Composition

We denote by A the automaton obtained by the composition of the three automata
described above. We consider as parameters the initial value of the volume, say V0,
and the target interval I2, corresponding to V1F and V2F, and write A (V0, I2) the
composed system.

1.3.3 Global Approach for Synthesis

Even if the game model that we consider is abstract and restricted to one cycle, note
that our modelling enforces the constraints expressed in section 1.2. Indeed, R1 is
enforced through function Noise, F is handled through the two functions Noise and
final Noise, and P1 is expressed explicitly in the model of the pump. To extend our
analysis from one cycle to any number of cycles, and to optimize objective R2, we
formulate the following control objective (for some fixed margin m ∈Q>0) :

Property (∗): Find some interval I1 = [V1,V2]⊆ [4.9;25.1] such that

(i) I1 is m-stable: from all initial volume V0 ∈ I1, there exists a strategy for the
controller to ensure that, whatever the fluctuations on the consumption, the
value of the volume is always between 5 l and 25 l and the volume at the end
of the cycle is within interval I2 = [V1 +m,V2−m],

(ii) I1 is optimal among m-stable intervals: the supremum, over V0 ∈ I1 and over
the strategies satisfying (i), of the accumulated volume is minimal.

The strategies that fulfill that control objective have a nice inductive property: as
the value of the volume of oil at the end of the cycle is ensured to be within I2,
and I2 ⊂ I1 if m > 0, the strategies computed on our one cycle model can be safely
repeated as many times as desired. Moreover, the choice of the margin parameter
m will be done so as to ensure robustness. We will verify in PHAVER that even in
presence of imprecision, the final volume, if it does not belong to I2, belongs to I1:

5 We did not represent this synchronization on Fig. 1.6 to ease the reading.

Page 159

1 Timed Controller Synthesis: An Industrial Case Study 11

this is the reason why we fix a strict-subinterval of I1 as a target in the synthesis
phase.

We now describe a procedure to compute an interval verifying Property (∗), and
the associated strategies. We proceed as follows6:

1. For each V0 ∈ [4.9;25.1], and target final interval J ⊆ [4.9;25.1], compute (by a
binary search) the minimal accumulated volume Score(V0,J) that can be guar-
anteed. This value Score(V0,J) is

min{K ∈ N |A (V0,J) |= control: A<> Sched.END and V acc<=K}

2. Compute an interval I1 ⊆ [4.9;25.1] such that, for I2 = [V1 +m,V2−m]:

a. ∀V0 ∈ I1, A (V0, I2) |= control: A<> Sched.END
b. the value Score(I1) = max{Score(V0, I2) |V0 ∈ I1} is minimal.

3. For each V0 ∈ I1, compute a control strategy S (V0) for the control objective
A<> Sched.END and V acc<=K with K set to Score(V0, I2). This strat-
egy is defined by four dates of start/stop of the pump 7 and, by definition of
Score(V0, I2), minimizes the accumulated volume.

It is worth noticing that the value Score is computed using the variable V acc which
is deduced from intermediary values of variable V. Since V corresponds to the value
of the volume with no noise, V acc represents the mean value of the accumulated
volume for a given execution.

Fig. 1.10 For a margin pa-
rameter m = 0.4l and a gran-
ularity of 1 (D=1 in the
UPPAAL-TIGA model), we
obtain as optimal stable inter-
val the interval I1 = [5.1,10].
The corresponding optimal
strategies are represented
opposite. 5

0

time (s)

in
it

ia
lv

ol
um

e
(l
)

5 10 15

6

7

8

9

10

Results.

For a margin m = 0.4l and a granularity of 1 (D=1 in the UPPAAL-TIGA model),
we obtain as optimal stable interval the interval I1 = [5.1,10]. The corresponding
optimal strategies are represented on Fig. 1.10. For each value of the initial volume

6 Control objectives are formulated as “control: P” following UPPAAL-TIGA syntax, where P is
a TCTL formula specifying either a safety property A[]φ or a liveness property A<>φ .
7 It is easy to obtain these times using the vectors start and stop of the pump.

Page 160

12 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

in the interval I1, the corresponding period of activation of the pump is represented.
We have represented volumes which share the same strategy in the same color. For
the 50 initial possible values of volume, we obtain 10 different strategies (first row
of Table 1.1). The overall strategy we synthesize thus measures the volume just once
at the beginning of each cycle and plays the corresponding “local strategy” until the
beginning of next cycle.

Gran. Margin Stable interval Nb of strategies Mean volume
1 4 [5.1,10] 10 8.45
1 3 [5.1,9.8] 10 8.35
1 2 [5.1,9.6] 9 8.25
1 1 [5.1,9.4] 9 8.2
2 4 [5.1,8.9] 14 8.05
2 3 [5.1,8.7] 14 7.95
2 2 [5.1,8.5] 11 7.95
2 1 [5.1,8.3] 11 7.95

Table 1.1 Main characteristics of the strategies synthesized with UPPAAL-TIGA.

Table 1.1 represents the results obtained for different granularities and margins. It
gives the optimal stable interval I that is computed, (note that it is smaller if we allow
a smaller margin or a finer granularity), the number of different local strategies, and
the value of worst case mean volume which is obtained as Score(I)/20. These
strategies are evaluated in sections 1.4 and 1.5.

1.4 Checking Correctness and Robustness of Controllers

In this section, we address the verification of the correctness and robustness of the
three solutions mentioned in the previous sections. To analyze the correctness and
the robustness of the three controllers, we use the tool PHAVER [?, ?] for analysing
hybrid systems. Robustness is checked according to the type of controller we use:
for the Bang-Bang controller, it amounts to saying that the volume cannot be mea-
sured accurately and also that the rate fluctuates (±0.1l/s); for the Smart controller,
robustness against rate fluctuation cannot be checked because we do not have a pre-
cise mathematical model of the algorithm designed by the HYDAC ELECTRONIC
GMBH engineers; for our synthesized controller, we take into account the rate fluc-
tuation, the imprecision on the measure of the volume and the imprecision on the
measure of time.

PHAVER allows us to consider a rich continuous time model of the system where
we can take into account the fluctuations of consumption of the machine as well as
adequate models of imprecision inherent to any real implementation. The PHAVER
models of the controllers are given below and the other models of the cycle and ma-

Page 161

1 Timed Controller Synthesis: An Industrial Case Study 13

chine are the timed automata of Fig. 1.7 and Fig. 1.6. Our models take into account
the fluctuations in the consumption rate of the machine as well the imprecision on
the measure of the volume. We now review the results for the three controllers.

1.4.1 The Bang-Bang controller

The PHAVER code of the Bang-Bang controller is given in Fig. 1.11. This automa-
ton turns on the pump when a floor volume value is reached and turns off the pump
when a ceiling value is reached.

1: // ——————————————————–
// bang bang Controller automaton

3: // this controller starts in on or off and then
// switch on or off when a bound is reached

5: // ——————————————————–

7: eps1:=0.06; // imprecision on the volume measure
margin_min:=0.86; // best we can do

9: margin_max:=0.06; // best we can do

11: automaton controller
input_var: v; // v is given by the cycle+tank automaton

13:

synclabs: switch_on , switch_off ; // synchronized with the cycle+tank
15:

loc on: while v <= VMAX - margin_max + eps1 wait {true}
17: when v>=VMAX-margin_max-eps1 sync switch_off do {true} goto off;

19: loc off: while v>=VMIN+margin_min - eps1 wait {true}
when v<=VMIN+margin_min+eps1 sync switch_on do {true} goto on;

21:

initially : off & true ; // values for no noise
23: end

Fig. 1.11 Bang-Bang controller in PHAVER

To ensure robustness (and implementability) of this control strategy, we introduce
imprecision in the measure of the oil volume: when the volume is read it may differ
by at most ε = 0.06 l from the actual value (precision of the sensor). Tuning this
controller amounts to choosing the tightest values for the floor and ceiling values
at which the controller switches the pump (from on to off or the other way). In our
experiment we found that 5.76 and 25.04 are the best margins we can expect.
With this PHAVER model and the previous margins8, we are able to show that:
(1) this control strategy enforces the safety requirement R1, i.e. the volume of oil
stays within the bounds [4.9;25.1]; (2) the set of reachable states for initial volume
equal to 10 l can be computed and it is depicted in Fig. 1.12; this means that this
controlled system is “cyclic” from the end of the first cycle on, and the same interval

8 And another suitable piece of PHAVER program to perform the needed computations.

Page 162

14 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

0 5 10 15 20
5

10

15

20

25

Time (second)

V
o

lu
m

e
 (

lit
re

)

Fig. 1.12 Cyclic Behavior of the Bang-Bang controller with Noise

[10.16;14] (for the volume) repeats every other cycle. It is thus possible to compute
(with PHAVER) the interval of the accumulated volume over the two cycles: for this
controller, the upper bound is 307 and the mean volume is 307/20 = 15.35.

1.4.2 The Smart Controller

The Smart Controller designed by HYDAC ELECTRONIC GMBH is specified by
a 400 line C program and computes the start/stop timestamps for the next cycle
according to what was observed in the previous cycle (see end of section 1.2). This
controller requires to sample the plant every 10ms in order to compute the strategy to
apply in the next cycle: although it is theoretically possible to specify this controller
in PHAVER, this would require at least 100× 20 discrete locations to store the
sampled data in the previous cycle. It is thus not realistic to do this as PHAVER
would not be able to complete an analysis of this model in a reasonable amount of
time.

Instead we have built the PHAVER controller (given in Fig. 1.13) that corre-
sponds to the behaviour of the smart controller in a stationary regime, and in the ab-
sence of noise. It turns on and off so that the pump is active exactly during the three
intervals [2.16;4.16], [9.05;11.42] and [13.96;16.04] during each cycle. Indeed us-
ing simulation, the engineers of HYDAC ELECTRONIC GMBH had discovered that
the behavior of their controllers in the absence of noise was cyclic (stable on sev-
eral cycles) if they started with an amount of oil equal to 10.3 l. This is confirmed
by the simulations we report on at the end in Fig. 1.19 and by Fig. 1.14, obtained
with PHAVER showing that the smart controller stabilizes with no fluctuations in
the rate.

However, our simplified version of the Smart controller given in Fig. 1.13 (with-
out imprecision on the timestamps of start and stop of the pump), is not robust
against the fluctuations of the rate: the behavior of the system in the presence of

Page 163

1 Timed Controller Synthesis: An Industrial Case Study 15

1: // ——————————————————–
// HYDAC smart controller automaton

3: // this controller starts in off and then
// switch on or off at given time points

5: // ——————————————————–

7: // time between switch is at least 2

9: automaton controller

11: contr_var: t; // this is the time reference of the controller
synclabs: switch_on , switch_off, tau1 ; // synchronized with the cycle+tank

13:

loc off1: while t<=2.16 wait {t’==1}
15: when t==2.16 sync switch_on do {t’==t} goto on1;

17: loc on1: while t<=4.16 wait {t’==1}
when t==4.16 sync switch_off do {t’==t} goto off2;

19:

loc off2: while t<=9.05 wait {t’==1}
21: when t==9.05 sync switch_on do {t’==t} goto on2;

23: loc on2: while t<=11.42 wait {t’==1}
when t==11.42 sync switch_off do {t’==t} goto off3;

25:

loc off3: while t<=13.96 wait {t’==1}
27: when t==13.96 sync switch_on do {t’==t} goto on3;

29: loc on3: while t<=16.04 wait {t’==1}
when t==16.04 sync switch_off do {t’==t} goto last;

31:

loc last: while t<=20 wait {t’==1}
33: when t==20 sync tau1 do {t’==0} goto off1;

35: initially : off1 & t==0 ;

37: end

Fig. 1.13 HYDAC ELECTRONIC GMBH Smart Controller in PHAVER

noise is depicted in Fig. 1.15 and it can be shown with our PHAVER models that
after four cycles, the safety requirement R1 can be violated. Unfortunately, there
is no way of proving the correctness of the full Smart controller with PHAVER,
and SIMULINK only gives an average case. In this sense we cannot trust the Smart
controller for ensuring the safety property.

The ideal Smart Controller (no noise on the rate) produces an average accumu-
lated volume of around 221 per cycle i.e. an average volume of 11.05.

1.4.3 Controller Computed with UPPAAL-TIGA

We now study the correctness and robustness of the controller synthesized with
UPPAAL-TIGA. This verification phase is necessary because during the synthesis
phase we have used a very abstract model of the system and also discrete time.
To force robustness and correctness, we have imposed additional requirements on

Page 164

16 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

0 5 10 15 20
10.0

10.5

11.0

11.5

12.0

12.5

V
o

lu
m

e
 (

li
tr

e
)

Time (second)
0 5 10 15 20

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

V
o

lu
m

e
 (

li
tr

e
)

Time (second)

Fig. 1.14 Smart Controller / no fluctuations Fig. 1.15 Smart Controller / fluctuations

the winning strategies (our inductive property together with the margin). Instead
of proving by hand that the model and the objective yield to a correct and robust
controller we perform a formal post-check of the controller in the presence of noise
and imprecision. We summarize here the results of this verification phase. In the
sequel we use the controller for granularity 2 and margin 4: this controller can be
seen as 14 different local controllers, each one managing one of the 14 intervals in
which the initial volume can be at the beginning of a cycle. We will focus on those
strategies here but we have automated the process and the others may be treated
along the same lines.

To make sure that our strategies are implementable, we have verified them in
presence of fluctuations of the rate consumption and two types of imprecision: on
the time-stamp of start/stop of the pump (we use ∆ = 0.01 second), and on the
measure of the initial volume, the imprecision being 0.06 l. Fig. 1.16 shows how the
volume is controlled over 3 cycles: after the first one at t = 20, we measure the real
volume with uncertainty (0.06 l) and use the corresponding controller from 20 to 40
and for 40 we again switch to another one.

Volume/Time

0 10 20 30 40 50 60
5

6

7

8

9

10

11

12

Elapsed time (t)

V
o
lu

m
e
 (

v
)

Fig. 1.16 The Pump Controlled over 3 Cycles

We have designed a generic PHAVER model for controllers with 2 starts and 2
stops during one cycle which is given in Fig. 1.17.

Page 165

1 Timed Controller Synthesis: An Industrial Case Study 17

1: // ——————————————————–
// TIGA controller automaton

3: // this controller starts in off and then
// switch on or off at time points defined in another file

5: // ——————————————————–

7: // time between switch is at least 2
delta:=0.01; // this defines the maximum error on

9: // the date at which start/stop are performed

11: automaton controller

13: contr_var: t; // this is the time reference of the controller
synclabs: switch_on , switch_off ; // synchronized with the cycle+tank

15:

loc off1: while t<=start1+delta wait {t’==1}
17: when t>=start1-delta sync switch_on do {t’==t} goto on1;

19: loc on1: while t<=stop1+delta wait {t’==1}
when t>=stop1-delta sync switch_off do {t’==t} goto off2;

21:

loc off2: while t<=start2+delta wait {t’==1}
23: when t>=start2-delta sync switch_on do {t’==t} goto on2;

25: loc on2: while t<=stop2+delta wait {t’==1}
when t>=stop2-delta sync switch_off do {t’==t} goto last;

27:

loc last: while true wait {true} ;
29:

initially : off1 & t==0 ;
31:

end

Fig. 1.17 Generic PHAVER Controller with two Start/Stop(s).

For example, the controller for initial volume within [5.7;6.3] is obtained by
setting starti and stopi with the correct values for this initial volume. In this
automaton, there is a variable δ (delta) which models the interval in which we
issue the start/stop commands: we cannot measure time with infinite accurracy and
thus we will only be able to issue the start/stop actions in an interval around the
precise time points given by the controller: if the ideal synthesized controller has to
issue switch on at 2.5, the implementation of the controller can only ensure it will
be issued in [2.5−δ ;2.5+δ]. We use the model for the cycle and pump automaton
given Fig. 1.4 and 1.5. The values v1 and v2 are set according to the controller we
want to check (e.g. v1 = 5.7 and v2 = 6.3 for the controller which has to be used
for the volume within [5.7;6.3]). As our controllers should handle all the possible
values of the volume at the beginning of a cycle, as well as to be robust w.r.t. errors
in the volume measurement, we add a variable (ε) eps which models this error:
it means we use the controller for [5.7;6.3] on a larger interval which is given by
[5.7− ε;6.3+ ε]. Still our controller should ensure that the final volume is within
[5.1;8.9]. To ensure overlapping and full coverage of the initial volume range, we

Page 166

18 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

t−scale

0.5

pump activation

Strategy

Time

pump on/offStrategy function

MATLAB

Function

Scope

round10

Cycle timer

time

Consumer

Flow

Flow + noise

Accumulator

Consumer

Pump on/off

Volume

Energy

Fig. 1.18 The overall SIMULINK model.

need to set ε larger than 0.05: we choose 0.06 for the following experiments9. To
validate the controller synthesized with UPPAAL-TIGA we check the following:

1. we set δ = 0.01 second, ε = 0.06, and the maximum rate fluctuation is f = 0.1;
2. we check that the set of reachable states of each of the 14 controllers is within

[Vmin;Vmax] which is the safety requirement of the accumulator;
3. we check that, starting from Iε = [5.1− ε;8.9+ ε] the final values of the vol-

ume are within the interval [5.1;8.9]. Thus we have an inductive proof that our
controller is safe and robust w.r.t. triple (δ ,ε, f).

1.5 Simulation and Performances of the Controllers

In this section, we report on results obtained by simulating the three controller types
in SIMULINK, with the purpose of evaluating their performance in terms of the
accumulated volume of oil.

SIMULINK models of the Bang-Bang controller as well as of the Smart controller
of HYDAC ELECTRONIC GMBH have been generously provided by the company.
As for the eight controllers – differing in granularity and margin – synthesized by
UPPAAL-TIGA, we have made a RUBY script which takes UPPAAL-TIGA strate-
gies as input and transforms them into SIMULINK’s m-format.

Fig. 1.18 shows the SIMULINK block diagram for simulation of the strategies
synthesized by UPPAAL-TIGA. The diagram consist of built-in functions and four
subsystems: Consumer, Accumulator, Cycle and Pump (we omit the details of
the subsystems). The Consumer subsystem defines the flow rates used by the ma-
chine with the addition of noise: here the choice of a uniform distribution on the
interval [−ε,+ε] with ε = 0.1l/s has been made. The Accumulator subsystem im-
plements the continuous dynamics of the accumulator with a specified initial volume
(8.3l for the simulations). In order to use the synthesized strategies the volume is
scaled by a factor 10, then rounded and fed into a zero-order hold function with a

9 If the real volume is 5.65, we may obtain a measure of 5.7 or 5.6: what we check is that both the
controllers for 5.7 and 5.6 will ensure the final volume is the interval [5.1;8.9].

Page 167

1 Timed Controller Synthesis: An Industrial Case Study 19

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Time [s]

V
o

lu
m

e
 [

l]
,

p
u

m
p

 [
o

n
/o

ff
]

2−point controller

Volume

Pump on/off

(a) Bang-Bang controller

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Time [s]

V
o

lu
m

e
 [

l]
,

p
u

m
p

 [
o

n
/o

ff
]

Hydac controller

Volume

Pump on/off

(b) Smart Controller

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Time [s]

V
o

lu
m

e
 [

l]
,

p
u

m
p

 [
o

n
/o

ff
]

m4g1

Volume

Pump on/off

(c) Synthesized Controller

Fig. 1.19 The three controller types with SIMULINK

sample time of 20s. This ensures that the volume is kept constant during each cy-
cle, which is feed into the strategy function. The Pump activation subsystem takes
as input the on/off timestamps from the strategy (for the given input volume of the
current cycle) and a Cycle timer, that holds the current time for each cycle.

Now, the plots in Fig. 1.19 are the result of SIMULINK simulations of the con-
trollers, illustrating the volume of the accumulator as well as the state of the pump
(on or off) for a duration of 200 s, i.e. 10 cycles. Though the simulations do not
reveal the known violation of the safety requirement R1 in the HYDAC Smart con-
troller case, the simulations yield useful information concerning the performance of
the controllers. In particular, the simulations indicate that the accumulated oil vol-
ume for all controllers grow linearly with time. Also, there is clear evidence that the
strategies synthesized by UPPAAL-TIGA outperform the Smart controller of HY-
DAC – which is not robust – and also the Bang-Bang controller – which is robust but
far from optimal.

Controller Acc. volume Mean volume Mean volume (TIGA)
Bang-Bang 2689 13.45 -

HYDAC 2232 11.16 -
G1M4 1511 7.56 8.45
G1M3 1511 7.56 8.35
G1M2 1518 7.59 8.25
G1M1 1518 7.59 8,2
G2M4 1527 7.64 8.05
G2M3 1513 7.57 7.95
G2M2 1500 7.5 7.95
G2M1 1489 7.44 7.95

Table 1.2 Performance characteristics based on SIMULINK simulations.

This is highlighted in Table 1.2, giving – for each of the ten strategies – the simu-
lation results for the accumulated volume of oil , the corresponding mean volume as
well as the worst case mean volume according to synthesis of UPPAAL-TIGA. The

Page 168

20 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

table shows – as could be expected – that UPPAAL-TIGA’s worst case mean vol-
umes consistently are slightly more pessimistic than their simulation counter-parts.
More interestingly, the simulation reveals that the performances of the synthesized
controllers (e.g. G2M1) provide a vast improvement both of the Smart Controller of
HYDAC ELECTRONIC GMBH (33%) and of the Bang-Bang Controller (45%).

1.6 Conclusion

In this paper we have presented a model-based methodology for the systematic de-
velopment of robust and near-optimal controllers. The methodology applies a chain
of tools for automatic synthesis (UPPAAL-TIGA), verification (PHAVER) and sim-
ulation (SIMULINK). Initially, sufficiently simple and abstract game models are used
for synthesis. The correctness and robustness of the strategies are then verified us-
ing continuous hybrid models and – finally – the performance of the strategies are
evaluated using simulation models.

Applied to the industrial case study provided by HYDAC ELECTRONIC GMBH,
our method provides control strategies which outperforms the Smart controller as
well as the simple Bang-Bang controller considered by the company. More impor-
tant – whereas correctness and robustness of the Smart controller is unsettled – the
strategies synthesized by our method are provably correct and robust. We believe
that the case study demonstrates the maturity and industrial relevance of our tools.

Directions for further work include:

• Improve the performance of our controller further by optimizing over several
cycles, and/or

• Improve the performance of our controller further by adding some predefined
points when we can measure the volume (even with imprecision).

• Consideration of other imprecision, e.g. with respect to the timing of consumer
demands.

• Consideration of other optimization criteria. An interesting feature of the Smart
controller of HYDAC ELECTRONIC GMBH seems to be that the oil volume is
kept in a rather narrow interval, a feature which could possibly be beneficial for
increasing the life-time of the Accumulator.

• Use the emerging version of UPPAAL-TIGA supporting synthesis under partial
observability in order to allow more accurate initial game models.

Page 169

Energy Consumption in the Chess WSN:
A MoDeST Case Study

Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

Abstract In this chapter we demonstrate the use of MoDeST, as introduced in the
previous chapter, by means of a case study carried out in the Quasimodo project. We
analyse the energy efficiency of a Wireless Sensor Network MAC protocol, gMAC
for short, which was patented by the Dutch company CHESS BV.

1 Introduction

Quasimodo-Partner CHESS has developed a battery-powered wireless sensor node,
which communicates with neighbouring nodes via broadcast communication and re-
lays information through the network via gossiping. The limited power source of the
individual nodes requires most efficient communication between nodes in order to
extend the network lifetime. CHESS has developed gMAC, a TDMA (time-division
multiple access) protocol with mechanisms to detect collisions between sending
nodes. The protocol attempts to establish a sending schedule which minimises the
collisions between communicating nodes.

In this chapter, we present a case-study where the energy efficiency of gMAC
is analysed. The protocol is modelled in MoDeST [1], and analysed by discrete-
event simulation with the Möbius [5] tool set. In particular, we concentrate on the
energy efficiency of the protocol with respect to message dissemination. Whereas
TDMA protocols have by design a very predictable energy demand over time, we
analyse the energy needed to distribute a message through the whole network, which
depends on the quality of the send schedule.

The analysis of this case-study is carried out with the discrete event simulator of
the Möbius performance evaluation environment [5], which provides the means to
obtain statistical data ranging from mean values to distributions (see also previous

Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue
Modeling and Verification of Systems (MOVES), RWTH Aachen University, D-52056 Aachen,
Germany. e-mail:{henrik|katoen|haidi.yue}@cs.rwth-aachen.de

1

Page 170

2 Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

chapter). The connection between MoDeST and Möbius is facilitated in a fully-
transparent way by the tool MoToR [3].

Overview. In Section 2 we describe the basic mechanisms of gMAC. In Section 3,
we describe how we modelled gMAC in MoDeST. In Section 4 we describe the
Experimental setup of our simulations. In Section 5 we discuss the results. In Sec-
tion 7 we briefly review other case studies carried out with MoDeST/Möbius. We
conclude with Section 7. This chapter is based on [11].

2 The gMAC Protocol

Time is divided in fixed length: Frames

Frame subdivided in slots

 Idle slots
RX RX

 Active slots

RX RX RX RX RX

 Frame

TX

(a)

mode transmit receive idle
current 11.3 mA 12.3 mA 0.9 µA

(b)

Fig. 1 TDMA frame structure and energy demands

The gMAC protocol is a TDMA protocol,i.e., time is divided in fixed-length
frames(cf. Fig. 1(a)). A frame is divided in an active and idle period, and both
periods are subdivided intoslotsof equal length. A node in the network is synchro-
nised with its immediate neighbours at the beginning of a frame. One active slot is
chosen assend slot(theTX slot). All other active slots arereceive slots(RX slots).
During the idle period, the radio is put in idle mode to save energy. In an RX slot,
a node listens for incoming messages from neighbouring nodes, in its TX slot it
sends a message. When the active period is over, it switches to idle mode again,
and so forth. WithS the number of slots within a frame andA ≤ S the number of
active slots,A is a crucial parameter in the protocol design, as the active operation
phase costs much more energy than the idle phase. The CHESS network nodes are
equipped with an ATMega64 micro-controller and a Nordic nRF24L01 [10] packet
radio. The energy demands of the nRF24L01 radio are summarised in the table of
Fig. 1(b).A is usually much smaller thanS. In the gMAC protocol implementation
with the aforementioned processor, usuallyS=1129, andA= 10, give or take.

When a node is powered on, it randomly chooses an active slot as TX slot. In
each RX slot, it can receive a message of at most one other node. Thehidden node
problemdescribes the scenario when more than one node sends messages to the
same node in the same slot.

Page 171

Energy Consumption in the Chess WSN: A MoDeST Case Study 3

X ZY

Send slot ofX andZ

(a) Hidden node situation

X ZY

0 0

Piggy-back Information

(b) Piggybacking

X ZY

(c) Problematic scenario for
piggy-back technique

Fig. 2 Hidden node problem and its detection

Figure 2(a) depicts a situation where nodesX, Y, Z are positioned such that the
middle nodeY is within the transmission range (the circles) of both other nodes, and
bothX andZ are outside each others range. IfX andZ select the same TX slot, then
their messages will collide in the intersection of their ranges. They cannot sense this
themselves, andY will receive no message at all as it cannot distinguish a collision
from the situation where no message was sent.

The mechanism of the gMAC protocol to detect collisions and hidden nodes is
based onpiggy-back informationof the payload messages. With each message, the
sender’s perspective on the current slot allocation is also transmitted. This can be
represented as a sequence(b0,b1, ...,bA−1) with bi ∈ {0,1} for 0 ≤ i < A. bi = 0
indicates that nothing has been received in sloti, either because nobody sent some-
thing, or due to a collision or message loss.bi = 1 indicates that the sender received
something in sloti, or that sloti is the sender’s own current send slot. In the example
in Figure 2(a), sinceY cannot receive anything in the second slot, it writes a 0 in its
piggy-back information at the corresponding position and reports this toX andZ on
its turn to send, in the third slot (cf. Figure 2(b)). Based on this information fromY,
nodesX andZ can conclude that there was a collision in their send slot. The gMAC
protocol then stipulates thatX andZ pick randomly a new send slot among the free
active slots, to avoid further collisions. Note that it is possible that no free slot is
available when a node needs one. This can happen when the nodes are in a very
crowded environment and the number of neighbours exceeds the number of active
slots (some of our simulation configurations cover this situation). In this case, the
node will keep the old send slot despite the detected collision in that slot. Although
the piggy-back technique helps to detect many collisions, there are still some it can-
not find. In Figure 2(c), nodeY has the same send slot asX andZ, i.e.,they send and
receive at the same time and will therefore never receive anything from each other
in this slot, hence the collisions between them will neither be detected nor resolved.
The reason for this is that the piggy-back technique requires at least one common
neighbour which is not involved in the conflict, so that it can report the collision.
The gMAC protocol provides one more mechanism to break this kind of conflict.
When a node reaches its send slot, it can decide with a certain probabilityp to not
send, but to listen. This gives a node a chance to overhear what is going on in its own

Page 172

4 Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

send slot, and an opportunity to pick a new send slot, if necessary. We call a node
where this mechanism is enabledprobably silent. A typical value forp is 1/16.

3 Modelling gMAC in MoDeST

In this section we describe the key components of the MoDeST model of the gMAC
case study. The most important language concepts are introduced in Chapter 10,and
should be read first. For a comprehensive overview of MoDeST we refer to [1].

MoDeST: Special Features.In the MoDeST/Möbius tool chain, several design de-
cisions had to be made to implement the MoDeST language. The reason is that
the MoDeST reference [1] gives implementation freedom in some aspects of the
language. In particular, the atomic assignment blocks,{=...=}, are only semanti-
cally defined: they are supposed to compute a function or random variable, depend-
ing only on the current variable valuation. With which language to describe this
function is left open. During the integration of MoDeST with the Möbius simulator,
the choice was made to implement a non-trivial fragment of the C language. This
fragment allows the definition of high-level constructs such as arrays and structs,
block-local variables, and has control structures such as if-then-else, while- and
for-loops, and rudimentary output functions, similar to C’sprintf(). It is also
possible to call external C-library functions, such as function from the libm library.
While this does not increase the expressivity of MoDeST, it proves beneficial in
terms of efficiency. For example, without while-loops in assignment blocks, such
loops must be emulated with the heavy-weight when- and do-loop constructs of
MoDeST. This usually creates a huge number of intermediate states, which would
hamper the analysis of the model.

The MoDeST model of the gMAC protocol makes extensive use of the intro-
duced C-features.

Basic model.A node is modelled as a MoDeST process,Node, with parameterid,
which is its unique identifier. A local clockc is used to measure the length of slots.
It is reset to 0 at the start of each active slot. An integermy send slot denotes
the current send slot of the node. Furthermore, a node maintains its perspective
about the current slot allocation as an arrayview of booleans of lengthA. The
neighbourhood relation of a node is stored in an array, which is initialised at the
beginning of a simulation run. In our simulations, we have used a 15× 15 grid
structure for the network.

Communication between nodes is modelled by means of a global array of
buffers, which is accessible as shared memory by all nodes. Every node accesses
all buffers of the nodes in its transmission range while writing, but only its own
buffer bufs[id], when receiving. A buffer contains several variables (cf. Fig-
ure 3), among themis written to, writers andwriting completed.
The three variables are used as counting semaphores to coordinate sending and re-
ceiving nodes. Furthermore, they are used to detect failed transmissions. If sending

Page 173

Energy Consumption in the Chess WSN: A MoDeST Case Study 5

is successful, the view of the sender, which contains information for collision detec-
tion, will be copied to the receiver’s bufferreceived[].

typedef struct {
int msg; // message
int is_written_to; // a node sends to this buffer;

// >1 => collision has occurred
int writer; // # nodes working on the buffer
int writing_completed; // to indic. that

// node has finished sending.
int is_sending; // direct neighbor is sending.
int received[activeslots]; // piggybacking info of sender

} buffer;

buffer bufs[NETWORKSIZE]; // message buffer for each node

Fig. 3 Buffer structure

The behaviour of the nodes is modelled using extensive data-manipulation. We
use atomic assignment blocks in combination with a precedingwhen(...) con-
ditional to implement a test-and-set operation, which ensures mutual exclusion be-
tween processes. A simple example for a P- and V-operation on a semaphores is

when(s == 0) {= s = 1=}; /* crit. section */ {= s = 0 =}

In Figure 4, we see a sketch of the send operation as modelled in MoDeST. When
a node decides to send, it first sets itsis sending variable inbufs[id] to
1 to signal that it is sending. This variable is used to detect collisions between
direct neighbours. This kind of collision can not be detected by the piggy-back
technique, if there are no common neighbours. Before a node actually sends in its
slot, it must wait until the guard time has passed and the actual send period be-
gins. In the actual send period, three steps are executed, which are marked with
the three action namesstart sending, msg sent, andreset channel1.
Each of these actions is accompanied by a{=...=} block in an atomic manner,
where the actual operations are carried out. Forstart sending this means to in-
crease countersis written to and writers in all buffers of the neighbour
nodes. Then, when the send period is over, actionmsg sent is executed. The
node indicates that sending is completed and decreases the counterwriters in
all neighbouring buffers. Then it checks if the sending was successful, by examin-
ing if the variableis written to in the neighbours buffer is equal to 1. If this
is the case, the sender’s view will be copied to the neighbours buffer. Otherwise, if
is written to>1 or is sending==1, the node knows that a communication
has failed with the neighbour. In this case, the global variablereal collisions,

1 These action names have only a descriptive purpose here. Although MoDeST allows synchro-
nisation over actions between different processes, this feature is not used here. This was a design
decision in order to be able to extend the model with clock drifts and jitter later.

Page 174

6 Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

used to keep statistics of failed communications, is increased by 1. Finally, at the
end of the send slot, with actionreset channel, the buffers of the neighbours
are cleaned and the next slot is prepared.

// is_sending=1
// macro SEND()
// we assume c == 0 here
when (c == guard_time) // guard_time is over
start_sending {=
// add energy spent on sending
energy[id] += 0.001*PL_TRANSMITTING,
for all neighbors:

bufs[neighbor].is_written_to += 1
bufs[neighbor].writers += 1

=};
when (c == slot_length - guard_time) // end of send period
msg_sent {=

for all neighbors:
bufs[neighbor].writers -= 1,
// > 1 means collision
if(bufs[neighbor].is_written_to == 1){
// copy view array to bufs

}
if(bufs[neighbors].is_written_to >1

|| bufs[neighbors].is_sending=1){
real_collisions+=1

}
=};

when (c == slot_length) // end of slot
reset_channel {=

// increase slot number
c = 0,
for all neighbors:

// set everything in bufs[neighbor] to 0
=}

Fig. 4 Mechanism for sending

In Figure 5, we see the tasks that are executed when a message has been success-
fully sent to a node and can thus bereceived. This fragment is executed at the end
of the send period of the sending nodes, and only if the counteris written to
in the node’s buffer is equal to 1. In that case, the node will set its view of the
current slot to 1 and check for collisions in its own send slot through the piggy-
back information from the sender. If a collision is detected, a new free send slot is
chosen probabilistically. Before a node can receive a message as described, it has
to listen first. This is modelled as sketched in Figure 6. With thealt construct, a
choice between the case that a message is in-bound and can be received is mod-
elled (RECEIVE() stands as a placeholder for the model fragment in Figure 5), or
that nothing has come in. The condition for the latter case is that local clockc pro-

Page 175

Energy Consumption in the Chess WSN: A MoDeST Case Study 7

// macro RECEIVE()
when(bufs[id].is_written_to == 1 // exactly one process wrote

&& bufs[id].writers == 0 // the one sender is done
// with writing to buffer

&& c >= slot_length - guard_time) // end of send period
msg_received {=

view[slot_nr] = 1, // we received something in slot
if (pigyback-information indicates collision)

// choose new send slot randomly
=}

Fig. 5 Mechanism for receiving

gresses without disturbance until the end of the slot. We thus have a choice between
the timed guardc == slot length and the untimed guard of theRECEIVE()
macro. Ifc == slot length becomes true, it means, nothing has been received
in that slot, hence the view of this slot is set to 0 and the next slot is prepared. The

// macro LISTEN()
when (current_slot != my_send_slot) // we are listening
listen {= energy[id] += 0.001*PL_RECEIVING =};
alt {

:: when(c == slot_length)
{= view[slot_nr] = 0 // nothing received =}

:: RECEIVE() /* as explained above */
};
when (c == slot_length)
{= ... increase slot number ..., c = 0 =}

Fig. 6 Listening for incoming message

described behaviour is put together in processNode, and all the Nodes are put in a
parallel composition, as sketched in Figure 7.

The use of energy is modelled by updating a global arrayenergy[] with the
energy consumed by the node. We assume the energy drainage to be constant in the
different modes of the node (sending, receiving, idle), which allows us to update the
variable with simple linear expressions (cf. Figures 4 and 6).

Probably silent nodes.One mechanism of the gMAC protocol to increase collision
awareness is for a node to choose probabilistically in its send slot whether to send, as
described before, or to listen. This extension can be modelled very quickly in MoD-
eST with the probabilistic choice operator,palt. The linewhen (my send slot
== slot nr) SEND() in Figure 7 is replaced by the fragment in Figure 8. The
probability chosen in this fragment isp= 1/16.

Page 176

8 Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

process Node(int id) {
// initialisations
do { // repeat for each slot
:: when (slot_nr > activeslots) ... // idle until frame ends
:: when (my_send_slot==slot_nr) SEND()... // my turn to send
:: LISTEN()... // otherwise, listen
}
}

par{
:: hide all actions in (Node(1))
:: hide all actions in (Node(2))
...

}

Fig. 7 Structure of processNode and parallel composition

when (my_send_slot == slot_nr)
palt {
:1: alt {

:: when(c == slot_length) // nothing received
{= view[slot_nr] = 0 =}

:: RECEIVE();
}

:15: SEND(id, c, rate)
}

Fig. 8 Sending or listening

4 Experimental Setup

For our experiment, we use the unit disk graph radio model to model the neighbour-
hood relation between nodes. Nodes with a distance larger than some radiusr can
thus never receive nor interfere with each other. Within this radius, the situations
as depicted in Fig. 2 can occur. All network nodes are assumed to have the same
transmission range. Message losses are assumed to be due to collisions only. gMAC
incorporates a mechanism to synchronise clocks of neighbouring nodes. The cor-
rectness of this clock-synchronisation mechanism is being analysed in Chapter 4.In
a realistic network, clock synchronisation can be assumed to have taken place be-
fore the network starts doing something useful, which allows us to abstract from the
clock-synchronisation mechanism. The only aspect of it that we must consider is the
fact that a node does not send during the whole length of a send slot, but only a frac-
tion of it. This does influence the energy consumption, and therefore we incorporate
these shorter sending times in our model.

Set-up.The basic model of our experiments is a 15×15 grid network of 225 nodes.
Each node has a distance of 1 to its respective horizontal and vertical neighbours
(i.e., the distance to the diagonal neighbours is

√
2). A frame consists ofS= 1129

Page 177

Energy Consumption in the Chess WSN: A MoDeST Case Study 9

slots. The numberA of active slots is a crucial parameter in the protocol, and we
analyse the behaviour of the gMAC protocol for different values ofA. Since in the
real implementationA=8, we choose the transmission ranger such that each inner
node of the grid has 4 or 8 direct neighbours, respectively. We say a node israndomly
silent, if it stays silent in its TX slot with probabilityp = 1

16. We adopt this value
in our model and use it for all experiments. The experiments focus on the latency
of message dissemination versus the required energy consumption. The confidence
level of all simulations is set to 0.95 and the relative confidence interval is 0.1.

Latency vs. energy consumption.A TDMA protocol is by design very predictable
with respect to energy consumption: since only in the active slots the energy drain
of the radio is non-negligible, and the number of active slots per frame is constant,
also the power consumption is close to constant, depending linearly on the number
of active slots. Energy consumption is therefore constant over time. However, the
question is how energy-efficiently the network fulfils its task. We thus focus on the
latency of message dissemination and the energy consumed by that. We consider
the average time required and the total average energy consumed until a message is
delivered to all network nodes. We say a node isinfectedif it has received a message.
Initially, only one node is infected, the initiator. To get insight into the effect of the
position in the network of the message initiator, we consider a corner node, a middle
node at the border, and a center node (cf. Figure 9). Again, the simulations are run
for different values ofr andA to investigate the influence of these parameters on
gMAC’s energy consumption.

 Start sending from corner Start sending from border Start sending from center

Fig. 9 Three different initiator positions

We run all aforementioned experiments for three network settings:

1. A static network withoutrandomly silentnodes (for shortgrid),
2. A static network withrandomly silentnodes (for shortgrid+p),
3. A network with node mobility but norandomly silentnodes (for shortgrid+m),

so that we can obtain a clear comparison between static and mobile scenarios
without influence ofrandomly silentnodes.

Since we want to investigate the influence of local changing of node position on
the network, we model the mobility by rotating a fixed row (the fifth row) in the
grid one position to the right. The node shifted out is shifted in on the other side.

Page 178

10 Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

The row is rotated one position every 100 frames for the collision experiment, so
that the network has enough time to stabilise after each shift. Since the average time
required to deliver a message to all nodes is less than 30 frames, we rotate every 1
or 3 frames to investigate the influence of the moving rate on the latency.

5 Energy Efficiency of gMAC

We consider a static network first. Figure 10(a) shows the experimental results for
transmission ranger=1.1 (4 neighbours), andA ranging from 4 to 7. The message
initiator is positioned in the corner. Thecircle-linesshow the energy consumption
(right y-axis) versus the number of frames, and the black, curved lines (left y-axis)
show the ratio of infected nodes (i.e., nodes that have received a message) versus
the number of frames.

The results confirm that for fixedA, there is a linear dependency between the
energy consumption and the number of frames, which is characteristic for TDMA
protocols. The slope depends onA; the largerA, the steeper the energy curves. For
the message dissemination, it can be observed that after a short warm-up phase, the
fraction of infected nodes drastically grows, after which this slowly progresses to
1. For increasingA, the percentage of infected nodes converges to more quickly to
one, i.e., message dissemination is faster.

The largerA, the lower the message latency becomes, but as a pay-off, the en-
ergy consumptions increases with largerA. In order to get insight into the trade-off
between message dissemination and energy consumption, Figure 10(b) depicts an
energy-percentage diagram, which shows the percentage of infected nodes versus
the total energy needed to infect all nodes. One clearly sees thatA=4 andA=7 are
not economical and in the considered scenario, a network with 5 or 6 active slots
provides the best result in terms of energy efficiency. Performing the experiments
for A= 8,9 and 10 reveals that these settings are less energy-efficient than forA= 7.
For A= 10, e.g., the network tends to be collision-free, but requires twice as much
energy as forA = 5 without offering a doubled propagation speed. We performed
the experiment for three different initial sending positions and different transmission
ranges. All of them exhibit a pattern similar to Figure 10(b). The optimal values of
A are summarised in Table 1.

P
P
P
P
P
P

Range
Position

cornerbordercenter

4 neighbours 6 5 5
8 neighbours 8 9 8

Table 1 OptimalA values

Figure 10(c) shows another effect of changing the initial sending position. We
put the most energy-efficient results from a network with 4 neighbours and initial

Page 179

Energy Consumption in the Chess WSN: A MoDeST Case Study 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

R
a

tio
 o

f
in

fe
ct

e
d

 n
o

d
e

s

E
n

e
rg

y
in

 u
n

it

Frames

Latency: grid, 4 neighbors, start from corner

active slots = 7

active slots = 6

active slots = 4

active slots = 5

(a) grid, 4 neighbours, start sending from corner

 0.9

 0.95

 1

 300 350 400 450 500

R
a

tio
 o

f
in

fe
ct

e
d

 n
o

d
e

s

Energy in unit

Latency: 4 neighbors, start from corner, Energy-Percentage

active slots = 7

active slots = 5

active slots = 4

active slots = 6

(b) Energy-percentage: grid, 4 neighbours, start
sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 100 150 200 250 300 350 400

R
a

tio
 o

f
in

fe
ct

e
d

 n
o

d
e

s

Energy in unit

Latency: grid, 4 neighbors, corner vs. center

cornercenter
active slots = 5 active slots = 6

(c) corner vs. center, grid, both 4 neighbours

 0.8

 0.85

 0.9

 0.95

 1

 200 250 300 350 400

R
a

tio
 o

f
in

fe
ct

e
d

 n
o

d
e

s

Energy in unit

Latency: grid, 4 neighbors, corner vs. center

4 neighbors
active slots = 6

active slots = 8
8 neighbors

(d) 4 neighbours vs. 8 neighbours: grid, both start
sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 200 250 300 350 400

R
a

tio
 o

f
in

fe
ct

e
d

 n
o

d
e

s

Energy in unit

Latency: grid vs. grid+p,4 neighbors, start sending from corner

grid
active slots = 6

grid + p
active slots = 6

(e) grid vs.grid+p, both have 4 neighbours and start
sending from corner

 0.8

 0.85

 0.9

 0.95

 1

 200 250 300 350 400

R
a

tio
 o

f
in

fe
ct

e
d

 n
o

d
e

s

Energy in unit

Latency: grid+m, 4 neighbors vs. 8 neighbors, speed=1 vs. speed=3

4 neighbors
speed = 1

8 neighbors
speed = 1

8 neighbors
speed = 3

4 neighbors
speed = 3

(f) different transmission ranges and shifting rates

Fig. 10 Latency vs. energy consumption

Page 180

12 Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

sending position at the corner or the center in one graph. Obviously, starting from the
center needs only two third energy of that starting from the corner. It does not come
as a surprise that message dissemination from the center is more efficient than from
a corner, since the number of hops to the nodes farthest away is smaller. However,
when we consider the influence of network density on latency, we can see that with
a fixed initiator, a network with 4 neighbours or 8 neighbours exhibits almost the
same performance (cf. Figure 10(d)). This means, although a denser network can
propagate messages faster (a result which we have not shown here), it takes still as
much energy as in a less dense network to deliver a message to the whole network.

Random silence.The results forgrid+p show a similar behaviour, hence we will not
present them here. Interesting is however the comparison betweengrid andgrid+p.
In Figure 10(e), we see the most economical results ofgrid andgrid+p, both with 4
neighbours and the same initial sending position. The superiority ofgrid+p is quite
clear, since roughly 15% energy can be saved if nodes arerandomly silent. This is
not self-evident, since for the used radio, receiving costs actually more energy than
sending. We believe that the 15% drop in energy consumption is becausegrid+p has
in general more opportunities to receive messages, which accelerates information
dissemination.

Node mobility. For a network with mobility, we consider first the case of start send-
ing from the corner. There are two options for transmission range (4 neighbours or
8 neighbours) and for the speed of shifting: every frame, or every third frame. As
before, we combine the best results from each of these combinations in one graph
(Figure 10(f)) to compare them. Recall that in the simplegrid network, the density
does not have a significant influence on the latency (see Figure 10(d)). However, in
grid+m, if the other parameters are identical, the difference between a network with
4 neighbours and 8 neighbours cannot be neglected (compare the left-most curve
with the right-most one, or the two middle curves). The influence of the speed of
shifting is not very significant (compare the left-most two curves or the right-most
two curves), and it is difficult to judge which speed overcome the others, for in-
stance, speed=3 performs better than speed=1 for neighbours=4 while the trend is
reversed for neighbours=8. This is due to the way we modelled mobility. In our mo-
bility scenario, it takes about 15 frames to deliver messages to the whole network,
and a shifting of every 1 frame or every 3 frames cannot have much influence on the
result. Under other mobility models, different results will be obtained.

6 Further Work

In [7], the experiments described in this chapter have been repeated. However, main
objective there is the comparison of two radio models: the unit disk model, and the
physical Signal-to-Interference-plus-Noise-Ratio (SINR) model of [6]. In the SINR
model, a nodei can receive a message from another nodej, if the signal strength

Page 181

Energy Consumption in the Chess WSN: A MoDeST Case Study 13

of j at the location ofi exceeds the background noise and the sum of all signals of
other sending nodes by at least a factorβ > 1.

Two different protocols are compared, each in combination with the two different
radio models. The first protocol is gMAC, as described above. The second one is a
variant ofSlotted ALOHA, where no collision detection is performed and the send
slot is chosen randomly at the beginning of each frame. Both protocols have been
modelled in MoDeST.

The results of the analysis show that, when using the unit disk model, the gMAC
protocol appears superior to slotted ALOHA, with a reasonably chosen parameters.
With the SINR radio model, however, it turns out that gMAC gives only slightly
better results than slotted ALOHA, and might even perform worse in certain cases.
This latter result has been independently obtained by CHESS (by measuring their
existing protocols) and led to a redesign of gMAC based on slotted ALOHA. This
new protocol,distributed slotted ALOHA (dsA), keeps track of the number of neigh-
bors that have been received in successive frames, and varies the number of active
slots (more neighbors, more slots).

The SINR radio model suggest a modification of this protocol, in particular the
fact that the sending signal of one node is noise to another sending node. This
prompts the question whether in a crowded cluster of nodes the sending nodes
should not reduce their signal strength in order to disturb fewer nodes farther away.
Whereas this hardly decreases the energy consumption of individual nodes, it might
increase the overall network throughput.

At the time of writing of this chapter, the distributed slotted ALOHA pro-
tocol with and withoute adaptive signal strength is being evaluated with MoD-
eST/Möbius.

7 Conclusions

In this chapter we have demonstrated how MoDeST can be used to model network
protocols for simulation purposes. This is only one application The gMAC proto-
col, aimed for gossiping-based applications in sensor networks. Our analysis reveals
that randomly deciding to refrain from using send slots significantly reduces energy
consumption by about 15%. Node mobility does not affect the number of detected
collisions. We determined the number of active slots that optimise the trade-off be-
tween latency and energy consumption. In the setting with 8 neighbour nodes, our
experimental results confirm the optimality of CHESS’s current node implementa-
tion (i.e.,A=8).

The analysis of the MoDeST model has been facilitated with the Möbius analysis
environment, by using the tool MoToR as intermediary [2, 3, 4, 8].

Page 182

14 Henrik Bohnenkamp and Joost-Pieter Katoen and Haidi Yue

References

1. H. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. Modest: A compositional
modeling formalism for real-time and stochastic systems.IEEE Trans. on Software Engineer-
ing, 32(10):812–830, 2006.

2. H. Bohnenkamp, H. Hermanns, and J.-P. Katoen. Motor: The MoDeST tool environment. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 4424 of
LNCS, pages 500–504. Springer-Verlag, 2007.

3. Henrik Bohnenkamp, Tod Courtney, David Daly, Salem Derisavi, Holger Hermanns, Joost-
Pieter Katoen, Vinh Vi Lam, and Bill Sanders. On integrating the Möbius and MoDeST
modeling tools. InProceedings of the 2003 International Conference on Dependable Systems
and Networks (DSN 2003). IEEE Computer Society, IEEE Computer Society Press, June 2003.

4. Henrik Bohnenkamp, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. The MoD-
eST modeling tool and its implementation. InComputer Performance Evaluation—Modelling
Techniques and Tools (TOOLS 2003), volume 2794 ofLNCS. Springer-Verlag, 2003.

5. D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H. Sanders,
and P. G. Webster. The Möbius framework and its implementation.IEEE Trans. on Software
Engineering, 28(10):956–969, 2002.

6. P. Gupta and P. R. Kumar. The capacity of wireless networks.IEEE Trans. Inf. Theory, 46(2),
March 2000.

7. Malte Kampschulte. Evaluation of radio models for the analysis of a gossiping mac protocol.
Bachelor thesis, RWTH Aachen University, 2010.

8. Joost-Pieter Katoen, Henrik Bohnenkamp, Ric Klaren, and Holger Hermanns. Embedded
software analysis with MOTOR. In Marco Bernardo and Flavio Corradini, editors,Formal
Methods for the Design of Real-Time Systems (SFM-RT 2004), volume 3185 ofLecture Notes
in Computer Science. Springer-Verlag, 2004.

9. A Roy and N Sarma. Energy saving in mac layer of wireless sensor networks: a survey. In
National Workshop in Design and Analysis of Algorithm (NWDAA). Tezpur University, India,
2010.

10. Nordic Semiconductors.nRF2401 Single-chip 2.4GHz Transceiver Data Sheet, 2002.
11. Haidi Yue, Henrik Bohnenkamp, and Joost-Pieter Katoen. Analyzing energy consumption

in a gossiping MAC protocol. InProc. MMB ’01, volume 5987 ofLNCS, pages 107–119.
Springer, 2010.

Page 183

Probabilistic Analysis of Embedded Systems

Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Abstract This chapter provides a gentle introduction into compositional modeling
of systems that involve nontrivial real-time and probabilistic aspects. It revolves
around the language MODEST, a Modelling and Description language for Stochastic
and Timed systems. The language supports the compositional description of reactive
systems while covering both functional and non-functional system aspects such as
quantified component failure rates and hard and soft real-time. A running example
illustrates the language constructs. Afterwards, this example is used to highlight
different avenues to analyse such models that have been implemented in a tool suite.
Among them, we find probabilistic timed model checking as well as discrete event
simulation.

1 Introduction

There is a growing awareness among embedded software designers that the classi-
cal computer science approach—to abstract from physical aspects—is too limited
and too restricted for contemporary and upcoming design challenges [1, 13]. In-
stead, abstractions of software that leave out “non-functional” aspects such as cost,
efficiency, and robustness need to be adapted to current needs.

Embedded software controls the core functionality of many systems. It is om-
nipresent: it controls telephone switches and satellites, drives the climate control
in our offices, runs pacemakers, is at the heart of our power plants, and makes our

Arnd Hartmanns
Saarland University – Computer Science, e-mail: arnd@cs.uni-saarland.de

Holger Hermanns
Saarland University – Computer Science, e-mail: hermanns@cs.uni-saarland.de

Joost-Pieter Katoen
University of Twente, RWTH Aachen University – Computer Science, e-mail: katoen@cs.rwth-
aachen.de

1

Page 184

2 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

cars and TVs work. Whereas traditional software has a rather transformational na-
ture mapping input data onto output data, embedded software is different in many
respects. Most importantly, embedded software is subject to complex and perma-
nent interactions with its—mostly physical—environment via sensors and actuators.
Software in embedded systems does not typically terminate and interaction usually
takes place with multiple concurrent processes at the same time. Reactions to the
stimuli provided by the environment should be prompt (timeliness or responsive-
ness), i.e., the software has to “keep up” with the speed of the processes with which
it interacts. As it executes on devices where several other activities go on, non-
functional properties such as efficient usage of resources (e.g., power consumption)
and robustness are important. High requirements are put on performance and de-
pendability, since the embedded nature complicates tuning and maintenance.

Embedded software is an important motivation for the development of modelling
techniques that, on the one hand, provide an easy migration path for design engi-
neers and, on the other hand, support the description of quantitative system aspects.
This has resulted in various extensions of light-weight formal notations such as SDL
(System Description Language) and UML (Unified Modeling Language), and in the
development of a whole range of more rigorous formalisms based on, for example,
stochastic process algebras, or appropriate extensions of automata such as timed
automata [2] and probabilistic automata [16]. Light-weight notations are typically
closer to engineering techniques, but lack a formal semantics; rigorous formalisms
do have such a formal semantics, but their learning curve is typically too steep from
a practitioner’s perspective and they mostly have a restricted expressiveness.

This paper surveys MODEST [3], a description language that has a rigid formal
basis (i.e., semantics) and incorporates several ingredients from light-weight nota-
tions such as exception handling, modularization, atomic assignments, iteration, and
simple data types. The paper also illustrates advanced tool support, all by means of
a running example.

MODEST is a compositionalspecification formalism: the description of com-
plex behaviour is obtained by combining the descriptions of simpler components.
This provides an elegant way to specify concurrent computations, inherited from
process algebra. MODEST is enhanced with convenient language ingredients like
simple data-structures and a notion of exception handling. It is capable to express a
rich class of non-homogeneous stochastic processes and is therefore most suitable
to capture non-functional system aspects. MODEST may be viewed as an overarch-
ing notation for a wide spectrum of prominent models in computer science, rang-
ing from labeled transition systems to timed automata [2, 4], probabilistic variants
thereof [5], and stochastic processes such as Markov chains and (continuous-time
and generalised) Markov decision processes [8, 10, 15, 16].

MODEST takes asingle-formalism, multi-solutionapproach. Our view is to have
a single system specification that addresses various aspects of the system under con-
sideration. Analysis thus refers to the same system specification rather than to differ-
ent (and potentially inconsistent) specifications of system perspectives like in UML.
Analysis takes place by extracting simpler models from MODESTspecifications that
are tailored to the specific property of interest. For instance, to check reachability

Page 185

Probabilistic Analysis of Embedded Systems 3

properties, a possible strategy is to “distill” an automaton from the MODEST speci-
fication and feed it into an existing model checker such as SPIN [11] or CADP [7].
For probabilisitic timed models, we implement a translational model checking ap-
proach [9], using the PRISM tool as backend. On the other hand, to carry out an
evaluation of the stochastic process underlying a MODEST specification, we sup-
port discrete-event simulation.

2 Modelling with M ODEST

In this section, we will introduce the MODEST language syntax and its semantic ba-
sis by modelling a simple communication scenario. We will introduce the language
features and constructs step-by-step, starting with a very basic functional model
which we then extend to include timed, probabilistic and stochastic behaviour.
While the focus of this section is on the language syntax and the types of behaviours
than can be modelled, we will also give brief insights into the underlying semantics
where useful for a deeper understanding.

2.1 Syntax and Semantics Basics

The scenario we are going to model in MODEST is a simple communication setting
where a sender continuously tries to send messages to some receiver over an unre-
liable channel that may lose, but not reorder or create messages. We will refine our
models in the following sections; let us start with a very basic functional description
of sender, receiver and channel for now.

In the MODEST language, being inspired by classic process-algebraic languages
such as CCS, CSP and LOTOS, everything is a process. Processes can perform
actions, and in this way transition into a different process. One of the most basic
processes in MODEST is tau, which can perform a single action namedtau, transi-
tioning into a process than cannot do anything, which we denote byX if it expresses
a situation corresponding to “successful termination”. Processes can also be given
names, allowing them to be reused in other places.

Our first example, theReceiver process shown in Figure 1, uses the sequential
composition construct; to combine several basic processes (that each just perform
an action) into a sequence of processes that each still perform a single action, but
then transition into the next one. While the semantics of the; construct is intuitively
clear, a formal definition of the semantics of all constructs of the MODEST language
is necessary for formal verification. The result of applying this semantics [3] to a
given process is an automaton whose states correspond to MODEST processes, and
whose edges are labelled with actions and represent the transitions between pro-
cesses. For now, the resulting automaton is just a labelled transition system (LTS),
the simplest submodel supported by the MODEST language.

Page 186

4 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

process Receiver()
{

receive data;
send ack;
report data;
Receiver()

}

⇒

Fig. 1 The most basic model of a receiver

Figure 1 also shows the LTS corresponding to theReceiver process. The be-
haviour of the receiver is thus to—upon receiving some data from the communi-
cation channel—first send an acknowledgment back to the sender, then report the
arrival of the message (presumably to some upper network layer), and finally start
over again and wait for new data. In the following, we may sometimes omit location
labels and certain parts of the edge labels for clarity; however, keep in mind that a
location always corresponds to a MODEST process.

2.2 Nondeterminism

An important feature of many modelling formalisms, including MODEST, is to allow
nondeterministic specifications. A nondeterministic choice is a choice between two
different courses of action without any information about the likelihood of one of
them or the circumstances that may lead to it. As such, it can be used to model
the complete absence of knowledge about the actual behaviour of a system; it can
be used to intentionally leave an implementation choice in a specification; and it
allows an open model to react on stimulus from a yet unknown environment.

We use a nondeterministic choice for the latter purpose in our first model of the
sender: To allow guaranteed delivery, the sender waits for an acknowledgment from
the receiver that the message it just sent has arrived before moving on to the next
one. Since the communication channels are lossy, the actual data or the receiver’s
acknowledgment may be lost, so the sender may have to repeat its transmission. We
use a nondeterministic choice between receiving an acknowledgment and detect-
ing that a message has been lost, which will eventually be resolved by the actual
behaviour of the environment.

The MODEST model for the sender and the corresponding LTS is shown in Fig-
ure 2. Thealt construct is used to specify the nondeterministic choice between
receiving an acknowledgment and detecting message loss, the latter of which is en-
capsulated in a dedicated processTimeout that we specify as

alt { :: timeout send :: timeout ack }

for this first model. Note that instead of callingSender() after the receipt of an
acknowledgment or timeout to start over again, we chose MODEST’s loop construct,
do, which causes some process to be repeated ad infinitum or until it issues the spe-
cial break action.

Page 187

Probabilistic Analysis of Embedded Systems 5

process Sender()
{

do {
:: send data;

alt {
:: receive ack
:: Timeout()

}
}

}

⇒

Fig. 2 The most basic model of a sender

process Channel()
{

receive;
alt {

:: send
:: drop

};
Channel()

}

⇒

Fig. 3 A simple lossy communication channel

The only component of our communication scenario that still needs to be mod-
elled is the channel. Its model, shown in Figure 3, again uses a nondeterministic
choice. However, this time, it represents an “absence of knowledge” case: We do
not know anything about the channel except for the fact that itmaylose messages,
so after receiving a message on one end, we just nondeterministically allow both
possibilities—successful propagation of the message to the other end (send) or
message loss (drop).

2.3 Processes Running in Parallel

Although we now have MODEST processes that represent all components of our
communication scenario—sender, receiver and channel—we still need to obtain a
single model for the whole system that also includes the interactions between the
different components. Since these components usually represent distinct physical
entities that mostly run independently from each other, possibly with different pro-
cessing speeds, their composition is best represented by letting them run in parallel
without further restrictions, allowing their actions to occur interleaved in any order.
Only if the components actively interact with each other may we need to model a
synchronisation between them.

In MODEST, this kind of parallel composition is implemented by thepar con-
struct: The parallel composition ofn processesP1 to Pn, par { :: P1 . . . :: Pn },
allows the processes to perform their actions in any order, unless an action is shared
by at least two processes. In that case, in order to perform such a shared action, all
the processes that contain the action have to perform it at the same time, as a sin-

Page 188

6 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

par {
:: Sender()
:: relabel {receive, send, drop } by {send data, receive data, timeout send}

Channel() // Channel from sender to receiver
:: relabel {receive, send, drop } by {send ack, receive ack, timeout ack}

Channel() // Channel from receiver to sender
:: Receiver()

}

Fig. 4 MODESTcode for the parallel composition of sender, receiver and communication channels

Fig. 5 LTS of the parallel composition of sender, receiver and communication channels

gle step. This synchronisation on shared actions allows us to model communication
between processes.

Figure 4 shows the parallel composition of the sender, one instance of the
Channel process to model the channel from sender to receiver, another instance
to model the channel from receiver to sender, and the receiver itself. We use the
relabel construct to rename actions in such a way that sender and receiver syn-
chronise with the two channels as intended.

In our example, the LTS corresponding to the parallel composition (Figure 5) is
still relatively small, but this is only because the individual processes synchronise
very often. In theory, the size of the LTS of a parallel composition is only bounded
by the product of the numbers of states of the individual processes, and may thus
grow large very quickly.

2.4 Data Exchange

The basic model of the communication scenario we developed so far has one serious
problem: The receiver will report every receipt of a message from the channel, even
if it is just a retransmission after a lost acknowledgment. This is clearly undesirable
behaviour, but in order to fix it, we need a way to distinguish different messages. A
classic solution is that of theAlternating Bit Protocol: If we can guarantee that there
is at most one message in transit at any time, it suffices to include a single bit in
every message that is flipped between subsequent messages. The receiver stores the

Page 189

Probabilistic Analysis of Embedded Systems 7

bool channel bit;

process Sender()
{

bool bit;

do {
:: send data {= channel bit = bit =} ;

alt {
:: receive ack {= bit = !bit = }
:: Timeout()

}
}

}

process Receiver(bool last bit)
{

bool bit;

receive data {= bit = channel bit = };
urgent send ack;
alt {

:: when(bit != last bit) report data
:: when(bit == last bit) tau

};
Receiver(bit)

}

Fig. 6 Transmission of an alternating bit between sender and receiver

value from the last reported message, and if a new message arrives with the same
value, it clearly is a retransmission.

MODEST supports data in the form of global and process-local variables, includ-
ing parameters to processes, which can be of Boolean, integer, bounded integer or
real type, arrays thereof, or user-defined composite types. In order to transmit a sin-
gle bit, a Boolean variable is sufficient. The necessary modifications to the model
are shown in Figure 6: A global variablechannel bit is added that represents
the bit of the message that is currently being transmitted, and sender and receiver
get local variables or parameters to keep track of the current and previous bits.

Aside from the variable declarations, we see two new language features in the
modified model, namely assignments and thewhen construct, orguard. Assign-
ments are associated with an action and enclosed in brackets ({= . . . =}). They are
executed atomically when the action is performed; in particular, the textual order
of the assignments in MODEST code inside a{= . . . =} block does not matter. The
variables can then be used to put constraints on when an action can actually be
performed by using thewhen construct.

2.5 Time

Up to this point, the detection of message loss was implemented by the process

alt { :: timeout send :: timeout ack }

Page 190

8 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

const int TD; // maximum channel transmission delay
const int TS; // sender timeout

process Timeout()
{

clock c;

when(c >= TS) urgent(c >= TS) tau // timeout: retransmit
}

process Channel()
{

clock c;

receive {= c = 0 = };
alt {

:: urgent(c >= TD) send
:: urgent tau // silently drop the message

};
Channel()

}

Fig. 7 Adding a transmission delay and realistic timeout detection

where the twotimeout * actions just synchronised with thedrop actions that
the channels performed when they lost a message. This is, of course, a significant
abstraction from reality where message lost is usually detected by the passage of a
certain amount of time, after which atimeoutoccurs. Fortunately, time is supported
in MODEST as well, in a way that is almost identical to how time is modelled in
Timed Automata (TA, see Chapters 2 and 3), so we can now make our model more
realistic w.r.t. timeouts.

Just like TA, MODEST has clock variables, which can be also be used in expres-
sions in guards anddeadlines. Deadlines (orurgency constraints, written in MOD-
EST asurgent(d) whered is an expression of Boolean type) are used to constrain
the passage of time; they are the MODEST analogue to invariants in TA. In contrast
to invariants, however, they are not associated with states, but with the actions pos-
sible in a process. If the deadline of any action possible in a process becomes true
(we say that the action becomesurgent), time cannot pass any more and some edge
has to be taken.

Figure 7 shows how to use these new constructs to put realistic timeouts into our
model. The transmission of a message through a channel now takes up toTD time
units (which is achieved by resetting clockc to zero and then prefixing the channel’s
send action withurgent(c >= TD)), and the Timeout process is modified
such that it actually waits some time—preciselyTS time units—before terminating
and thereby causing a retransmission, leaving the bit unchanged. The corresponding
automaton is shown in Figure 8—note that guards, deadlines and assignments are
stored symbolically on the transitions.

Page 191

Probabilistic Analysis of Embedded Systems 9

Fig. 8 Automaton for the channel with transmission delay

process Channel()
{

clock c;

receive palt {
:98: urgent(c >= TD) send
: 2: urgent tau // silently drop the message

};
Channel()

}

Fig. 9 A timed probabilistic lossy channel

2.6 Probabilistic Choices

Although our model of the communication scenario has become significantly more
realistic through the addition of “real” timeouts, there still is one more problem
with the current channel model: The decision whether or not to lose a message is
currently a nondeterministic one. While this is a good model for complete absence
of information about the frequency of message losses, one possible resolution of
this choice is to always drop the message, i.e., a completely non-functional chan-
nel. In order to avoid this situation, we either need so-called fairness assumptions
which may enforce that eventually some message is not lost, or we just have to put
information about the frequentness of message loss into the model.

Let us pursue the latter option for this example. Experiments may have shown
that for a typical implementation of this kind of channel, a single message is lost
with a probability of 2%, independent of any other conditions. Thisprobabilistic
choicebetween two options is available in MODEST via the palt construct, as
shown in Figure 9: After receiving a message at one end of the channel, it is now
lost with probability 2

98+2 = 2%, and it successfully arrives at the other end (pos-
sibly with some delay) with probability 98%. The probabilities used in thepalt
construct are actuallyweights, so we could equivalently have written 49 and 1 in-
stead of 98 and 2, and they are not restricted to constant values as in the example,
but can be arbitrary expressions.

For the previous examples, the semantics of our model was an automaton with
variables and edges that consisted of an action, a guard, a deadline, and assignments.
When we add thepalt construct, however, the model becomes slightly more in-
volved because we need to represent the probabilistic branching in the automaton.
As shown in Figure 10, edges can now target multiple locations, with a probabil-
ity given for each branch. (Formally, the edges now relate a source location with
a probability distribution over target locations and assignments.) This is also why

Page 192

10 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Fig. 10 Automaton for the channel with transmission delay and probabilities

thepalt construct has to be prefixed with an action—it needs an existing edge to
which it can add probabilistic branching.

2.7 Random Timing

The model built so far for our communication scenario could already be consid-
ered complete; however, let us add one more refinement by explicitly modelling the
arrival of new messages for the sender. We will add a queue of messages that peri-
odically grows and out of which theSender process takes a message as soon as
the transmission of the previous one is successfully completed.

The time between the arrivals of “customers”, in our case messages, to a queue
is usually assumed to be exponentially distributed with some rate parameterλ . To
model these delays, we can take advantage of the possibility to draw samples from
random variables distributed according to a number of predefined distributions in
MODEST: for example, the statement

{= delay = Exponential(3.14) = },

assigns a value to the variabledelay (which is of type real) that is randomly cho-
sen according to the exponential distribution with rate 3.14. We can then use this
variable in guards and urgency constraints to achieve a delay that is of exponen-
tially distributed length, as long as we resample before using it again:

urgent(c >= delay) when(c >= delay) . . .

This now allows us to implement the queue of messages as shown in Figure 11.
We have also modified the sender by adding aget data action that synchronises
with theQueue process, taking out one message.

2.8 More Syntax

The full communication scenario model (Figure 11) concludes our tour of the MOD-
EST language. We have seen that MODEST can be used to build models of real-
time systems with probabilistic or stochastic behaviour, including how its process-
algebraic nature can be used to specify a complex system in terms of its natural
components, which themselves remain small and easy to understand.

Page 193

Probabilistic Analysis of Embedded Systems 11

action get data;
action receive data, send ack, report data;
action send data, receive ack;
action receive, send;

const int TD; // maximum channel transmission delay
const int TS; // sender timeout
const real AR; // data arrival rate

bool channel bit;

process Timeout() { ... }

process Sender(bool bit)
{

get data;
do {

:: urgent send data {= channel bit = bit = };
alt {

:: receive ack; urgent break
:: Timeout()

}
};
Sender(!bit)

}

process Receiver(bool last bit) { ... }

process Channel() { ... }

process Queue()
{

clock c;
int items;
real delay;

do {
:: urgent(c >= delay) when(c >= delay)

{= items += 1, delay = Exponential(AR), c = 0 = }
:: when(items > 0) urgent(items > 0)

get data; urgent {= items -= 1 = }
}

}

par {
:: Queue()
:: Sender(false)
:: relabel {receive, send } by {send data, receive data}

Channel() // Channel from sender to receiver
:: relabel {receive, send } by {send ack, receive ack}

Channel() // Channel from receiver to sender
:: Receiver(true)

}

Fig. 11 The full model

MODEST is an expressive language, and although we essentially covered the
types of behaviours that are expressible in MODEST, we were not able to present
all of its syntactic features. Most notably, it also support exceptions as known from
modern programming languages that can be thrown at some point in a model and
be caught at another, but also several useful shorthands that, for example, allow the
use of invariants as known from timed automata instead of deadlines.

Page 194

12 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Submodel Probability distributions? Clocks/Time? Nondeterminism?

STA arbitrary arbitrary yes

GSMP arbitrary arbitrary no

PTA finite integer bounds yes

TA none integer bounds yes

PA/MDP finite no yes

LTS none no yes

CTMDP exponential + finite exponential delays yes

CTMC exponential + finite exponential delays no

DTMC finite no no

Table 1 MODEST submodels

3 Analysing MODEST Models

The ultimate goal of modelling any kind of system is to be able to analyse the model,
and in particular verify the presence or absence of certain good or bad properties.
Due to the enormous expressiveness of MODEST, no currently known analysis tech-
nique can be used for arbitrary MODEST models. However, certain submodels of
MODEST (Table 1) can easily be identified, e.g. by the absence of certain language
constructs, and efficient analysis techniques targeted to several of these submodels
exist:

Two very general submodels underlying MODEST are probabilistic timed au-
tomata (PTA, [5]) and generalized semi-Markov processes (GSMP, [8]). The STA
corresponding to a MODEST model is a PTA if only probability distribution with
finite support set occur. The complete model of our running example from the pre-
vious section is thus not a PTA because it uses the exponential distribution, but the
one developed up to Section 2.6 is. We will show how to analyse this model in the
first part of this section. On the other hand, regardless of the probability distribution
appearing, a MODEST model corresponds to a GSMP, provided it is fully determin-
istic. Unfortunately, this condition is difficult to assure — in particular, the parallel
composition is not closed under determinism: fully deterministic processes running
in parallel may behave nondeterministically.

3.1 Model-Checking PTA Models

For the formal verification of MODEST models that correspond to PTA, a set of
properties to be checked has to be defined. As PTA combine probabilistic and real-
time behaviour, we can refer to both probabilities and time in these properties. Some
classes of probabilistic timed properties that can efficiently be verified are

• probabilistic reachability properties: “What is the probability of ever reaching
an error state?”,

Page 195

Probabilistic Analysis of Embedded Systems 13

• probabilistic time-bounded reachability properties: “What is the probability of
reaching an error state withinn time units?”, and

• expected-time reachability properties: “What is the expected time until an error
state is reached?”.

Because PTA can contain nondeterminism, the answers to all of these properties
depend on how the nondeterminism is resolved. All of them thus exist in amaximum
andminimumvariant: If asked for the maximum (minimum) probability of reaching
an error state, all possible ways to resolve nondeterministic choices are considered
and the highest (lowest) probability is returned.

Let us now analyse the model of the communication scenario developed up to
Section 2.6 in terms of correctness and performance. The most basic correctness
criterion for such a communication protocol is that the probability of eventually
succeeding, which we may, for example, detect by the receipt of an acknowledg-
ment, is 1. This can be specified inside the model as

property success = P(<> did(receive ack)) >= 1.0;

ForTD= 1 andTS= 4, this property is indeed satisfied. Now that we are confident
that the protocol used is correct, we can study performance aspects. A requirement
may for example be that, in the worst case, the probability of completing a trans-
mission within 7 time units is close to 100%. For the same values forTD andTS,
we will see that it is actually 99.843% using

property Pmin(<> did(receive ack) && time <= 7.0);

Lastly, we can also find out what the actual expected time until successful transmis-
sion is. Using the following properties—

property success t ime min = Tmin(did(receive ack));
property success t ime max = Tmax(did(receive ack));

—we see that it lies between 1.649 and 2.165 time units, depending on how the
nondeterministic choice of the actual transmission delay in the channel is resolved.

3.2 Discrete-Event Simulation for GSMP Models

Models using probability distributions with infinite support, such as the exponential
distribution, can be analysed using discrete-event simulation. Since discrete event
simulation relies on the execution and evaluation of large batches ofconcretetraces
of a model, this model either needs to be deterministic (i.e., a GSMP), or the non-
determinism has to be resolved in some way specified by the user in order to obtain
a GSMP.

There are many different methods to resolve nondeterminism, and the particu-
lar method employed may skew the analysis results in unexpected and sometimes
counterintuitive ways. For example, two distinct possibilities to resolve nondeter-
minism over time – such as for the transmission delay in our running example – are
to always choose the earliest or the latest possible point in time. For our example,

Page 196

14 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Fig. 12 Simulation results for the communication scenario

the results we obtain this way for the expected time to success do coincide with
the actual lowest and highest values, but it is easy to construct a model where, for
example, the inverse is the case. Understanding that the method to resolve nondeter-
minism can influence the results and taking this into account when interpreting the
results is thus crucial.

When analysing the final model of our communication scenario via discrete-
event simulation, we can still check the properties presented for the PTA model
above, but also new measures such as the actual throughput of the system in terms of
successfully transmitted messages per time unit and the average length of the queue
over time. The former can be achieved by simply counting the number of times
that thereport data action is performed via MODEST’s support for transition
rewards:

increment count for {report data} by {1} Receiver(true)

At the end of a simulation run, we then observe the value ofcount/time. To
measure the average queue length, we need to use a rate reward that grows (linearly)
over time at the speed of the current queue length. We can specify this in MODEST

by introducing a new variableitems r eward of type real and setting its derivative
to be the queue length:

der(items r eward) = items;

Again, we let the simulator observe the value ofitems r eward/time at the end
of each simulation run.

Discrete-event simulation is usually used to perform a large number of simula-
tion runs and then compute a statistical evaluation of the collected results. To obtain
numbers for the measures introduced above, we collect 1000 random traces for dif-
ferent model time lengths with uniformly random resolution of nondeterminism, but
a deterministic transmission delay of 1 time unit andTS= 4; the results are plotted
in Figure 12. We see that the throughput of the system is limited to about 0.46 mes-
sages per time unit due to the communication delays and the lengths of the timeouts
in case a message is lost; as expected, the queue length appears to grow without
bounds for arrival rates close to or larger than that value; slowly so forAR= 0.5,
but already significantly forAR= 0.75.

Page 197

Probabilistic Analysis of Embedded Systems 15

Fig. 13 mime, the integrated modelling environment for MODEST

3.3 Tool Support

The analysis of MODESTmodels is today supported by two sets of tools: The newly
developedModest Toolsetand the originalModest Tool Environment, MOTOR.

3.3.1 The Modest Toolset

The MODEST Toolset, developed at Saarland University, currently consists of three
tools: mcpta, which allows model-checking MODEST models of PTA [9];modes,
a discrete-event simulator for MODEST, andmime, an integrated modelling envi-
ronment that combines a MODEST editor with syntax and error highlighting with
direct access to the model analysis capabilities of mcpta and modes (Figure 13).
The MODEST Toolset is cross-platform and can be downloaded at

www.modestchecker.net
mcpta transforms MODEST models corresponding to PTA into probabilistic,

but untimed models and hands these over to the PRISM probabilistic model-
checker [14] for analysis. This process is fully automated, and all classes of proper-
ties introduced in Section 3.1 are supported.

modes’ focus is on discrete-event simulation with a sound treatment of nonde-
terminism. Its default behaviour is therefore to reject nondeterministic models, but
it allows the user to override this behaviour by explicitly choosing one out of a set

Page 198

16 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

of predefined resolution methods. Additionally, modes can be configured to detect
and ignore certain kinds ofspuriousnondeterminism, i.e. choices that do not actu-
ally influence the final result. When this option is used, modes can analyse (certain)
nondeterministic models while the user can rest assured that the values obtained are
unaffected by any particular resolution of nondeterminism.

3.3.2 MoTor and Möbius

MOTOR [12] is the original set of tools designed to interface MODEST with dif-
ferent existing analysis backends such as CADP [7] for functional verification and
MÖBIUS [6] for discrete-event simulation. Today, the MÖBIUS backend is mostly
used for high-performance and distributed simulation of MODEST models; see the
following chapter for an extensive case study. In contrast to modes, nondetermin-
istic choices over different actions are always resolved in a uniformly probabilistic
way, while amaximal progresssemantics is used for nondeterministic delays (that
is, as soon as an action is possible, it is taken, even when the model would allow
more time to pass).

MOTOR is available from the University of Twente at
fmt.cs.utwente.nl/tools/motor/

3.3.3 Analysing other Submodels

While not yet supported by the tools introduced above, several other submodels of
MODEST are easy to analyse with well-established model-checking tools once the
MODEST code is translated into the respective tool’s formalism: For example, the
timed automata subset could be analysed using UPPAAL, while the one correspond-
ing to continuous-time Markov chains (CTMC) could also be translated to PRISM.
Since Markov decision processes (MDP) and discrete-time Markov chains (DTMC)
are special cases of PTA, mcpta can already be used in combination with PRISM to
analyse these submodels.

4 Summary

Summary/conclusionHH: TODO HH:.

References

1. IEEE Computer, special issue on embedded systems, 2000.
2. Rajeev Alur and David L. Dill. A theory of timed automata.Theor. Comput. Sci., 126(2):183–

235, 1994.

Page 199

Probabilistic Analysis of Embedded Systems 17

3. Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen.
MoDeST: A compositional modeling formalism for hard and softly timed systems.IEEE
Transactions on Software Engineering, 32(10):812–830, 2006.

4. Śebastien Bornot and Joseph Sifakis. An algebraic framework for urgency.Inf. Comput.,
163(1):172–202, 2000.

5. Conrado Daws, Marta Z. Kwiatkowska, and Gethin Norman. Automatic verification of the
IEEE-1394 root contention protocol with KRONOS and PRISM.Electr. Notes Theor. Comput.
Sci., 66(2), 2002.

6. Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem Derisavi, Jay M. Doyle,
William H. Sanders, and Patrick G. Webster. The Möbius framework and its implementation.
IEEE Trans. Software Eng., 28(10):956–969, 2002.

7. Hubert Garavel, Radu Mateescu, Fréd́eric Lang, and Wendelin Serwe. Cadp 2006: A tool-
box for the construction and analysis of distributed processes. In Werner Damm and Holger
Hermanns, editors,CAV, volume 4590 ofLecture Notes in Computer Science, pages 158–163.
Springer, 2007.

8. Peter W. Glynn. A GSMP formalism for discrete event systems. InProceedings of the IEEE,
volume 77, pages 14–23. 1989.

9. Arnd Hartmanns and Holger Hermanns. A Modest approach to checking probabilistic timed
automata. InQEST ’09: Proceedings of the 2009 Sixth International Conference on the Quan-
titative Evaluation of Systems, pages 187–196, Washington, DC, USA, 2009. IEEE Computer
Society.

10. Holger Hermanns.Interactive Markov Chains: The Quest for Quantified Quality, volume
2428 ofLecture Notes in Computer Science. Springer, 2002.

11. Gerard J. Holzmann. Software analysis and model checking. In Ed Brinksma and Kim Guld-
strand Larsen, editors,CAV, volume 2404 ofLecture Notes in Computer Science, pages 1–16.
Springer, 2002.

12. Joost-Pieter Katoen, Henrik C. Bohnenkamp, Ric Klaren, and Holger Hermanns. Embedded
software analysis with MOTOR. In Marco Bernardo and Flavio Corradini, editors,SFM,
volume 3185 ofLecture Notes in Computer Science, pages 268–294. Springer, 2004.

13. Edward A. Lee. Embedded software.Advances in Computers, 56:56–97, 2002.
14. David Parker.Implementation of Symbolic Model Checking for Probabilistic Systems. PhD

thesis, University of Birmingham, 2002.
15. M. L. Puterman.Markov decision processes: discrete stochastic dynamic programming. Wiley

Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John
Wiley & Sons Inc., New York, 1994. A Wiley-Interscience Publication.

16. Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.
Nord. J. Comput., 2(2):250–273, 1995.

Page 200

Model-Based Testing

Brian Nielsen and Jan Tretmans

Abstract Model-based testing is one of the promising technologies to increase the
efficiency and effectiveness of testing. In model-based testing, a model specifies the
required behaviour of a system, and test cases are automatically generated from this
model. This chapter gives an introduction to model-based testing. First, the concepts
and aspects of model-based testing are discussed in general. Then these concepts are
elaborated for simple, state-based models expressed as labeled transition systems,
and subsequently for the more complex model of Timed Automata.

1 Introduction

Testing plays an important role in the demand for improved quality of systems and
software. Testing, however, is often a manual and laborious process without effec-
tive automation, which makes it error-prone, time consuming, and very costly. Es-
timates are that testing takes 30-50% of the total software development effort. This
leads to the quest for more effective and more efficient testing.

Model-based testing is a promising new technology that can contribute to in-
creasing the efficiency and effectiveness of the testing process. In model-based test-
ing, a model is the starting point for testing. This model expresses precisely and
completely what the system under test (SUT) should do, and should not do and, con-
sequently, it is a good basis for systematically generating test cases. Model-based
testing makes it possible to generate a set of test cases, including test oracles, com-
pletely automatically from a model of required SUT behaviour. In this way, model-
based testing allows for test automation that goes well beyond the mere automatic

Brian Nielsen
Aalborg University, Aalborg, Denmark, e-mail: bnielsen@cs.aau.dk

Jan Tretmans
Embedded Systems Institute, Eindhoven, The Netherlands, e-mail: jan.tretmans@esi.nl

1

Page 201

2 Brian Nielsen and Jan Tretmans

execution of manually crafted test scripts, which is the current state of practice. And
if the model is valid, i.e., expresses the system requirements accurately, then all
these algorithmically generated tests are provably valid, too.

Classification of Model-Based Testing

There are many different kinds of testing depending, for example, on the quality
aspects being tested, whether the specification or the code is the starting point of
testing, and whether we have access to the internal details of the SUT or only to its
external interfaces. Likewise there are different kinds of model-based testing. In this
chapter we consider specification-based, black-box testing of functionality.

Functionality testing involves checking whether the system correctly does what
it should do in terms of input/output behaviour, i.e., correct and timely responses to
given stimuli. Other quality characteristics that might be tested with other methods
are, e.g., performance, usability, reliability, robustness, or security properties.

The starting point for our testing is the specification, which prescribes what the
SUT should, and should not do. Our specification is given in the form of a be-
havioural model with which the behaviour of the SUT must comply. Moreover, the
testing is black-box, which means that the SUT is seen as a black box without inter-
nal detail, which can only be accessed and observed through its external interfaces,
as opposed to white-box testing, where also the internal structure of the SUT, i.e., its
code, is used for testing.

Finally, our approach is rigorous in the sense that the models of the SUT are
given in a well-defined notation, and they define unambiguously what correct and
incorrect SUT behaviour is.

Overview

This chapter discusses rigorous, specification-based, black-box, model-based test-
ing of functionality. First, Section 2 presents general concepts, ingredients, and
phases of model-based testing. Then Section 3 elaborates these for simple, state-
based models expressed as labeled transition systems. Section 4 uses the full power
of Timed Automata, introduced in Chapters ?? and ??, to express models, and shows
how the model-based testing tool UPPAAL-TRON is used to test real-time proper-
ties. Section 5 concludes with benefits, open issues, and perspectives of model-based
testing. This chapter prepares for Chapters ?? and ??, where case studies of model-
based testing are discussed.

Page 202

Model-Based Testing 3

2 Model-Based Testing

In model-based testing there is a system under test (SUT), there is a model that pre-
scribes how the SUT shall behave, and there is the question whether the behaviour of
the SUT complies with the behaviour expressed in this model. To check compliance
test cases are constructed from the model through test generation and selection. Test
execution, and analysis consisting of comparing actual test outcomes with expected
ones according to the model, lead to a verdict whether the SUT indeed complies with
the model.

This section discusses these concepts of model-based testing in general; the next
two sections will elaborate them for particular model-based testing approaches using
labeled transition systems and Timed Automata, respectively.

SUT

compliance

specification
model

test generation
and selection

test cases

and analysis
test execution

verdict
pass, fail

Fig. 1: The process and concepts of model-based testing.

System Under Test

Since the system to be tested (SUT) is treated as a black box exhibiting behaviour, a
tester can only control and observe the SUT via its external interfaces, where stim-
uli and inputs can be provided and responses and outputs can be observed. Conse-
quently, identifying these test interfaces of the SUT, in terms of, e.g., ports, program-
ming interfaces, message exchanges, and communication lines, is an important first
step for (model-based) testing. The occurrence of input and output actions on these

Page 203

4 Brian Nielsen and Jan Tretmans

interfaces, together with their inter-dependencies, ordering, and timing, constitutes
the behaviour of the SUT. It is this behaviour of the SUT that will be tested.

Model

The second main ingredient for model-based testing is the model. A model is an
abstraction of reality, a description focusing on some aspects of the system, while
leaving out many details. A model for model-based testing focuses on behaviour. It
specifies which input and output actions occur, how outputs depend on inputs, and
how they are ordered and timed. Various notations for models exist such as different
forms of (finite) state machines and state charts. The next section uses a very basic,
state-based notation, called labeled transition systems, to express models; Section 4
uses Timed Automata.

Compliance

The goal of model-based testing is to check whether the actual behaviour of the SUT
complies with the behaviour expressed in the model. To relate an SUT to a model,
the first, static step is to map (or adapt) the real interfaces, inputs, and outputs of the
SUT, to the abstract descriptions of the interfaces, inputs, and outputs in the model,
e.g., to map the concrete socket connection 〈192.168.1.1,7890〉 to the abstract port
p used in the model, and to map the concrete message with bit pattern 01010101 to
the abstract message Initialize.

The second, dynamic step of relating a model to an SUT is stating precisely when
an SUT correctly implements the behaviour described in the model. An implemen-
tation relation, or conformance relation, defines the conditions under which the
behaviour of an SUT complies with the behaviour prescribed in its model. Such a
relation is necessary because a model in itself does not completely define which
SUTs are correct. A model expresses behaviour, but it does not define whether the
SUT must exactly implement all behaviours described in the model, whether it may
leave out some behaviours, or whether it may add some additional, non-specified
behaviours. An implementation relation typically answers such questions. Imple-
mentation relations for labeled transition systems and Timed Automata are further
discussed in Sections 3 and 4.

Test Generation

A test case specifies the experiment that is performed on the SUT. It specifies the
inputs, or stimuli, to be supplied to the SUT, the outputs, or responses, expected from
the SUT, and the ordering and timing of these inputs and outputs. In model-based
testing, test cases are algorithmically generated from the model.

Page 204

Model-Based Testing 5

The generated test cases should exactly detect those behaviours that are not cor-
rect with respect to the model according to the implementation relation. A collection
of test cases, called a test suite, is sound if all correct SUTs pass the test suite, i.e.,
there are no false alarms. The other way around, if no erroneous SUT passes a test
suite, the test suite is called exhaustive, i.e., there are no failure escapes.

Soundness is a minimal requirement for test suites. Exhaustive test suites do not
exist in practice, because detecting all potential failures would require an infinite
number of infinitely long test cases for any non-trivial SUT: “Program testing can
be used to show the presence of bugs, but never to show their absence!” [2]. Yet, for
reasoning about model-based test-generation algorithms, both soundness and ex-
haustiveness are important concepts. A theoretically exhaustive test generation al-
gorithm will eventually detect all possible errors if the time of testing is unbounded.
Practically, this means that every error has a non-zero probability of being detected,
i.e., there are no errors that are fully undetectable.

Test Selection

A sound and exhaustive test generation algorithm can generate many more test cases
than can ever be executed. Even testing the addition of two 32-bit integers, which
could easily be automated by writing a test generation algorithm that enumerates
all 232 × 232 = 1.8 1019 possible test cases, would require 584,542 years of test
execution if one test case would take 1 µsec.

Practical test generation algorithms use test selection criteria to generate a fea-
sible and executable selection of sound, but not exhaustive test cases. The aim is
to select test cases in such a way that they provide a high chance of detecting fail-
ures, and give confidence that an SUT that passes the test cases is indeed complying,
within given constraints of testing time and effort.

Selection criteria, also referred to as test adequacy criteria, are based on heuris-
tics, experience, gut feeling, and expert domain knowledge, so human influence
is prominent. Structural selection criteria for model-based testing express when a
model is considered sufficiently covered by test cases. Examples are state- and tran-
sition coverage for state-based models. Selection criteria may also be specific for
a particular model or domain, such as a domain expert having knowledge about
particular critical behaviours.

For the addition of two 32-bit integers the classical equivalence partitioning (EP)
and boundary value analysis (BVA) test-selection criteria are commonly used [7].
EP divides the input and output domains into classes of values that behave in the
same way. BVA states that values on the boundaries of these classes have higher
test value. For addition, typical EP input classes are positive and negative integers,
and output classes are valid and overflow outcomes. For BVA, typical additional
test values are −1, 0, 1, −231, and 231−1. Taking all combinations of these values
leads to a reduced test suite of about 50 test cases covering addition following the
selection criteria EP and BVA.

Page 205

6 Brian Nielsen and Jan Tretmans

Test Execution and Analysis

We use the term test execution for applying a test case to an SUT, resulting in some
observations. To execute a test case, the abstract actions of the test case must invoke
the concrete interfaces of the SUT, and the concrete observations made on the SUT
must be interpreted in terms of the abstract model actions. This is called adaptation,
and the component in the test execution environment taking care of this is usually
called the adapter.

After test execution the test outcomes must be analysed to investigate whether
they are as expected, or not. If the actual outcome complies with the expected out-
come according to the model, then this is indicated with the verdict pass. If the
outcome is different the verdict is fail. A third verdict inconclusive is used to indi-
cate that the outcome is correct but different from what was desired.

3 Model-Based Testing with Labeled Transition Systems

One of the theories for model-based testing is the ioco-testing approach, where mod-
els are expressed as labeled transition systems, and compliance between the SUT and
the model is expressed using the ioco-implementation relation. This approach pro-
vides a well-defined foundation for model-based testing, and it has proved to be a
good basis for several practical model-based test generation tools and their applica-
tion. In this section we introduce the ioco-testing approach using examples. For a
complete treatment we refer to [8].

3.1 Labeled Transition Systems

A labeled transition system is a structure consisting of states representing the states
of the system, and labeled transitions between states modeling the actions that a
system can perform, analogous to a timed automaton but without explicit time; see
Chapters ?? and ??. Typically, the actions represent the interactions of the system
with its environment, such as inputs and outputs. Inputs are the stimuli provided
to the system; they are under control of the system’s environment. Outputs are the
system’s responses to these stimuli; they are under control of the system itself. We
will decorate inputs with ‘?’ and outputs with ‘!’. The observable behavior of a
system is captured by the sequences of actions that a system is able to perform.
Such sequences of inputs and outputs are called traces.

Example 1. Figure 2 presents seven labeled transition systems all of them modeling
coffee machines. Machine s has two states: s0, the initial state, and s1. Upon pressing
the button, which is modeled by the abstract input action but?, s takes the transition
from s0 to s1. This is written as s0

but?−−−→s1. In s1 there are two possible outputs: either

Page 206

Model-Based Testing 7

coffee is produced, modeled as cof !, or tea is output, modeled as tea!. Both bring
the machine back into its initial state s0. The observable behaviour of s is expressed
by its set of traces, of which there are infinitely many:

ε (the empty trace) but?cof !but?
but? but?cof !but? tea!
but?cof ! but? tea!but?cof !but? tea!
but? tea! . . .

but?cof !

p q

cof ! but?

whiskey!

hit?
but?

cof !

v

but?

but?

u

cof !

cof ! but?

s

s1

r

tea!

cof !

but?

w

cof ! but?

tea! tea!

but? but?

but?

s0

but? but?

choc!

but?

Fig. 2: Labeled transition systems.

In the ioco-approach a specification is expressed as a labeled transition system
with given sets of inputs and outputs. The SUT, on the other hand, is a black-box
performing behaviour that is observable at its interfaces. It is a software program, a
physical system, or a combination of these. Yet, we can view the behaviour of the
SUT as a labeled transition system that communicates with its environment using the
same inputs and outputs as its specification. This allows to reason about the SUT’s
behaviour as if it were a labeled transition system.

Moreover, SUTs have the property that inputs can always be performed (although
‘performing’ may mean ‘silently ignoring them’). We call a transition system where
all inputs can be performed in all states, input-enabled. Together, this means that we
can reason about the behaviour of SUTs as input-enabled labeled transition systems.

Page 207

8 Brian Nielsen and Jan Tretmans

Example 2. In Figure 2, s is not input-enabled in state s1, but p is: but? is accepted
in s0, and in s1 without state change. Also the other systems in Figure 2 are input-
enabled, and thus can be viewed as representing SUTs.

The examples in Figure 2 are very simple systems. Realistic systems may have
millions or billions of states. Representing them as graphs is then not an option.
An implicit representation in the form of a language of which the semantics can
be expressed as labeled transition system is then used. The principles remain the
same, only the representation changes. One such a language is Timed Automata,
which, by using parallel automata, clocks, and variables, is able to represent very
large transition systems in a concise way; this will be illustrated in Section 4.

Nondeterminism

Not all actions that a system can perform are observable. A system may perform
an internal computation leading to an internal transition, or the communication be-
tween two system components may result in a transition that is not visible to the
system’s environment. An internal transition is written by omitting the label from
the transition.

Internal transitions occur autonomously and invisibly within the system. This
implies that the tester cannot precisely know, based on observing inputs and outputs,
in which state the system currently is, and how the system will proceed with its
behaviour: the system is nondeterministic. Also two transitions with the same label
from the same state lead to nondeterminism.

In addition, a system can have output-nondeterminism when a state has two out-
going transitions with different output labels. Since outputs cannot be controlled
by the system’s environment, the choice which output transition to take is au-
tonomously made by the system. This means that a tester cannot predict which of
the outputs will occur, yet, after the output has occurred the state is known again.

Nondeterminism may occur both in specifications and in SUTs, and though it
may seem inconvenient and leads to some complexity, it is useful in various ways.
In a specification, nondeterminism is used to express freedom of implementation,
that is, the specifier leaves different options open and does not uniquely prescribe
the required behaviour, either because this is his deliberate choice, or because he
has insufficient knowledge to specify all details. Other reasons of nondeterministic
behaviour, both in models and in SUTs, are internal computations, invisible commu-
nications, restricted access to interfaces, and abstraction. Nondeterminism implies
that the tester cannot uniquely predict in which state the SUT is, and which outputs
it shall provide.

Example 3. Coffee machine w in Figure 2 has an unobservable transition, which
has the effect that after pushing the button but? we do not know in which state
the system is, and whether cof ! will be produced or not. Output-nondeterminism
occurs, for example, in s: after but? the machine produces either coffee cof ! or tea

Page 208

Model-Based Testing 9

tea!. Actually, s specifies a hot-drinks machine leaving the choice between various
hot drinks open.

Nondeterminism in a model leads to different possible behaviours that are all
correct. If later test cases are generated from the model then these test cases must
accept these different, correct behaviours. Moreover, if an SUT behaves nondeter-
ministically then executing the same test case twice may lead to different outcomes.
This means that test execution must be repeated a number of times in order to get
confidence that all possible SUT outcomes have actually been observed.

Example 4. A particular communication link may split large messages in smaller
chunks depending on the link’s available resources. A specifier will not know the
details of the splitting algorithm nor the status of available resources to specify
precisely how messages are split into chunks. What can and shall be required and
specified is that the concatenation of all chunks must equal the original message.
Moreover, testing the link twice with the same input message may result in different,
yet correct chunks.

Quiescence

A transition expresses that an action, input or output, can be performed. In addition,
it is also important to be explicit about the actions which cannot be performed. In
particular, a state that cannot perform any output action must be distinguished from
a state that can perform at a least one output action. A state that cannot perform any
output or internal action cannot progress autonomously; it has to wait until someone
provides it with an input before it can continue. Such a state is called quiescent.

An observer or tester looking at a system in a quiescent state does not see any
output occurring. This observation of seeing nothing can itself be considered as an
event. It is called quiescence, and it is denoted by the Greek letter δ (delta). Quies-
cence is an observation that can be made on a system, e.g., by setting a sufficiently
large time-out value and observing that the system does not produce any output be-
fore expiration of the timer. Quiescence δ can be considered as just another ’output’-
action, representing the absence of any ’real’ output. It does not occur explicitly in
a labeled transition system, but only implicitly by absence of ’real’ outputs. Yet,
quiescence actions can be composed with normal actions to express behaviour, for
example, in traces.

Example 5. Coffee machine s in Figure 2 is quiescent in its initial state s0. Machine r
is always quiescent. After but? machine w may produce coffee cof !, but w may also
be quiescent: w can perform the trace but?cof ! but also the trace but?δ but? tea!δ :

we write w but?δ but? tea!δ
=========⇒ . It expresses that after pushing the button there is no

output, i.e., δ , is observed. If then the next stimulus but? is supplied tea! is observed,
after which the machine is waiting again for the next input.

Page 209

10 Brian Nielsen and Jan Tretmans

3.2 The Implementation Relation ioco

An implementation relation precisely defines when an SUT conforms to a speci-
fication model. The implementation relation ioco, abbreviated from input-output
conformance, is such a relation for labeled transition systems. An SUT i is ioco-
conforming to specification s if all outputs that i can produce, including quiescence,
can also be produced by s in a comparable a state. In other words, i ioco s if after a
sequence of actions of s, i never produces an output that is unexpected in s.

Example 6. Consider s in Figure 2 as the specification. It specifies that after pushing
button but? either coffee or tea shall be produced. This is exactly what p does, so
p ioco s. That p can produce cof ! after but?but? is not important because but?but?
is not a sequence of actions of s, so s does not specify anything for what shall happen
after but?but?.

Also q ioco s because q does not produce any unexpected output: cof ! is also an
output of s after but?. In other words, q makes an implementation choice, viz. pro-
ducing cof !, whereas s had left this choice open through the output-nondeterminism
between cof ! and tea!.

On the other hand, u /ioco s, because u can produce choc! after but? which is not
foreseen in s. Also r /ioco s because r is quiescent after but? which is not expected in
s: s always produces at least one of the outputs cof ! or tea!. Also w can be quiescent
after but?, so w /ioco s.

The system v extends the functionality of s; v features producing whiskey! after
being hit?. Yet, v ioco s, because s does not specify what shall happen after hit?. It
is not a sequence of actions of s, and the SUT is free to do anything after hit?. We
say that s is underspecified for input hit?.

A formal definition of ioco is given as follows. Let i and s be labeled transition systems with
input actions in LI and output actions in LU , and let i be input-enabled. Then ioco is defined
by

i ioco s ⇔def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

where

• The traces of s, i.e., sequences of actions, including quiescence δ that s can perform,
are: Straces(s) =def { σ ∈ (LI ∪LU ∪{δ})∗ | ∃s : s σ

=⇒s′ }

• A generalized transition q σ
=⇒q′ is a sequence of transitions from state q to state q′,

where σ ∈ (LI ∪LU ∪{δ})∗, i.e., σ is a, possibly empty, sequence of inputs, outputs,
and quiescence. The sequence of transitions may contain internal transitions, but these
are not visible in σ .

• A state q of i or s is quiescent, denoted by δ (q), if no output or internal transitions are
possible from q: ∀x ∈ LU : q x−−→/ and q−→/

• The set of reachable states of s, with initial state s0, is: s after σ =def { s′ | s0
σ
=⇒s′ }

• The set of possible outputs, possibly including quiescence δ , of state q is:
out(q) =def { x ∈ LU | ∃q′ : q x−→q′ } ∪ { δ | δ (q) }

• The set of possible outputs of all states of s reachable after trace σ is:
out(s after σ) =def

⋃
{ out(q) | q ∈ s after σ }

Page 210

Model-Based Testing 11

Nondeterminism is reflected in ioco by having more than one element in the set
of possible outputs out(s after σ). A system i may implement any selection of these
possible outputs as long as out(i after σ)⊆ out(s after σ).

Underspecification occurs if for some inputs the specification does not prescribe
at all which outputs an SUT may produce. This is reflected in ioco by requiring
out(i after σ) ⊆ out(s after σ) only for traces σ ∈ Straces(s). This means that for
σ 6∈ Straces(s) an SUT is free to perform any behaviour.

Example 7. In Figure 2, we have that out(s after but?) = {cof !, tea!}, so s is output-
nondeterministic.

We have p ioco s because out(p after but?) = out(s after but?) = {cof !, tea!},
and also q ioco s because out(q after but?) = {cof !} ⊆ {cof !, tea!}.

But u /ioco s because choc! ∈ out(u after but?) but choc! 6∈ out(s after but?).
Also r /ioco s because out(r after but?) = {δ} but δ 6∈ out(s after but?). For w,
out(w after but?) = {cof !,δ} 6⊆ out(s after but?), so that w /ioco s.

Underspecification in s occurs for input hit?: hit? 6∈ Straces(s), so v ioco s , al-
though out(v after hit?) = {whiskey!} 6⊆ out(s after hit?) = /0.

Also but?but? is underspecified in s. Thus, although out(p after but?but?) =
{cof !, tea!} 6⊆ /0 = out(s after but?but?), we do have p ioco s.

3.3 Testing for Labeled Transition Systems

Testing involves the generation of test cases, the execution of these test cases on an
SUT, and the analysis of the test outcomes. We first look at the structure of test cases
for testing labeled transition systems, and how these test cases are executed. Then
we show how these test cases can be automatically generated from a labeled transi-
tion system specification, and finally soundness and exhaustiveness are considered.

Test Cases

A test case specifies which inputs the tester will supply to the SUT, and which out-
puts it expects from the SUT, including the special output quiescence if no ‘real’
output occurs. Test cases for testing labeled transition systems are labeled transition
systems themselves, but with reversed roles for inputs and outputs compared with
the SUT. To assign a verdict, the terminating states of a test-case transition system
are labeled pass or fail. If test execution ends in such a state the corresponding ver-
dict is assigned: pass if all responses comply with the specification, and fail if an
unexpected output occurs.

Even if test cases themselves are deterministic, possible nondeterministic be-
haviour of the SUT may lead to different outcomes when the same test case is re-
peated with the same SUT. An SUT passes a test case if all its test runs lead to a pass
verdict; otherwise the SUT fails. An implementation passes a test suite, i.e., a set of
test cases, if it passes all test cases in the test suite.

Page 211

12 Brian Nielsen and Jan Tretmans

fail fail

t

failfail

choc?

fail

pass

fail

but!
tea? cof ?

cof ?
tea?choc?δ

choc?δ
tea?

cof ?

failpassfail

Fig. 3: Test case as a labeled transition system.

Example 8. In test case t shown in Figure 3, the tester initially presses but!. If the
SUT produces any output before but! is pressed this leads to fail. After but! the tester
expects some output from the SUT: tea? leads to the verdict pass, choc? leads to fail,
and also the absence of output, i.e., the observation of δ , leads to fail. After cof ?
has been observed the tester does not expect any more real outputs: only quiescence
then leads to pass.

If t is executed with p of Figure 2, because of output-nondeterminism in p, there
are two possible test runs. Either the sequence but? tea! is observed leading to the
verdict pass, or but?cof !δ is observed also leading to pass; we say that p passes t.
On the other hand, applying t to u leads to a test run which fails: but?choc! ends in
a test-case state labeled fail. Thus, we say that u fails t.

If t is executed with the nondeterministic SUT w we have two test runs: but?cof !δ

leading to pass, and but?δ ending in fail, so w fails t.

Test Generation

Now all ingredients are there to present an algorithm that generates test cases from
a labeled transition system specification. The algorithm is recursive in the sense that
the first transition of the test case is derived from the states in which the specification
can be initially, after which the remaining part of the test case is recursively derived
from the specification states reachable after the initial states via the first test-case
transition. In each recursive step there are different choices leading to different test
cases: (1) the test case can be terminated with the verdict pass; (2) the test case can
continue with any input enabled in the specification; or (3) the test case can wait for
an output from the SUT and check it, or conclude that the SUT is quiescent.

Algorithm 1. Let s be a specification model, and let S be the set of states reachable
via internal transitions from the initial state of s. A test case t is obtained from S as
follows:

Page 212

Model-Based Testing 13

1.

pass

The single-state test case pass is always a valid test case.

2.

failfail

x j! 6∈ out(S)

xi! ∈ out(S)

ta txitx1

a! x j?
xi?

where a? is an input (output of the test case) such that at least one transi-
tion with a? is enabled in some state of S. The test case ta is obtained by re-
cursively applying the algorithm for the set of states S′ reachable from S via
a?: S′ = S after a? . Analogously, each txi is obtained by recursively applying the
algorithm for Sxi = S after xi .

This test case attempts to supply input a? to the SUT, but if the SUT is faster and
produces an output x! before a? could be supplied, then the tester checks whether
this output is correct, xi! ∈ out(S), or not.

3.

δ

fail fail

xi! ∈ out(S) x j! 6∈ out(S)

x j?

tx1 txi tδ

xi?

This test case awaits and checks the next output xi! from the SUT. If xi! is correct,
i.e., xi!∈ out(S), then the algorithm continues recursively; otherwise the test fails.
If no output arrives then quiescence δ has been observed, and the corresponding
test-case transition is taken.

Example 9. Test case t in Figure 3 is obtained from s using Algorithm 1. From Ex-
ample 8 we have that p passes t and this is consistent with p ioco s, which was
shown in Example 6. We had u /ioco s and test case t can detect this: u fails t. From
w fails t it can be concluded that w /ioco s.

Page 213

14 Brian Nielsen and Jan Tretmans

Soundness and Exhaustiveness

Test generation Algorithm 1 can be shown to be correct. Firstly, all generated test
cases are sound, i.e., they detect only non-ioco correct SUTs. Secondly, the collec-
tion of all different generated test cases is exhaustive, i.e., each non-ioco correct
SUT is detected by a generated test case. But, as discussed in Section 2, such an
exhaustive collection is infinite, or at least too large to be ever executed, so that test
selection criteria are necessary to select from the exhaustive test suite. Test selec-
tion is not addressed in Algorithm 1, but most model-based test tools allow different
strategies for it, the most straightforward one being random test selection. Other
strategies include the manual specification of test purposes or test directives, and
the use of structural coverage criteria like covering all states or all transitions of the
labeled transition system specification.

4 Testing Real-Time Systems

The general concepts of model-based testing discussed in Section 2, and the more
specific ioco-approach presented in Section 3, are also applicable to systems in
which real-time plays an important role, such as embedded systems. By real-time we
mean the system’s ability to react timely to input events and produce responses (out-
puts) within specified (hard) deadlines, and the system’s possibility to have different
responses depending on the arrival time of input events. We introduce real-time in
system modeling, in the implementation relation, in test generation, and in test test
execution. Moreover, we introduce the real-time model-based test tool UPPAAL-
TRON.

4.1 Environment and System Modeling

Adding time to a state-transition model can be accomplished by introducing clocks.
Firing a transition and remaining in a state can be made dependent on constraints
over clocks, and clocks can be reset in transitions. This is exactly the modeling
formalism of Timed Automata that was introduced in Chapters ?? and ??. Thus, we
will use Timed Automata for describing models for timed model-based testing.

In addition to user interaction, an embedded system interacts closely with its en-
vironment which typically consists of the controlled physical equipment (the plant)
accessible via sensors and actuators, other technical interfaces, or devices accessi-
ble via communication networks using dedicated protocols. In physical reality not
all timed behaviour that can be modeled in Timed Automata can also occur. The
switching time of a valve, the acceleration of an engine, or the time needed for man-
ual operation of a light switch are constrained by physical laws. It makes no sense
to generate test cases that contradict such environmental or physical constraints, be-

Page 214

Model-Based Testing 15

cause they can never be executed. To take such constraints into account, an explicit
model of the environment is added to the system model. The model-based test gen-
eration tool can then restrict to generating test cases that make sense from a physical
point of view.

Hence, we advocate an approach where both the required behaviour of the SUT
and the assumed behaviour of its environment are modeled and used in test gener-
ation. This offers several advantages. First, the test generation tool can synthesize
only relevant and realistic scenarios for the given type of environment, which, in
turn, reduces the number of generated tests and improves the quality of the test
suite. Second, the engineer can guide the test generator to specific situations of in-
terest, even to specific test purposes. Third, a separate environment model offers a
form of compositionality that eases system testing under different assumptions and
use patterns.

On the one hand, the environment model shall only capture the behaviour that is
interesting, and that can actually occur, in order not to generate too many or unreal-
istic test cases. On the other hand, it is important that all behaviour that can occur is
included, i.e., the modeled environment behaviour shall be an over-approximation
of the actual environment behaviour. Normally, environment models can be fairly
simple. If no particular assumptions can be made or are desirable, a universal en-
vironment model, i.e., a model allowing all possible behaviour (see below), can
always be used without loss of testing power, but probably at the expense of gener-
ating some uninteresting or infeasible test cases.

Cooling Controller Example

In this section we use a Cooling Controller as example, which is a simplified version
of a real-life industrial refrigeration controller [5]. The objective of the Cooling
Controller is to keep the temperature in a room within a given range by turning a
compressor on and off. More specifically, the controller must (1) turn on the cooling
device within an allowed reaction time when the room temperature becomes high;
(2) turn it off when the temperature becomes low; and (3) sound an alarm when the
temperature is high for a too long period.

The model for the Cooling Controller consists of 7 concurrent automata parti-
tioned into environment and system components as shown in Figure 4. The compo-
nents in the environment represent the RoomTemperature variations, the Compres-
sor, an AlarmHorn, and the User. The SUT model consists of the Compressor Con-
troller, the Alarm Monitor, and the Adapter. The room regularly informs the system
about the current room temperature, modeled as three actions representing the ma-
jor temperature ranges in the system: High?, Med?, and Low?. The controller reacts
by switching the compressor using CompressorOn! or CompressorOff!. The alarm
monitor notifies the user about a persistent high temperature via the SoundAlarm!
action. The user may stop the alarm by pressing a ClearAlarm? key on the controller.

Figure 5 shows a timed automaton specification of the Compressor Controller.
Initially, it is in the state Off, also called the Off -location. When it receives a

Page 215

16 Brian Nielsen and Jan Tretmans

-

-

�
�

�
�

-

-

Comp Off
Comp On
Low

High
Env

Controller
Compressor

IUT
Med

SilenceAlarm
SoundAlarm

User ClearAlarm

Compressor

RoomTemp

AlarmHorn

A
da

pt
or

Monitor
HighAlarm

SUT

Fig. 4: System Diagram of Cooling Controller Model.

x:=0

x:=0

on

x<=RelayLatency

off

goOff goOn

x<=RelayLatency

High?

Med?

CompressorOn!

Med?

Med?

x:=0

x:=0
CompressorOff!

Low?

x:=0

x:=0

Med?

Fig. 5: Compressor Controller Model.

High? temperature indication it switches on the compressor relay within a reac-
tion time of RelayLatency, which is controlled by clock x and the clock invariant
x<=RelayLatency in location goOn. Dually, in the On-location it will transit
towards the goOff location.

SoundingTriggered HighTooLong

z<=AlarmDelay z<=RelayLatency

z=0

z=0

Off

z=0

z>=AlarmDelay
z=0

z<=RelayLatency

SoundAlarm!

ClearAlarm?

Low?

High?

SilenceAlarm!

Fig. 6: Alarm Monitor Model.

Page 216

Model-Based Testing 17

Clock invariants are used to force the automaton to leave the goOn and goOff
locations before the reaction time has elapsed, implying that the outputs, Compres-
sorOn! and CompressorOff! respectively, are produced at some time before the re-
quired reaction time. The specification does not prescribe a precise moment when
the output shall occur. An SUT may choose any moment as long as it is before the re-
quired reaction time. This is a case of timed output-nondeterminism; cf. Section 3.1.
Similarly, when the room temperature is medium, the cooling is allowed to be either
on or off, which is expressed by the nondeterministic response to the Med? input in
locations On and Off. In both cases, it is the intention to give implementation free-
dom to the manufacturer concerning exact functionality, speed, timing tolerances,
etc. This demonstrates an important feature of our testing framework, namely that
models for testing may be kept loose and fairly abstract. It is not necessary to model
a concrete implementation in all details, but only the requirements to be tested. The
task of constructing models for testing is thus typically simpler than creating models
for code generation where all details of the implementation must be contained in the
model.

Figure 6 shows the Alarm Monitor. When it detects a High? temperature it moves
from the Off location to the Triggered location, where it remains for AlarmDelay
time units, controlled by the clock z, unless it observes a Low? temperature in the
mean time, after which the high temperature situation is ignored. If the high temper-
ature remains for AlarmDelay time units, the automaton moves to the HighTooLong
location with an internal transition. Here it sounds the alarm, allowing for a small
timing tolerance up to AlarmSoundLatency. It remains Sounding until the user clears
the alarm by pressing the ClearAlarm? key.

p=0

p=0p<=Period

High!
p=0

Low!

Med!

(a) Temperature.

ClearAlarm!

(b) User.

On

Off

SilenceAlarm?
SoundAlarm?

(c) Horn.

On

Off

CompressorOff?
CompressorOn?

(d) Compressor.

Fig. 7: Universal Environment Model for Cooling Controller

Figure 7 shows the components of the environment model. Figure 7a shows the
universal, completely unconstrained environment allowing any (timed) sequence
of temperature variations, including changing directly from high to low (and vice
versa) without passing through the medium range, and with any speed. Similarly,
the user may clear the alarm at any time and speed, whether sounding or not. The
remaining components just track the on/off states of the horn and the compressor,
respectively. The temperature variations are not realistic, as the physical tempera-
ture evolves slowly and continuously. Hence, one may prefer an environment model
with more restricted, realistic behaviour. Figure 8 provides an alternative environ-
ment where the temperature always changes through the medium range and with a

Page 217

18 Brian Nielsen and Jan Tretmans

speed bounded by MinTempDelay. Thus our framework enables the test engineer
to use different environment models of varying strengths. Taken further, this can be
used to focus testing on restricted, important scenarios, or on specific test purposes.

y=0,p=0

y=0,p=0

y=0,p=0

y=0,p=0p=0

p<=Periodp<=Period
LocHighLocLow LocMedium

p<=Period

y>=MinTempDelay

High!Med!
y>=MinTempDelay

y>=MinTempDelay

y>=MinTempDelay

p=0

High!

Med!Low!

Med!

p=0
Low!

Fig. 8: Alternative, more realistic Environment Model

4.2 A Timed Implementation Relation

The implementation relation ioco uses labeled transition systems with inputs and
outputs. In Timed Automata, in addition to inputs and outputs, there is also time
that is observable: a tester can observe the passing of time, or can decide not to
provide an input for a certain period of time. This means that time passing, with
specific durations, occurs as an action in traces and observations. An issue with
time, from a testing perspective, is that it is neither input nor output, but a bit of
both: a system and its environment synchronize on time, and both can decide to let
time pass, or to perform an action first. Time might be called ‘semi-controllable’
and ‘semi-observable’ by the system as well as its environment.

Quiescence was introduced as the absence of outputs, now and in the (un-
bounded) future. Once we have time in our tests, absence of outputs is always for a
particular period of time, which is just observing passing of time without an action
occurring. This means that in timed testing the concept of quiescence is no longer
necessary, nor possible.

Adding timed actions, timed observations, removing quiescence, and introducing
an explicit environment model leads to the implementation relation rtiocoe, the e-
relativized timed input/output conformance relation:

i rtiocoe s ⇔def ∀σ ∈ TimedTraces(e) : out((i,e)after σ)⊆ out((s,e)after σ)

Here, (i,e) denotes the combined state of the implementation i and the environment
e, and dually, (s,e) is the combined state of the specification s and e. An SUT i
conforms to a model s in an environment e according to rtiocoe if for all possible
timed traces σ of the environment e, the observations of i in context e after σ are

Page 218

Model-Based Testing 19

included in the observations of s in context e after σ . A timed trace is a sequence of
inputs, outputs, and explicit time durations. An observation in out is an output that
can occur now, or it is the passing of some time duration. Inclusion of observations
means that (1) i may only produce outputs which are at this particular moment
allowed by s, i.e., i is not allowed to produce an output at a time when that is not
allowed by s; and (2) i may let time pass only if s can let time pass, i.e., it is not
allowed to omit producing an output when an output is required by s.

Timed testing now consists of selecting and executing timed inputs and proposed
delays from the model, applying them to the SUT, observing the resulting outputs
and SUT delays, and checking with the specification model that these observations
are allowed.

Example 10. Consider the following alternating sequence of inputs and delays from
the automaton in Figure 5, where delays are represented by numbers indicating
the amount of time that passes between two events: 2Med?150High?100. Such
a trace may serve as test-input sequence: inputs are supplied by the tester to the
SUT, analogous to the untimed case in Section 3.3, and time delays are periods
in which the tester does nothing and waits for outputs from the SUT. Then it
can happen that the SUT produces an output CompressorOn! during the last de-
lay period after 5 time units. The resulting observed input/output/delay trace is
2Med?150High?5CompressorOn!95.

If RelayLatency equals 20 this observation is allowed according to the model in
Figure 5, since 5 ∈ out((s,e)after 2Med?150High?) = {0..20,CompressorOn!}.

If, however, the trace 2Med?150High?25CompressorOn! is observed, it would
not be conforming, because the model does not allow that 25 time units elapse before
the compressor is switched on: 25 6∈ {0..20,CompressorOn!}.

4.3 The SUT and System Adaptation

To execute generated tests, the events of the model must me translated into concrete
physical stimuli on the interface of the SUT, and vice versa for SUT outputs. In
model-based testing, this was called adaptation, and the component implementing
it is called the adapter; cf. Section 2.

For demonstration purposes we have created a Cooling Controller SUT as a Java
application. The interface consists of a number of methods for injecting a new tem-
perature reading, clearing alarm, and setting alarm and compressor status. The adap-
tation consists of a TCP connection and a small piece of interface code; see Figure 9.
This translates the abstract model input events Low?, Med?, and High? represented
as messages into direct API calls of handleNewTemp(x)with concrete represen-
tative temperatures x. The reverse, i.e., mapping actual outputs into model events is
not shown due to brevity.

The communication between our model-based test tool UPPAAL-TRON and the
SUT takes place via a TCP socket connection. This implies that the communication

Page 219

20 Brian Nielsen and Jan Tretmans

is bidirectional and buffered. Events may travel concurrently in both directions, and
consequently such concurrent input and output events may appear to be re-ordered.
Although this situation may appear exotic, it does happen in practice during inten-
sive on-line tests, and it may lead to incorrect verdicts. Moreover, there are com-
munication delays that the tester must compensate for to be able to give a correct
verdict when performing real-time testing. Thus, the SUT that the tester actually sees
is the combined behaviour of the Cooling Controller SUT composed with the socket
connection (or adapter in general). The way to deal with this is to provide an abstract
model of the adapter behaviour, too, so that tests are generated for the composition
of original SUT and adapter, i.e., the SUT that the tester actually sees.

1 whi le (t rue) {
l o c k . l o c k () ; / / l o c k o p e r a t i o n s on i n p u t b u f f e r

3 whi le (i n p u t B u f f e r . i sEmpty ())
cond . a w a i t () ;

5 msg = i n p u t B u f f e r . p o l l () . i n t V a l u e () ;
l o c k . un lo ck () ; / / a l l o w b u f f e r t o be f i l l e d aga in

7 i f (msg == inputTempHigh) {
c o n t r o l l e r . handleNewTemp (1 0) ;

9 } e l s e i f (msg == inputTempMed) {
c o n t r o l l e r . handleNewTemp (5) ;

11 }
e l s e i f (msg == inputTempLow) {

13 c o n t r o l l e r . handleNewTemp (0) ;
}

15 e l s e i f (msg == i n p u t C l e a r A l a r m) {
c o n t r o l l e r . h a n d l e C l e a r A l a r m () ;

17 } e l s e {
System . e r r . p r i n t l n (” IOHandler : UNKNOWN”) ;

19 }
}

Fig. 9: Fragment of the adaptor code.

4.4 Timed Test Generation and Execution

Execution of timed test cases is more difficult than untimed test execution. Timed
test execution requires synchronization between the SUT and the tester. They must
have the same vision on the progress of time. Moreover, the test execution engine
itself is a (soft) real-time program that must execute fast enough to keep pace with
real-time, if test cases are executed following real, physical time. Alternatively, it is
sometimes possible to execute tests in simulated time, i.e., time is simulated by the
increasing value of a variable, yet, also in this case synchronization is important.
Chapter ?? will discuss a case of real-time testing in simulated time.

Page 220

Model-Based Testing 21

UPPAAL-TRON

UPPAAL-TRON [4, 5] is a model-based test generation and execution tool that sup-
ports both real-time and simulated time testing. It executes test events on-line, i.e.,
the events are immediately executed when they are generated; see also Section 5.
Input events are generated by performing a guided random exploration of the en-
vironment model while outputs are checked against the specification model, where
the e-relativized timed input/output conformance relation rtiocoe outlined in Sec-
tion 4.2 is used to judge the SUT behaviour.

UPPAAL-TRON is integrated with the UPPAAL model-checker, and uses the same
Timed Automata syntax and semantics as presented in Chapters ?? and ??, the only
difference being that it must be possible to partition the model into an environment
and a system part. It is thus possible to simulate and verify properties of the model
prior to testing, to ensure that the right behaviour is specified and tested.

The algorithm behind UPPAAL-TRON operates in a similar fashion as the one
for labeled transition systems in Algorithm 1. It continually computes the possible
set of states S that the (combined system and environment) model can occupy. It
uses this set to compute the possible set of inputs that the tester can offer, and the
set of allowed system outputs. The main loop runs until the testing time is over, or
non-conformance is detected. It randomly chooses between offering an input to the
SUT, observing the SUT for outputs, and delay to let time pass. If an output occurs,
it checks if this is allowed in the current state-set; else it declares non-conformance.
After each input, output, or delay action the set of states S is updated. Whereas in
Algorithm 1 this updating of S is relatively easy because S is a finite set of states,
UPPAAL-TRON needs more sophisticated data structures and algorithms to deal with
infinite intervals of real-time. It uses and extends the compact symbolic data struc-
tures and state-exploration algorithms implemented in the UPPAAL engine to effi-
ciently compute, update, and manipulate S.

The output of UPPAAL-TRON executed against an erroneous implementation of
the Cooling Controller, where the deadline for switching on the alarm is exceeded,
is shown in Figure 10. The verdict is on line 8 together with an explanation of the
cause. Additional diagnostic and resource usage information are also provided.

O p t i o n s f o r i n p u t : High ()@(1 1 4 7 ; 1 1 7 1) , Clea rAla rm ()@(1 1 4 7 ; 1 1 7 1)
2 O p t i o n s f o r o u t p u t : SoundAlarm ()@(1 1 6 5 ; 1 1 7 1)

O p t i o n s f o r i n t e r n a l : c ClearAlarm@ (1 1 4 7 ; 1 1 4 8) , −@(1 1 6 5 ; 1 1 6 6)
4 O p t i o n s f o r d e l a y : u n t i l 1247)

L a s t t ime−window : (1 2 4 6 ; 1 2 4 7)
6 Max . sys tem d e l a y : u n t i l 1171)

L a s t t ime−window i s beyond maximum a l l o w e d d e l a y .
8 TEST FAILED : IUT f a i l e d t o p roduce o u t p u t i n t ime .

Time e l a p s e d : 1246 t u = 12 .460001 s
10 Time l e f t : 998754 t u = 9987.539999 s

Random seed : 1297759459

Fig. 10: Sample output of UPPAAL-TRON when a test fails.

Page 221

22 Brian Nielsen and Jan Tretmans

5 Concluding Remarks

In this chapter we have shown the concepts and principles of model-based testing,
elaborated for labeled transition systems and for Timed Automata. In this section
we conclude with automation and tools, other approaches, benefits, issues, and per-
spectives of model-based testing.

Automation and Tools

Although model-based testing can be applied manually, the main benefits are ob-
tained when a model-based test generation tool is used, and when the generated
test cases are also executed automatically. There are two ways of combining auto-
matic test generation with test execution. The straightforward way is to generate test
cases from a model, store them, and subsequently execute them on the SUT. This is
called off-line, or batch model-based testing. The second way consist of weaving
test generation into test execution, and is called on-line, or on-the-fly model-based
testing. The first action of the test case is generated and immediately executed, and
responses from the SUT are on-line compared with the model without explicitly gen-
erating a test case. On-line model-based testing has the advantages that no complete
test cases need be generated and stored before test execution can start, information
gathered during test execution can be used in the remaining part of test generation,
and for state-based models there is no need to first generate a complete state space
so that also infinite-state models can be used. Disadvantages are that there is no
explicit test case that can be manually inspected, for repeatability test cases must
be (automatically) regenerated, and since the complete state space is not generated,
some coverage criteria, like state coverage, are not directly applicable.

Since model-based test generation tools generate so called abstract test cases, i.e.,
test cases on the same abstraction level as the model, test execution involves imple-
menting these abstract test cases. This includes mapping the abstract input actions
of the test case onto the concrete interfaces of the SUT, interpreting the concrete out-
puts from the SUT in terms of the abstract actions of the test case, and (physically)
connecting the (model-based) test execution tool to the SUT. This was called adap-
tation in Section 2, and it is performed by an adapter. Adapter development can be
laborious, in particular for embedded systems where SUT interfaces are not always
easily accessible. Moreover, it is mostly SUT specific and difficult to automate. Yet,
adapter development is not specific for model-based testing, but occurs in any kind
of automated test execution.

Since model-based testing is currently a vibrant area with new approaches and
tools appearing every month, both commercial and academic, we will not try to give
an overview of existing tools. Tools that implement the ioco-approach are, among
others, TORX [9], JTORX [1], and TORXAKIS [6]. JTORX will be used in Chap-
ter ?? to test a software bus. UPPAAL-TRON [4] was used in Section 4 for real-time
testing following the rtiocoe implementation relation; it will also be used in Chap-

Page 222

Model-Based Testing 23

ter ?? for testing a wireless-sensor-network node. These four tools follow the on-line
approach: test cases are executed while they are generated.

Other Approaches

As stated in Section 1, this chapter considered specification-based, black-box testing
of functionality, and we did that with state-based models that specify both inputs and
expected outputs. Other approaches to model-based testing exist, and some of them
are mentioned here.

Firstly, there are many other notations and languages to model the behaviour
of systems: different varieties of finite, infinite, and extended state machines, state
charts, functional languages, algebraic and process-algebraic languages, guarded
commands, pre/post-conditions, (temporal) logic, formal grammars, UML, OCL,
etc. For many of these notations model-based testing approaches have been investi-
gated and developed.

Secondly, monitoring approaches, also called passive testing, only observe the
behaviour of the SUT. Consequently, such models contain only outputs. The triggers
or inputs must be supplied separately, usually by regular user behaviour.

Thirdly, models with only inputs need a separate oracle to judge the correctness
of outputs. Such models are used in, e.g., performance-, load-, or operational-profile
testing. In the latter the input model is derived from usage scenarios specifying how
typical users use the system.

Benefits

Model-based testing makes it possible to automatically generate large numbers of
long tests. This allows testing that is more thorough, faster, cheaper, and more effi-
cient than manual testing. Moreover, it is easily repeated after modifications in the
model or in the system: instead of manually analysing an existing test suite for re-
gression and confirmation tests, a new test suite is automatically generated from an
adapted model.

Model-based testing requires the development of a model. Although this may
seem an extra effort, practice shows that this modeling activity in itself leads to
improved understanding of the system, and to earlier detection of imprecise, in-
complete, or ambiguous requirements. Moreover, the availability of models makes
it possible to apply other model-based analysis techniques, such as simulation and
model checking.

Validity of test cases, i.e., do test cases really test what they should test (sound-
ness and exhaustiveness), is a cumbersome issue in manual testing, even more so
when the system or its specification evolves. In model-based testing validity is pre-
cisely defined and established, and a test-generation algorithm can be proved to
produce only valid test cases. The model-based testing practitioner, however, need

Page 223

24 Brian Nielsen and Jan Tretmans

not be aware of such proofs, since they are established once by specialists and im-
plemented in tools, so that the practitioner can concentrate on the SUT and its model.

Finally, the model-based testing approaches described in this chapter can deal
with typical embedded software aspects such as real-time properties, concurrency,
nondeterminism, abstraction and implementation choices, underspecified and partial
specifications, and assumptions on the (physical) environment,

Issues

A straightforward model-based testing process consists of (1) constructing a model;
(2) choosing and developing a tool environment including model-based test gener-
ation, test execution, and an adapter; and (3) generating and executing test cases,
either on-line or off-line. Such a process is not always directly applicable, in partic-
ular, the construction of a valid model can be difficult and troublesome, if specifica-
tion and requirement documents are incomplete, ambiguous, imprecise, or obsolete.
Model-based testing can then be used in a less sequential and more cyclic and ’agile’
process, where the system and the model are concurrently developed, and contin-
uously compared using model-based testing techniques; Chapter ?? will illustrate
this.

One of the open issues in model-based testing is a well-founded, quantified no-
tion of test selection; see Section 2. Test selection involves optimizing test coverage,
while minimizing test effort. Although the use of models, in principle, provides a
firm basis for quantifying coverage, most model-based test tools use more ad-hoc
approaches usually inspired by traditional software testing. The question how to
define, then measure, and eventually control the coverage of an automatically gen-
erated test suite, is challenging. Even more challenging is the question how to relate
such a test coverage measure to a measure of quality of tested products. After all,
product quality is the ultimate reason to do testing.

Perspectives

Model-based testing currently attracts a lot of attention. Research institutes inves-
tigate it, companies are trying it, conferences and workshops are being organized,
scientific journals as well as professional and more popular magazines publish about
it, and tool vendors emerge [10, 3]. We expect that model-based testing has the po-
tential to make the testing process more efficient and more effective, if used with
care and supported by the right tools, and that the extra effort of making models is
more than compensated by earlier detection of errors, and by cheaper, faster, and
better testing, and in the end higher quality products. The next chapters ?? and ??
describe the application of model-based testing to a wireless-sensor-network node
and to the server component of a software bus.

Page 224

Model-Based Testing 25

References

1. Belinfante, A.: JTorX: A Tool for On-Line Model-Driven Test Derivation and Execution. In:
Esparza, J., et al. (eds.) TACAS 2010. LNCS 6015, pp. 266–270. Springer (2010)

2. Dijkstra, E.: Notes On Structured Programming (1969)
3. Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V.: Model-Based Quality Assurance of

Protocol Documentation: Tools and Methodology. Software Testing, Verification and Reliabil-
ity 21(1), 55–71 (2011)

4. Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing Real-Time
Systems Using UPPAAL. In: Hierons, R., et al. (eds.) Formal Methods and Testing. LNCS 4949,
pp. 77–117. Springer-Verlag (2008)

5. Larsen, K., Mikucionis, M., Nielsen, B., Skou, A.: Testing Real-Time Embedded Software
using UPPAAL-TRON: An Industrial Case Study. In: Wolf, W. (ed.) EMSOFT 2005. pp. 299–
306. ACM (2005)

6. Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-Based Testing
of Electronic Passports. In: Alpuente, M., et al. (eds.) FMICS 2009. LNCS 5825, pp. 207–209.
Springer-Verlag (2009)

7. Myers, G.: The Art of Software Testing. John Wiley & Sons Inc. (1979)
8. Tretmans, J.: Model Based Testing with Labelled Transition Systems. In: Hierons, R., et al.

(eds.) Formal Methods and Testing. LNCS 4949, pp. 1–38. Springer-Verlag (2008)
9. Tretmans, J., Brinksma, E.: TORX : Automated Model Based Testing. In: Hartman, A.,

et al. (eds.) First European Conference on Model-Driven Software Engineering. Imbuss,
Möhrendorf, Germany (2003)

10. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan-
Kaufmann (2007)

Page 225

Experiences with Formal Engineering:
Model-based Specification, Implementation and
Testing of a Software Bus at Neopost

Marten Sijtema and Mariëlle Stoelinga and Axel Belinfante and Lawrence
Marinelli

Abstract We report on the actual industrial use of formal methods during the de-
velopment a software bus. At Neopost Inc, we developed the server component of
a software bus, called the XBus, using formal methods during the design, valida-
tion and testing phase: We modeled our design of the XBus in the process algebra
mCLR2, validated the design using the mCRL2-simulator, and fully automatically
tested our implementation with the model-based test tool JTorX. This resulted in a
well-tested software bus with a maintainable architecture. Writing the model, sim-
ulating it, and testing the implementation with JTorX only took 17% of the total
development time. Moreover, the errors found with model-based testing would have
been hard to find using conventional test methods. Thus, we show that formal engi-
neering can be feasible, beneficial and cost-effective.

1 Introduction

Formal engineering, that is, the use of formal methods during the design, im-
plementation and testing of software systems is gaining momentum. Various large
companies use formal methods as a part of their development cycle; and several
papers report on the use of Formal Methods during ad hoc projects.

Marten Sijtema
University of Twente, Address of Institute, e-mail: marten@systematic.nl

Mariëlle Stoelinga
University of Twente, Address of Institute e-mail: marielle@cs.utwente.nl

Axel Belinfante
University of Twente, Address of Institute e-mail: axel.belinfante@cs.utwente.nl

Lawrence Marinelli
Neopost, Address of Institute e-mail: cwl.martinelle@neopost.com

1

Page 226

2 Sijtema and Stoelinga and Belinfante and Marinelli

Formal methods include a rich palette of mathematically rigorous modeling,
analysis and testing techniques, including formal specification, model checking, the-
orem proving, extended static checking, run-time verification, model-based testing,
and much more. The central claim made by the field of Formal Methods is that,
while it requires an initial investment to develop rigorous models and perform rig-
orous analysis methods, these pay off in the long run in terms of better, and more
maintainable code. While experiences with formal engineering have been a success
in large and safety-critical projects, we investigate this claim for a more modest and
non-safety critical project, namely the development of a software bus.

Developing the XBus. In this paper, we report on our experiences with formal
methods during the development of the XBus at Neopost Inc. Neopost is one of
the largest companies producing supplies and services for the mailing and shipping
industry, and the XBus is a software bus that supports communication between mail-
ing devices and software clients. We have developed the XBus using the classical
V-model, using formal methods during the design and testing phase.

An important step in the design phase was the creation of a behavioral model of
the XBus, written in the process algebra mCRL2 [13, 2]. This model pins down the
behavior of the XBus in a mathematically precise way, and this precision greatly
increased the understanding of the XBus protocol, which made the implementation
phase a lot easier.

After implementing the protocol, we tested the implementation against the mCRL2
model, using JTorX. JTorX [6, 1] is a model-based testing tool (partly) developed
during the Quasimodo project [4], and is capable of automatic test generation, exe-
cution and evaluation. During the design phase, we already catered for model-based
testing, and designed for testability: we took care that at the model boundaries, we
could observe meaningful messages. Moreover, we made sure that the boundaries of
the MCRL2 model matched the boundaries in the architecture. Also, to use model-
driven test technology required us to write an adapter. This is a piece of software
that translates the protocol messages from the MCRL2 model into physical mes-
sages in the implementation. Again, our design for testability greatly facilitated the
development of the adapter.

Our findings. We ran JTorX against the implementation and the MCRL2 model
(which is completely automatic) and found five subtle bugs that were not discovered
using unit testing, since these involved the order in which protocol messages should
occur. After repairing these, we ran JTorX several times for more than 24 hours,
without finding any errors.

Since writing the model, simulating it, and testing the implementation with JTorX
only took 17% of the total development time, we conclude that the formal engineer-
ing approach has been very successful: with limited overhead, we have created a re-
liable software bus with a maintainable architecture. Therefore, we clearly show that
formal engineering is not only beneficial for large, complex and/or safety-critical
systems, but also for more modest projects.

Page 227

Experiences with Formal Engineering 3

Remainder of this chapter. The remainder of this chapter is organised as follows.
Section 2 provides the context of this project. Then, Section 3 describes the course of
this project, by discussing the activities involved in each phase of the development
of the XBus. Section 4 reflects on the lessons learnt in this project and finally, we
present conclusion in Section 5.

2 Background

2.1 The XBus and its context

Neopost, Inc. Neopost Incorporated [3] is one of the main manufacturers of equip-
ment and supplies for the mailing industry. Neopost produces both physical ma-
chines, like franking machines and mail inserters, as well as software to control
these machines. Neopost is a multinational company headquartered in Paris, France
and has departments all over the world. Its software division, called Neopost Soft-
ware & Integrated solutions (NSIS) is located in Austin, Texas, USA. This is where
our project took place.

Shipping and Franking mail. Typically, the workflow of shipping and franking
is as follows. To send a batch of mail, one first puts the mail into a folding ma-
chine, which folds all letters, then an inserter inserts all letters into envelopes1 and
finally, the mail goes into a franking machine, which puts appropriate postage on
the envelopes, and keeps track of the expenses.

Thus, to ship a batch of mail, one has to set up this process, selecting which
folder, inserter and franking machine to use and configure each of these machines,
setting the mail’s size, weight, priority, and the carrier to use. These configurations
can be set manually, using the machine’s built-in displays and buttons. More conve-
niently, however, is to configure the mailing process via one of the desktop applica-
tions Neopost provides.

The XBus. To connect a desktop application to the various machines, a software
bus, called the XBus, has been developed. The XBus communicates over TCP and
allows clients to discover other clients, advertise provided services, query for ser-
vices provided by other clients and subscribe to services. Also XBus clients can
send self-defined messages across the bus. An XBus connecting two desktop appli-
cations, a log generator and a franking machine is shown in Figure 1.

When this project started, an older version of the XBus existed, called the XBus
version 1.0. Goal of our project was to re-implement the XBus while maintaining
backward compatibility, i.e. the XBus 2.0 must support XBus 1.0 clients. Key re-
quirements for the new XBus are improved maintainability and testability.

1 Alternatively, a combined folder/inserting system can be used

Page 228

4 Sijtema and Stoelinga and Belinfante and Marinelli

XBUS

Franking Machine Desktop Application 1

Desktop Application 2 Logger

Fig. 1 Desktop applications, logger and a franking machine are connected to the central XBus.

2.2 Model-based testing

Model-based testing (MBT, a.k.a. model-driven testing) is an innovative testing
methodology that provides methods for automatic test generation, execution and
evaluation. Model-based testing requires a formal model m, usually a transition sys-
tem of the system-under-test (SUT). This model m pins down exactly which system
behaviors are correct and which are not.

Model: m Tester

pass/fail

SUT

Fig. 2 Model-based testing.

The concept of model-based testing is visualized in Fig. 2: Tests are derived from
m are applied to the system-under-test. Based on observations made during test ex-
ecutions, a verdict (pass or fail) about the correctness of the system implementation
is given.

Each test case consists of a number of test steps. Each test step either applies a
stimulus (i.e. an input to the SUT), or obtains an observation (i.e. a response from
the SUT). In the latter case, we check whether the response was expected, that is, if
it was predicted by the model m. If case of an unexpected observation, the test case
ends with verdict fail. Otherwise, the test case may either continue with a next test
step, or it may end with a verdict pass.

These techniques have been implemented in the model-based test tool JTorX.
JTorX [6, 1] was developed during the Quasimodo project, and is a re-implementation
of its predecessor TorX [5, 16]. TorX was one of the first model-based testing tools
in the field, and JTorX greatly improves and enhances TorX with more efficiency,
better user interface and more functionality.

In JTorX the test derivation and test execution functionalities are tightly coupled:
test cases and test steps are derived on demand (lazily) during test execution. This
is why we do not explicitly show the test cases in Fig. 2.

Page 229

Experiences with Formal Engineering 5

MBT provides a rigorous underpinning of the test process: assuming that the
model correctly reflects the desired system behavior, all test cases derived from
the model can be shown correct, i.e., they yield the correct verdict when exe-
cuted against any implementation. Rich and well-developed MBT theories exist for
control-dominated applications, and have been extended to test real-time properties
[10, 14, 9], data-intensive systems [11], object-oriented systems [12], and systems
with measure imprecisions [8]. Several of these extensions have been developed
during the Quasimodo-project as well.

2.3 MCRL2

mCRL2 [13, 2] is a formal modeling language for describing concurrent systems
developed by the Eindhoven University of Technology. It is based on the process
algebra ACP [7], and extends ACP with rich data types extended and higher-order
functions. The mCRL2-toolset facilitates simulation, analysis and visualization of
behavior; model-based testing against mCRL2 models is supported by the model-
based test tool JTorX. mCRL2 specifications start with a definition of the required
data types. The behavior of the system is declared via process equations of the form
X(x1 : D1,x2 : D2,xn : Dn) = t, where xi is a variable of type Di and t is a pro-
cess term. Process terms are built from potentially parameterized actions and the
operators alternative composition, sum, sequential composition, conditional choice
(if-then-else), parallel composition, and encapsulation, renaming, and abstraction.
Actions represent basic events (like sending a message or printing a file) which are
used for synchronization between parallel processes. mCRL specifications can be
model checked via the CADP model checker, by generating the state space in .aut
format, they can be proven correct using eg the theorem prover PVS, and they can
be tested against with JTorX.

3 Development of the XBus

We developed the XBus implementation using the classical V-model [15], see Fig. 3.
Below, we describe the activities we carried out in each phase of the V-model. Each
section below corresponds to an activity in the V-model.

In our approach we have three testing phases: unit testing, integration testing and
acceptance testing. Below we only discuss the first two of these; acceptance testing
was done in the ususal way.

Page 230

6 Sijtema and Stoelinga and Belinfante and Marinelli

3. Implementation 4. Unit Testing

2. Design
a. Specify business logic (formal model)
b. Develop architecture (class diagram)

1. Obtaining Requirements

5. Integration Testing
(model-based)

6. Acceptance Testing

Fig. 3 The V-model that was used for development of XBus.

3.1 XBus Requirements

We have obtained the functional and nonfunctional requirements by studying the
documentation from the XBus version 1.0 (a four page text document) and by inter-
viewing the manager of the XBus development team.

The functional requirements express that the XBus is a centralized software ap-
plication which can be regarded as a network router. Clients can discover other
clients, advertise services, and query for services that are provided by other clients.
Also, they can subscribe to services, and send self-defined messages to each other.
Below, we summarize the functional requirements. As said before, important non-
functional requirements are testability, maintainability and backwards compatibility
with the XBus 1.0.

Functional requirements The functional requirements are as follows.

1. XBus messages are formatted in XML, following the same Schema as the
XBus 1.0.

2. Clients connecting to XBus perform a handshake with the XBus server. The
handshake consist of a Connreq— Connack— Connauth sequence.

3. Newly connected clients are assigned unique id’s.
4. Clients can subscribe to be notified when a client connects or disconnects.
5. Clients can send messages to other clients with self-defined, custom, data.
6. Clients can subscribe to receive messages of types they request in a Sub message.
7. Clients are able to advertise services they provide, using the Servann message.
8. Clients can inquire about services, by specifying a list of service names in a

Servinq message. Service providers that provide a subset of the inquired services
will respond to this client with the Servrsp message.

9. Clients can send private messages, which are only delivered to a specified desti-
nation.

10. Clients can send local messages, are delivered to the specified address, as well
as to clients subscribed to the specified message type.

Protocol messages. XBus protocol messages are the following.

Connreq (implicit) implied by a client establishing a TCP connection with XBus

Page 231

Experiences with Formal Engineering 7

Connack sent from XBus to a client just after the client establishes a TCP con-
nection with the XBus, as part of the handshake.

Connauth sent from a client to the XBus to complete the handshake.
(Un)Sub sent from client to XBus to (un)subscribe a set of message types.
Notifconn sent from XBus to clients that subscribed connect notifications.
Notifdisc sent from XBus to clients that subscribed disconnect notifications.
Servann sent (just after connecting) from a client c to XBus, which broadcasts it

to all other connected clients, to advertise the services provided by c.
Servinq sent (just after connecting) from client to XBus, which broadcasts it to

all other connected clients, to ask what services they provide.
Servrsp sent from a client via XBus to another client, as response to Servinq, to

tell the inquirer what service the responding client provides

3.2 XBus Design

The design phase encompassed two activities: first, we made an architectural design,
given by the UML class diagram in Figure 4. Then, we created a formal model in
mCRL2, describing the protocol behavior.

Architectural Design. The architecture of the XBus is given in Figure 4, following
a standard client-server architecture. Thus, the XBus has a client side, implemented
by the XBusGenericClient, and a server side, implemented by the XBusManager.
The latter handles incoming protocol messages and sends the required responses.
Both the server and the client use the communications package, which implements
communication over TCP.

We have catered for model-based testing already in the design: the XBus-
Manager has a subclass JTorXTestableXBusManager. As we elaborate in Sec-
tion 3.5, the JTorXTestableXBusManager class overrides the sendmessage from
the XBusManager, allowing JTorX to have more control over the state of the XBus
server.

Modeling strategy When creating the model, the first step is to define what and
what not to model, to determine the abstraction level and boundaries of the model.

Included in the model The messages that come into the server, their handling and
their response messages are modeled, as follows. After a message is received, the
server will handle it. This means that the server will send a response, relay the
message, broadcast a message, and/or modify internal state, depending on the type
of message that arrived. Furthermore, the server keeps track of the client’s state
by keeping an internal list of client objects, just as in the Engine package in the
architecture.

Excluded from the model In the ConnectionManager class a queue data structure
is used as a buffer for incoming messages. This queue is not included in the model.
The moment a message is popped from the queue it is considered received and thus

Page 232

8 Sijtema and Stoelinga and Belinfante and Marinelli

�i�ProtocolCommon

�i�ProtocolServer �i�ProtocolClient

Protocol

XBusManager

JTorXTestableXBusManager

�i�IXBus
0..*clients

XBus

ConnectionManager

�i�ConnectionListener
0..*listeners

TCPConnectionListener

�i�Connection
0..*

conns

TCPConnection

Communications�Server side� Engine

XBusGenericClient

�Client side� Client

�i�IXBusMessage XBusMesssage

Messages

Fig. 4 High level architecture of the XBus system. It contains a server side package, and a client
side package. Furthermore, it has functionality for TCP connections and XBus messages. Both
server and client implement the Protocol interfaces. All interfaces are indicated with �i�.

‘in the model’, and as soon as a message is sent to a client it leaves the model. So
the queue is just on the outside of the boundary of what is model and what is not.
This is reflected in the architecture in the Engine package. Here, the queue is also
at the outside of the boundary of the Engine package.

Thus, we do not model internal components like TCP-sockets, queues, program-
matic events, etc. The correctness of these internal components will be verified by
unit-tests. We will use the model discussed here to simulate and test the XBus pro-
tocol (i.e. the business logic).

The XBus model We modeled the desired behavior of the XBus as an mCRL2
process. We chose for mCRL2 because of its powerful data types, which makes the
modeling of the messages and its parameters convenient.

Behaviour. The behaviour of the XBus server is modeled as a single process that
– for all kinds of incoming messages that it may receive – accepts a message, pro-
cesses it (which may involve an update of its state), and sends a response (where
appropriate), after which it is ready to accept the next message.

The language mCRL2 allows modeling of systems with multiple, parallel, pro-
cesses, but this is not needed here. Having multiple, concurrent processes would
make the system as well as the model more complicated, which would make them
harder to maintain and test. One might choose to use multiple processes when per-
formance is expected to be a problem, but that is not an issue here. In a large mailing
room there may be 20 clients at the same time, a number with which the single-
process server can easily cope.

Page 233

Experiences with Formal Engineering 9

Data. All the data that the server keeps track of is kept in one data object: a list of
clients. This is modeled as a list of data structures, that for each client contain the
following items:

• an integer that represents the identity of the client;
• the connection status of the client, which is an enumeration of: disconnected,

awaitingAuthentication, connected;
• the subscriptions of the client, which is a list of enumerations: connectNotification,

disconnectNotification, applicationNotification;
• the services that the client provides, which is a list of integers.

The client objects are manipulated by functions. These functions can be called
from the server process, and can modify data structures defined in the data part.

Model size The entire model consists of 6 pages of text, including comments. Ap-
proximately half of it concern the specification of data types and functions over
them; the other half is the behavioural specification.

Model validation During the construction of the model, we exhaustively used the
simulator from the mCRL2 toolkit. This was done for two reasons. First, to get a bet-
ter understanding of the working of the whole system, and to validate the design—
did we design the system correctly?— already before the implementation phase is
started. This was particularly useful to improve the understanding of the XBus pro-
tocol, of which only a (non-formal) English text description was available, which
contained several ambiguities. Second, to validate the model, to be able to use it with
the confidence that it faithfully represents the design during the model-based testing
during integration testing. Due to time constraints model-checking was not done. It
would have allowed validation of (basic) properties like the absence of deadlocks,
as well as checking whether the model satisfies the functional requirements.

3.3 Implementation

Once we had sufficient confidence in the quality of the design—to a large extent
due to modeling and simulation— it was implemented. The programming language
used was C#.NET—use of .NET is company policy.

3.4 Unit Testing

As mentioned in the description of the approach we intended to use model-based
testing for the business logic, i.e. to test the interaction between XBus and its clients.
We chose to focus with unit-testing on those classes of XBus that are unrelated to
the business logic: the classes of the Communications package and the Messages
package, to cover as much of the XBus implementation as possible,

Page 234

10 Sijtema and Stoelinga and Belinfante and Marinelli

For the Communications package unit tests were written to test the ability to
start a TCP listener and to connect to a TCP listener, to test the administration of
connections, and to test transfer of data.

For the Messages package unit tests were written to test construction, parsing
and validation of messages. The latter was tested using both correct and incorrect
messages.

3.5 Integration Testing: Model-based

Test Architecture. We now look in more detail at integration testing of XBus,
which we do model-based using JTorX. We want to test whether the XBus interacts
correctly with its environment, i.e. with XBus clients. We do this by letting the tester
play the role of 3 XBus clients as visualized in Fig. 5.

Fig. 5 Testing XBus with
JTorX playing the role of 3
clients.

Model JTorX XBus

pass/fail

Now we have to decide how to connect test tool JTorX to XBus server. We briefly
discuss two alternatives that we did not choose, and then in more detail the one we
chose.

A first solution (see Fig.6) could be to let JTorX interact with three instances of
the XBusGenericClient, each of which is connected to XBus via TCP. The main
advantage of this solution is that no additional (testing) interface has to be added
to XBus, because the interaction via the XBusGenericClient instances as (to XBus)
identical to the interaction during deployment. The disadvantage of this solution is
that the testing environment contains elements that are not part of the model (we
explicitly excluded them, see Sect. 3.2).

Fig. 6 First non-chosen so-
lution: JTorX connected to
XBus via generic clients (c)
over TCP.

Model JTorX XBus

TCP

c c c

A second solution (not depicted) could be to extend the XBus server with two
additional interfaces: one that allows JTorX to add messages to XBus’ queue of in-
coming messages (to provide stimuli), and one that, instead of sending a message to
an XBus client, informs JTorX of the intention to send the message. The advantage

Page 235

Experiences with Formal Engineering 11

of this solution is that the actual test architecture very closely resembles the model.
However, it has the disadvantage that the XBus implementation has to be extended
in multiple places.

Model JTorX Adapter XBust

TCP

c c c

Fig. 7 Chosen solution: JTorX providing stimuli to XBus via generic clients (c) over TCP, and
observing responses via test interface (t), also connected via TCP.

The chosen solution (see Fig. 7) combines the best of the two that we discussed
above. We provide stimuli to the XBus using three XBusGenericClient instances
that connect to the XBus via TCP. We observe the responses from the XBus not
via the XBusGenericClient, but via a direct (testing) interface that has been added
to XBus. This interface is provided by the JTorXTestableXBusManager in the
Engine package, see Fig. 4. JTorXTestableXBusManager overrides the function
that XBus uses to send a message to a specified client, and instead logs the mes-
sage name and relevant parameters in the textual format that JTorX expects. Addi-
tional glue code —the adapter— provides the connection between JTorX and the
XBusGenericClient instances on the one hand, and between JTorX and XBus test
interface on the other hand. From JTorX the adapter receives requests to apply stim-
uli, and from the XBus test interface it receives observed responses. The adapter
forwards the received responses to JTorX without additional processing. For each
received request to apply a stimulus the adapter uses XBusGenericClient methods
to construct a corresponding XBusMessage message and send it to the XBus server
(except for the Connreq message, for which XBusGenericClient only has to open a
connection to XBus).

Running JTorX Once we had the model, the XBus implementation to test, and
the means to connect JTorX to it, testing was started. Figure 8 shows the settings in
JTorX. These include the location of the model file, the way in which the adapter
and the XBus are accessed, and an indication of which messages are input (from the
XBus server perspective) and which are output.

Bugs Found Using JTorX The most interesting part of testing is finding bugs. In
this case, not only because it allows improving the software, but also because finding
bugs can be seen as an indication that model based testing is actually helping us. We
found 5 bugs of which we think that they are hard to find without a tool like JTorX.
Some of them are quite subtle:

1. The Notifdisc message was sent to unsubscribed clients. This was due to an if-
statement that had a wrong branching expression.

Page 236

12 Sijtema and Stoelinga and Belinfante and Marinelli

Fig. 8 Screen shot of configuration pane of JTorX, set up to test XBus. JTorX will connect to (the
adapter that provides access to) the system under test via TCP on the local machine, at port 1234.
The bottom two input fields list the input and output messages.

2. The Servann message was sent (also) to unauthorized clients. Clients that were
still in the handshake process with the server, and thus not fully authenticated,
received the Servann message. To trigger this bug one client has to advertise its
service while another client is still connecting. Because this only occurs with a
certain interleaving of messages, it might be more difficult to detect with manual
testing.

3. The message subscription administration did not behave correctly. It was possible
for a client to subscribe to one item, but not to two or more. This was due to subtle
a bug in the operation that added the subscription to the list of a client.

4. The same bug also occurred with the list of provided services. It was imple-
mented in the same way as the message subscription administration.

5. There was a subtle flaw in the method that handles Unsub messages. The code
that extracts subscriptions from these messages (such that the found subscriptions
can then be removed from the list of subscriptions of the corresponding client)
contained a subtle typing error: two terms in an expression were interchanged.

4 Lessons Learnt

This section reflects on the process of designing, implementing and testing XBus.
All in all the end result was satisfying, the approach has proven to be successful.

Putting it in a Time Perspective So how long did it take to create the artefacts for
model-based testing, namely model, the test interface and the adapter? Programming

Page 237

Experiences with Formal Engineering 13

and simulating the model took 2 weeks, or 80 hours. The test interface was created
in a few hours, since it was designed to be loosely coupled to the engine. It was a
matter of a few dozens lines of code.

The adapter was created in two days, or 16 hours. In total the project took 14
weeks, or 560 hours to complete. Creating the artefacts needed for automated testing
thus took about 17% of the total time.

The Modeling Process Writing a model takes a significant amount of time, but also
forces the developer to think about the system behaviour thoroughly. Moreover, it
is really helpful to be able to simulate a protocol, before implementing anything.
Making and simulating a model gives a deep understanding of the system, in an
early stage of development, from which the architectural design profits.

Automated Testing with JTorX Write an adapter can sometimes be a large
project, but in this case it was relatively straightforward. This can be attributed to
having an architectural design that closely resembles the formal model, having a
one-to-one mapping between the actual XBus messages and their model represen-
tation. Therefore, such adapters can in principle be generated automatically, thus
greatly facilitation the model-based testing process.

5 Conclusions and Future Research

We conclude that model-based testing using JTorX was a success: with a relatively
limited effort, we found five subtle bugs. We needed 17% of the time to develop the
artefacts needed for model-based testing, and given the errors found, we consider
that time well spent. Moreover, for future versions of the XBus, JTorX can be used
for automatic regression tests: by adapting the MCRL2 model to new functionality,
one can detect automatically if there are new bugs introduced.

We also conclude that making the formal model together with the architectural
design had a positive effect on the quality of the design. Moreover, the resulting
close resemblance between model and design simplified the construction of the
adapter.

Although construction of the adapter was relatively straightforward, it would
have been even easier if (parts of) the adapter could have been generated, e.g. using
the model, which is an important topic for future research.

References

[1] (2009) JTorX webpage. URL http://fmt.ewi.utwente.nl/tools/jtorx/
[2] (2009) mCRL2 toolkit webpage. URL http://www.mcrl2.org
[3] (2009) Neopost Inc. webpage. URL http://www.neopost.com
[4] (2011) Quasimodo webpage. URL http://www.quasimodo.aau.dk/

Page 238

14 Sijtema and Stoelinga and Belinfante and Marinelli

[5] Belinfante A, Feenstra J, de Vries RG, Tretmans J, Goga N, Feijs L, Mauw S,
Heerink L (1999) Formal test automation: A simple experiment. In: 12th Int.
Workshop on Testing of Communicating Systems, Kluwer, pp 179–196

[6] Belinfante AFE (2010) JTorX: A tool for on-line model-driven test derivation
and execution. In: Esparza J, Majumdar R (eds) Tools and Algorithms for the
Construction and Analysis of Systems, 16th International Conference (TACAS
2010), Springer Verlag, LNCS, vol 6015, pp 266–270

[7] Bergstra JA, Klop JW (1985) Algebra of communicating processes. In:
de Bakker JW, Hazewinkel M, Lenstra JK (eds) Proceedings of the CWI Sym-
posium on Mathematics and Computer Science, Centre for Mathematics and
Computer Science, Amsterdam, The Netherlands

[8] Bohnenkamp HC, Stoelinga MIA (2008) Quantitative testing. In: de Alfaro
L, Palsberg J (eds) Proceedings of the 7th ACM International conference on
Embedded software, ACM, New York, pp 227–236

[9] Brandán Briones L (2007) Theories for model-based testing: Real-time and
coverage. PhD thesis, University of Twente

[10] David A, Larsen KG, Li S, Nielsen B (2009) Timed testing under partial ob-
servability. In: ICST, IEEE Computer Society, pp 61–70

[11] Frantzen L, Tretmans J, Willemse TAC (2006) A symbolic framework for
model-based testing. In: Havelund K, Núñez M, Rosu G, Wolff B (eds) Formal
Approaches to Software Testing and Runtime Verification, Springer, Lecture
Notes in Computer Science, vol 4262, pp 40–54

[12] Grieskamp W, Qu X, Wei X, Kicillof N, Cohen MB (2009) Interaction cov-
erage meets path coverage by SMT constraint solving. In: Núñez M, Baker
P, Merayo MG (eds) Testing of Software and Communication Systems, 21st
IFIP WG 6.1 International Conference, TESTCOM 2009 and 9th International
Workshop, FATES 2009, Springer, Lecture Notes in Computer Science, vol
5826, pp 97–112

[13] Groote JF, et al (2008) The mCRL2 toolset. In: Proc. International Workshop
on Advanced Software Development Tools and Techniques (WASDeTT 2008)

[14] Larsen KG, Mikucionis M, Nielsen B (2004) Online testing of real-time sys-
tems using uppaal: Status and future work. In: Brinksma E, Grieskamp W,
Tretmans J (eds) Perspectives of Model-Based Testing, Dagstuhl Seminar Pro-
ceedings, vol 04371

[15] Rook PE (January 1986) Controlling software projects. IEE Software Engi-
neering Journal 1(1):7–16

[16] Tretmans J, Brinksma H (2003) TorX: Automated model-based testing. In:
Hartman A, Dussa-Ziegler K (eds) First European Conference on Model-
Driven Software Engineering, Nuremberg, Germany, pp 31–43

Page 239

	Ch1-Intro
	Ch2-UppaalIntro
	Ch3-UppaalMore
	More Features in Uppaal
	Alexandre David, Kim G. Larsen
	The Train Gate
	User-Defined Types
	User-defined functions
	Select label
	The Simulator Revisited
	Queries Revisited
	Reachability
	Safety
	Liveness
	Bounded Liveness and Performance Evaluation

	Verification Options
	Search Order
	State Space Reduction
	State Space Representation
	Diagnostic Trace
	Extrapolation
	Reuse
	Impact

	Gossipping Girls: A Case-Study for Efficient Modelling
	Modelling in Uppaal
	Representing Secrets With Boolean Arrays
	Representing Secretes With Integers
	Basic Improvements
	Abstracting The Communication Protocol
	Verification
	Improving Verification with Symmetry and Progress Measures

	Modelling Tips
	Active variables
	Value passing
	Multi-cast
	Urgent transitions
	Model Decoration and Monitors

	Extensions of the Formalism
	References

	Ch4-UppaalWSN
	Ch5-Chessway
	Ch6-Schedulability
	Introduction
	Schedulability Problems
	Tasks
	Task Dependencies
	Resources
	Schedulability

	Framework Model in Uppaal
	Modeling Idea
	Data Structures
	Scheduling Policies
	Modelling Resource Sharing
	Modelling Preemptive Scheduling

	Conclusion

	Ch7-ScheduleHP
	Ch8-Controllers
	Ch9-ControlHydac
	Ch11-ProbabWSN
	Ch10-Probabilistic
	Ch12-MBTest
	Ch14-FMneopost

