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Semantics SRL and GNN semantics

Directed SRL

Overall SRL semantics

V 7→ PV ∈ ∆G(V ,R)

via chain rule and atom independence assumption reduced to functions

FR : (V ,Pa(R), i) 7→ PV (R(i)|Pa(Rh)) ∈ [0, 1]

Inductive GNNs

Node embedding functions:

E : (V ,R, i) 7→ hm(i) ∈ Rd
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Semantics Commonalities and differences

Common ground

Abstracting from some non-fundamental differences (vectors vs. scalars, [0, 1] vs. R):

I A GNN is a conditional SRL model for a single probabilistic relation
I Multiple GNNs could define a full generative model (but without support of model checking

inference)
I Expressivity depends on SRL framework and GNN architecture to define functions FR , resp.

E .

Expressivity

Remember:
Every node property that can be expressed in the two-variable fragment of first-

order logic with counting quantifiers can be captured by an ACR-GNN. [Barceló et
al.,2020]

Every property (node, edge, hyperedge,. . . ) that can be expressed in first-order logic
can be captured by a probability formula [Jaeger, 1997]

Next up: every ACR-GNN can be expressed by probability formulas.
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GNN-2-RBN
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GNN-2-RBN Example: α1

From [Barceló et al.,2020]:

Input graphs defined by signature:

Rin = {blue, green, red, yellow, purple, edge}

Target concept to represent/learn:

α1(X) ≡ ∃[8,10]Y (blue(Y ) ∧ ¬edge(X ,Y ))

(in two-variable fragment of first-order logic with counting quantifiers)
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GNN-2-RBN GNN probability formula

I One-to-one mapping of
representation

I Matrix-vector level
specifications broken
down to the “scalar”
level

I GNN training ∼ RBN
learning (same
objective, same
gradients, . . . )
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GNN-2-RBN Example: learning curves

Learning the α1 target.

Training data: 5000 random graphs of size N ∈ 40..50 (data from [Barceló et al.]).

Pytorch geometric implementation
of ACR-GNN:

Primula implementation of
RBN encoding:

(blue: loss, red: accuracy (on training data); 20 epochs, 10 restarts with random parameter
initializations)

But: Primula takes much longer ...
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Neuro-Symbolic Integration
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Integration Neuro-Symbolic Integration

Low vs. high level

[R. Manhaeve et al.: DeepProbLog: Neural Probabilistic Logic Programming, 2018]:

I Neural: low-level perception
I Symbolic: high-level reasoning (logic, probabilities)

On the other side:

I High-level reasoning can be implemented via low level, high-dimensional optimization.
e.g. [Cameron et al.: Predicting Propositional Satisfiability via End-to-End Learning, 2020]

Integration

I Heterogeneous integration; E.g. DeepProbLog: combining a neural and a symbolic
component.

I Homogeneous integration: one seamless framework for all levels
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Integration RBN-GNN integration

GNN encodings as probability formulas allow construction of models that seamlessly integrate
probability formulas:

I that are defined (partly) by expert knowledge:
I complex “logic” (recall SBM)
I sparse parameterization

I that are entirely trained from (abundant) data:
I generic structure (number and dimensions of layers)
I high-dimensional parameterization

Learning and reasoning:

I Training of neural components can be outsourced to powerful GNN tools
I The resulting model is amenable to reasoning in an SRL framework
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Integration Example: MAP with α1

Making the α1 model generative:

Conditional (prediction) model for α1
given all other relations as input.

Generative model for node attributes
and label, given edge as input
Fyellow(X) = 0.18;

Fblue(X) = 0.26;

Fred(X) = 0.18;

Fgreen(X) = 0.18;
Fpurple(X) = 0.18;

MAP task: given observed α1 labels, what is the most probable configuration of the blue attribute?
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Integration Example: training GNN component

Training predictive model for α1 given attributes for 200 epochs (PyTorch):

100% accurate from epoch 50.
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Integration MAP inference

I Graph with observed
α1 relation (21 nodes)

I

I MAP for blue with
RBN-GNN learned
parameters (test
accuracy: 1.0).

åperfect accuracy on pri-
mary prediction task does
not guarantee high accu-
racy for other reasoning
tasks.
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Integration RBN/GNN integration

RBN features that enable a tight integration:

I Directed probabilisitc models ∼ forward propagation
I Central role of relational neighborhood aggregation
I Nested probability formulas ∼ deep neural architectures
I Arithmetic treatment of logical reasoning (Booleans turned into 0/1).

Note: focus here on message-passing GNNs; not e.g. recurrent GNNs.
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Aggregation
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Aggregation Aggregation and Combination

Central modeling element: aggregating (scalar) feature values from relational neighbors:

Aggregation

Input: multiset {|x1, . . . , xm} of real numbers. In GNN typically: aggregate by sum, mean, max,
min.

Combination

Input: multiset {|p1, . . . , pm|} of probability values. Common in SRL: combine by noisy-or:

noisy-or{|p1, . . . , pm|} = 1−
m∏

i=1

(1− pi )
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Aggregation Permutation Invariance

Aggregating feature values h(j) of i ’s neighbors. Compare:

agg{|h(j) | j ∈ Ni} = sum{|h(j) | j ∈ Ni}

vs.:

agg{|h(j) | j ∈ Ni} = E [i, :](h(1), . . . , h(n))T

(E [i, :]: i ’th row of adjacency matrix).

I Both definitions equivalent!
I Second version: specification in terms of matrices/vectors opens possibility that function can

be dependent on ordering of nodes
I Permutation invariance: aggregation functions defined must not be sensitive to node

orderings imposed by vector/matrix expressions
I Never been an issue in SRL: model specifications always at the level of sets/logical theories

(no order implied).
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Aggregation Universality

X -aggregators

X : set of possible feature values (usually X ⊆ R). An X -tuple aggregator is any function of the
form

f :
⋃
n∈N
X n → R.

Universality of Sum

If X is countable, then every permutation invariant X -tuple aggregator f can be written in the form

f (x1, . . . , xn) = ρ(
∑

i

φ(xi )).

for some φ : X → R and ρ : R→ R.

åpractical impact limited: the functions φ, ρ are not amenable to neural network representation.

[Zaheer, M. et al. Deep sets. 2017]

[Wagstaff, E. et al. On the limitations of representing functions on sets. 2019]
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Aggregation Injectivity and Expressivity

Core element of universality proof: construct φ such that

(x1, . . . , xn) =
∑

i

φ(xi ) ∈ R

is injective.

Injectivity of aggregation also a major concern for expressivity: mapping different feature sets (of
neighbors) to a different feature value (of node) means maximal discriminative power.

Fundamental Limitation

There does not exist a continuous injective function f : Rn → R if n > 1.

[L.EJ. Brouwer: Beweis der Invarianz des n-dimensionalen Gebiets. 1911]

åBut: this is for f : Rn → R. What about f : X n → R?
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Aggregation Almost a Positive Result

There exists a function f :
⋃

n∈N Rn → R such that

I f is continuous and permutation invariant
I f is injective on

⋃
n∈N Nn, and f :

⋃
n∈N Nn → N

Proof:

(similar strategy as in [Wagstaff, E. et al. 2019] )

Let p1, p2, p3, . . . = 3, 5, 7, . . . be an enumeration of the prime numbers.

Let x ∈ Rn

I first sort: ford : x 7→ x≤.
Ex: (2.7, 1.0, 0.7, 1.0, 5.8, 0.7) 7→ (0.7, 0.7, 1.0, 1.0, 2.7, 5.8)

I then encode: fprime : x≤ 7→
∏n

j=1 p
rj
j .

Ex: (0.7, 0.7, 1.0, 1.0, 2.7, 5.8) 7→ 30.750.771.0111.0132.7175.8

åStill not approximable by neural network. Numeric “explosion”.
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Homophily
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Homophily Homophily described

Homophily, also known informally as “birds of a feather”, is when a link between indi-
viduals (such as friendship or other social connection) is correlated with those individuals
being similar in nature. For example, friends often tend to be similar in characteristics like
age, social background, and education level.

[S. Bhagat et al.: Node Classification in Social Networks, 2011]

åMay apply to any node properties. Main concern: homophily of node class label.
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Homophily Homophily Exploited

If class label exhibits homophily, should do:

I Collective classification: predict labels jointly for all unlabeled nodes (transductive,inductive)
I Autoregression: use observed labels to predict unobserved labels (transductive)

Illustration: yellow/blue node attribute, red/black node label:

Collective: predict same label for all nodes in
a clique

Collective/Autogressive: predict red for top,
black for bottom clique.
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Homophily Homophily in GNN

Homophily a challenge?
[Graph neural networks] have been shown to achieve state-of-the-art performance be-
cause of their effectiveness in learning object representations on relational data. How-
ever, one critical limitation is that the labels of objects are independently predicted based
on their representations. In other words, the joint dependency of object labels is ignored.

[M.Qu, Y. Bengio, J. Tang. "Gmnn: Graph markov neural networks." 2019.]

Heterophily a challenge?
Homophily is a key principle of many real-world networks [...] GNNs model the homophily
principle by propagating features and aggregating them within various graph neighbor-
hoods via different mechanisms [...] Since many existing GNNs assume strong homophily,
they fail to generalize to networks with heterophily

[J. Zhu et al. "Beyond homophily in graph neural networks: Current limitations and effective designs." 2020]

åMessage-passing feature aggregation leads to “smoothing” of final representations (node’s
representation similar to its neighbors). Thus: similar predictions.

åBut: effective tools available to counteract smoothing – cf. ACR-GNN expressivity result!
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Homophily Homophily in SRL I

Markov Logic Networks

Homophily very naturally captured by weighted formulas:

friends(X ,Y ) ∧ republican(X) ∧ republican(Y ) 2.3
friends(X ,Y ) ∧ republican(X) ∧ ¬republican(Y ) −0.2

åsupports collective classification and autoregression.

ProbLog

“Label propagation” rule:

republican(X)← friends(X ,Y ) ∧ republican(Y ).

(this strict implication needs to be “softened” using suitable ProbLog modeling tricks).

åsupports collective classification and autoregression.
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Homophily Homophily in SRL II

RBNs

Symmetric dependencies modeled by shared dependence on a latent variable. Here: latent
numerical relation.

Fclass(X) ≡ COMBINE latent(X) WITH logistic regression

Fedge(X ,Y ) ≡ COMBINE latent(X) · latent(Y ) WITH logistic regression

I Learning values of the latent node attribute by gradient descent
I Similar to [P. D. Hoff et al. "Latent space approaches to social network analysis." 2002], [T.N. Kipf, M.

Welling. Variational graph auto-encoders. 2016]

Example

Learned latent attribute val-
ues and resulting class prob-
abilities.
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Learning
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Learning Overview

GNN SRL

S
tr

uc
tu

re

Space NN architectures (Logical) model structure
Manual specification by NN engineers SRL experts, domain ex-

perts
Learned by Optimization/search in combinatorial spaces

P
ar

am
et

er
s

Space High-dimensional Low-dimensional
Manual specification Never Sometimes possible
Objective Loss function (cross-

entropy, MSE, . . . )
Likelihood (plain, con-
ditional, pseudo, penal-
ized,. . . )

Learned by Gradient descent Gradient descent, varia-
tional inference, expecta-
tion maximization, . . .

I The structure space for GNNs is less complex than the structure spaces for SRL
I A big part of what is structure learning in SRL becomes parameter learning in GNNs
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Learning SRL: expert knowledge I

Example: building a model for a social network domain with follower, influencer ∈ R.

Expert knowledge:
“whether someone is an influencer depends (among other things) on how many followers
he/she has”

Injecting the expert knowledge into SRL models:

ProbLog: add rule
influencer(X)← follower(Y ,X)

+ Simple and intuitive

+ Modular

- Hard to assess/control the quantitative aspect: how does the number of followers affect the
probability of being an influencer?

AIB 2022 RBN-GNN Integration 24 / 35



Learning SRL: expert knowledge II

MLN: add formulas
influencer(X) ∨ follower(Y ,X)
influencer(X) ∨ ¬follower(Y ,X)
¬influencer(X) ∨ follower(Y ,X)
¬influencer(X) ∨ ¬follower(Y ,X)

+ Simple and (still) intuitive

+ Modular

- The quantitative relationship has to be captured by the weights assigned to the formulas

RBN: integrate sub-formula into proability formula Finfluencer(X)
:

Finfluencer(X)
≡ . . .

COMBINE < probability formula >
WITH < combination function >
FORALL Y
WHERE follower(Y ,X)

. . .

+ Faithful representation of expert knowledge

+/- Supports/requires exact control over the quantitative relationship

- Not modular
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Learning Loss functions

Data: (V1,R1), . . . , (VN ,RN ) (N = 1 in transductive setting).

SRL: Log-likelihood

Statistical learning: learn parameters θ of the model by maximizing log-likelihood of the data
(maybe penalized):

L(θ) =
N∑

i=1

log Pθ
Vi

(R i ) (+penalty(N, θ))

For RBNs log-likelihood term for each (Vi ,R i ) decomposes into

log Pθ
V (R) =

∑
R∈R

∑
i∈V arity(R)

logPV (R(i)|Pa(R))

åinner sum equal to negative cross-entropy
loss in GNN training (with final softmax layer).
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Learning High vs. Low Dimensional Parameterization

GNN: Most of the model is encoded by the parameter (weight) setting in a high-dimensional
parameter space

SRL: Model “equally” encoded by structure, and parameters in low-dimensional parameter space

Advantages of high-dimensional spaces:

I Model capacity
I Gradient descent more effective

Advantages of low-dimensional spaces:

I Interpretability
I Robustness
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Learning Gradient Descent

Example: For α1 classification task: 1-layer ACR with hidden dimension 2 is sufficient!

Actual learning curves for hidden dim. = 2 and hidden dim = 8 (10 restarts each):

åOver-parameterized model converges faster and more consistently to optimal solution.
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Learning Gradient Descent

Example: For α2 classification task: 2-layer ACR with hidden dimension 2 is sufficient!

Actual learning curves for hidden dim. = 2 and hidden dim = 32 (3 restarts each):

åBad news: expert knowledge “dimension 2 is sufficient” can be harmful!
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Implementation: Primula 3
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Primula 3 The Primula implementation

Primula tool for RBNs

I first release: 2003
I most recent release: v.2.2: 2009

Primula 3

On Github:

https://github.com/manfred-jaeger-aalborg/primula3

I Current tool version
I Example-based documentation: use cases with model/data files.
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Primula 3 Example: Mendel

Data: family trees Reasoning: infer genotypes from partially
genotypes of other family members

AIB 2022 RBN-GNN Integration 31 / 35



Primula 3 Example: Information diffusion

Data: Social networks Learning and Reasoning:
I predict information spread according to

independent cascade model
I learn information propagation probabilities
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Primula 3 Example: Community detection

Data: Social networks. Learning: Learn soft community membership
degrees for the nodes.

[J. Jiang and M. Jaeger: Numeric Input Relations for Relational Learning with Applications to
Community Structure Analysis, ArXiv 1506.05055, 2015.]
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Primula 3 Conclusion

GNN and SRL

Complementary strengths:

I GNN: effective training in high-dimensional parameter spaces
I SRL: integration of expert knowledge, interpretability, support for wider range of reasoning

tasks

Integration

I RBNs well-suited for homogeneous integration due to GNN-compatible semantics and
representation approach

Open Problems

I Understand trade-offs:
I sparse, constrained parameterization
I over-parameterization

I From high-dimensional GNN models to sparse and robust models:
I model distillation?
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