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Abstract
This paper describes a work in progress on a new theoreti-
cal framework that leverages variational inference for induc-
tive link prediction. Inductive link prediction (ILP) estimates
the probability that one or more test nodes not observed dur-
ing training are linked to other nodes. Different ILP tasks
arise from conditioning on different available evidence, such
as node attributes and/or the existence of other links. Recent
research has developed customized models for different ILP
tasks; this paper describes a unified framework for solving
ILP tasks based on an inductively trained probabilistic gen-
erative graph model, specifically a Variational Graph Auto-
Encoder (VGAE). An inductive VGAE defines a distribution
over adjacencies containing both training and test nodes, and
therefore—implicitly—a conditional link probability, which
can be approximated by variational inference with a con-
ditional ELBO. We show how, given a trained VGAE and
an ILP query, a conditional variational auto-encoder can be
constructed dynamically that approximates the conditional
ELBO without retraining on data. The variational framework
allows us to address a wide class of ILP tasks with a sin-
gle VGAE, including the standard single-link probabilities,
as well as useful new joint link probabilities (e.g. completing
the neighbourhood of a target test node).

Introduction: Inductive Link Prediction
Inductive link prediction is the task of predicting the exis-
tence of one or more links involving test nodes that are not
observed during training. This paper describes a new uni-
fying framework for ILP problems. It describes a complete
approach but is a work in progress in that we have not yet
completed an empirical evaluation.

ILP methods estimate conditional query probabilities that
specify the probability of one or more target links that in-
volve at least one test node, given conditioning evidence
about node attributes/features and/or the existence of other
links. Different ILP variants have been studied in recent
works, including the following evidence settings for predict-
ing the existence of a single target link. (1) Condition on
the attributes of the connected test nodes (Hao et al. 2020).
(2) Condition on links among other test nodes only (Teru,
Denis, and Hamilton 2020). (3) Condition on links between
both training and test nodes (Zhang and Chen 2019).
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Previous research has developed a customized method for
each ILP query. This paper introduces a new method that
addresses a wide class of ILP problems in a unifying frame-
work based on a single probabilistic generative graph model.
Our query answering approach provides a form of classic
inference from a model (Russell 2015): After learning a do-
main model from data, the model is used to answer queries
with no further data access required. Figure 1 summarizes
our design.
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Figure 1: After training a single model, user queries can be
answered by dynamically transforming a Conditional Varia-
tional Auto-Encoder from a probabilistic generative model.

A query answering approach has two motivations.

Use Cases It is difficult to determine in advance which ILP
queries will be important for a user, so a single system
that supports a wide variety is helpful. Some applica-
tions may require targets more complex than the tradi-
tional single link, such as the complete neighborhood of
a test node. Likewise, the available evidence may vary
widely, even on the same data set. Ease of use and wide
applicability make inference from a single model useful,
even if on some queries inference from a model is less
accurate than a system custom-built for that query.

Evaluating Generative Models Evaluating the quality of a
graph generative model is a difficult problem (O’Bray
et al. 2021). Our framework allows the strengths and
weaknesses of an inductively trained generative graph
model to be assessed by its predictive performance for
a variety of queries.



Approach We train a generative VGAE (Kipf and Welling
2016; Hamilton 2020) inductively, meaning that the VGAE
defines probabilities over graphs of different sizes (Hamil-
ton, Ying, and Leskovec 2017). Our main technical contri-
bution is to implement inference from the trained VGAE:
We show how, given a link prediction query specified by the
user, the VGAE can be dynamically transformed to a condi-
tional VAE (CVAE) for the query, without further training.
A CVAE (Sohn, Lee, and Yan 2015) outputs a conditional
ELBO that approximates the query probability: the condi-
tional probability of one or more target links given the evi-
dence specified in the query (cf. Figure 1).

Our contributions may be summarized as follows.

• A new query answering approach for ILP queries: esti-
mate a conditional probability for a large class of ILP
queries by inference from a single VGAE.

• A method for dynamically constructing a CVAE to an-
swer a given graph query from the VGAE. A novel se-
quential CVAE design where node embeddings com-
puted by the prior networks are used as initial embed-
dings for the recognition network.

• An application of our query answering method to new
practically useful link prediction queries, including joint
predictions of multiple links (e.g., a node neighborhood).

Paper Organization. We review related work, then the
CVAE architecture and the conditional ELBO (Sohn, Lee,
and Yan 2015). We describe inductive training of a modular
VGAE based on the ELBO likelihood approximation. The
space of link prediction queries is formally defined, with ex-
amples of previously investigated as well as novel queries.
We show how the modules of the VGAE can be used to con-
struct, for each ILP query, a CVAE.

Related Work
Inductive Graph Training. Inductive graph learning has
been a major topic in recent research (Hamilton, Ying, and
Leskovec 2017; Zeng et al. 2019; Rossi, Zhou, and Ahmed
2018). Our query answering approach can be used with any
inductive encoder-decoder graph neural network architec-
ture (e.g., the well-known GraphSage architecture (Hamil-
ton, Ying, and Leskovec 2017)), which we train with the
variational ELBO objective we describe below. To our
knowledge this is the first inductive training with the vari-
ational ELBO objective.

CVAE for Graph Queries. Sohn, Lee, and Yan derived the
conditional ELBO as a variational approximation for con-
ditional probabilities and introduced the CVAE architecture
for computing it. CVAEs are models for generating struc-
tured output, which makes them suitable for graph predic-
tion. While they have been extensively applied to visual data,
such as images and video, to our knowledge ours is the first
application to graph queries.

Whereas in the original CVAE design the prior and recog-
nition networks are separate from each other, for ILP we
introduce a novel sequential design, where the training node
embeddings computed by the prior network are passed to the
recognition network as initial node embeddings. We show

that different strategies for updating the initial node embed-
dings in the recognition network optimize different compo-
nents of the conditional ELBO.

Inference from a Model. Previous work on graph neural
networks has focused on specific predictive tasks specified
by the researcher. To our knowledge, inference from a gen-
erative model to estimate conditional probabilities is a novel
application of inductive neural graph learning. However,
general query answering capabilities are standard in non-
neural statistical-relational models, such as Markov Logic
networks (Domingos and Lowd 2009) and Probabilistic Soft
Logic (Huang et al. 2012). The fact that general query an-
swering is a key capability of previous graph models mo-
tivates our goal of adding this capability to neural models.
Statistical-relational models are based on very different as-
sumptions and model classes (e.g. exponential random graph
models) from VAEs, so we leave a direct comparison for fu-
ture work.

Review of CVAE
A CVAE is a neural architecture for computing a condi-
tional ELBO, denoted cELBO, which is a variational ap-
proximation to a conditional probability. Suppose we want
to generate a distribution over outputs Y conditional on ev-
idence E. Essentially a CVAE follows the standard VAE
setup for generating Y , but conditions both the reconstruc-
tion probability and the prior latent distribution on E. The
cELBO approximation to the conditional log-likelihood is
thus given by:

ln(p(Y |E)) ≥ Ez∼q(Z|E,Y )

[
ln p(Y |z,E)] (1)

−KLD
(
q(Z|E,Y )||p(Z|E)

)
The term p(Z|E) is the (conditional) prior distribution

over the latent variables given the evidence E. Usually this
distribution is difficult to evaluate exactly. A CVAE ap-
proximates the (conditional) prior with a prior network
p(Z|E) ≈ pψ(Z|E). Similarly a CVAE uses a recognition
network qϕ to approximate the posterior q(Z|E,Y ).

In graph queries the target Y and evidence E specify
parts of a graph (i.e., links and/or node features). Our main
insight is that in a large class of graph queries the evidence
E and the conjunction E,Y each describe a complete sub-
graph (possibly over different node sets). If a graph genera-
tive network model is trained inductively, we can apply the
same model both as prior network to compute p(Z|E) and
as recognition network to compute q(Z|E,Y ). The follow-
ing sections describe the details of this approach.

Variational Graph Auto-Encoder Architecture
Our approach can be applied with any encoder-decoder
graph neural network (GNN) that outputs node represen-
tations and is trained with the variational ELBO objec-
tive (Kipf and Welling 2016; Hamilton 2020). Our modi-
fication is to build the encoder out of two modules: an at-
tribute encoder that takes as input node attributes only, and a
link encoder that outputs node representations given an ad-
jacency matrix and initial node representations.



Data Format
An attributed graph is a pair G = (V,E) comprising a finite
set of nodes and edges where each node is assigned an k-
dimensional attribute xi with k > 0. An attributed graph
can be represented by an N × N adjacency matrix A with
{0, 1} Boolean entries, together with an N × k node feature
matrix X .

Encoder-Decoder Architecture
Let Z be an N × d matrix that represents latent node em-
beddings. Like other VGAE models, the decoder pα(A|Z)
generates links independently given node representations, as
illustrated in Figure 2.

Zi Xi

Aij

i ∈ N

j ∈ N : j > i(j), (i)

Figure 2: Generative diagram for our VGAE model

The graph encoder qϕ(Z|X,A) comprises an attribute
encoder pφ(Z0|X) and a link encoder pθ(Z|A,Z0). The
attribute encoder transforms node attributes to node repre-
sentations. It can be implemented using any standard (non-
relational) VAE architecture. The link encoder is applied to
initial representations Z0 to compute updated node repre-
sentations. It can be implemented with a message-passing
graph neural network, such as GraphSage (Hamilton, Ying,
and Leskovec 2017). We require that the encoder and de-
coder are inductive, meaning that they can output node em-
beddings for graphs of different sizes.

Figure 3: Generative Graph encoder-decoder Architecture
for End-to-End Training

Training
In end-to-end training, the attribute encoder produces initial
node representations from node attributes, and the link en-
coder final node representations from the initial ones; see
Figure 3.

Motivation. Having an attribute encoder as a separate
module from the link encoder provides more flexibility for
leveraging node attributes, for example to handle queries
that do not specify attributes for some nodes, or at the other
extreme that require predicting a link from attribute infor-
mation only.

Having a separate link encoder that takes as input initial
node representations facilitates describing and implement-
ing different methods for initializing node representations.
For example below we describe how node representations
computed by a CVAE prior network can be used to initialize
a CVAE recognition network.

The approximate posterior distribution qφ,θ(Z|X,A) is
defined by the following generative process.

Z0 ∼ pφ(Z0|X)

Z ∼ pθ(Z|A,Z0)

The training loss is the negative variational ELBO for
link reconstruction (Kipf and Welling 2016):

L(α, φ, θ) = −Ez∼qφ,θ(Z|X,A)

[
ln pα(A|z)]

+KL
(
qφ,θ(Z|X,A)||p(Z)

)
Graph Queries

Answering a graph query requires assigning a joint prob-
ability to joint values for a set of target relational random
variables Y , given values of evidence random variables E.
A relational random variable corresponds to either a node at-
tribute or an adjacency. Accordingly we defineX = {xu[i] :
u ∈ V, 1 ≤ i ≤ k} as the set of attribute variables and
A = {A[u, v] : u ∈ V, v ∈ V } as the set of link variables.
A link prediction query is of the form:

P(Y = y|E = e) where the target Y ⊆ A,
the evidence E = (XE ,AE) with XE ⊆ X ,AE ⊆ A

For query readability we group relational random vari-
ables according to the types of nodes that occur in them.
The symbols U,U ′ etc. refer to a generic subset of nodes.
The notation U denotes the complement of a node set U ⊆
V . The attribute variables of node type U are denoted as
XU ≡ {xu[i] : u ∈ U, 1 ≤ i ≤ k}. The link variables
that connect node type U1 to node type U2 are denoted as
AU1↔U2 ≡ {A[u, v] : u ∈ U1, v ∈ U2}. With some over-
load of notation, we write XU ⊆ XU for a generic set of
attribute variables. Similarly AU1↔U2

⊆ AU1↔U2
denotes

a generic set of link variables, possibly empty. Table 1 pro-
vides examples of important graph queries. We distinguish
the following query types.



Query Name
P(A[u, v]|X,A− {(A[u, v]}) Single Link Prediction from remaining graph
P(A[u, v]|X{u,v}) Single Link Prediction from attributes only
P(A{u}↔V |X ,A{u}↔V ) Predict Node Neighbourhood
P(AU↔U ,XU |XU ,AU↔U , AU↔U ) Graph Completion

Table 1: Examples of Graph Prediction Tasks Formulated as Relational Queries

(a) Single Link Prediction from remaining
graph

(b) Single Link Prediction from attributes
only

(c) Predict Node Neighbourhood of a sin-
gle node

Figure 4: Illustrations of Inductive Link Prediction Queries.

• Given a partition of nodes into observed training nodes
and unobserved test nodes, a query is inductive if a test
node appears in the target.

• A query is attribute-complete if for each node i, the ev-
idence or the target contains either all or no attribute of i.
(I.e., for each i, and attributes j1, j2, if xi[j1] appears in
E resp. Y , then xi[j2] appears in E resp. Y .)

Link prediction queries are typically attribute-complete
(cf. Table 1), and node classification queries are not. In the
next section we describe a general procedure for construct-
ing a CVAE for any attribute-complete link prediction query
given an inductively trained VGAE, without further training.
CVAEs can be used to answer both inductive queries and
purely transductive link prediction queries, where all nodes
are included in the training data. While our theory is gen-
eral, our evaluation focuses on inductive link prediction to
address the current research challenges. Figure 4 illustrates
examples of important ILP queries.

CVAE Construction for Graph Queries
The cELBO for a graph query is given by

ln(p(Y |E)) ≥
Ez∼q(Z|E,Y )

[
ln p(Y |z)

]
−KLD

(
q(Z|E,Y )||p(Z|E)

)
(2)

where ZM×d represents a matrix of embeddings for all
M nodes that appear in the query (both target and evidence).
Equation (2) follows from Equation (1) together with the
fact that target variables are independent of evidence given
a node representations z, which is implied by the generative
model of Figure 2. The cELBO computed by a CVAE archi-
tecture was designed for “fill-in” tasks that aim to complete
a partially specified structure (Sohn, Lee, and Yan 2015; Do-
ersch 2016). Sohn et al. showed how the cELBO approx-
imation can be used to estimate a joint distribution over an
image completion given a partial image; a new contribution
of our work is to evaluate it for graph completion.

CVAE Architecture
We now discuss how to compute the cELBO with a recog-
nition network and a prior network. We observe that for an
attribute-complete graph query, the evidence E and the con-
junction E,Y each describe an attribute-complete subgraph
(given a closed-world assumption that unspecified links are
absent). Since the VGAE uses an inductive encoder-decoder,
we can apply it both as prior network to compute p(Z|E)
and as recognition network to compute q(Z|E,Y ). The
next section contains the precise equations. An important is-
sue in inductive graph learning is whether the embeddings
of observed training nodes should be updated given new test
nodes (Hamilton, Ying, and Leskovec 2017). In our CVAE
setting, we consider three approaches.

Separate The prior and recognition networks compute em-
beddings separately.

Sequential Evidence node embeddings from the prior net-
work are used as initialization in the recognition network,
which updates both evidence and test node embeddings.

Transfer Evidence node embeddings from the prior net-
work are transferred to the recognition network, which
updates only target node embeddings.

In the separate design, the prior network is used only to
compute the KLD term of the cELBO. In the sequential and
transfer designs, additionally the output of the prior network
affects the output of the recognition network. Figure 5 illus-
trates the sequential design, the most complex option.

The cELBO (2) clarifies the trade-offs associated with
the different update methods:

1. The transfer method has the least KLD term (namely 0)
and also, we expect, the least reconstruction likelihood
since it constrains the recognition network the most.

2. Separating the prior and recognition networks constrains
the recognition network the least. We expect the largest
reconstruction likelihood and the largest KLD term.



3. The sequential method is intermediate: Initialization reg-
ularizes evidence node embeddings from the recognition
network to be similar to those from the prior network. We
expect the reconstruction likelihood and the KLD term to
lie between those of the separate and transfer methods.

evidence prior network 
graph encoder evidence embeddings 

target recognition network 
graph encoder evidence and target embeddings 

Figure 5: Sequential Design of the Conditional VAE. The
VGAE encoder is used for both the prior and the recognition
networks.

CVAE Implementation
Equations for the Prior Network Let E = (X,A) be
the evidence to be encoded. The modular design of the gen-
erative VGAE encoder makes it easy to extend it to attribute-
complete evidence as follows: (1) If the node attributes Xi

are specified in the evidence, apply the attribute encoder to
compute Z0,i, the initial embedding of node i. (2) If the ev-
idence specifies no attribute information for node i, use the
VAE prior p(Z) as initial embedding. (3) Apply the link en-
coder to the initial embeddings. are as follows. Let Z0,i de-
note an initial embedding of node i; the node embeddings
are stacked in a matrix Z0.

Z0,i ∼
{
pφ(Z0,i|Xi) if Xi ⊆X

p(Z) otherwise

p(Z|X,A) = pθ(Z|A,Z0) (3)

Equations for the Recognition Network
We write q(Z|Y ,E) for the distribution that represents the
output of the recognition network. In the separate design, we
run the encoder (3) on the joint (Y ,E) information (missing
node attributes are handled as in the prior network):

q(Z|Y ,E) = qϕ(Z|Y ,E) separate design
In the transfer/sequential design, the initial embeddings

for the recognition network are the evidence embeddings:

Zp ∼ p(Z|E).

In link prediction queries, only the evidence contains at-
tribute information (i.e., XY is empty), which was already
encoded by the attribute encoder in the prior network. The
link encoder is therefore sufficient to update all embeddings
for sequential recognition.

q(Z|Y ,E) = pθ(Z|A,Zp) sequential design

where A = (AY ,AE) is the union of all links specified
in the target and evidence jointly.

Transfer recognition updates only the target node embed-
dings.

q(ZY |Y ,E) = pθ(Z
Y |A,Zp)

q(ZE |Y ,E) = p(ZE |E) transfer design

Here the query node embeddings are partitioned as Z =
(ZE ,ZY ) where ZE comprises embeddings for nodes
mentioned in the query evidence, and ZY the remaining
nodes (mentioned in the target but not in the query).

Experimental Design
We plan to perform the following experiments in future
work:

Inductive Generative Graph Learning We will evalu-
ate different settings of the GraphSage architecture (Hamil-
ton, Ying, and Leskovec 2017) for inductively training a
VGAE, especially different neighborhood aggregation op-
erators. Metrics include the training data ELBO as well as
the downstream performance on ILP query answering. Sup-
porting a large space of ILP queries allows us to examine the
strengths and weaknesses of different inductive graph learn-
ing methods.

Inductive Link Prediction Our experiments will evalu-
ate different methods for updating prior network embed-
dings, which is the main design choice in our CVGAE con-
struction. Several recent papers provide strong baselines for
ILP with single target links (Hao et al. 2020; Teru, De-
nis, and Hamilton 2020; Zhang and Chen 2019). We can
directly compare our inference from a single model to the
predictive accuracy of these customized solutions. For novel
ILP queries that target multiple links, we can evaluate our
CVAE approach by the likelihood it assigns to ground truth
on test links. One of the advantages of variational inference
is that it supports inference through sampling (e.g. find the
most likely neighbourhood of a new node through sampling
subgraphs). We will evaluate how well variational sampling
supports multiple link prediction.

Conclusion
Graph query answering allows users to pose a wide range
of link prediction queries through inference from a single
model. Our work in progress describes a neural approach to
graph query answering. After training a VGAE inductively,
we can dynamically construct a CVAE for a given user
query, which approximates the conditional query probabil-
ity. A major design issue for inductive learning is how to up-
date training node embeddings when making test node pre-
dictions (Hamilton, Ying, and Leskovec 2017). The CVAE
framework provides a new perspective on this issue: Differ-
ent update strategies correspond to different ways of con-
necting the prior and recognition networks, and to optimiz-
ing different components of the conditional ELBO. Induc-
tive graph query answering has the potential to be an easy-
to-use baseline with competitive accuracy for many practi-
cally useful tasks.
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