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Graph Neural Networks: Basics
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GNN basics GNN Landscape

From [Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural
networks and learning systems 32.1 (2020): 4-24.] :

Our focus: convolutional-spatial
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GNN basics Message Passing

Iterative construction of node feature (representation, embedding) vectors:

I H0: initial node feature vectors
I H1:

I aggregate neighbors’ H0 features (e.g.
sum)

I apply some (activation) functions

I H2:
I aggregate neighbors’ H1 features
I apply some (activation) functions
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GNN basics Message passing updates

hk (i): dk -dimensional vector representation of node i at k th iteration (layer).

A basic form of message passing updates:

h0(i) = initial node feature vector of node i
hk+1(i) = f

(
W k hk (i) + Uk ∑

j∈Ni
hk (j)

)
with ingredients:

I W k ,Uk : weight matrices (dimensions: dk+1 × dk )
I f : (nonlinear) activation function (component-wise)

In full matrix notation:

Hk+1 = f
(

Hk (W k )T + EHk (Uk )T
)

with ingredients:

I Hk ,Hk+1: n × dk and n × dk+1 matrices
I E : n × n adjacency matrix
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GNN basics GNN basic architecture

Representation as NN architecture/computation graph:

I At each layer: one vector for each node
(picture: n = 3)

I At top: task-specific transformations of
final node representations

I self, neighbors: dependence of vectors
in following layer on previous layer
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GNN basics Initial node features I

Initial features: node identifiers (typically: one-hot encoded).

Can represent/learn classification rule: node is red, if it has distance ≤ 3 to node 26.

åthis only works in transductive settings.
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GNN basics Initial node features II

Initial features: node attributes (e.g. color ∈ {yellow, blue})

Can represent/learn classification rule: node is red, if it has distance ≤ 2 to a blue node.

åthis works in inductive settings: rule can be applied to new graphs with yellow/blue nodes.
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GNN basics Initial node features III

Initial features: none (then can say e.g.: h0(i) = 1 for all i).

Can represent/learn classification rule: node is red, if it has distance ≤ 2 to a node with degree
≥ 5.

åthis works in inductive settings: rule can be applied to new graphs.
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GNN basics GNN reasoning: node classification

I On top of the final embedding HK : add
neural network layers for classifying
nodes based on their feature vectors
hK

I Loss function: any standard
classification loss, e.g. cross-entropy.

I The model is trained “end-to-end”: the
parameters of the embedding functions
are optimized for the particular node
classification (or regression) task.
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GNN basics GNN reasoning: graph classification

I On top of the final node embedding
HK : add a graph pooling (a.k.a.
readout) layer, that aggregates the
representations of all nodes in the
graph. The same kind of functions for
aggregating node representations as in
the message passing updates can be
used (except no dependence on
previous “own” representation h(i)).

I On top of the readout layer: add neural
network layers for classifying graph.

I Loss function: any standard
classification loss, e.g. cross-entropy.

I The model is trained “end-to-end”: the
parameters of the embedding functions
are optimized for the particular node
classification (or regression) task.
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GNN basics GNN reasoning: link prediction

I GNN only computes embeddings
I Trained using reconstruction loss, such

as ∑
i,j∈V

(h(i) · h(j)− E[i, j])2

I Use the score h(i) · h(j) to predict
whether there is a (not yet observed)
edge between i and j .
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GNN basics GNN reasoning
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Graph Neural Networks: Extensions
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GNN extensions GNN Architecture: Multi-Relational

I aggregate neighbors separately for each relation
I apply function to all aggregates

[Schlichtkrull et al.: Modeling Relational Data with Graph Convolutional Networks, 2018]
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GNN extensions GNN Architecture: Higher-Order

Feature vectors learned for k -tuples v of nodes.

Neighbors for k -tuples defined by edge∗-relation:

edge∗(v , v ′)⇔ v , v ′ identical except for one component j (and edge(v [j], v ′[j])).

[Morris et al.: Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks, 2019]
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GNN extensions GNN Expressivity

Discriminative power: when can two nodes be distinguished by a GNN?

a, b indistinguishable by any GNN.

a, c indistinguishable by 2-layer GNNs, distinguishable by 3-layer GNNs.

ål-layer GNNs can only access information in the l − 1 hop node neighborhood.

å(standard) GNNs can not access “global” graph properties for node classification.
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GNN extensions ACR-GNN: Architecture

Aggregate-Combine-Readout GNN:

I Multi-relational GNN
with
I original edge relation
I a full relation that fully

connects the graph

[Barceló et al.: The logical expressiveness of graph neural networks, 2020]
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GNN extensions ACR-GNN: Expressiveness

Main theorem of [Barceló et al.]:

Every node property that can be expressed in the two-variable fragment of first-
order logic with counting quantifiers can be captured by an ACR-GNN.

I Signature of the logic: edge relation, node attributes.

Example

α1(X) ≡ ∃[8,10]Y (blue(Y ) ∧ ¬edge(X ,Y ))

Counting in FOL without variable restrictions:

∃≥3Yφ(X ,Y ) 

∃Y1,Y2,Y3(Y1 6= Y2 ∧ Y1 6= Y3 ∧ Y2 6= Y3 ∧ φ(X ,Y1) ∧ φ(X ,Y2) ∧ φ(X ,Y3))
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GNN extensions RBNs: Expressiveness

Result from [Jaeger, Relational Bayesian Networks, 1997]:
Let φ(x) be a first-order formula over signature R. Then there exists a probability

formula Fφ(x) overR, s.t. for every multi-relational graph G = (V ,R) and every |x |-tuple
v of nodes: Fφ(v) = 1 iff φ(v) holds in G (and Fφ(d) = 0 otherwise).
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Statistical Relational Learning
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SRL SRL Features

Statistical Relational Learning, First-Order Probabilistic Models, Probabilistic-Logic Learning,
Relational Probabilistic Models, . . . :

Data Perspective
I Model data that is

I found in relational databases
I can be described by (first-order) predicate

logic

Model Representation
Use formal languages to define probabilistic mod-
els for graphs:
I Logic-based representations
I Entity-relationship diagrams (database

models)
I Programming languages

Abstract: graphs

Semantics

Predicate logic (relational)
∀x(r(x)→ ∃y(e(x , y) ∧ b(y)))
∃z, x , y¬(e(x , y) ∧ e(x , z) ∧ (e(y , z))
. . .
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SRL Some SRL Frameworks

Selected SRL frameworks, 1992-2007:

1992-1995 Knowledge-based model construction (Breese,Charniak,Goldman,Poole,Wellman,. . . )
1995 Prism (Sato)

Probabilistic Knowledge Bases (Ngo, Haddawy)
1996 SLP (Muggleton)
1997 OOBN (Pfeffer, Koller)

MEBN (Laskey, Mahoney)
RBN (Jaeger)
ICL (Poole)

1998 PRM (Friedman, Getoor, Koller, Pfeffer)
2000 BLP (Kersting, De Raedt)
2001 IBAL (Pfeffer)
2002 RMN (Taskar et al.)
2003 CLP(BN) (Cussens,Page,Qazi,Santos Costa)

RPT (Jensen, Neville)
LOHMM (Kersting, De Raedt, Raiko)

2004 LBN (Blockeel,Bruynooghe,Fierens,Ramon)
MLN (Richardson,Domingos)

2005 BLOG (Milch et al.)
FOCI (Natarajan et al.)

2007 ProbLog (De Raedt, Kimmig, Toivonen)
2007- Many more; partly transition to probabilistic programming
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SRL Paradigms

Representatives for main paradigms:

RBN Directed probabilistic graphical models
MLN Undirected probabilistic graphical models
ProbLog (Inductive) logic programming
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Markov Logic Networks
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MLNs MLN Syntax

A Markov Logic Network consists of a set of pairs (F ,w), where

I F is a quantifier-free first-order logic formula
I w ∈ R is a weight

The signature R of the MLN consists of all relation symbols used in any of the formulas F .

Example

F w
friends(X,Y) -0.2
republican(X) 0.1
friends(X, Y)⇒ (republican(X)⇒ republican(Y)) 0.8

R = {friends, republican}.

[M. Richardson, P. Domingos: Markov logic networks. Machine learning 2006.]
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MLNs MLN Semantics

For a given domain (set of nodes) V = {1, . . . , n}, the MLN defines a distribution over all graphs
G = (V ,R):

For a formula F (X ,Y ) define

#(F ,G) := |{(i, j) ∈ V × V : F (i, j) is true in G}|
The weight of G then is

w(G) :=
∑

(F ,w)

#(F ,G) · w ,

and the probability of G is

P(G) :=
1
Z

ew(G),

with Z the normalizing constant that the sum over all graphs with domain V is 1.

Example

G:

(Red: republican)

friends(X,Y) -0.2
republican(X) 0.1
friends(X, Y)⇒ (republican(X)⇒ republican(Y)) 0.8

w(G) = 3 · (−0.2) + 2 · 0.1 + (6 + 2) · 0.8 = 6.0
P(G) = ??? (need to first compute Z , i.e., the

weight of all graphs)
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MLNs Probabilistic Graphical Model: MRF

The distribution defined by an MLN vor domain V can be represented as a
Markov Random Field (MRF)

I Nodes are all the ground atoms for the signature R and the nodes i ∈ V
I Edges represent probabilistic dependencies
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MLNs MLNs: Pros and Cons

+ Natural models for symmetric dependencies (e.g. homophily)

+ Interpretable model representations

+ Can use expert knowledge or machine learning to construct formulas

- Computational challenges due to Z

- Impact of weight parameters on probabilities can be hard to understand and
control

AIB 2022 GNN and SRL 25 / 42



ProbLog
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ProbLog ProbLog: Syntax

A ProbLog model (program) consists of

I a set of probabilistic atoms
I a set of logical rules (Horn clauses)

Example

edge(a, b) : 0.3
edge(b, c) : 0.3

path(X ,Y )← edge(X ,Y )
path(X ,Y )← edge(X ,Z ), path(Z ,Y )

[Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S., & Rocha, R. (2011). On the implementation of the
probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming.]
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ProbLog ProbLog: Semantics

By randomly sampling the ground atoms according to their probability weights

I one obtains a standard logic program LP,
I which defines a unique graph described by all the ground atoms that can be proven from LP

Example

P

 edge(a, b)
path(X ,Y )← edge(X ,Y )
path(X ,Y )← edge(X ,Z ), path(Z ,Y )

 = 0.3 · 0.7 = 0.21

LP defines graph:

I the probability of a graph is the sum of the probabilities of the LPs that define it.
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ProbLog ProbLog: Pros and Cons

+ Interpretable model representations

+ Can use expert knowledge or machine learning to construct formulas

+ Powerful “transitive closure” (“least fixed point”) expressivity

- Computational challenges due to “all proofs” semantics

- May require non-interpretable, latent relations for probabilistic atoms
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SRL Frameworks
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SRL Frameworks SRL semantics

An SRL framework consists of

I Syntax: a formal representation language for any relational signature R
I Semantics: defines for any domain V , a probability distribution over the space G(V ,R);

formally: a mapping
V 7→ PV ∈ ∆G(V ,R)

I Inference (reasoning): algorithms for the computation of conditional probabilities

PV (A|B) for some A,B ⊆ G(V ,R)

Also: computing most probable explanation (mpe):

max
G∈G(V ,R)

PV (G|B)

I Learning: methods for learning models from graph data. Typically divided into:
I Structure learning: determines (logical) structure of the model (here also: knowledge-driven design)
I Parameter learning: fitting numerical parameters
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SRL Frameworks SRL reasoning

For probabilistic inference
PV (A|B) =?

usually supported:

I B a set of graphs defined by a conjunction of (negated) atoms
I A a set of graphs defined by a single atom

Examples

V = {mary,tom,carl,sue}; PV (republican(mary)|friends(mary,carl),¬republican(carl)) =?
V = {a, b, c, d , e}; PV (path(a, d)|edge(a, c), path(e, d)) =?

Special case: prediction

E.g.: R = {node_label, edge} ∪ A (= node attributes).

Node classification then consists of queries

V = {1, . . . , n} PV (node_label(i)|B),

where B is a complete specification of {edge} ∪ A.
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SRL Frameworks SRL reasoning

Model checking: checking properties (conditional probabilities) of a particular model (probability
distribution PV ).

[Halpern, J. Y., & Vardi, M. Y. (1991). Model checking vs. theorem proving: a manifesto. In Artificial intelligence
and mathematical theory of computation: papers in honor of John McCarthy]
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Relational Bayesian Networks
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RBNs RBNs: directed factorization I

Chain Rule

For fixed V , PV is a distribution over values R = (R1, . . . ,Rr ). Let R1:h := (R1, . . . ,Rh). This
distribution can be factored as

PV (R) = PV (R1) · PV (R2|R1) · . . . · PV (Rh|R1:h−1) · . . . · PV (Rr |R1,r−1).

Conditional independence of relations

Conditional independencies lead to simplifications:

PV (Rh|R1:h−1) = PV (Rh|Pa(Rh)) for some Pa(Rh) ⊂ R1:h−1

ådirected acyclic graph over relations (relation DAG).

PV (gender, republican, bloodtype, friends) =

PV (gender)PV (republican|gender)PV (bloodtype|republican, gender)PV (friends|bloodtype, republican, gender) assume
=

PV (gender)PV (republican|gender)PV (bloodtype|gender)PV (friends|republican, gender)
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RBNs (Conditional) generative models

I Defines full generative probabilistic model for
graphs in signature R

I Sometimes: assume some relations R ∈ R are
predefined input relations:

R = Rprob ∪Rin

I make these relations roots in the relation DAG
I do not define a distribution PV (Rh) for these

relations
I defines a conditional distribution

PV (Rprob|Rin)

åAll SRL frameworks support divisions R = Rprob ∪Rin
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RBNs RBNs: directed factorization II

Atom independence

Assume atoms of one relation are mutually independent, given the parent relations:

PV (Rh|Pa(Rh)) :=
∏

i∈V arity(Rh)

PV (Rh(i)|Pa(Rh))

As a Bayesian network:

åLeads to limitations for modeling e.g. symmetry constaints friends(1, 2)⇔ friends(2, 1), or
homophily (exist modeling tricks to circumvent this!).
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RBNs RBN: syntax

A relational Bayesian network for signature R consists of

I a directed acyclic graph whose nodes are the relations R ∈ R,
I for each R ∈ R a probability formula FR in the signature Pa(R) that defines the conditional

probabilities
PV (R(i)|Pa(R))

Probability formulas: semantics

A probability formula F maps tuples of entities i in a graph G = (V ,R) to a real number:

((V ,R), i) 7→ eval(F , i,G) ∈ [0, 1]

[M. Jaeger: Relational Bayesian Networks. UAI 1997]
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RBNs Probability Formulas I

Constants

For any q ∈ [0, 1],
F ≡ q

is a probability formula with
eval(F , i,G) = q

for all i,G.

Example

Let R = {edge}. Then
Fedge(X ,Y ) ≡ 0.5

defines the classic Erdős-Rényi random graph model.
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RBNs Probability Formulas II

Atoms

For any R ∈ R, and variables Y1, . . . ,Yarity(R)

F ≡ R(Y1, . . . ,Yarity(R))

is a probability formula with

eval(F , i,G) =

{
1 if R(i) is true in G
0 if R(i) is false in G

WIF-THEN-ELSE

If F1,F2,F3 are probability formulas, then

F ≡ WIF F1 THEN F2 ELSE F3

is a probability formula with

eval(F , i,G) = eval(F1, i,G)eval(F2, i,G) + (1− eval(F1, i,G))eval(F3, i,G)

åGeneralization of Boolean operations (Fi ∈ {0, 1})
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RBNs Example: Stochastic block model

I Nodes partitioned into blocks
I Probability of edges depends on block

memberships

With the constructs introduced so far:

A. partitioning into red, green, blue nodes:

Fred(X) ≡ 0.5
Fblue(X) ≡ WIF red(X) THEN 0 ELSE 0.7
Fgreen(X) ≡ WIF red(X) ∨ blue(X) THEN 0 ELSE 1.0

B. generating edges:

Fedge(X ,Y ) ≡ WIF red(X) ∧ red(Y ) THEN 0.6 ELSEIF . . .

(In standard SBM: block membership not given by observable attribute, but by latent variable)
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RBNs Probability Formulas III

Combination Function

(related to first-order quantifiers ∀, ∃, GNN message passing aggregation, . . . )

If F1, . . . ,Ft are probability formulas, then

F ≡ COMBINE F1, . . . ,Ft
WITH < combination function >
FORALL < variables >
WHERE < Boolean Rin condition >

is a probability formula.
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RBNs Example: triangles

PV (red(i)) higher if
I i is blue
I i is part of many triangles

Defining triangles:

Ftriangle(X ,Y ,Z ) ≡

edge(X ,Y ) ∧ edge(X ,Z ) ∧ edge(Y ,Z )

Counting triangles:

Ftriangle_count(X) ≡

COMBINE 1.0
WITH sum
FORALL Y ,Z
WHERE Ftriangle(X ,Y ,Z )(X ,Y ,Z )

Logistic regression of triangle_count and blue feature:

Fred(X) ≡

COMBINE 0.6 · Ftriangle_count(X)(X),

0.3 · blue(X),
−3.0

WITH logistic regression
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RBNs Probability formulas: neural view

The computation graph of a probability
formula:

I Each probability (sub-)formula defines a feature of
0, 1, 2, . . .-tuples of entities

I Nested formulas give “deep” models
I Aggregation along “Boolean hyperedges”

I A single probability formula defines a scalar feature
I Use multiple formulas in parallel for vector features
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RBNs RBNs: Pros and Cons

+ Natural procedural, causal, temporal, ... models

+ Often: statistically interpretable model parameters

+ Can use expert knowledge or machine learning to construct model

- Limited structure learning capabilities

- Awkward for modeling undirected dependencies
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