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Abstract. In this paper synthesis and verification are carried out by specifying
two different problems of logic model checking which are solved by applying a
concrete model checker — Uppaal and its extended counterpart Uppaal CORA. A
great deal of care is taken in constructing the corresponding models as abstractions
of the behaviour of the system from the point of view of memory communication.
This results in a rather simple abstract model of the system which is one of the key
factors to the success of the synthesis task. The other key factor is the application
of a sound but incomplete method for space saving — bit-state hashing, where each
visited state is represented by one bit in the hash table, in a location determined
by the hash of the state.

We analyse a radar memory interface case study of the IST AMETIST project.
The reasoning in this paper presents a way to synthesise a memory arbiter for the
system, to minimise memory used for buffering the data streams and to verify that
the resultant arbiter does not deadlock and never starves nor overflows any of the
intermediate buffers.

ACM CCS Categories and Subject Descriptors: B.8.2 Performance Analysis
and Design Aids; C.4 Modelling techniques.

1. Introduction

The main goal of this work is to act as a particle of catalyst in the process of
tailoring formal methods and tools to assist system engineers in their day-
to-day work. Formal methods make the resultant product better in some
relevant sense. For example cheaper if it appears that the task can be solved
using less components, and more reliable by discovering the overlooked be-
haviours of the system as counter-examples emerge during automatically
checking whether the system conforms to certain desired properties.

Merging formal methods into industry practice is a long term process and
there is no fear that the work presented here will put anybody out of work
due to a sudden increase of productivity of system design tools. On the
other hand, it is a contribution in the direction of integrating verification
tools into the system design process.
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In this paper we analyse a radar system memory interface card described
in a case study from the IST Advanced Methods for Timed Systems project,
AMETIST [2002-2005]. It was contributed to the project by Terma A/S
[Behrmann et al. 2002]. The memory interface card performs signal pro-
cessing calculations on two streams of input data and their delayed counter-
parts. The stream data is temporarily stored in synchronous dynamic RAM
(SDRAM) that is shared by all streams. Dynamic memory is generally con-
siderably less costly in larger amounts than static memory, which is used for
intermediate buffers.

We present a way to synthesise a memory arbiter for the system, to min-
imise the amount of static RAM used for buffering the streams and to verify
that the resulting arbiter does not deadlock and never starves nor overflows
any of the intermediate buffers. Both the synthesis and the verification
problem are solved by model checking.

The synthesis task is generally computationally harder than verification,
thus we need to apply a number of abstractions to the system to make the
task solvable by model checking.

1.1 Model checking

Logic model checking is a method to check, by exhaustive examination of
the state space, whether a model (of, for example, software or hardware) ex-
hibits some collection of properties that describe the desired behaviour of the
system. The method was independently developed by Clarke and Emerson
[1982] and by Queille and Sifakis [1982]. Since then model checking has been
a target of wide and active research and has been applied successfully in sev-
eral cases, as in [Clarke et al. 1993], [Bengtsson et al. 1996] and [Lindahl et
al. 1998] to name a few. During the 1990s the method and several differ-
ent implementations made their way into hardware design, domain specific
software analysis, for example software of telecommunication systems, and
real time system analysis. Several successful applications of model checking
in more generic software contexts have emerged more recently, for example
[Corbett et al. 2000], [Ball and Rajamani 2002], [Visser et al. 2000].

Given the model M of the system in some modelling language (timed au-
tomata, Promela, BIR, ...) and the design requirements ¢ in some logic
(for example computation tree logic, CTL, or linear temporal logic, LTL or
p-calculus), it is possible to check, whether the model satisfies the require-
ments or not (M = ¢ 7). If not, (M F~ ¢), the method gives a trace leading
to the error. Another benefit of the method is a high level of automation,
meaning that once the model and requirements are there, it is possible to
“push the button” and wait for the answer. No user intervention is required
during the search.

There are several classifications of the desired properties that constitute
the specification. The coarsest distinction is between safety and liveness
properties. Safety properties generally characterise situations where some-
thing bad should never happen. Liveness properties on the other hand state
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that something desirable should happen infinitely often. The latter property
is hard to check in the general case, as the term “infinitely often” does not
specify maximum delays between occurrences of desirable events. There-
fore in practice the desired behaviour of the system is specified in terms
bounded liveness properties, where the “boundedness” is expressed in terms
of maximum delays between the occurrences of good events. This quite
coarse classification of specification properties has been refined by Dwyer et
al. [1999] by analysing a number of textual specifications of actual systems.
The classification divides properties into occurrence (absence, universality,
existence, bounded existence) and order (precedence, response, chain prece-
dence and chain response) properties.

There is a broad class of properties (including safety and bounded liveness
properties) which can be stated in terms of reachability [Aceto et al. 2003],
for example, whether a particular configuration of variables in a program
on some line can be reached or not. In this paper we apply the reachability
approach for establishing the existence of a schedule for the system and for
establishing the correctness of the resulting schedule. In this paper we apply
model checking for two distinct purposes—scheduling and verification. In
the case of scheduling we set up the problem in such a way that a positive
answer to the reachability check (a path) gives us a schedule.

After we have found a recurring cycle in the system, we build a system
that we verify to behave expectedly.

1.2 Choice of the Model Checking Tool

As was mentioned previously, there are several different model checkers avail-
able. We chose Uppaal [Amnell et al. 2001] because we found it convenient
to model the current case study using Uppaal (timed) automata formalism
and we could leverage the bit-state hashing (also known as hash compaction)
symbolic state space representation feature and uniformly priced timed au-
tomata extension of the tool in the process. The latter extension is avail-
able in a recently released version of extended Uppaal — Uppaal CORA
[Behrmann 2005].

1.2.1 Bit-State Hashing (Hash Compaction)

Hash compaction, first introduced by Wolper and Leroy [1993] and extended
by Stern and Dill [1995] is also referred to as bit-state hashing by Holzmann
[1998]. The idea of the method is reduce the memory consumption of reach-
ability queries. The space reduction is achieved by storing one bit per state
in a hash table which is addressed by a hash value calculated from the state
itself. The method of symbolic state space representation is sound, mean-
ing that when a state is reached symbolically, it is reachable in the current
model. On the other hand, the method is incomplete, because it is possible
that different states might have the same hash value or hash collision might
occur and thus the state that is reached later is considered visited. Thus,



4 JUHAN ERNITS

some parts of the state space might remain unexplored. The implementation
details of bit-state hashing in Uppaal are described by Bengtsson [2002].

1.8 Outline

The rest of the paper is organised as follows. Section 2 gives an overview of
related work. Section 3 introduces the radar memory interface board case
study. Further, in Section 4 we describe a set of abstractions to customise
the model to target the specific problem at hand. In Section 5 we give
an overview about steps in synthesising the arbiter for the shared memory
bus and about verification the resultant system containing the synthesised
arbiter.

2. Related Work

This case study has previously been analysed by Weiss [2002] and by Sas-
nauskaite and Mikucionis [2002]. The solution described in the current paper
differs from the former solution solution described in the following aspects:

o The solution presented by Weiss [2002] involves using SMV [McMillan
1999]. The current solution uses Uppaal [Pettersson and Larsen. 2000]
as the model checker;

o In [Weiss 2002] the schedule for the example is reached using a param-
eterized model as model checking the full system was infeasible due to
state space explosion. In the current approach, the Uppaal model of
the component system contains abstractions that enable the schedule
to be synthesized for the relevant aspect of the whole system.

Sasnauskaite and Mikuéionis [2002] solve the verification part of the prob-
lem, but have trouble with optimising buffer sizes. They do not consider
arbiter synthesis.

Uppaal has been previously applied for batch plant scheduling by Hune et
al. [2001]. The approach presented therein is similar to the work presented
here in the sense that they use model checking for finding a valid schedule.
In addition, they leverage bit-state hashing to reduce memory consumtion
of the model checking task. Our work differs from the latter in that we
model the system as a synchronous system and the state is represented
in terms of integers. We look for a suitable ordering of these states. The
application domain is also different scheduling in the application domain (job
shop scheduling versus hardware analysis) and in the modelling approach.
We model the state of the target system in terms of integer variables which
are updated on one transition by a nontrivial update.

Goel and Lee [2000] present a case study based on IBM CoreConnec
processor local bus arbiter core. The case study presented therein is similar
to current problem. The authors of the paper call for potential solutions for
analysing the arbiter core.

tTM
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Amnell et al. [2002] present a way to synthesise code for LEGO RCX
bricks. The approach has more emphasis on the timed aspect of target
systems.

3. Memory Arbiter Case Study

As was mentioned above, we use a case study from the IST AMETIST
project by Behrmann et al. [2002]. The case study was provided to the
project by Terma who is producing radar sensors mainly used for traffic
control in ports and airports and for coastal surveillance. Some configura-
tions of their radar sensor systems employ a technique known as frequency
diversity. In this mode, two subsequent pulses that differ slightly in fre-
quency are emitted right after each other from the antenna. As usually, the
echo (in this case of two signals) is received, but due to the characteristics
of the antenna, the signals got propagated in slightly different directions,
and therefore the two simultaneously received signals do not correspond to
exactly the same direction. To align the signals, one of the signals has to be
delayed. This approach has two immediate benefits: it increases the output
power of the radar for the purpose of better range and more reliable signal
as two pulses are emitted and provides time diversity, i.e., makes it possible
to compare the echoes of two signals from one direction at two slightly dif-
ferent subsequent moments for distinguishing, for example, a big wave from
a small boat.

To remove noise, another technique, known as sweep integration, is used.
The idea is to integrate the signal at the same direction from multiple sweeps.
In the case of frequency diversity, sweep integration is performed on both
return signals before the signals are combined.

In total, the signal processing board serves four purposes: sweep inte-
gration, frequency diversity combination, noise cancellation and a kind of
differentiation (high pass filtering). The board uses dynamic synchronous
RAM (SDRAM) for intermediate storage of the two input streams and their
processed counterparts.

The signal processing board consists of signal processing units, SDRAM
connected by a shared memory bus interfaced by 9 FIFO (First In First
Out) buffers and governed by an arbiter which is reponsible for setting up
communication between memory and one FIFO at a time so that none of
the buffers is neither starved nor overflowed. A block diagram of the system
is presented in Fig. 1 (Behrmann et al. [2002]).

Fig. 2 represents the internal structure of the 9 FIFO buffers. The size of
the buffers range from 512 bytes to 2048 bytes (2KBytes) and they are im-
plemented as ring buffers. The buffers that mediate data streams to SDRAM
are called input buffers and, that mediate data streams from SDRAM are
called output buffers.
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Fig. 1: Radar memory interface board

3.1 Observations of the system

OBSERVATION 1. The smallest quantity of data that can be moved in the
system is 1 byte. For example inputs A and B in Fig. 1.

OBSERVATION 2. Data is written at fixed rate in 1 byte or 2 byte quantities
(a on Fig. 2). It is assumed that uninterrupted data flow of 1 byte at the
frequency of 100 MHz is fed into the inputs A and B. Equivalently, it is
assumed that outputs S and T can always be written to at the rate of 2
bytes at 100 MHz.

OBSERVATION 3. Data is read from the ring buffer into the register in 4
byte quantities (b, Fig. 2) whenever the two registers are not full and there
are at least 4 bytes in the buffer at the beginning of the system clock cycle.
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Fig. 2: The structure of a FIFO buffer

The duration of this transfer is one clock cycle. If there is less data in the
buffer or the registers are full, no data is transferred. (This works vice versa
in the case of output buffers. Data is written from the register to the buffer
whenever the register is not empty and there is at least 4 bytes worth of
space in the ring buffer).

OBSERVATION 4. On the memory bus (¢, Fig. 2) data is always transferred
when the register is full, i.e. in quantities of 512 bits = 64 bytes. (In the
case of output buffers, data is transferred whenever the register is empty).

OBSERVATION 5. There is a multiplexer on the bus from the register to
SDRAM as the memory bus runs in double data rate (DDR) mode and, is
128 bits wide but the register outputs 256 bits at 100 MHz. The DDR mode
is achieved by transfering data on both the rising and the descending edge
of a clock cycle and the multiplexer.

OBSERVATION 6. Whenever an output register is full, the send signal is set.
Whenever an input register is empty, the receive signal is set.

3.2 Arbiter

The arbiter is responsible for setting up connections between SDRAM and
registers that are ready for communication. The arbiter, that is presented in
the case study, checks the send/receive signals of the buffers in a round-robin
way. When a buffer is ready, a select line signal is issued by the arbiter.

OBSERVATION 7. Whenever an output register is full, the send signal is set
(Fig. 2). Whenever an input register is empty, the receive signal is set.
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OBSERVATION 8. In this case study calculation of the memory addresses for
memory communication is not considered.

OBSERVATION 9. Transferring 64 bytes between the registers and SDRAM
takes two additional system clock cycles, making it a total of 4 cycles.

OBSERVATION 10. SDRAM needs to be refreshed every 15625 ns. The re-
fresh takes 100 ns (10 system clock cycles).

The aim of the original case study was to verify that the behaviour of
the round-robin scheduling algorithm is correct. A further step would be to
synthesise a scheduler for a set of buffers.

We modify the original goal slightly and seek solution to the following
problems:

PROBLEM 1. Check that no input buffers are full at the beginning of a clock
cycle.

PROBLEM 2. Check that no output buffers are empty at the beginning of a
clock cycle.

PrOBLEM 3. Check that the system does not deadlock.

PROBLEM 4. Synthesise an arbiter for the memory bus that guarantees that
the above properties are always satisfied.

PROBLEM 5. Find the smallest possible buffer values for the arbiter synthe-
sised.

PrROBLEM 6. Check that the schedule guarantees that no data transfers are
interrupted by a memory refresh.

4. Construction of the Abstract Model

In this section we summarise the decisions taken during the process of mod-
elling the memory interface board. We are interested in one specific aspect
of behaviour of the board, namely the control behaviour of the memory ar-
biter, and thus we disregard all detail that we manage to classify as not
directly relevant. We model the system in terms of Uppaal modelling lan-
guage [Bengtsson and Yi 2004], which corresponds to finite state automata
extended with integer variables and clocks.

The most significant observation in approaching the case study is that
the system is fully synchronous meaning that all events are aligned to the
system clock ticks. Memory refresh, as specified by Observation 10, is the
only exception to this rule. Keeping the synchronicity in mind enables us
to reduce the number of intermediate states that should be distinguished in
automatic analysis.
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TABLE I: Data rates of the data streams. (A, ..., T’ denote corresponding streams in
Fig. 1. b denotes the corresponding stream in Fig. 2)

[ Data stream | AT A] B B] S| ST T] T[] b]
Bus width (bytes) 1 1 1 1 2 2 2 2 4
Frequency (MHz) 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
Abstract bus width (bytes) 4 4 4 4 8 8 8 8 32
Abstrtract frequency (MHz) 25 25 25 25 25 25 25 25 25
Rate (MByte/s) 100 | 100 | 100 | 100 | 200 | 200 | 200 | 200 | 400

The first step in the current modelling approach is to choose the aspect of
the system to focus on. We assume that the system is modelled in terms of
some other (more or less formal) language, for example some block diagram
language as in Fig. 1. If the system is sufficiently specified it is possible for
the engineer to point to some part of the system and ask for assistance there.
We assume that the engineer pointed to the shared memory bus and asked
to remove nondeterminism from the model or, in other words, synthesise an
arbiter.

4.1 Memory bus

As said, we pay special attention to the memory bus as the arbiter of the
memory bus is what we focus on in this case study. We observe closely how
the other components of the system interact with the memory bus. The
properties of the memory bus determine the parameters of our model, such
as, for example, time and data granularity.

Observation 9 refers to that data is transferred in bursts along the memory
bus and that it takes 4 system clock cycles per burst. Thus we align our
abstract system clock to the bursts on the memory bus.

Let us consider the main characteristics of the data streams, when divid-
ing the system clock frequency by 4. The properties of the data streams are
summarised in Table I. As the data rates should stay constant, we abstract
the busses by widening them proportionally to the factor by which we re-
duced the clock frequency. The effect of this procedure will be discussed in
detail below.

Now let us look at how the implementation details of the memory bus
affect this approach. The data transfer from a register to memory and vice
versa is performed on a 16 byte wide 200 MHz bus in the quantities of
64 bytes (Observation 4). As mentioned above, it takes 4 clock cycles to
complete the transfer, so the memory-buffer data rate can be considered to
be 64/4 = 16 bytes/cycle = 1600 Mbytes/sec.

It is easy to estimate the solvability of the task in this case by the following
simple sanity check:

throughput ,, — refresh > Z throughput gyeqm, » (1)

streams
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where throughput,,, is the (abstract) data rate of the memory bus (1600
Mbytes/sec), refresh is bandwidth lost by staying in refresh state (100 ns /
15625 ns X throughput,,;), and the right hand side is the sum of the through-
puts of the data streams.

We assume that there is enough stream data stored in the SDRAM, so
that we can always initiate a burst from some memory location to an output
register when the latter is empty and vice versa for the input register. This
assumption allows us to concentrate on the data levels of the buffers and
registers and not to model the double data rate behaviour of the dynamic
memory (bus d, Fig. 2).

We will model the behaviour of the system in terms of data levels in the
buffers. Under the above assumption we do not need to model levels in the
memory. We model the data levels as values of integer variables in Uppaal
automata.

4.2 Communication between Inputs, Outputs, and Buffers

We now turn to how the buffers and signal processing units behave from the
point of view of the memory bus.

We observe that all of the input-adder, input-buffer, adder-output, adder-
buffer, buffer-adder (Fig. 1) communication occurs in constant streams. We
can model a constant flow by adding or subtracting a constant value to the
integer variable representing a particular buffer at every (coarse) clock tick.
Thus we can omit modelling the adders altogether.

Let us now have a look at how the interconnection of buffers and registers
behaves. For example, take data transfer from buffer to (register Fig. 2).
The width of the buffer to register bus is 4 bytes. In the abstract clock
cycles (four concrete cycles) this amounts to 16 bytes. If the data level in the
register is less than the allowed maximum of 64 bytes, data is written from
the buffer to the register. Such analysis is repeated for all buffer-register
pairs.

Fig. 4.2 gives an overview of the effect of the widening of the data paths
that happens due to the coarsened clock. In the case of an input buffer, the
buffer is considered empty until it is possible to read a whole coarse unit of
data from it. In the case of output buffers, the buffer must have space for a
whole coarse unit of data before data can be written to it.

We are not interested in the interleavings between filling/emptying inde-
pendent buffers and registers. Therefore all the simultaneous interleavings
are discarded by performing the updates of all registers and buffers as an
update of a single transition of the automata model.

4.8 Assembling the Model

The model is divided into three automatas:

o An automaton which is responsible for updating the states of buffers
and registers. The automaton is called ”Buffers”.
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Fig. 3: Abstractions of the data flow

o An automaton that simulates the behaviour of memory (its need for
refreshes). The automaton is called ”Memory”.

o An automaton for generating clock ticks. It is called ” Clock”.
In the next section we describe how the synthesis and verification problems
are approached and what additional modifications are needed to the model
described thus far.

5. Arbiter Synthesis and Verification

For the purpose of arbiter synthesis we create a conservative model of the
system. By conservative we mean that we allow only valid behaviours of
the system. We explicitly restrict the starvation and overflow of any of the
buffers by introducing relevant guards.

The model in Fig. 5 has the following characteristics:

o The state of the buffers and registers is represented by integers.

o To model synchronicity, all variables representing buffers and registers
are updated on one transition discarding a great deal of interleavings
that are irrelevant in this context. There is a separate variable repre-
senting the behaviour of the arbiter that controls which register can
access memory at a time.

o The granularity of time ticks is aligned with the duration of a transfer
on the shared bus. The buffers and registers are updated by relevant
multiples of bytes at the beginning of each such abstract tick.

For each buffer-to-memory and memory-to-buffer communication there is
a transition in the Buffers automaton Fig. 5 that sets up relevant communi-
cation in the next clock cycle. In addition, there is a transition for memory
update and idling.
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Fig. 4: The Uppaal model for schedule synthesis

The update of the states of the buffers and registers is performed by an
update presented in Fig. 5. The semantics is that the update is taken at the
end of the clock cycle, to make sure that no memory refresh would invalidate
a data burst.

Memory refreshes are triggered by the Memory automaton.

The update of the buffers and registers is presented according to the syntax
of Uppaal version 3.4.

5.1 Schedule synthesis

The current solution builds on the Uppaal model checker and its bit-state
hashing implementation of symbolic representation of state space. Bit-state
hashing is a memory consumption reduction technique is applied in finding
schedules. A clock variable that is never reset and is checked in an invariant
in one of the states of the Buffers automaton is used for bounding the depth
of the search.
o The schedule is found using the E< query given in Fig. 6. The amounts
of data specified in the query are set to half the capacity of each buffer
(we have reduced the buffer sizes by a factor of two)

o The scheduling task consumes 60 MB of RAM and takes 50 seconds
with the hash table size of 107 bytes on a 2.4 GHz P4 processor (with
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//Update the state of all buffers

//first we need to set up help variables:

// (for input buffers)

buflhelp:=((regl<=(REGMAX-BUF10UT))&& (buf1>=BUF10UT)?1:0),

// (for output buffers)

buf3help:=((reg3>=BUF3IN)?1:0),

// (for memory)

// next memory transaction:

// input buffers
reglidle:=((nextmbstate==1)&&(regl==REGMAX) && (membusstate>REFRESHING)70:1) ,
// output buffers
reg3idle:=((nextmbstate==3)&&(reg3==0)&&(membusstate>REFRESHING) 70:1) ,
//

//

//input buffers

//

bufi1:=(bufihelp?buf1+BUF1IN-(reglidle*BUF10UT) : buf 1+BUF1IN),
regl:=(bufihelp?regi+(reglidlexBUF10UT) :regl),

//

/7

// output buffers

//

buf3:=(buf3help?buf3-BUF30UT+(reg3id1e*BUF3IN) : buf3-BUF30UT) ,
reg3:=(buf3help?reg3-(reg3idle*BUF3IN) :reg3),

//

// Memory

//

membusstate:=(membusstate>REFRESHING?0:membusstate) ,

//
membusstate:=(reglidle==0&&membusstate>REFRESHING?1 :membusstate),
membusstate:=(reg3idle==0&&membusstate>REFRESHING?3:membusstate) ,
memB: =(reglidle==0&&membusstate==1?memB+REGMAX :memB) ,

memA : =(reg3idle==0&&membusstate==37memA-REGMAX :memA) ,

//trasfer to and from registers
regl:=(reglidle==0&&membusstate==170:regl),
reg3:=(reg3idle==0&&membusstate==37REGMAX :reg3) ,

/7

// clear help variables

reglidle:=1,

reg3idle:=1,

//clean up:

bufihelp:=
buf3help:=0,
initcomplete:=(membusstate>REFRESHING?1:initcomplete)

Fig. 5: The update on the transition that updates the states of registers and buffers (the
actual updates are only shown for one input and one buffer)

512 kB of cache). It is possible to reduce the hash table size (a so-
lution was found with the hashtable of size 10° bytes using 3.5 MB
of memory and less than 1 second of cpu time), but it requires some
experimentation to find a suitable size.

o A solution to the scheduling task with 1000 ns time bound and without
the use of bit-state hashing consumed 3 GB of memory (the maximum
that a process can be allocated on a 32 bit architecture in Linux).

FEO queries cannot be used in this approach because the specified reacha-
bility property does not hold along the path to the desired state. Instead, we
have incorporated the path property into the guards of the synthesis model.
This reduces the reachable state space.

The schedule is produced as a sequence of memory bus states.

5.2 Buffer Memory Minimization

Uppaal CORA [Behrmann 2005] is a tool that contains two different ex-
tensions to the Uppaal timed automata formalism. One extension is called
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E<> Buffers.buf3+Buffers.reg3==256 and
Buffers.buf5+Buffers.regb==256 and
Buffers.buf6+Buffers.reg6==256 and
Buffers.bufi+Buffers.regl==128 and
Buffers.buf2+Buffers.reg2==128 and
Buffers.buf4+Buffers.reg4==512 and
Buffers.buf7+Buffers.reg7==512 and
Buffers.buf8+Buffers.reg8==512 and
Buffers.buf9+Buffers.reg9==512 and
Buffers.initcomplete==1

Fig. 6: Specification of the model in terms of Uniformly Priced Timed Automata (modi-
fications to the original model)

Linearly Priced Timed Automata (LPTA) and the other Uniformly Priced
Timed Automata (UPTA) [Behrmann and Fehnker 2001]. In this exam-
ple we make use of the UPTA extension by specifying a variable cost that
is increased monotonously according to the increase in the range of buffer
memory used. The cost value is the sum of differences of the maxima and
minima of the amount of data in buffers. The appropriate modifications to
the model that are shown in Fig. 7.

// Input buffers

/7

buf1=(buf1he1p?buf1+BUF11N—(regiidle*BUFlDUT):buf1+BUF11N),

cost+=(buf1>bufimax?1:0),

buf 1max=(buf1>buf imax?bufl:bufimax) ,

cost+=(bufi<bufimin?1:0),

bufimin=(bufi<bufimin?bufl:bufimin),

regl=(bufihelp?regi+(reglidle*BUF10UT) :regl),

// Output buffers

7

buf3=(buf3help?buf3-BUF30UT+(reg3id1le*BUF3IN) : buf 3-BUF30UT) ,

cost+=(buf3>buf3max?1:0),

buf3max=(buf3>buf3max?buf3:buf3max) ,

cost+=(buf3<buf3min?1:0),

buf3min=(buf3<buf3min?buf3:buf3min),
reg3=(buf3help?reg3-(reg3idlexBUF3IN) :reg3),

Fig. 7: Specification of the model in terms of Uniformly Priced Timed Automata (modi-
fications to the original model)

The difference between the behaviours of resultant schedules in terms of
buffer sizes is given on Fig. 5.2. This demonstrates that the buffer sizes can
be reduced drastically even when looking at the problem from an abstract
point of view. With the reduced buffer sizes the model can be analysed
further.

5.8 System Verification

In this section we created a schedule for the memory arbiter that should
satisfy the desired properties presented in the case study. To check that the
schedule is valid we create a new model of the system where we embed the
synthesised scheduler. The resultant model is in Figure 9. The update on
the lower transition of the Buffers automaton is the same as in Figure 5.
It appears that this is a deterministic automaton satisfying the properties
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Fig. 8: Data fluctuations in buffers during a synthesised cycle. The above result is gained
with bounded depth first search and uses a total buffer range of 528 bytes. The lower one
is obtained by using uniformly priced timed automata extensions to the model. The total
buffer range used is 452 bytes.

of never deadlocking and never starving nor overflowing any of the buffers
under the assumption that memory refresh can be scheduled. The memory
automaton is omitted from this verification model as refreshes are scheduled
by the arbiter. It is necessary to construct a more complicated arbiter
if memory refreshes are for some reason required to be allowed to occur
periodically out of sync of the arbiter. In the current case such deterministic
automaton is desirable because if the memory burst set-up needs to precede
the actual burst by some short interval, it can be directy integrated into the
scheduler.
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c<=TICKCYCLE
aftertick arbit!

@\ /@
tick? c==TICKCYCLE

tick!
IlUpdate the state of &l buffers =0

arbit? arbit? arbit? arbit? arbit? arbit? arbit?

-O0——0O
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mbs:=REFRESHING arbit?

arbit’ mbs:=REFRESHING mbs:=A

arbit? arbit? arbit? arbit? arbit? arbit?

mbs:=MAP mbs:=B mbs:=MB mbs:=MBP mbs:=T mbs:=S mbs=MTP

Fig. 9: The Uppaal model for verification of the system

5.4 Perspective

It is suggested by Lee [2003] that the integration of verification tools could
be leveraged in modelling and simulation environments such as, for example,
Ptolemyll. Taking the underlying computational model of the target system
into account could facilitate verification and synthesis as it would be easier
to partition the system into smaller components or use the computational
model as the basis of abstraction.

Edwards and Lee [2003] present an interesting semantics for synchronous
block diagram language that enables to combine together components de-
scribed in different synchronous formalisms. By combining such models with
finite state machines, FSMs, would yield a heterogenous system. It seems
to be appealing to research how (guided) synthesis by model checking and
verification could be integrated into the setting. We believe, that procedures
outlined in this paper are useful steps toward such integration.

6. Conclusion

In this paper we analysed the radar memory interface card case study of
the IST AMETIST project. We presented a way to synthesise a memory
arbiter for the system, to minimise the amount of static RAM used for
buffering the streams and to verify that the the synthesised arbiter does not
deadlock and never starves nor overflows any of the intermediate buffers.
We presented the synthesis and verification tasks as two different problems
of logic model checking. We designed the model for the synthesis task very
carefully to reduce the potential state space that needs to be searched in the
process. To achieve that, unwanted behaviour was restricted on the guard
level of the model by disabling transitions which would starve or overflow the
intermediate buffers. We used the assumption of synchronicity in modelling.
This enabled us to make a number of simplifications in the model. As we
used bounded (in terms of search depth) search for arbiter synthesis, it was
necessary to verify whether it behaved expectedly under all circumstances.
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For this purpose we constructed another which differs from the first model
by containing an arbiter but not the restrictions mentioned in the synthesis
model case. The model was verified against the buffer starvation/overflow
invariant and was checked that it is deadlock free.

Synthesis tasks are generally computationally more challengeing than ver-
ification tasks. The success of the synthesis task is largely concealed in the
rather simple abstract model of the system. The other key factor is the
application of a sound but incomplete method for space saving—bit-state
hashing, where each visited state is represented by one bit in the hash table
in a location determined by the hash of the state. We showed that it is pos-
sible to synthesise a reasonable arbiter using this approach. Additionally,
we augmented the model with cost variables (taking into account the range
of buffers used) and applied the guided version of Uppaal—Uppaal-Cora to
the synthesis task. This resulted in an optimal schedule in terms buffer
memory on the abstraction level of the model.
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