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Abstract

We introduce a general framework for defin-
ing classes of probabilistic-logic models and
associated classes of inference problems.
Within this framework we investigate the
complexity of inference in terms of the size
of logical variable domains, query and evi-
dence, corresponding to different notions of
liftability. Surveying existing and introduc-
ing new results, we present an initial com-
plexity map for lifted inference. Main re-
sults are that lifted inference is infeasible for
general quantifier-free first-order probabilis-
tic knowledge bases, but becomes tractable
when formulas are restricted to the 2-variable
fragment of quantifier-free first-order logic.

1 Introduction

Probabilistic logic models (a.k.a. probabilistic or
statistic relational models) provide high-level repre-
sentation languages for probabilistic models of struc-
tured data [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. While
supporting model specifications at an abstract, first-
order logic level, inference is typically performed at
the level of concrete ground instances of the mod-
els, i.e., at the propositional level. This mismatch
between model specification and inference methods
has been noted early on, and has given rise to nu-
merous proposals for inference techniques that oper-
ate at the high level of the first-order model specifica-
tions [12, 13, 14, 15, 16, 17, 18, 19]. Inference meth-
ods of this nature have collectively become known as
“lifted” inference techniques.

The concept of lifted inference is mostly introduced on
an informal level: “...lifted, that is, deals with groups
of random variables at a first-order level” [13]; “The
act of exploiting the high level structure in relational
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Figure 1: A typical performance evaluation

models is called lifted inference” [20]; “The idea be-
hind lifted inference is to carry out as much inference
as possible without propositionalizing [15]; “lifted in-
ference, which deals with groups of indistinguishable
variables, rather than individual ground atoms [21].
While, thus, the term lifted inference emerges as a
quite coherent algorithmic metaphor, it is not immedi-
ately obvious what its exact technical meaning should
be. Since quite a variety of different algorithmic ap-
proaches are collected under the label “lifted”, and
since most of them can degenerate for certain models
to ground, or propositional, inference, it is difficult to
precisely define the class of lifted inference techniques
in algorithmic terms.

A more fruitful approach is to formalize the concept of
lifted inference in terms of its objectives, rather than in
terms of its algorithmic means. Here one observes that
lifted inference techniques very consistently are evalu-
ated on, and compared against each other, by how well
inference complexity scales as a function of the domain
(or population) for which the general model is instan-
tiated. Thus, empirical evaluations of lifted inference
techniques are usually presented in the form of domain
size vs. inference time plots as shown in Figure 1.

Van den Broeck [19], therefore, has proposed a for-
mal definition of domain-lifted inference in terms of



polynomial time complexity in the domainsize param-
eter. Experimental and theoretical analyses of existing
lifted inference techniques then show that they pro-
vide domain-lifted inference in some cases where basic
propositional inference techniques would exhibit ex-
ponential complexity. However, until recently, these
positive results were mostly limited to examples of in-
dividual models, and little was known about the feasi-
bility of lifted inference for certain well-defined classes
of models. The first result that shows the feasibility of
lifted inference for a class of models is given by Van den
Broeck [19].

On the other hand, Jaeger [22] has shown that under
certain assumptions on the expressivity of the model-
ing language, probabilistic inference is not polynomial
in the domain size, thereby demonstrating some inher-
ent limitations in terms of worst-case complexity for
the goals of lifted inference. The results of Jaeger [22]
essentially assume a modeling framework based on di-
rected probabilistic models, and the expressivity re-
quirements amount to a probabilistic version of full
first-order predicate logic. Since much recent work
in lifted inference is based on undirected probabilistic
models, and, more significantly, within these frame-
works focuses on fragments without full first-order ex-
pressivity, it is not clear to what extent these earlier
intractability results are applicable to these ongoing
efforts.

In this paper we provide a detailed study of the fea-
sibility of lifted inference. We introduce a general,
formal framework for analyzing the complexity of in-
ference from probabilistic-logic models in a weighted
model counting framework (Section 2). Extending the
general approach taken in Jaeger [22], we then derive
new lower complexity bounds that show that domain-
lifted inference still is infeasible when the strong as-
sumptions of Jaeger [22] are loosened, and only the
expressivity of quantifier-free first-order logic without
equality is required (Section 3). The following sections
give an overview of existing work. Our new negative
result is contrasted with the recent positive liftabil-
ity results (Section 4) for the 2-variable fragment of
probabilistic logic. We then move to a more detailed
analysis of the role of evidence in liftability (Section 5).
Finally, we give some challenges for future work (Sec-
tion 6).

2 Background and Notation

We will now introduce the necessary background on
probabilistic-logic models and lifted inference.

2.1 Weighted Feature Models

Similarly as Richardson and Domingos [11], Van den
Broeck et al. [17], Gogate and Domingos [18] we as-
sume the following framework: a model, or knowledge
base, is given by a set of weighted formulas:

KB :

φ1(v1) : w1

φ2(v2) : w2

. . . . . .
φN (vN ) : wN

(1)

where the φi are formulas in first-order predicate
logic, wi ∈ R are non-negative weights, and vi =
(vi,1, . . . , vi,ki

) are the free variables of φi. The case
ki = 0, i.e., φi is a sentence without free variables,
is also permitted. The φi use a given signature S of
relation-, function-, and constant symbols.

An interpretation (or possible world) (D, I) for S con-
sists of a domain D, and an interpretation function I
that maps the symbols in S to functions, relations and
elements on D. For a tuple d ∈ Dki then the truth
value φi(d/vi) is defined, and we write (D, I) |= φi(d),
or simpler I |= φi(d) if φi(d/vi) is true in (D, I). We
use I(D,S) to denote the set of all interpretations for
the signature S over the domain D.

In this paper we are only concerned with finite do-
mains, and assume without loss of generality that
D = Dn := {1, . . . , n} for some n ∈ N.

For I ∈ I(Dn, S) let #(i, I) denote the number of
elements d in Dki for which I |= φi(d). The weight of
I then is

wKB
n (I) :=

N∏
i=1

w
#(i,I)
i , (2)

where 00 = 1. The probability of I is

PKB
n (I) = wKB

n (I)/Z

where Z is the normalizing constant (partition func-
tion)

Z =
∑

I′∈I(Dn,S)

wKB
n (I ′).

For a first-order sentence φ and n ∈ N then

PKB
n (φ) := P ({I ∈ I(Dn, S) | I |= φ}) (3)

is the probability of φ in I(Dn, S).

We call a knowledge base (1) together with the
semantics given by (2) and (3) a weighted feature
model, since it associates weights wi with model fea-
tures φi. Weighted feature models in our sense can
be seen as a slight generalization of weighted model
counting frameworks [17, 23, 18] in which non-zero



weights are only associated with literals. Knowl-
edge bases of the form (1) can be translated into
weighted model counting frameworks via an intro-
duction of new relation symbols R1, . . . , RN , hard
constraints φi(vi) ↔ Ri(vi), and weighted formulas
Ri(vi) : wi [17, 18]. Up to an expansion of the sig-
nature, thus, weighted feature models and weighted
model counting are equally expressive. Markov Logic
Networks [11] also are based on knowledge bases of
the form (1) with arbitrary formulas φi allowed. How-
ever, the semantics of the model there depends on a
transformation of the formulas into conjunctive nor-
mal form, and therefore does not exactly correspond
to (2) and (3), unless the φi are clauses. Finally, Par-
factor models [12, 13], even though they use a syn-
tactically different style of representation, also can be
transformed into a knowledge base (1), and vice-versa.
Complexity results developed on the basis of weighted
feature models, thus, are applicable to a wide range of
probabilistic-logic models.

An probabilistic inference problem PI(KB, n, φ, ψ) for
a weighted feature model is given by a knowledge
base KB, a domainsize n ∈ N, and two first-order
sentences φ, ψ. The solution to the inference prob-
lem is the conditional probability PKB

n (φ | ψ) =
PKB
n (φ ∧ ψ)/PKB

n (ψ).

2.2 Liftability

A class of inference problems is defined by allowing
arguments KB, φ, and ψ only from some restricted
classes KB, Q (the query class), and E (the evidence
class), respectively. We use the notation

PI(KB,Q, E) :=

{PI(KB, n, φ, ψ) | KB ∈ KB, n ∈ N, φ ∈ Q, ψ ∈ E}

for classes of inference problems.

For queries Q and evidence E we will use classes

• A for single ground atoms,

• T for terms (conjunctions) of ground literals,

• T0,1 for terms of ground literals with arity 0 or 1,

• ∅ for empty sets of evidence.

For example, Q = A and E = ∅ denotes queries for
single marginals, without evidence.

Classes KB are defined by various syntactic restric-
tions on the formulas φi in the knowledge base. The
fragments of first-order logic (FOL) we consider are

• FFFOL for function-free FOL, i.e., FOL without
function symbols, and

• RFOL for relational FOL, i.e., FFFOL without con-
stant symbols.

We further distinguish between classes that allow for
quantifiers (∀∃) and the equality predicate (=). For
example, FOL(∀∃,=) is FOL with quantifiers and equal-
ity and FOL(=) is FOL without quantifiers but with
equality. A last type of subclass limits the number of
logical variables per formula. For example, k-FOL is
FOL with k logical variables per formula.

An algorithm solves a class PI(KB,Q, E), if it com-
putes PKB

n (φ | ψ) for all instances PI(KB, n, φ, ψ) in
the class.

Van den Broeck [19] proposed one notion of lifted in-
ference for first-order probabilistic models, defined in
terms of the computational complexity of inference
w.r.t. the domains of logical variables.

Definition 2.1 (Domain-Lifted) An algorithm is
domain-lifted, iff for fixed KB, φ and ψ the compu-
tation of PKB

n (φ | ψ) is polynomial in n.

Domain-lifted inference does not prohibit the algo-
rithm to be exponential in the size of the vocabulary,
that is, the number of predicates, arguments and con-
stants in KB, φ and ψ. The definition was motivated
by the observation that first-order theories are often
concise but the presence of large domains causes infer-
ence to become intractable, when done at the propo-
sitional level.

Definition 2.2 (Completeness) An algorithm is
called a complete domain-lifted inference algorithm for
the class PI(KB,Q, E) iff it is domain-lifted and solves
this class.

The related notion of liftability talks about the exis-
tence of a complete domain-lifted algorithm.

Definition 2.3 (Liftability) A class PI(KB,Q, E) is
liftable iff there exists an algorithm that is complete
domain-lifted for this class.

The above definition of liftability pertains only to
exact inference. An analogous notion is approxi-
mate liftability, when there exists an algorithm that
ε-approximately solves all problems in a class and is
domain-lifted. An algorithm ε-approximately solves
PI(KB,Q, E), if for any PI(KB, n, φ, ψ) in the class it
returns a number in [PKB

n (φ | ψ)− ε, PKB
n (φ | ψ) + ε].

The following sections will investigate the liftability of
different classes of PI(KB,Q, E). The results are sum-
marized in Table 1. Sections 3 and 4 will deal with neg-
ative and positive results for classes where Q and E are
bounded in size, for example the case where we want



KB Q E Exact Liftable Approx. Liftable Notion Reference Theorem

RFOL(∀∃,=) A ∅ 7 7 domain-lifted [22] 3.4
RFOL A ∅ 7∗ 7∗ domain-lifted (new result) 3.5
k-RFOL A ∅ ? ? domain-lifted

2-FFFOL(=) T T 3 3 domain-lifted [19] 4.2
2-RFOL A T 7 ? dqe-lifted [24] 5.6

2-FFFOL(=) T0,1 T0,1 3 3 dqe-lifted [24] 5.8

Table 1: Liftability results w.r.t. classes of knowledge bases KB, queries Q and evidence E (contingent on
complexity assumptions). For negative/positive results, the most specific/general class is shown. 7∗: subject to
additional condition on polynomial time complexity as function of parameter complexity.

to compute single marginals without evidence. Sec-
tion 5 then extends the discussion to liftability which
takes into account the size of the query and evidence.

3 Lower Complexity Bounds

All complexity results in this section are obtained by
reducing the spectrum recognition problem to proba-
bilistic inference problems. Full proofs for this section
can be found in Jaeger [25]. We first briefly review
the fundamental concepts about spectra of first-order
logic sentences, and the complexity class ETIME.

Definition 3.1 Let ψ be a sentence in first-order
logic. The spectrum of ψ is the set of integers n ∈ N
for which ψ is satisfiable by an interpretation of size n.

Example 3.2 Let ψ = ψ1 ∧ ψ2 ∧ ψ3, where

ψ1 ≡ ∀x, y u(x, y)⇔ u(y, x)
ψ2 ≡ ∀x ∃y y 6= x ∧ u(x, y)
ψ3 ≡ ∀x, y, y′ (u(x, y) ∧ u(x, y′)⇒ y = y′)

ψ expresses that the binary relation u defines an undi-
rected graph (ψ1) in which every node is connected to
exactly one other node (ψ2, ψ3). Thus, ψ describes a
pairing relation that is satisfiable exactly over domains
of even size: spec(ψ) = {n | n even}.

The complexity class ETIME consists of problems
solvable in time O(2cn), for some constant c. The cor-
responding nondeterministic class is NETIME. Based
on a characterization of NETIME in terms of first-
order spectra given by Jones and Selman [26], we ob-
tain:

Proposition 3.3 If NETIME 6= ETIME, then there
exists a first-order sentence φ, such that {n | n ∈
spec(φ)} can not be recognized by a deterministic al-
gorithm in time polynomial in n.

Thus, by reducing the spectra-recognition problem to
a class of inference problems PI(KB,Q, E), one estab-
lishes that the latter is not polynomial in the domain-
size (under the assumption ETIME 6= NETIME).

We first state a result for knowledge bases using
RFOL(∀∃,=). This is rather straightforward, and (for
exact inference) already implied by the results of [22].

Theorem 3.4 If NETIME 6= ETIME, then there
does not exist an algorithm that 0.25-approximately
solves PI(RFOL(∀∃,=),A, ∅) in time polynomial in the
domainsize.

The following theorem extends Theorem 3.4 to knowl-
edge bases with only quantifier-free formulas without
equality. At the same time a slight weakening is in-
troduced by imposing an additional condition on the
complexity in terms of representation size of the weight
parameters in KB.

Theorem 3.5 If NETIME 6= ETIME, then there
does not exist an algorithm that 0.25-approximately
solves PI(RFOL,A, ∅) in time polynomial in n and the

representation size l :=
∑N

i=1 log(wi) of the weight pa-
rameters.

The basic strategy for proving this theorem is to re-
place quantifiers with relational encodings of Skolem
functions, and the equality predicate = with an or-
dinary binary relation E(·, ·). The problem, then, is
to enforce that the newly introduced relations behave
like functions, respectively like the equality relation.
Given the expressive power only of RFOL, this, nat-
urally, is not possible to do exactly. However, using
suitable weighted formulas, one can ensure that in-
terpretations in which the Skolem relations and the
E relation do not show the desired properties have a
negligible weight. The weights for the formulas con-
straining the Skolem and E relations, now, have to be
calibrated as a function of the domainsize n. Thus, for
a given first-order formula ψ, the problem n ∈ spec(ψ)
is reduced to an inference problem PI(KB(n), n, φ, ∅),
where for different n the KB(n) only differ with respect
to the values of the weights wi.



4 Positive Liftability Result

Van den Broeck [19] showed that one particular al-
gorithm for lifted probabilistic inference is complete
for the class 2-FFFOL(=) of weighted model counting
problems without quantifiers, with equality and two
logical variables per formula. The algorithm is called
first-order knowledge compilation and the proof of its
completeness also is a constructive proof that this class
of models is liftable. For the first time, one could
show that domain-lifted inference is always possible
for a non-trivial class of models, based on its syntactic
properties.

Theorem 4.1 First-order knowledge compila-
tion is a complete domain-lifted algorithm for the
class PI(2-FFFOL(=), T , T ).

Corollary 4.2 The class PI(2-FFFOL(=), T , T ) is
domain-liftable.

First-order knowledge compilation compiles a first-
order knowledge base into a target circuit language,
FO d-DNNF [17], which represents formulas in first-
order logic with domain constraints. Domain con-
straints are constraints that define a finite domain for
each logical variable. A FO d-DNNF circuit is a di-
rected, acyclic graph, where the leaves represent first-
order literals and the inner nodes represent formulas.
The inner nodes of a FO d-DNNF have certain prop-
erties. For example, conjunctions have to be decom-
posable, meaning that its conjuncts do not share any
random variables, and disjunctions have to be deter-
ministic, meaning that its disjuncts cannot be true at
the same time. Other types of inner nodes are first-
order generalizations of these concepts.

First-order knowledge compilation can be used to an-
swer probabilistic queries. Given a knowledge base
KB, query φ and evidence ψ, the first-order knowl-
edge compilation approach to lifted inference com-
piles a FO d-DNNF for the theories KB ∧ ψ and
KB ∧ ψ ∧ φ. These two circuits can be used to an-
swer queries PI(KB, n, φ, ψ) for any domain size n: the
probability PKB

n (φ | ψ) for a weight vector w is

PKB
n (φ | ψ) =

WMC(KB ∧ ψ ∧ φ,w, n)

WMC(KB ∧ ψ,w, n)
(4)

where WMC stands for the weighted model count of
the logical theory. The WMC(KB∧ψ ∧ φ,w, n) is the
weight of all possible worlds where query and evidence
are true. The WMC(KB ∧ ψ,w, n) is the weight of all
possible worlds where the evidence is true. In the case
when there is no evidence, this is simply the partition
function Z of the model KB. Moreover, answering
PI(KB, n, φ, ψ) this way can be done polynomially in

n, because evaluating the weighted model count of a
FO d-DNNF is polynomial in n. Darwiche [27] gives a
more detailed overview of the weighted model count-
ing approach to probabilistic inference (for the propo-
sitional case).

Transforming a logical theory into a FO d-DNNF is
done by a top-down compilation algorithm, which ap-
plies a sequence of operations that simplify the log-
ical theory. See Van den Broeck et al. [17] for an
overview of the compilation algorithm. To prove The-
orem 4.1, it is sufficient to show that the compila-
tion algorithm is able to compile formulas KB∧ψ and
KB ∧ ψ ∧ φ for any PI(2-FFFOL(=), T , T ). Once the
circuit is compiled, the properties of FO d-DNNFs al-
low for the computation of any WMC(KB∧ψ∧φ,w, n)
and WMC(KB ∧ ψ,w, n).

The first step of the proof shows that the compilation
algorithm can remove any ground atoms and atoms
with a single logical variable argument from the the-
ory to be compiled. Once these are removed, all atoms
in a KB ∈ 2-FFFOL(=) must have two logical variable
arguments. Van den Broeck [19] then goes on to show
that the grounding of such a theory consists of dis-
connected components with identical weighted model
counts and that symmetry arguments allow us to al-
ways compile such theories.

The class 2-FFFOL(=) is not trivial and surprisingly
expressive, containing many models in practical use
today. In can contain important concepts such as sym-
metric, anti-symmetric, total and homophily relations:

friends(X,Y )⇒ friends(Y,X)

parent(X,Y )⇒ ¬parent(Y,X)

¬ ≤ (X,Y )⇒≤ (Y,X)

smokes(X) ∧ friends(X,Y )⇒ smokes(Y )

Furthermore, all models currently used in the lifted
inference literature are in this class. Still, there are
useful models that are not in 2-FFFOL(=), most no-
tably models with existential quantifiers and concepts
such as transitivity and generalized homophily:

friends(X,Y ) ∧ friends(Y,Z)⇒ friends(X,Z) (5)

likes(X,Z) ∧ friends(X,Y )⇒ likes(Y,Z) (6)

which contain three logical variables per formula. For
these formulas, the proof of Van den Broeck [19] fails
in the second step: their groundings are all strongly
connected and they do not decompose. Many mod-
els not in 2-FFFOL(=) can still be compiled to FO d-
DNNF, but there are no guarantees in the form of a
completeness or liftability result.



5 Unbounded Queries and Evidence

We will now turn our attention to a notion of lifted
inference where the query and evidence are not bound
in size.

Definition 5.1 (DQE-Lifted) An algorithm is
domain-, query- and evidence-lifted (dqe-lifted), iff for
fixed KB the computation of PKB

n (φ | ψ) is polynomial
in n and the size of φ and ψ.

This definition is motivated by the fact that domain-
lifted inference algorithms tend to perform poorly
in the presence of evidence, which breaks the sym-
metries in the first-order model. When sufficient
amounts of evidence are present, lifted inference algo-
rithms will start to behave identically to their proposi-
tional counterparts, that is, first-order variable elimi-
nation [12] will perform variable elimination [28], first-
order knowledge compilation to FO d-DNNF [17] will
perform propositional knowledge compilation to d-
DNNF [27], etc.

In this section, we will talk about general terms (T )
and terms with literals of arity zero and one specif-
ically (T0,1) and investigate notions of completeness
and liftability for dqe-lifted inference.

5.1 Negative Results

den Broeck and Davis [24] prove a negative result,
that computing conditional probabilities is #P-hard,
by showing that #2SAT is reducible to it. A k-CNF
formula is a CNF with k literals per clause. kSAT is
the problem of deciding the satisfiability of a k-CNF
formula. The #kSAT problem involves counting the
number of satisfying assignments to a k-CNF formula.
This task is also called model counting.

Example 5.2 The following formula is in 2-CNF:

(a ∨ b) ∧ (a ∨ ¬c) ∧ (¬c ∨ ¬d)

2SAT is decidable in polynomial time. However,
#2SAT is #P-complete [29], which implies that it is
not solvable in polynomial time unless P = NP .

Lemma 5.3 Each #2SAT problem can be solved by
querying a knowledge base KB that represents a uni-
form distribution over the models of the logical theory

¬q ∨ p(X) ∨ p(Y ) ∨ ¬ c1(X,Y )

¬q ∨ p(X) ∨ ¬ p(Y ) ∨ ¬ c2(X,Y )

¬q ∨ ¬ p(X) ∨ ¬ p(Y ) ∨ ¬ c3(X,Y ), (7)

The p(X) atoms represent propositions in the 2-CNF,
uniquely identified by the constants in the domain of

the variable X. The ci(X,Y ) atoms encode which
propositions appear together in the three possible
types of clauses for 2-CNF. Adding a positive ci lit-
eral to the evidence ψ includes the clause of type i
for the given propositions in the 2-CNF. For exam-
ple, conditioning the query on evidence c1(a, b) adds
p(a)∨p(b) to the theory. Conditioning on a negative c-
literal omits the clause for the given propositions from
the theory. For example, conditioning on ¬ c2(a, b) ex-
cludes p(a) ∨ ¬ p(b) from the theory.

Theorem 5.4 For any KB that includes a uniform
distribution over the models of Theory 7, solving
PI(KB,A, T ) is #P-hard.

Querying for P(q |ψ), where ψ assigns a truth value
to every ci atom, returns c/(c + 2n), where c is the
model count of the 2-CNF represented by ψ and 2n the
number of possible assignments to the n propositions
in the 2-CNF. This allows us to solve arbitrary #2SAT
problems by solving for c.

Example 5.5 Computing PKB
n (q | ψ) where KB is

Theory 7, n is four (the number of propositions in Ex-
ample 5.2) and ψ is

c1(a, b) ∧ ¬ c1(a, a) ∧ · · · ∧ ¬ c1(d, d)∧
c2(a, c) ∧ ¬ c2(a, a) ∧ · · · ∧ ¬ c2(d, d)∧
c3(c, d) ∧ ¬ c3(a, a) ∧ · · · ∧ ¬ c3(d, d)

returns c/(c+ 2n), where c is the model count of

(p(a) ∨ p(b)) ∧ (p(a) ∨ ¬ p(c)) ∧ (¬p(c) ∨ ¬ p(d)),

which is isomorphic to the 2-CNF of Example 5.2.

Because Theory 7 is in 2-RFOL, we have the following.

Corollary 5.6 PI(2-RFOL,A, T ) is not (dqe-)liftable,
unless P=NP.

The result of den Broeck and Davis [24] highlights an
important limitation of all exact lifted inference meth-
ods: computing probabilities with evidence on binary
relations cannot be polynomial in the size of the evi-
dence, unless P=NP. This result identifies a sharp con-
trast between lifted and propositional inference algo-
rithms: whereas (partial) evidence in undirected mod-
els simplifies inference in the propositional case, it can
complicate inference in the lifted case.

5.2 Positive Results

For a weaker class of queries and evidence, den Broeck
and Davis [24] showed a positive result, namely that
inference can be polynomial in the domain size and
the size of the query and evidence when these contain
only literals of arity zero and one.



Theorem 5.7 First-order knowledge compila-
tion is a complete dqe-lifted algorithm for the
class PI(2-FFFOL(=), T0,1, T0,1).

Corollary 5.8 PI(2-FFFOL(=), T0,1, T0,1) is liftable.

Again, the proof is constructive, by showing that first-
order knowledge compilation can compile circuits for
a given KB, independent of ψ and φ and answer any
query PKB

n (φ | ψ) polynomially in the size of the do-
mains, φ and ψ, provided that they contain no literals
of arity two or higher.

This means that lifted inference is possible when we
have (partial) type information about every object in
the world. Evidence on properties (e.g., whether some-
one smokes) has arity one (e.g., smokes(X)). This in-
duces a type for each object, which is the set of proper-
ties of that object. When there are k properties (e.g.,
smokes, drinks, etc.), each object can belong to one
of 2k types, and we can have partial evidence about
the type of each object, which induces 3k equivalence
classes. Theorem 5.7 shows that probabilistic reason-
ing with such information is polynomial in the number
of objects in the world.

6 Discussion and Conclusion

In this paper we have collected some existing and new
results that are the beginning of a systematic analy-
sis of complexity of inference from probabilistic-logic
models. The general factorization of classes of infer-
ence problems according to knowledge base, query, and
evidence-classes allows us to accommodate a variety of
different complexity aspects in a coherent framework,
with a particular focus on the question of liftability
of inference. Furthermore, the framework we have in-
troduced aligns the complexity of inference analysis
with well-established concepts of syntactic complexity
of predicate logic formulas, notably in terms of quan-
tifier complexity and number of variables.

In a slightly different spirit, Domingos and Webb [30]
introduce “Tractable Markov Logic (TML)”, which
also is a syntactically restricted probabilistic-logic
modeling language. TML is not directly defined as
a fragment of first-order logic fitting our weighted fea-
ture model framework, and therefore its placement
into our complexity map of Table 1 is not immediate,
but still seems quite feasible based on a precise first-
order representation of TML syntax. It is remarkable,
though, that TML is related to probabilistic descrip-
tion logics, and that description logics, in turn, are
well-known to be representable in the 2-variable frag-
ment of first-order logic [31]. Thus, it may well turn
out that TML and PI(2-FFFOL(=), T , T ) actually ex-
ploit the same underlying source of tractability, and

that a combination of the two could lead to the identi-
fication of a tractable class that has both a natural and
concise characterization, and that is more expressive
than either of the two classes alone.

Further important open questions include:

• Complexity results for the 3-variable fragment
3-RFOL. Formulas with three variables provide
important added expressivity compared to the 2-
variable fragment. The transitive clause (For-
mula 5) and generalized homophily (Formula 6)
are in 3-RFOL. Liftability for at least some infer-
ence classes PI(3-RFOL, ?, ?) would be an impor-
tant extension.

• Complexity results for RFOL with bounded weight
parameters. Our lower complexity bound of The-
orem 3.5 is based on the assumptions that weights
can be arbitrarily small or big. For practical mod-
eling tasks it would not be a significant limitation
to restrict weights to lie between a certain lower
and upper bound (in addition to zero weights for
hard constraints). While, on the one hand, our re-
sults do not imply non-liftability for such weight-
bounded knowledge bases, it is hard to imagine
how a concrete exact inference algorithm could
exploit weight-boundedness, since such an algo-
rithm would then have to exhibit non-polynomial
complexity with respect to the representation size
of the weights. However, in the case of approxi-
mate inference, it is feasible that disallowing ex-
treme weights improves worst-case approximation
quality and therefore also approximate liftability.
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