Ignorability for categorical data

Manfred Jaeger
Institut for Datalogi
Aalborg Universitet
Fredrik Bajers Vej 7, DK-9220 Aalborg Ø

Summary

We study the problem of ignorability in likelihood-based inference from incomplete categorical data. Two versions of the coarsened at random assumption (car) are distinguished, their compatibility with the parameter distinctness assumption is investigated, and several conditions for ignorability that do not require an extra parameter distinctness assumption are established.

It is shown that *car* assumptions have quite different implications depending on whether the underlying complete-data model is saturated or parametric. In the latter case, *car* assumptions can become inconsistent with observed data.

Keywords: Categorical data, Coarse data, Contingency tables, Ignorability, Maximum likelihood inference, Missing at random, Missing values.

1 Introduction

In a sequence of papers Rubin (1976), Heitjan and Rubin (1991) and Heitjan (1994, 1997) have investigated the question under what conditions a mechanism that causes observed data to be incomplete or, more generally, coarse, can be ignored in the statistical analysis of the data. The key condition that has been identified is that the data should be missing at random (mar), respectively coarsened at random (car). Similar conditions were independently proposed by Dawid and Dickey (1977). A second condition needed in Rubin's (1976) derivation of ignorability is parameter distinctness (pd).

A case of particular practical interest is the one of incomplete or coarse categorical data. Traditionally associated with the analysis of contingency tables in terms of log-linear models, categorical data today also plays an important role in learning probabilistic models for artificial intelligence applications (Jordan 1999). For these applications graphical models or Bayesian networks are used (Darroch,

Lauritzen & Speed 1980, Lauritzen & Spiegelhalter 1988, Cowell, Dawid, Lauritzen & Spiegelhalter 1999). Incomplete data here is particularly prevalent, and the analysis of Rubin and Heitjan is widely cited in the field.

In this paper we take a closer look at the way ignorability is established for likelihood-based inference through the car and pd assumptions. It is found that one has to distinguish a weak version of car that is given as a condition on the joint distribution of complete and coarse data, and a strong version of car that is given as a condition on the conditional distribution of the coarse data. The two versions of car lead to quite different theoretical results and practical implications for likelihood-based inference. We consider in detail the dependencies between the car and the pd assumption, and find that for weak car these two assumptions are incompatible unless further assumptions on the parameter of interest, or on the coarsening process are made. In contrast, pd is implied by strong car (Section 3). For the case of an underlying saturated complete-data model ignorability results can be derived from weak car alone without making the pd assumption. Our main result identifies the maxima of the observed-data likelihood under either car assumption as exactly those complete-data distributions that are compatible with the car assumption and the observed data (Section 4.1). For non-saturated completedata models no analogous results hold. Even for very simple parametric models car becomes a testable assumption that can be rejected against an alternative hypothesis (Section 4.2).

2 Coarse data models

We use a very general and abstract model for categorical data: complete data is taken to consist of realizations x_1, \ldots, x_N of independent identically distributed random variables X_1, \ldots, X_N that take values in a finite set $W = \{w_1, \ldots, w_n\}$. The w_i can be the cells of a contingency table, for instance. The distribution of the X_i is assumed to belong to a parametric family $\{P_\theta \mid \theta \in \Theta\}$, where $\Theta \subseteq \mathbb{R}^k$ for some $k \in \mathbb{N}$. For this paper the analytic form of a parametric family will not be important, and only the subset of distributions contained in the family is relevant. For that reason we may generally assume that

$$\Theta \subseteq \Delta^n := \{ (p_1, \dots, p_n) \in [0, 1]^n \mid \sum p_i = 1 \}$$

with

$$P_{\theta}(w_i) = p_i \quad (\theta = (p_1, \dots, p_n) \in \Theta).$$

Any $\Theta \subseteq \Delta^n$ is called a *complete-data* model. $\Theta = \Delta^n$ is the *saturated* complete-data model. In the saturated model, as well as in most of the important parametric models for categorical data (e.g. log-linear models), different parameters θ, θ' may define distributions $P_{\theta}, P_{\theta'}$ with different sets of support. Most of the results of this paper address difficulties that arise out of this.

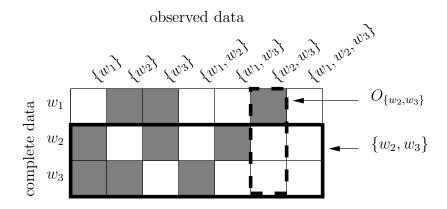


Figure 1: Coarse data space

When data is incomplete, then the exact value x_i of X_i is not observed. According to the general coarse data model of Heitjan and Rubin (1991) one observes instead a subset U_i of W. More specifically, Heitjan and Rubin model coarse data by introducing additional coarsening variables G_i , and taking U_i to be a function $Y(x_i, g_i)$ of the complete data x_i and the value g_i of the coarsening variable. In the following definition we take a slightly different approach, and model the coarsening process directly by a joint distribution of X_i and the observed coarse data U_i . For categorical data this is simpler, and avoids a sometimes artificial construction of a suitable coarsening variable.

Definition 2.1 Let $W = \{w_1, \dots, w_n\}$. The coarse data space for W is $\Omega(W) := \{(w, U) \mid w \in W, U \subseteq W : w \in U\}$.

When the specific reference to W is not needed, we write Ω for $\Omega(W)$. An element $(w,U) \in \Omega$ stands for the event that the true value of a W-valued random variable X is w, and the coarse value U is observed. A subset $U \subseteq W$ defines two different subsets in Ω : $O_U := \{(w,U) \in \Omega \mid w : w \in U\}$, which is the event that U is observed, and the event $\{(w,U') \in \Omega \mid w,U' : w \in U\}$ that the value of X lies in U (and some U' is observed). This latter subset of Ω is simply denoted by U, and is not strictly distinguished from U as an event in the sample space W. Figure 1 illustrates these definitions for a 3-element complete-data space $W = \{w_1, w_2, w_3\}$. The elements of $\Omega(W)$ correspond to the unfilled cells in this graphical representation. For $U = \{w_2, w_3\}$ the events O_U and U (as a subset of Ω) are outlined.

A distribution P on Ω is parameterized by the parameters θ defining the marginal distribution on W, and parameters

$$\lambda_{w,U} := P((w,U) \mid w) \qquad ((w,U) \in \Omega)$$

defining the coarsening process.

		$ heta^{(i)}$	$\{w_1\}$	$\{w_2\}$	$\{w_3\}$	$\lambda _{\left(i ight) }\left\{ w_{1},w_{2} ight\}$	$\{w_1,w_3\}$	$\{w_2,w_3\}$	$\{w_1, w_2, w_3\}$
i = 1	w_1 w_2	0	[1/3]	0		[1/3] 1/3	[0]	1/3	[1/3] 1/3
	$\overline{w_3}$	0			[1/3]	,	[0]	[1/3]	[1/3]
	w_1	1/2	0			2/3	0		1/3
i=2	w_2	0		[1/3]		[2/3]		[0]	[0]
	w_3	1/2			0		0	2/3	1/3
	w_1	1/3	1/3			1/3	0		1/3
i = 3	w_2	1/3		0		1/3		1/3	1/3
-	w_3	1/3			1/3		0	1/3	1/3

Table 1: Parameters for distributions $P^{(1)}, P^{(2)}, P^{(3)}$

Example 2.2 Table 1 specifies distributions $P^{(i)}$ (i = 1, 2, 3) on $\Omega(\{w_1, w_2, w_3\})$ through parameters $\theta^{(i)}$ on W and conditional probabilities $\lambda^{(i)}$. For w with $P_{\theta}(w) = 0$ parameters $\lambda_{w,U}$ are shown in brackets. Changing these parameters to arbitrary other values just leads to a different version of the conditional distribution of coarse observations given complete data, and has no influence on the joint distribution.

As in this example, we generally assume that parameters $\lambda_{w,U}$ exist even when $P_{\theta}(w) = 0$ (rather than treating them as undefined), because in that way the parameter space Λ^n for the λ -parameters does not depend on θ :

$$\Lambda^{n} := \{ (\lambda_{w,U})_{w \in W, U \subseteq W: w \in U} \mid \lambda_{w,U} \in [0,1]; \ \forall w : \sum_{U: w \in U} \lambda_{w,U} = 1 \}.$$

Any subset $\Sigma \subseteq \Delta^n \times \Lambda^n$ is called a *coarse data model*. Such a model encodes assumptions both on the underlying complete data distribution and the coarsening process. The complete-data model underlying Σ is

$$\Theta = \{ \theta \in \Delta^n \mid \exists \lambda : (\theta, \lambda) \in \Sigma \}.$$

We sometimes write $\Sigma(\Theta)$ for Σ to emphasize the underlying complete-data model. We denote with $\Sigma_{sat}(\Theta) = \Theta \times \Lambda^n$ the saturated coarsening model with underlying Θ .

A sample of coarse data items $\mathcal{U} = U_1, \dots, U_N \ (U_i \subseteq W)$ is interpreted with respect to a coarse data model as observations of events O_{U_i} in Ω , and gives rise

to the *observed-data likelihood* for θ and λ :

$$L_{OD}(\theta, \lambda \mid \mathcal{U}) := \prod_{i=1}^{N} P_{\theta, \lambda}(O_{U_i}). \tag{1}$$

When ignoring the coarsening process, the data items U_i are simply interpreted as subsets of W, and give rise to the *face-value likelihood* (Dawid & Dickey 1977) for θ :

$$L_{FV}(\theta \mid \mathcal{U}) := \prod_{i=1}^{N} P_{\theta}(U_i). \tag{2}$$

3 Ignorability

The question of ignorability is under what conditions inferences about θ based on the face-value likelihood will be the same as obtained from the observed-data likelihood. These conditions will depend on the inference methods used (Rubin 1976). Here we focus on the problem of ignorability for likelihood-based inference, with a special emphasis on maximum likelihood estimation, which plays an important role in practice through the widespread use of the EM algorithm (Dempster, Laird & Rubin 1977, McLachlan & Krishnan 1996).

For likelihood-base inference about θ , the observed-data likelihood will typically be reduced to the *profile-likelihood*

$$L_{P,\Sigma}(\theta \mid \mathcal{U}) := \max_{\lambda:(\theta,\lambda)\in\Sigma} L_{OD}(\theta,\lambda \mid \mathcal{U}). \tag{3}$$

To make the profile-likelihood well-defined for all θ , we restrict ourselves to models Σ for which $\{\lambda \mid (\theta, \lambda) \in \Sigma\}$ is closed for every $\theta \in \Theta$, so that the maximum in (3) is attained. In our notation we make explicit that the profile-likelihood is not only a function of θ and \mathcal{U} , but also of the coarse data model Σ .

Moving from the observed-data likelihood to the profile-likelihood enables us to treat inference both with and without taking the coarsening process into account as inference with a likelihood function of only the parameter of interest, θ . In particular, we obtain succinct formulations of ignorability questions: under what conditions on Σ are likelihood ratios $L_{P,\Sigma}(\theta)/L_{P,\Sigma}(\theta')$ and $L_{FV}(\theta)/L_{FV}(\theta')$ equal for all θ, θ' ; under what conditions are $L_{P,\Sigma}$ and L_{FV} maximized by the same values $\theta \in \Theta$?

In the following we formulate the car and parameter distinctness assumptions as such modeling assumptions on Σ . In the case of car it turns out that we must distinguish two different versions.

Definition 3.1 The data is weakly coarsened at random (w-car) according to $P_{\theta,\lambda}$, if for all $U \subseteq W$ and all $w, w' \in U$:

$$P_{\theta}(w) > 0, P_{\theta}(w') > 0 \quad \Rightarrow \quad \lambda_{w,U} = \lambda_{w',U}.$$
 (4)

Definition 3.2 The data is strongly coarsened at random (s-car) according to $P_{\theta,\lambda}$, if for all $U \subseteq W$ and all $w, w' \in U$:

$$\lambda_{w,U} = \lambda_{w',U}.\tag{5}$$

The difference between weak and strong car, thus, is that s-car also imposes a restriction on conditional probabilities $P_{\theta,\lambda}(O_U \mid w)$ when P(w) = 0. This is the version of car used by Gill et al. (1997) for categorical data. Underlying this version of car is the notion of car being a condition on the coarsening mechanism alone, which must be formulated without reference to the underlying complete-data distribution. Weak car, on the other hand, appears to be the more appropriate version when car is seen as a condition on the joint distribution of complete and coarsened data.

Gill et al. (1997, p.274) also give a definition for car in general sample spaces. In contrast to their definitions in the discrete setup, that definition reduces for finite sample spaces to w-car, not s-car. They pose as an open problem whether (in the terminology established by our preceding definitions) it is always possible to turn a w-car-model into an s-car-model by a suitable setting of the $\lambda_{w,U}$ -parameters for those w with $P_{\theta}(w) = 0$. Our next example shows that this is not the case.

Example 3.3 All distributions in table 1 are w-car, but only $P^{(1)}$ and $P^{(3)}$ are s-car: to check the w-car condition it only is necessary to verify that all unbracketed $\lambda_{w,U}$ in a column are pairwise equal. For s-car also equality of the bracketed parameters is required. This condition is violated in the last two columns for $P^{(2)}$. Moreover, it is not possible to replace the bracketed $\lambda^{(2)}$ -values with different conditional probabilities in a way that s-car is satisfied, because the conditional probabilities for the observations $\{w_1, w_2\}$, $\{w_2, w_3\}$ and $\{w_1, w_2, w_3\}$ would have to add up to 5/3.

In the following we write car when we wish to refer uniformly to both versions of car, e.g. in definitions that can be analogously given for both versions, or in statements that hold for both versions.

When $P_{\theta,\lambda}$ satisfies car we denote parameters $\lambda_{w,U}$ simply with λ_U . In the case of w-car this denotes the parameter $\lambda_{w,U}$ common for all w of positive probability. When $P_{\theta}(U) = 0$, then λ_U is not well-defined for w-car. We denote with $\Sigma_{car}(\Theta)$ the subset of $\Sigma_{sat}(\Theta)$ consisting of those parameters according to which the data is car. For $\theta \in \Theta$ we denote with $\Lambda_{w\text{-}car}(\theta)$ the set of $\lambda \in \Lambda^n$ that satisfy (4). Thus, $\Sigma_{w\text{-}car}(\Theta) = \{(\theta, \lambda) \mid \theta \in \Theta, \lambda \in \Lambda_{w\text{-}car}(\theta)\}$. From Definition 3.1 it follows that support $(P_{\theta}) \subseteq \text{support}(P_{\theta'})$ implies $\Lambda_{w\text{-}car}(\theta) \supseteq \Lambda_{w\text{-}car}(\theta')$. For s-car we can simply define the set $\Lambda_{s\text{-}car}$ of coarsening parameters that satisfy (5), and have $\Sigma_{s\text{-}car}(\Theta) = \Theta \times \Lambda_{s\text{-}car}$.

The following definition provides an important alternative characterization of w-car.

Definition 3.4 $P_{\theta,\lambda}$ satisfies the fair evidence condition if for all w, U with $w \in U$

$$P_{\theta,\lambda}(O_U) > 0 \implies P_{\theta,\lambda}(w \mid O_U) = P_{\theta}(w \mid U).$$
 (6)

The fair evidence condition is necessary to justify updating a probability distribution by conditioning when an observation is made that establishes the actual state to be a member of U (Grünwald & Halpern 2003). We now obtain:

Theorem 3.5 The following are equivalent for $P_{\theta,\lambda}$

- (a) $P_{\theta,\lambda}$ satisfies w-car
- (b) $P_{\theta,\lambda}$ satisfies the fair evidence condition
- (c) for all w, U with $w \in U$ and $P_{\theta}(w) > 0$:

$$P_{\theta,\lambda}(O_U \mid w) = P_{\theta,\lambda}(O_U)/P_{\theta}(U).$$

Proof:

(a) \Rightarrow (b): If $P_{\theta,\lambda}(O_U \mid w) = P_{\theta,\lambda}(O_U \mid w')$ for all $w, w' \in U$ with $P_{\theta}(w), P_{\theta}(w') > 0$, then this value is equal to $P_{\theta,\lambda}(O_U \mid U)$. Assume that $P_{\theta}(w) > 0$ (otherwise there is nothing to show for (6)). Using $P_{\theta,\lambda}(U \mid O_U) = 1$, then: $P_{\theta,\lambda}(w \mid O_U) = P_{\theta,\lambda}(O_U \mid w)P_{\theta}(w)/P_{\theta,\lambda}(O_U) = P_{\theta,\lambda}(O_U \mid U)P_{\theta}(w)/P_{\theta,\lambda}(O_U) = P_{\theta,\lambda}(U \mid O_U)P_{\theta}(w)/P_{\theta}(U) = P_{\theta}(w \mid U)$.

(b)
$$\Rightarrow$$
(c): Let $w \in U$ with $P_{\theta}(w) > 0$. Then $P_{\theta,\lambda}(O_U \mid w) = P_{\theta,\lambda}(w \mid O_U)P_{\theta,\lambda}(O_U)/P_{\theta}(w) = P_{\theta}(w \mid U)P_{\theta,\lambda}(O_U)/P_{\theta}(w) = P_{\theta,\lambda}(O_U)/P_{\theta}(U)$.
(c) \Rightarrow (a): obvious.

Example 3.6 To check the fair evidence condition for the distributions of table 1, one has to verify that for each observation O_U , normalizing all non-bracketed entries in the λ -column for O_U yields the conditional distribution of P_{θ} on U.

One might suspect, that one can also obtain a 'strong fair evidence condition' by considering the normalization of both the bracketed and the un-bracketed λ -entries, and that this strong version of the fair evidence condition would be equivalent to s-car. However, already for $P^{(1)}$ (which is s-car), we see that for $U = \{w_1, w_2\}$ the normalization of the column for O_U gives (1/2, 1/2) on U, which is not $P_{\theta}(\cdot \mid U)$.

Gill et al. (1997, p.260) claim the equivalence of the fair evidence condition and s-car. However, as our results show, fair evidence is equivalent to w-car, not s-car (the error in the proof of (Gill, van der Laan & Robins 1997) lies in an (implicit) application of Bayes rule to conditioning events of zero probability). A correct proof of the equivalence (a) \Leftrightarrow (b) also is given by Grünwald and Halpern (2003). We consider the equivalence with the fair evidence condition to be an important point in favor of w-car as opposed to s-car.

Weak and strong *car* are modeling assumptions that identify certain coarse data distributions for inclusion in our model. The second condition usually required for ignorability, parameter distinctness, on the other hand, is a global condition on the structure of the coarse data model.

Definition 3.7 A coarse data model Σ satisfies parameter distinctness (pd), iff $\Sigma = \Theta \times \Lambda$ for some $\Theta \subseteq \Delta^n$, $\Lambda \subseteq \Lambda^n$.

From car and pd ignorability for likelihood-based inference can be derived. We next restate Rubin's proof of this result, in a way that clearly separates the contributions made by car and pd. To begin, assume that $\Sigma \subseteq \Sigma_{car}$, and let $(\theta, \lambda) \in \Sigma$. Let \mathcal{U} be a sample with $P_{\theta}(U_i) > 0$ for i = 1, ..., N. Now

$$L_{OD}(\theta, \lambda \mid \mathcal{U}) = \prod_{i=1}^{N} P_{\theta, \lambda}(O_{U_i})$$

$$= \prod_{i=1}^{N} \sum_{w \in U_i} P_{\theta, \lambda}((w, U_i))$$

$$= \prod_{i=1}^{N} \lambda_{U_i} \sum_{w \in U_i} P_{\theta}(w)$$

$$= \prod_{i=1}^{N} \lambda_{U_i} P_{\theta}(U_i).$$

Thus

$$L_{P,\Sigma}(\theta \mid \mathcal{U}) = c_{\Sigma}(\theta, \mathcal{U}) L_{FV}(\theta \mid \mathcal{U}), \tag{7}$$

where

$$c_{\Sigma}(\theta, \mathcal{U}) := \max_{\lambda:(\theta,\lambda)\in\Sigma} \prod_{i=1}^{N} \lambda_{U_i}.$$
 (8)

Now assume, too, that pd holds, i.e. $\Sigma = \Theta \times \Lambda$. The right-hand side of (8) then simply becomes $\max_{\lambda \in \Lambda} \prod_{i=1}^{N} \lambda_{U_i}$, which no longer depends on θ . $L_{P,\Sigma}$ and L_{FV} , thus, differ only by a constant, so that inferences based on likelihood ratios of L_{FV} are justified.

This derivation also provides the answer to a somewhat subtle question that arises out of our analysis so far: we have assumed throughout that the coarse data will be analyzed correctly in the coarse data space Ω using the observed-data likelihood L_{OD} . However, interpreting the data in Ω means that we still are dealing with coarse data, because it now is seen to consist of observations of subsets O_U of Ω , not of complete observations $(w, U) \in \Omega$. The question then is whether we have gained anything: L_{OD} really is nothing but the face-value likelihood of incomplete data in the more sophisticated complete-data space Ω . Do we thus have to build a second-order coarse data model on top of Ω , and so on? The answer is no, because the coarsening process that turns complete data (w, U) from Ω into coarse observations O_U always is ignorable: in the second-order coarsening model we have $\lambda_{(w,U'),O_U} = 1$ iff U' = U, which means that here the data is car, and the factor $c(\theta, \mathcal{U})$ in (7) is always equal to 1.

How can this ignorability result be used in practice? In most cases it is appealed to simply by stating that the car and pd assumptions are made, and that

i	$L_{FV}(\theta^{(i)} \mid \mathcal{U})$	$L_{P,w\text{-}car}(\theta^{(i)} \mid \mathcal{U})$	$L_{P,s\text{-}car}(\theta^{(i)} \mid \mathcal{U})$
1	1	$1 \cdot 1/27$	$1 \cdot 1/27$
2	1/4	$1/4 \cdot 4/27$	$1/4 \cdot 1/27$
3	4/9	$4/9 \cdot 1/27$	$4/9 \cdot 1/27$

Table 2: Likelihood values

this justifies the use of the face-value likelihood. This, however, is a rather incomplete justification, because car and pd together are not well-defined modeling assumptions that determine a unique coarse data model Σ . To make the car and pd assumptions only means to assume that the coarse data model Σ is some subset of $\Sigma_{car}(\Theta)$, and has product form $\Theta' \times \Lambda'$. In the case of w-car, non-trivial further modeling assumptions may have to be made to ensure that pd holds, because Σ_{w - $car}(\Theta)$ itself usually is not a product. The following example illustrates the consequences for likelihood based inferences under w-car. From now on we write $L_{P,car}$ and c_{car} for $L_{P,\Sigma_{car}(\Theta)}$, respectively $c_{\Sigma_{car}(\Theta)}$. Similarly for $\Sigma_{sat}(\Theta)$. The underlying Θ will always be clear from the context.

Example 3.8 Let $\theta^{(i)}$, i = 1, 2, 3 as in example 2.2. Let \mathcal{U} be a sample consisting of $U_1 = \{w_1, w_2\}$, $U_2 = \{w_2, w_3\}$, $U_3 = \{w_1, w_2, w_3\}$. It is readily verified that for i = 1, 2, 3

$$c_{w\text{-}car}(\theta^{(i)}, \mathcal{U}) = \lambda_{U_1}^{(i)} \cdot \lambda_{U_2}^{(i)} \cdot \lambda_{U_3}^{(i)},$$

i.e. the coarsening parameters given in table 1 maximize $\lambda_{U_1} \cdot \lambda_{U_2} \cdot \lambda_{U_3}$ over all parameters in $\Lambda_{w\text{-}car}(\theta^i)$. It also follows immediately that $c_{s\text{-}car}(\theta^{(i)}, \mathcal{U}) = (1/3)^3 = 1/27$. With these c_{car} -values one obtains the likelihood values shown in table 2.

The first two columns of table 2 show that likelihood ratios of L_{FV} and $L_{P,w-car}$ do not coincide. Also the weaker ignorability condition of identical likelihood maxima does not apply: $L_{P,w-car}$ has the two maxima $P^{(1)}$ and $P^{(2)}$ (theorem 4.4 below will show that these are indeed global maxima of $L_{P,w-car}$), but of these only $P^{(1)}$ also maximizes L_{FV} . It is not surprising that ignorability here cannot be established on the basis of w-car alone, because Σ_{w-car} does not satisfy pd, and hence the factors $c_{w-car}(\theta, \mathcal{U})$ in (7) are different for different θ . However, in section 4.1 we will see that even on the basis of w-car alone a useful ignorability result can be obtained.

The s-car assumption, on the other hand, yields ignorability in the strong sense of equal likelihood ratios, because $\Sigma_{s-car} = \Theta \times \Lambda_{s-car}$ satisfies pd.

We thus obtain the following picture on the interdependence between the car and pd assumptions: s-car as the only modeling assumption on the coarsening process implies pd. To obtain ignorability, it therefore is sufficient to stipulate s-car. When one stipulates w-car as a modeling assumption, then additional assumptions are required to make the resulting model also satisfy pd. It must be realized that

pd is itself not a well-defined modeling assumption, because it does not identify any particular subset of distributions for inclusion in the model. A joint assumption of w-car and pd only is possible if suitable further restrictions on either the complete-data model Θ , or on the coarsening process are made. One possible restriction on Θ is to assume a fixed set of support for the distributions P_{θ} . If e.g. $\Theta \subseteq \{\theta \mid \text{support}(P_{\theta}) = W\}$, then $\Sigma_{w\text{-}car}(\Theta)$ has pd. However, in most cases it is not possible to determine a-priori the set of support of a categorical data distribution under investigation, and hence models allowing for different sets of support have to be used.

A further assumption one can make on the coarsening mechanism is that the data is completely coarsened at random (ccar) (Heitjan 1994). We do not give the precise definitions here, but only note that $\Sigma_{ccar}(\Theta) \subseteq \Sigma_{s\text{-}car}(\Theta)$ for any Θ , and that $\Sigma_{ccar}(\Theta)$ has pd. Thus ccar, too, guarantees ignorability when it is the only modeling assumption on the coarsening mechanism. However, ccar is considered to be an unrealistically strong assumption for most applications.

4 Ignorability without parameter distinctness

In the preceding section we have seen that standard ignorability conditions cannot be established from the w-car assumption alone, because Σ_{w -car} does not have pd. In this section we pursue the question whether some ignorability results can nevertheless be obtained from w-car. It turns out that in the case of the saturated complete data model $\Theta = \Delta^n$ a fairly strong ignorability result for maximum likelihood inference can be obtained (section 4.1). For non-saturated complete-data models s-car is needed for ignorability. However, with non-saturated models car becomes a testable assumption that based on the observed data may have to be rejected against the not-car alternative (section 4.2).

The following simple lemma pertains both to saturated and non-saturated complete-data models. For the formulation of the lemma we introduce the notation $c_{w\text{-}car}(V,\mathcal{U})$ for $c_{w\text{-}car}(\theta,\mathcal{U})$, where $\theta \in \Theta$ is such that $\operatorname{support}(P_{\theta}) = V \subseteq W$. As $c_{w\text{-}car}(\theta,\mathcal{U})$ depends on θ only through $\operatorname{support}(P_{\theta})$, this is unambiguous. Identity (7) then becomes

$$L_{P,w\text{-}car}(\theta \mid \mathcal{U}) = c_{w\text{-}car}(\text{support}(P_{\theta}), \mathcal{U})L_{FV}(\theta \mid \mathcal{U}). \tag{9}$$

The following lemma is immediate from the definitions.

Lemma 4.1 Let
$$V \subseteq V' \subseteq W$$
. Then $c_{w\text{-}car}(V, \mathcal{U}) \geq c_{w\text{-}car}(V', \mathcal{U})$.

4.1 The saturated model

For this section let $\Theta = \Delta^n$ be the saturated complete data model. We immediately obtain a weak ignorability result.

Theorem 4.2 Let $\hat{\theta} \in \Delta^n$ be a local maximum of $L_{FV}(\cdot \mid \mathcal{U})$. Then $\hat{\theta}$ also is a local maximum of $L_{P,w-car}(\cdot \mid \mathcal{U})$.

Proof: Let $\hat{\theta}$ be a local maximum of $L_{FV}(\theta \mid \mathcal{U})$. There exists a neighborhood $\tilde{\Theta}$ of $\hat{\theta}$ such that for every $\tilde{\theta} \in \tilde{\Theta}$ we have support $(P_{\tilde{\theta}}) \supseteq \text{support}(P_{\hat{\theta}})$. With (9) and Lemma 4.1 the theorem then follows.

We next show that local maxima of L_{FV} are, in fact, global maxima of $L_{P,w-car}$, thus establishing ignorability in a strong sense for maximum likelihood inference in the saturated model. For the characterization of the maxima of $L_{P,w-car}$ the following definitions are needed. The terminology here is adopted from Dempster (1967).

Definition 4.3 Let $\Omega(W)$ be as in Definition 2.1. We denote with \mathcal{O} the partition $\{O_U \mid \emptyset \neq U \subseteq W\}$ of Ω . Let m be a probability distribution on \mathcal{O} and P_{θ} a probability distribution on W. We say that m and P_{θ} are compatible, written $m \sim P_{\theta}$, if there exist parameters $\lambda \in \Lambda^n$, such that $P_{\theta,\lambda}(O_U) = m(O_U)$ for all $O_U \in \mathcal{O}$. We say that m and P_{θ} are car-compatible (written $m \sim_{car} P_{\theta}$) if there exists such a $\lambda \in \Lambda_{car}(\theta)$.

Theorem 4.4 Let \mathcal{U} be a set of data, m the empirical distribution induced by \mathcal{U} on \mathcal{O} . For $\hat{\theta} \in \Delta^n$ with support $(P_{\hat{\theta}}) = V \subseteq W$ the following are equivalent:

- (a) $m \sim_{w\text{-}car} P_{\hat{\theta}}$.
- (b) $\hat{\theta}$ is a global maximum of $L_{P,w\text{-}car}(\theta \mid \mathcal{U})$ in Δ^n .
- (c) $L_{FV}(\hat{\theta} \mid \mathcal{U}) > 0$, and $\hat{\theta}$ is a local maximum of $L_{FV}(\theta \mid \mathcal{U})$ within $\{\theta \in \Delta^n \mid \text{support}(P_{\theta}) = V\}$.

Theorem 4.4 established ignorability for maximum likelihood inference in a slightly different version from our original formulation in section 3: it is not the case that $L_{P,w-car}$ and L_{FV} are (globally) maximized by the same $\theta \in \Theta$; however, maximization of L_{FV} will nevertheless produce the desired maxima of $L_{P,w-car}$, and, moreover, only a local maximum of L_{FV} must be found.

The proof of the theorem is preceded by two lemmas. The first one characterizes maxima of the observed-data likelihood in the saturated coarse data model.

Lemma 4.5 Let \mathcal{U} and m be as in Theorem 4.4. For $\hat{\theta} \in \Delta^n$ then the following are equivalent

- (i) $m \sim P_{\hat{\theta}}$
- (ii) $\hat{\theta}$ is a global maximum of $L_{P,sat}(\theta \mid \mathcal{U})$.

Proof: The likelihood $L_{OD}(\theta, \lambda \mid \mathcal{U})$ only depends on the marginal of $P_{\theta,\lambda}$ on \mathcal{O} , and is thus maximized whenever this marginal agrees with the empirical distribution.

The equivalence (i) \Leftrightarrow (ii) follows, because for every empirical distribution m there exists at least one parameter $(\hat{\theta}, \hat{\lambda}) \in \Sigma_{sat}(\Delta^n)$ such that the marginal of $P_{\hat{\theta}, \hat{\lambda}}$ on \mathcal{O} is m.

Lemma 4.6 The following are equivalent

(i) $m \sim_{w\text{-}car} P_{\theta}$.

(ii) for all
$$w \in W$$
: $P_{\theta}(w) > 0 \Rightarrow \sum_{U:w \in U} \frac{m(O_U)}{P_{\theta}(U)} = 1$.

The proof follows easily from Theorem 3.5.

Proof of Theorem 4.4: (a) \Rightarrow (b): $m \sim_{w\text{-}car} P_{\hat{\theta}}$ trivially implies $m \sim P_{\hat{\theta}}$. By Lemma 4.5 $L_{P,sat}$ is maximized by $\hat{\theta}$. Also, $L_{P,sat}(\theta \mid \mathcal{U}) \geq L_{P,w\text{-}car}(\theta \mid \mathcal{U})$ with equality for $\theta = \hat{\theta}$. Hence, $\hat{\theta}$ maximizes $L_{P,w\text{-}car}$.

(b) \Rightarrow (c): immediate from (9).

(c) \Rightarrow (a): Recall that $\theta \in \Delta^n$ is written as $\theta = (p_1, \dots, p_n)$ with $p_i = P_{\theta}(w_i)$. Let $D := \{\theta \in \Delta^n \mid L_{FV}(\theta \mid \mathcal{U}) > 0\}$. For $\theta \in D$ then

$$\frac{1}{N}logL_{FV}(\theta \mid \mathcal{U}) = \sum_{U \subseteq W: m(O_U) > 0} m(O_U)logP_{\theta}(U) = \sum_{U \subseteq W: m(O_U) > 0} m(O_U)log(\sum_{i: w_i \in U} p_i).$$

This is differentiable on D, and with $\mathcal{U}(w_i) := \{U \subseteq W \mid m(O_U) > 0, w_i \in U\}$:

$$\frac{\partial \frac{1}{N} log L_{FV}(\theta \mid \mathcal{U})}{\partial p_i} = \sum_{U \in \mathcal{U}(w_i)} m(O_U) (\sum_{j: w_j \in U} p_j)^{-1} = \sum_{U \in \mathcal{U}(w_i)} \frac{m(O_U)}{P_{\theta}(U)}$$

(the sum on the right hand side being interpreted as 0 when $\mathcal{U}(w_i) = \emptyset$). For $\hat{\theta}$ as in (c) we have that $S(V) := \{\theta \in \Delta^n \mid \operatorname{support}(P_{\theta}) = V\} \subseteq D$, and the gradient of $(1/N)\log L_{FV}(\theta \mid \mathcal{U})$ is orthogonal to S(V) at $\hat{\theta}$. This can be expressed as the condition that for every $\theta' = (p'_1, \dots, p'_n) \in S(V)$

$$\sum_{i=1}^{n} \left(\sum_{U \in \mathcal{U}(w_i)} \frac{m(O_U)}{P_{\hat{\theta}}(U)} \right) (\hat{p}_i - p_i') = 0,$$

which is equivalent to

$$\sum_{i:w_i \in V} \left(\sum_{U \in \mathcal{U}(w_i)} \frac{m(O_U)}{P_{\hat{\theta}}(U)} \right) \hat{p_i} = \sum_{i:w_i \in V} \left(\sum_{U \in \mathcal{U}(w_i)} \frac{m(O_U)}{P_{\hat{\theta}}(U)} \right) p_i'.$$

This implies that $\sum_{U \in \mathcal{U}(w_i)} m(O_U)/P_{\hat{\theta}}(U)$ is a constant k that does not depend on w_i , and furthermore

$$k = k \sum_{i:w_i \in V} \hat{p_i} = \sum_{i:w_i \in V} \sum_{U \in \mathcal{U}(w_i)} \frac{m(O_U)}{P_{\hat{\theta}}(U)} \hat{p_i} = \sum_{U:m(O_U) > 0} \sum_{i:w_i \in U} \frac{m(O_U)}{P_{\hat{\theta}}(U)} \hat{p_i}$$
$$= \sum_{U:m(O_U) > 0} m(O_U) = 1.$$

Now (a) follows from Lemma 4.6.

We also remark that (a)-(c) in theorem 4.4 also are equivalent to

(d) $\hat{\theta}$ is a stationary point for the EM algorithm.

We do not give a formal proof here, but emphasize that in the current context we assume the saturated complete-data model, and thus in (d) also assume that the EM algorithm operates on the unrestricted parameter space Δ^n . Then the equivalence (a) \Leftrightarrow (d) easily follows from the equivalence of w-car and the fair evidence condition.

For s-car one obtains the following analogue of theorem 4.4.

Theorem 4.7 Let \mathcal{U} , m be as in theorem 4.4. For $\hat{\theta} \in \Delta^n$ the following are equivalent:

- (a) $m \sim_{s\text{-}car} P_{\hat{\theta}}$.
- (b) $\hat{\theta}$ is a global maximum of $L_{P,s-car}(\theta \mid \mathcal{U})$ in Δ^n .
- (c) $\hat{\theta}$ is a global maximum of $L_{FV}(\theta \mid \mathcal{U})$ in Δ^n .

The equivalence (b) \Leftrightarrow (c) here is immediate from the equality of likelihood ratios of $L_{P,s-car}$ and L_{FV} . The non-trivial implication is (c) \Rightarrow (a). It has (implicitly) been shown by Gill et al. (1997) in the proof of their first theorem.

Example 4.8 Let \mathcal{U} as in Example 3.8. Then $m(O_{U_i}) = 1/3$ for i = 1, 2, 3. $P^{(1)}$ and $P^{(2)}$ are w-car distributions with marginal m on \mathcal{O} . By theorem 4.4, $\theta^{(1)}$ and $\theta^{(2)}$ are global maxima of L_{P,w -car. $P^{(1)}$ also is s-car, and therefore $\theta^{(1)}$ a global maximum of L_{P,s -car.

In the preceding example we found a single maximum of $L_{P,s\text{-}car}$, and two distinct maxima of $L_{P,w\text{-}car}$. Gill et al. (1997) showed that for every m there exists θ with $m\sim_{s\text{-}car}P_{\theta}$, and θ is essentially unique (for any θ' with $m\sim_{s\text{-}car}P_{\theta'}$ it must be the case that $P_{\theta'}(U) = P_{\theta}(U)$ for all $U \in \mathcal{U}$). Thus, $L_{P,s\text{-}car}$ has an essentially unique maximum. For w-car we obtain the following result on the existence of maxima of $L_{P,w\text{-}car}$.

Theorem 4.9 Let \mathcal{U} and m be as in theorem 4.4. Let $V \subseteq W$ such that for all $U \subseteq W$

$$m(O_U) > 0 \Rightarrow V \cap U \neq \emptyset.$$
 (10)

Then there exists $\hat{\theta}$ with support $(P_{\hat{\theta}}) \subseteq V$ and $m \sim_{w-car} P_{\hat{\theta}}$.

Proof: From (10) it follows that $L_{FV}(\theta \mid \mathcal{U}) > 0$ for θ with support $(P_{\theta}) = V$. In particular, $L_{FV}(\theta \mid \mathcal{U})$ is not identically zero on the compact set $\{\theta \mid \text{support}(P_{\theta}) \subseteq V\}$, and attains a positive maximum at some $\hat{\theta}$. The theorem now follows from Theorem 4.4.

Theorem 4.4 in conjunction with Lemma 4.5 provides yet another ignorability result: maximization of L_{FV} will yield a parameter $\hat{\theta}$ with $m \sim P_{\hat{\theta}}$, and thus a global maximum of $L_{P,sat}$. Thus, the use of the face-value likelihood instead of the observed-data likelihood also is justified when we assume the saturated coarse data model $\Sigma_{sat}(\Delta^n)$. In other words, ignorability holds when the coarsening process is treated as completely unknown (and the saturated model also is assumed for the underlying complete data). However, it turns out that ignorability is not really the issue here, as maximum likelihood solutions for the observed-data likelihood in the model $\Sigma_{sat}(\Delta^n)$ can be found directly, without optimizing L_{FV} : Dempster (1967) gives an explicit construction of the set $\{\theta \in \Delta^n \mid m \sim P_{\theta}\}$, which briefly is as follows.

Consider any ordering $w_{i_1}, w_{i_2}, \ldots, w_{i_n}$ of the elements of W. Now transform the coarse data U_1, \ldots, U_N into a sample of complete data items by interpreting U_j as an observation of the first w_{i_n} in the given ordering that is an element of U_j . Let P_{θ} be the empirical distribution of this completed sample. By considering all possible orderings of W, one obtains in this way distributions $P_{\theta_1}, \ldots, P_{\theta_{n!}}$ on W. The set $\{\theta \in \Delta^n \mid m \sim P_{\theta}\}$ now is the convex hull of all these P_{θ_i} . Moreover, the empirical distribution of any completion of the data lies in the convex hull of the P_{θ_i} .

It thus is very easy to directly determine some maximal likelihood solutions of $L_{P,sat}$, simply as the empirical distribution of an arbitrary completion of the data. An explicit representations of all solutions is obtained by computing all P_{θ_i} .

The problem here is that the set $\{\theta \in \Delta^n \mid m \sim P_\theta\}$ typically will be very large (much larger than the set $\{\theta \in \Delta^n \mid m \sim_{car} P_\theta\}$), and therefore inferences based on the coarse data model $\Sigma_{sat}(\Delta^n)$ will be too weak for practical purposes. We thus see that making the *car* assumption really serves a second purpose besides justifying the use of the face-value likelihood: we need to make some assumptions on the coarsening mechanism, because otherwise our model will be too weak to support practically useful inferences.

Figure 2 summarizes some of our results in terms of our running example. Shown is the polytope Δ^3 with the potential lines of the face-value likelihood $L_{FV}(\cdot \mid \mathcal{U})$ for \mathcal{U} as in Example 3.8. The two distributions $P^{(1)}, P^{(2)}$ are marked by circles. They correspond to non-zero maxima of L_{FV} relative to distributions with

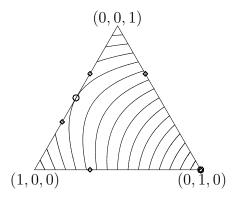


Figure 2: Summary of running example

the same set of support. Marked as diamonds are the distributions obtained from the extremal data completions for the five possible orderings of W. Their convex hull is the set of θ compatible with m.

From the results of this section we can also retrieve Gill et al.'s (1997) result that "car is everything", i.e. the car assumption cannot be rejected against the not-car alternative based on any observed coarse data (assuming an underlying saturated complete-data model). This is because by theorem 4.9 (and the corresponding result in (Gill et al. 1997) for s-car) there exists for any observed coarse data a car model with the observed marginal on \mathcal{O} . Gill et al. (1997) show that the same need not hold for infinite sample spaces. Further results on the non-testability of the car assumption in general sample spaces have been obtained by Cator (n.d.). In the next section we will see that car also becomes testable for finite sample spaces with a parametric complete-data model.

4.2 Non-saturated models

Most of the preceding ignorability results are no longer valid when the completedata model is not Δ^n . Only the weak ignorability result of Theorem 4.2 can be retained for a wide class of complete-data models.

Definition 4.10 A complete-data model $\{P_{\theta} \mid \theta \in \Theta\}$ is support-continuous, if for all $\theta \in \Theta$ there exists a neighborhood $G_{\theta} \subseteq \Theta$, such that support $(P_{\theta'}) \supseteq \text{support}(P_{\theta})$ for all $\theta' \in G_{\theta}$.

Virtually all natural parametric models are support continuous. The proof of Theorem 4.2 actually has established the following:

Theorem 4.11 Let $\{P_{\theta} \mid \theta \in \Theta\}$ be a support continuous complete-data model. Every local maximum $\hat{\theta} \in \Theta$ of $L_{FV}(\cdot \mid \mathcal{U})$ then is a local maximum of $L_{P,w\text{-}car}(\cdot \mid \mathcal{U})$.

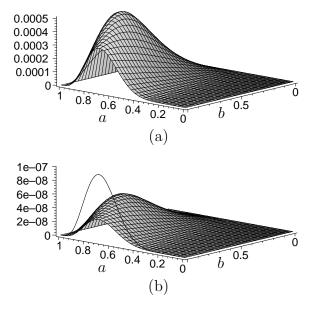


Figure 3: L_{FV} and $L_{P,w-car}$ in Example 4.12

The following example shows that other results of section 4.1 cannot be extended to parametric models.

Example 4.12 Let A and B be two binary random variables. Let $W = \{AB, A\bar{B}, \bar{A}B, \bar{A}B, \bar{A}\bar{B}\}$, where, e.g. $A\bar{B}$ represents the state where A=1 and B=0. We represent a probability distribution P on W as the tuple $(P(AB), P(A\bar{B}), P(\bar{A}B), P(\bar{A}B))$. Define

$$\Theta = \{\theta = (a, b) \mid a \in [0, 1], b \in [0, 1]\}$$

$$P_{\theta} = (ab, a(1 - b), (1 - a)(1 - b), (1 - a)b).$$

Now assume that the data \mathcal{U} consists of 6 observations of A (i.e. the set $\{AB, A\bar{B}\}$), 3 observations of B, 3 observations of \bar{B} , and 1 observation of $\bar{A}\bar{B}$.

Figure 3 (a) shows a plot of $L_{FV}(\theta \mid \mathcal{U})$. We can numerically determine the unique maximum as $\hat{\theta} \approx (.845, .636)$, which corresponds to $P_{\hat{\theta}} \approx (.54, .31, .05, .1)$. Restricted to the subset $\Theta_1 := \{\theta \in \Theta \mid 0 < a < 1, b = 1\}$ a local maximum is attained at $\theta^* \approx (.69, 1)$, which corresponds to $P_{\theta^*} \approx (.69, 0, 0, .31)$.

The set Θ_1 corresponds to the set of support $V = \{AB, \bar{A}\bar{B}\}$ of P_{θ} , i.e. $\theta \in \Theta_1 \Leftrightarrow \text{support}(P_{\theta}) = V$. Similarly, the set $\Theta_2 := \{\theta \in \Theta \mid 0 < a < 1, 0 < b < 1\}$ contains the parameters θ that define distributions with full set of support W. $L_{P,w\text{-}car}(\theta \mid \mathcal{U})$, therefore, is given by multiplying $L_{FV}(\theta \mid \mathcal{U})$ with $c_{w\text{-}car}(V,\mathcal{U})$ when $\theta \in \Theta_1$, and with $c_{w\text{-}car}(W,\mathcal{U})$ when $\theta \in \Theta_2$. For all $\theta \notin \Theta_1 \cup \Theta_2$ we obtain $L_{FV}(\theta \mid \mathcal{U}) = 0$, so that further constants $c_{w\text{-}car}(V' \mid \mathcal{U})$ do not matter. The approximate values for the relevant constants are $c_{w\text{-}car}(V,\mathcal{U}) \approx 0.0003$ and $c_{w\text{-}car}(W,\mathcal{U}) \approx 0.0001$.

A plot of $L_{P,w\text{-}car}(\theta \mid \mathcal{U})$ as given by (9) is shown in figure 3 (b). Note the discontinuity at the boundary between Θ_1 and Θ_2 due to the different factors

 $c_{w\text{-}car}(V,\mathcal{U})$ and $c_{w\text{-}car}(W,\mathcal{U})$. It turns out that the global maximum now is θ^* , rather than $\hat{\theta}$.

Theorem 4.4 allows us to analyze the situation more clearly. It is easy to see that P = (9/13, 0, 0, 4/13) is a distribution that is w-car-compatible with the empirical distribution m induced by \mathcal{U} . We find that $P = P_{\theta^*}$ for $\theta^* = (9/13, 1) = (0.6923, 1)$, which thus turns out to be the precise value of θ^* which initially was determined numerically. From Theorem 4.4 it now follows that P_{θ^*} has maximal $L_{P,w\text{-car}}$ -likelihood score even within the class of all distributions on W, so that not only is θ^* a global maximum in Θ , but no better solution can be found by changing the parametric complete-data model.

Under the s-car assumption the maximum likelihood estimate is $\hat{\theta}$. Thus, the two versions of car here lead to quite different inferences. There also is a fundamental difference with respect to testability: while θ^* is w-car-compatible with m, $\hat{\theta}$ is not s-car compatible with m. Consequently, the s-car hypothesis, but not the w-car hypothesis, can be rejected against the unrestricted alternative Σ_{sat} by a likelihood ratio test (when m is induced by a sufficiently large sample).

We can summarize the results for non-saturated models as follows: since $\Sigma_{s-car}(\Theta)$ satisfies pd for any parametric model Θ , ignorability for likelihood-based inference is guaranteed by s-car.

For w-car, even the weak ignorability condition that maximization of L_{FV} will give a maximum of L_{P,w - $car}$ does not hold. The apparent advantage of s-car has to be interpreted with caution, however: whenever a maximum $\hat{\theta}$ of L_{FV} maximizes L_{P,s - $car}$, but not L_{P,w - $car}$, then $P_{\hat{\theta}}$ cannot be s-car-compatible with m. Loosely speaking this means that we obtain ignorability for maximum likelihood inference through s-car but not through w-car only when the data contradicts the s-car assumption. The same data, on the other hand, might be consistent with w-car, but for inference under the w-car assumption the face-value likelihood has to be corrected with the c_{w -car-factors.

5 Conclusion

We can summarize the results of Section 3 and 4 as follows: ignorability for maximum likelihood inference and categorical data holds under either of the following four modeling assumptions: 1.) The w-car- assumption for the coarsening mechanism and additional assumptions, such that the resulting coarse data model satisfies pd. 2.) The s-car assumption as the sole assumption on the coarsening process. 3) The saturated complete-data model and w-car as the sole assumption on the coarsening process. 4) The saturated model both for the complete data and the coarsening mechanism (but here there are more efficient ways of finding likelihood maxima than maximizing the face-value likelihood). In particular, one must be aware of the fact that the joint assumption car + pd is ambiguous and can be

inconsistent. This is because pd is not a well-defined modeling assumption one is free to make, but a *model property* one has to ensure by other assumptions.

Overall the ignorability results obtained from s-car are somewhat stronger than those obtained from w-car. Points in favor of w-car, on the other hand, are its equivalence with the fair evidence condition, and the fact that it is invariant for different versions of the conditional distribution of observed (coarse) data. Furthermore, the w-car assumption can be consistent with a given parametric model and observed data when s-car is not (but not vice versa).

Acknowledgments

The author thanks James Robins and Richard Gill for valuable discussions that clarified the intricacies of the weak-car, strong-car relationship. The original motivation for this work was in part provided by Ian Pratt by suggesting a "fair evidence principle" for conditioning.

References

- Cator, E. (n.d.), On the testability of the CAR assumption, Submitted.
- Cowell, R. G., Dawid, A. P., Lauritzen, S. L. & Spiegelhalter, D. J. (1999), *Probabilistic Networks and Expert Systems*, Springer.
- Darroch, J., Lauritzen, S. L. & Speed, T. (1980), 'Markov fields and log-linear interaction models for contingency tables', *Biometrika*.
- Dawid, A. P. & Dickey, J. M. (1977), 'Likelihood and bayesian inference from selectively reported data', *Journal of the American Statistical Association* **72**(360), 845–850.
- Dempster, A. P. (1967), 'Upper and lower probabilities induced by a multivalued mapping', *Annals of Mathematical Statistics* **38**, 325–339.
- Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), 'Maximum likelihood from incomplete data via the EM algorithm', *Journal of the Royal Statistical Society, Ser. B* **39**, 1–38.
- Gill, R. D., van der Laan, M. J. & Robins, J. M. (1997), Coarsening at random: Characterizations, conjectures, counter-examples, in D. Y. Lin & T. R. Fleming, eds, 'Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis', Lecture Notes in Statistics, Springer-Verlag, pp. 255–294.
- Grünwald, P. & Halpern, J. (2003), 'Updating probabilities', J. of Artificial Intelligence Research 19, 243–278.

- Heitjan, D. F. (1994), 'Ignorability in general incomplete-data models', *Biometrika* 81(4), 701–708.
- Heitjan, D. F. (1997), 'Ignorability, sufficiency and ancillarity', *Journal of the Royal Statistical Society*, B **59**(2), 375–381.
- Heitjan, D. F. & Rubin, D. B. (1991), 'Ignorability and coarse data', *The Annals of Statistics* **19**(4), 2244–2253.
- Jordan, M. I., ed. (1999), Learning in Graphical Models, MIT Press.
- Lauritzen, S. L. & Spiegelhalter, D. J. (1988), 'Local computations with probabilities on graphical structures and their application to expert systems', *Journal of the Royal Statistical Society B* **50**(2), 157–224.
- McLachlan, G. & Krishnan, T. (1996), The EM Algorithm and Extensions, Wiley.
- Rubin, D. (1976), 'Inference and missing data', Biometrika 63(3), 581–592.