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1 Introduction

Primula is a Java-based software system for modelling and inference with random relational structure
models. Random relational structure models are a natural class of probabilistic models that subsumes
classical models like Markov chains and random graphs, as well as the more recent developmentsof dynamic
Bayesian networks and probabilistic relational models [7].
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Figure 1: Random Relational Structure Model

Figure 1 (i) gives a schematic description of a random relational structure model: it is a mapping that takes
finite relational structures over some predefined relations as arguments, and returns probability distributions
over all relational structures over a different set of probabilistic relations. A practical example is a general
(probabilistic) model of inheritance (like Mendelian laws): such a model induces a mapping that takes
known relationships (encoded in the relational structure of a family tree) as inputs, and returns a probability
distribution on the presence or absence of certain genetic traits (formalized as unary probabilistic relations)
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in the members of the family.

A formal representation language for random relational structure models are relational Bayesian networks,
introduced in [10]. Primula is an implementation of this language that uses the inference-techniques de-
scribed in [11]. Figure 2 gives an overview of the system, and its main components: a graphical structure
editor is used to specify the relational input structure. A relational Bayesian network is read from a file and
transformed into the appropriate internal data structures by a Parser. Three different methods for probabilis-
tic inference are then available:

• A standard Bayesian network can be constructed that represents the distribution of the probabilistic
relations for the given particular input structure. This Bayesian network can be

– directly exported to the SamIam system
(http://reasoning.cs.ucla.edu/samiam/). SamIam version 2.3 beta or higher is required.

– exported as a file in various formats, which then can be read by a number of other Bayesian
network systems.

• the built-in sampling algorithms can be used for approximate inference.

• exact inference via the built-in interface to the ACE system (http://reasoning.cs.ucla.edu/ace/). ACE
must be separately downloaded and installed.
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Figure 2: Components of the Primula System

2 Some Introductory Examples

In this section we first give an informal overview over Primula’s modelling capabilities by several examples.
All input files for these examples are distributed with the Primula system.

4



Mendelian Model of Inheritance

Suppose that some gene has the two alleles A and a. One will then distinguish genotypes A/A, A/a,
and a/a. In principle, one may also make the four-way distinction A/A, A/a, a/A, and a/a, where the
first letter represents the allele inherited from the father, the second letter the allele inherited from the
mother. According to Mendel’s laws, each parent will pass on to its offspring with equal probability either
of its alleles, independently for different offsprings, and independently from the allele passed on by the
other parent. Mendel’s laws provide a general probabilistic model for the distribution of genotypes in a
population. This general probabilistic model can be instantiated to a concrete probabilistic model when a
concrete population with its family relationships (i.e. a family tree, or pedigree) is given.

Figure 3: Pedigree and Genotype Model

Figure 3 shows a family tree of seven individuals, and a probabilistic model for the genotypes in this family
represented by a Bayesian network (all illustrations of Bayesian networks in this document are screenshots
from the SamIam system). This is a model for the ordered genotype, where the fact that A was inherited
from the father is represented by the propositional variable AFather. The (ordered) genotype a/A, thus,
corresponds to the truth assignments AFather=false, AMother=true. Mendel’s laws only describe how
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genetic traits are inherited. In order to specify a probabilistic model one also has to assign probabilities
for the genotypes of individuals for whom not both parents are known. This can be done, for instance,
by assigning a constant ”base-rate”probability to AFather or AMother being true. Table 1 shows an
encoding of the resulting model in the Relational Bayesian Network language (here assuming a base-rate
probability 0.3 for allele A).

Bayesian networks generated by Primula typically contain a number of auxiliary nodes in addition to the
nodes representing the probabilistic relations. These auxiliary nodes are inserted to decompose large con-
ditional probability tables into several smaller ones (see [11] for the details). Depending on the Bayesian
network system used for processing the generated standard Bayesian network, these auxiliary nodes will
either be labelled ’aux’, or with their automatically generated internal identifiers.

The language of Relational Bayesian Networks will be introduced in detail in section 8. For now it is
sufficient to understand that this is a formal representation language, which, depending on one’s preferences,
can be seen either as a functional programming language, or as a probabilistic variant of predicate logic
formulas. With the Primula system one can

• specify general probabilistic models in the language of Relational Bayesian Networks

• specify relational structures that instantiate the general model

• automatically construct a Bayesian network that represents the instantiated model, and that can be
used for probabilistic inference in that model.

1 @fatherInTree(v) = n-or{sformula(father(u,v))|u: u=u};
2 @motherInTree(v) = n-or{sformula(mother(u,v))|u: u=u};
3
4 AFather(v) = ( @fatherInTree(v):
5 mean{AFather(u),AMother(u)|u: father(u,v)},
6 0.3
7 );
8
9 AMother(v) = (@motherInTree(v):
10 mean{AFather(u),AMother(u)|u: mother(u,v)},
11 0.3
12 );

Table 1: Relational Bayesian Network Representation of Mendelian Model

Linkage Analysis

More elaborate genetic inheritance models are used in linkage analysis for locating in the (human) genome
the position of genes coding for certain observable traits. SUPERLINK [6] is a Bayesian network based
system for performing probabilistic analyses in linkage analysis (http://bioinfo.cs.technion.ac.il/superlink).
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SUPERLINK requires two inputs: a locus file containing the specification of the type of genetic informa-
tion available for the current analysis, and a pedigree file containing pedigree information on a number of
individuals for whom this genetic information was obtained. Both inputs together determine a probability
distribution on unobserved genetic variables. The SUPERLINK system in conjunction with any fixed locus
file determines a random relational structure model that maps pedigrees to a probability distribution over
the genetic variables for each individual in the pedigree. An example for such a random relational structure
model is contained in linkage 3loci.rbn.

The model in linkage 3loci.rbn operates on essentially the same relational input structures as
mendel.rbn. However, to simplify the model code, it is here assumed that for all individuals in the
pedigree either no or both parents also are in the pedigree, and that in the former case the individual is
marked with the unary founder relation. Some example input domains for the model are contained in
linkagefamily x.rdef files (x=s,m,l).

Dynamic Bayesian Network

A dynamic Bayesian network specifies a general temporal probabilistic model by means of network frag-
ments that can be concatenated to form probabilistic models for arbitrary discrete, finite time sequences. A
time sequence of n (discrete) time points can be represented as a relational structure with a binary prede-
cessor relation. The temporal model represented by network fragments can also be encoded as a Relational
Bayesian Network. A very simple example with two boolean variables a and b at each timepoint is con-
tained in dynamic.rbn.

Probabilistic Relational Model

Probabilistic Relational Models in the sense of Friedman et al. [7] can also be handled in the Primula
system. As an example, we here show how to encode a model described in [8]. This model distinguishes
three classes of objects: Movies, Theaters, and Shows. Objects of these classes have various (probabilistic)
attributes: Movies have attributes Genre, Budget, Decade (of origin), Theaters have attributes Type and
Location, and Shows have attributes Theater and Movie. The core modelling problem here is how to define
a probability distribution over what movies are shown by which theaters. This model should be generic in
the sense that it can be instantiated by arbitrary sets of objects from the different classes.

In our representation of this model, we do not consider Shows as a class of objects with attributes Movies
and Theaters, but more directly as a binary relation between Movies and Theaters. A concrete instantiation
of the general model, then, is given by sets of objects from the Movies and Theaters classes only. An
example is shown in figure 4. We here specify both class membership and attribute values like Genre
= thriller by unary relations, which, in turn, in the graphical representation are color-coded (for instance,
objects in class Theater are colored dark green, objects with Genre=thriller are colored blue, Genre=foreign
is represented by yellow, etc.). Concentrating on the probabilistic binary relation shows, we here take all
the attributes as predefined, even though they, too, could be modelled probabilistically.

The Relational Bayesian Network contained in movies.rbn now specifies the probabilistic model de-
scribed in [8]: a theater chooses the movie it shows either uniformly from the set of movies with Genre =
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Figure 4: Movies and Theaters

thriller, or uniformly from the set of movies with Genre=foreign. A theater of type megaplex will choose
with probability 0.1 from the foreign movies, and with probability 0.9 from the thriller genre. For an
art theater these probabilities are 0.7 and 0.3, respectively. In our example, theater MovieStar is of type
megaplex. Figure 4 now shows a Bayesian network for the probability distribution on which movie is shown
at CineArt.

The complete output of Primula when run on movies.rbn and the input structure shown in figure 4
consists of three separate networks, one for each of the three cinemas.

Robot Navigation Model

Figure 5 shows a simple grid-map that distinguishes five different locations, and specifies their spatial
relationships with two binary relations leftof and belowof. Also shown in the figure is an object of type
Block. The Relational Bayesian Network randblock.rbn describes the following model: each block
is positioned randomly at one location on the map (the general model can also be instantiated with more
than one Block object). This positioning is represented by the binary relation blocks between blocks
and locations. A binary relation connectionblocked between locations is deterministically defined
in terms of blocks: connectionblocked(l1, l2) is true if at least one of the two locations l1, l2 is
blocked.The intuition here is that a robot can move between l1 and l2 iff connectionblocked(l1, l2) is
false. Also shown in Figure 5 is the Bayesian network constructed for this instance.

A more ambitious version of this model contained in randblock trans.rbn extends the model with a
(again deterministic) definition of the transitive closure connected of connectionblocked. As with
this model we push even beyond the limits of first-order logic (transitive closure is not first-order definable),
it is not surprising that inference in the resulting model becomes quite costly, and currently does not appear
feasible for all but very small maps.
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Figure 5: Grid Map and Random Block
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3 The Primula Console

Figure 6 shows the console of the Primula system. Only this window will be opened when the system is
started. Main functions of the Primula console are the choice of input sources for relational structures and
Relational Bayesian Networks, and the setting of options.

Figure 6: Primula Console

At the bottom of the window are two file choosers: one for the textfile containing the Relational Bayesian
Network, and one for the output file for the constructed (standard) Bayesian network. The relational input
domain can be specified in several ways, not only by reading from a file. Therefore the Primula console
displays at the bottom only a line describing the current input mode for the input domain, while the actual
choice is via the Domain menu.

Domain menu

Create OrderedStruc With this option one can define as the input structure an ordered structure of a
specified size. An ordered structure of size n n has elements 0, ..., n − 1 on which the binary relations less
(i.e. < according to the natural ordering), pred (i.e. pred(i, j) iff i + 1 = j), and the unary relations zero
(zero(i) iff i = 0) and last (last(i) iff i = n − 1) are defined.

Load Relational Structure Load a relational structure in .rdef or .rst format from file.

Start Bavaria Start the Bavaria structure editor, and use current structure in the editor as input structure.
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Run menu

Start Inference Module Open the Inference Module (see below).

Start Learn Module Open the Learning Module (see Section 6).

Construct Bayesian Network Construct the standard Bayesian network according to the current input
structure and current Relational Bayesian Network specification. Write result to file specified in BN output
field or open in SamIam.

Save RBN Saves the current RBN model into .rbn file. Mostly used when current model has learned
parameter values.

Convert Relational Data Starts an interactive dialog to transform data in Prolog format into rdef. See
Appendix B.1.

Open SamIam Start the SamIam Bayesian network system (if installed).

Notes on using SamIam:

• To use Primula with the direct SamIam interface, SamIam version
2.3-beta or higher must be installed. SamIam is available free at
http://reasoning.cs.ucla.edu/samiam/

• When first calling SamIam from Primula, a file selection dialog
will be opened in which the locations of the inflib.jar and
samiam.jar archives of the SamIam system have to be speci-
fied.

• .rbn input files should contain the underscore as the only spe-
cial character. This is because Primulaand SamIam communicate
using some of HUGIN’s file format and naming conventions, and
HUGIN names follow the lexical rules of C identifiers.

Options menu

Bayesian Network System

Choose the export mode for the generated Bayesian network. If To SamIam is chosen, the SamIam
system will be automatically started, and the generated network opened in SamIam. If Java Bayes,
Hugin or Netica is chosen, the network will be exported as a file in .bif format (JavaBayes: http://www-
2.cs.cmu.edu/∼javabayes/Home/), .net format (Hugin: http://www.hugin.com/), respectively .dne format
(Netica: http://www.norsys.com/). In this case, an output file must be specified in the BN Output field in
the console (not required under the To SamIam option).
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Since the different file formats offer different capabilities, there are some slight differences in Primula’s
output, depending on the chosen Bayesian Network System:

• The .bif format does not support node labellings that are different from the unique internal node
identifiers. Auxiliary nodes that are generated in the network construction, but do not represent
random variables that are part of the intended probabilistic model, are displayed labelled ”aux” when
.net or .dne is chosen, and labelled with rather lengthy strings when .bif is chosen.

• The .net format does not support instantiation information of nodes. See below for the consequences
when the ”Evidence Conditioned” option is chosen.

Construction Mode

Query Specific Only construct a Bayesian network that is sufficient to compute the probabilities of query-
atoms specified with the inference module.

Evidence Conditioned Integrate the instantiation of selected atoms as specified in the inference module
into the network construction.

Note: The resulting network only encodes the correct probabilities as long as the instantiations used in the
construction are unchanged (but further evidence may be added in the constructed network).

Note: As the .net format does not allow to pass the information of instantiations used in the constructionon
to the Bayesian network system (Hugin), it is only possible to use the ’Hugin’ option together with the
’Evidence Conditioned’ option when all instantiations used in the network construction are also manually
entered into the Bayesian network.

Skip layout: In the construction of the Bayesian network no node positions for a graphical display of the
network are computed. This can substantially reduce computation time. When displayed in a Bayesian
network system, all nodes will appear stacked on each other in one place.

Show isolated prob.0 nodes A generated Bayesian network may contain nodes representing ground atoms
that are deterministically false and not connected to any other nodes. With this option it can be chosen
whether to include such nodes in the generated model or not.

Decompose mode
normal: The standard decomposition technique described in [11] is used. The in-degree of all nodes in the
generated Bayesian network is bounded by 3. This decomposition option is only available for models that
only contain multi-linear combination functions (cf. Table 7 on p. 30).

deterministic: An extended decomposition is applied that results in a network where all internal (non-
root) nodes have deterministic cpts. The in-degree is bounded by 4. This option also requires multi-linear
combination functions, and will be of little use to most users.

none: No decomposition is applied. The in-degree of nodes is not bounded and can grow polynomially
in the size of the input structure. Main advantage of this option is that it permits the use of combination
functions that are not multilinear.
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Reset external software locations
Resets (to “unknown”) previously entered locations of external software components (SamIam and ACE).
Useful when new versions of external software have been installed.

4 The Inference Module

The inference module is used:

• For exact inference: to enter evidence and queries, which can greatly simplify the Bayesian networks
that will be constructed (options “evidence conditioned” and/or “query specific” must be selected in
the options menu of the Primula console).

• For exact inference using ACE.

• For approximate inference: as an interface to the sampling methods.

Entering Evidence and Queries

The evidenc module displays in a similar form as the Bavaria module all probabilistic relations defined
by the currently loaded Relational Bayesian Network 1 , and all object names defined by the current
relational input structures 2 . By choosing one of the buttons ’True’, ’False’, ’Query’, 3 , atoms can
be instantiated to a truth value, or specified as query atoms. Entered instantiations can be seen and edited in
the ’Instantiations’ panel 4 . Queries are shown in the ’Query atoms’ panel 5 .

To enter evidence calls(Watson,Holmes)=true, select the ’True’ button, then select calls in the list of
relations, and then click on Watson and Holmes in the list of Element names.

The “Element names” list also contains wildcards for all objects belonging to a given unary predefined
relation. When the ’False’ button and the calls relation are selected, for example, then clicking first on
[person∗] and then on Holmes in the Element names list, will add all instantiations calls(p,Holmes)=false
to the Instantiations list, where p ranges over all persons in the input domain.

To illustrate the use of the inference module, and the ’Query Specific’ and ’Evidence Conditioned’ op-
tions, Figure 8 shows the network constructed when both options are chosen, and evidence and query
specifications are as in Figure 7. Note how instantiating lives-in(Watson,Los-Angeles) to false elim-
inates the dependency of calls(Holmes,Watson) on earthquake(Los-Angeles), whereas instantiating
lives-in(Gibbon,Los-Angeles) to true has no such effect.
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Figure 7: Inference Module

Figure 8: Evidence conditioned Holmes network
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Sampling

The inference module also provides the interface to Primula’s own sampling based inference, which is based
on (adaptive) importance sampling. Sampling inference only computes approximate probability values for
the specified query atoms, so at least one atom has to be defined as a query atom. The option “Query
specific” from the Options menu of the Primula console has no effect on sampling inference. The option
“Evidence conditioned” in Primula’s Options menu, on the other hand, determines whether the probabilities
computed by the sampling procedure are conditional on the evidence entered in the inference module.

Sampling is started by clicking on the ’Start’ button in the sampling panel 6 . Primula will initialize a
sampling process and continue sampling until the ’Pause’ or ’Stop’ button is pressed. At regular update
intervals (approximately every 2 seconds) the probability estimates based on the current sample will be
updated in the ’Query atoms’ tabel 5 . Furthermore, the size of the current sample is displayed 7 . The
’Weight’ displayed in 8 is an estimate of the marginal probability of the entered evidence (if option
’Evidence conditioned’ is chosen, otherwise it is constant 1.0).

The ’P’ column in the Query atoms table shows the current point estimate for the probability of the query
atom. ’Min’ and ’Max’ show the minimal, respectively maximal estimate obtained by dividing the current
sample into a number of subsamples (this number is specified in ’Sampling Settings’). ’Var’ shows the
empirical variance of the estimates obtained from the subsamples. If, for example, ’Subsamples’ is set
to 10, and the current sample size displayed in 7 is 10000, then ’Min’, ’Max’ and ’Var’ refer to the 10
samples of size 1000 each (each sample is directly assigned in the sampling process in a round-robin fashion
to one of the 10 subsamples).

Sampling Settings

Figure 9: Sampling Settings

Pushing the “Settings” button in the Sampling panel of the Inference Module opens the Sampling Settings
window 9:
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Adaptive Sampling By selecting this option (recommended) an adaptive sampling method similar to the one
described in [4] is used. In adaptive sampling the sampling distribution at the variables is adapted during
the ongoing sampling process in order to achieve samples with higher importance weights. Adaptation is
only performed for nodes with a maximal number of parents specified in the Max CPT Parents field. All
other variables are sampled according to their initial distribution as specified by the relational Bayesian
network. The number Subsamples(Adaptation) determines how quickly the initial distribution is adapted.
Small numbers lead to a faster adaptation process.

Subsamples(Min,Max) determines the number of subsamples based on which the Min, Max, and Var values
in the Query panel are computed.

Sampling Order can be set to ’forward’ or ’ripple’. In forward mode variables are sampled in an ordering
consistent with their dependency ordering, i.e. a variable is only sampled after all its parents have been
sampled. In ripple mode, variables are sampled in an order starting with immediate neighbors of instantiated
variables, and continuing outwards (both forward and backward with regard to the dependency ordering).
Ripple mode can sometimes give better results when evidence is close to the leaves of the network. Ripple
order cannot be combined with adaptive sampling.

By selecting options from the Log panel information on the sampling process can be logged: if a Log file
is selected, then the information will be written to that file, otherwise it is written to standard output. Trace
produces a log of the values displayed in the Query panel. A Normal trace only logs the P values, whereas a
Long trace also logs the Min, Max and Var values. The Sample Order and the current Evidence can also be
written to the logfile. Network Stats produces a short summary of network statistics, especially the number
of nodes, distinguished by the number of their parents. The logfile is formatted so as to facillitate plotting
with gnuplot the developement of P, Max, Min, and Var values with increasing sample size.

ACE inference

The ACE inference module implements exact inference for Relational Bayesian Networks as described
in [1]. This method performs a compilation into an arithmetic circuit of the Bayesian network defined by
a Relational Bayesian Network and an input structure. As an intermediate step, ACE computes a logical
representation in conjunctive normal form (CNF) of the network polynomial.

Note on using ACE: To use the ACE inference methods
the ACE system must be installed. ACE is available free
at http://reasoning.cs.ucla.edu/ace/
When first calling ACE inference from Primula, a file se-
lection dialog will be opened in which the locations of
the ace.jar and inflib.jar archive, as well as the
c2d executable have to be specified.

When the “Compute” button of the ACE interface 10 is pushed, the current model will be compiled into
an arithmetic circuit, and the conditional probabilities of the query atoms given the current instantiation is
displayed 11 . For complex models the compilation can take some time. The progress of the computa-
tion is indicated in the progress bar at the bottom of the ACE interface. After the initial compilation, the
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arithmetic circuit can be used for arbitrary queries: pushing the “Compute” button again after changing the
instantiation and/or the query will update the probabilities in the ACE column. However, changes to the
input structure will make a re-compilation necessary.

Ace Settings

query based: When checked, then compilation will generate an optimized arithmetic circuit for computing
the probabilities of the current query atoms, given the current instantiation. This can be much faster than
computing the full arithmetic circuit. However, changes to query and/or instantiation make a re-compilation
necessary. Note that this Ace option is analogous to the conjunction of the options “Evidence conditioned”
and “Query specific” in the Options menu of the Primula console. The setting in the Primula Options menu,
however, only affects the Bayesian network construction in the Primula Run menu, not the Ace operations.

compile timeout: Timeout until giving up compilation. . .

output directory: Ace writes intermediate stages of the compilation into files. Here one specifies a directory
that Ace can use for this temporary storage (e.g. /tmp on a Unix system).

encoding method: Specifies to use the network encodings according to [5], [15], [2], respectively [3]. See
the Ace manual for further details on the different methods.

dtree method: Choose the heuristic for generating the decomposition tree of the CNF network encoding.
See the ACE manual for more information on the different heuristics.

number of partitions: Parameter of the Hypertree heuristics for the decomposition tree construction. See
the ACE manual for more information.
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5 The Bavaria Relational Structure Editor

The Bavaria structure editor provides a graphical interface for the construction of relational input structures.
The three lists on the left side of the window are used for the declaration of predefined relations. These are
partitioned into ‘Attributes’ (unary relations), ‘Binary Relations’ and ‘Higher arities’ (relations of arity ≥
3). The main difference between these three groups of predefined relations is the way they are graphically
represented in the Bavaria window. Otherwise, the Primulasystem treats relations of all arities uniformly.

Figure 10: Bavaria Structure Editor

Each attribute and binary relation assigned a color. The initial default assignment can be edited by right-
clicking on a relation name in the “Attributes” or “Binary Relations” lists. Each object that has one of the
specified attributes is colored with the corresponding color. Similarly, binary relations are represented by
colored arrows. Relations of higher arities are not graphically represented in the Bavaria window. They can
nevertheless be defined and edited in Bavaria.

Depending on the chosen operating mode, the functions of the Bavaria editor are as follows:

Add Node Left mouse-click in the editing pane to create a new node (object).
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Move Node To move a node, select and drag with left mouse button.

Delete Node Delete node (and all the relation tuples it is part of) with left mouse-click.

Add Tuple Select one of the relations from either of the three relations lists. Add a tuple of objects to that
relation by clicking on the objects in the editing pane. The incremental construction of tuple is echoed in
the bottom line of the Bavaria window. Click on ‘Reset’ button to cancel current selection (only for binary
and higher arities).

Delete Relation Deletes the specification of a whole relation by left mouse-click on the relation in the
relations list.

Individual tuples in a relation are deleted using the Node Window. A node window can be opened in all
operating modes of Bavaria by a right mouse-click on the node. The node window can be used to rename a
node, to view all tuples of relations that this node is part of, and to delete any such tuple.

Figure 11: Node window

6 Parameter Learning

The parameters of a Relational Bayesian Network model can be learned from data using the gradient ascent
method described in [12]. The learning is performed using the Learn Module, which is started from the
Primula:Run menu.
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Figure 12: The Learn Module

Quick Demo: Learning (complete data)

• Load the model mendel.rbn and the input domain mendel.rdef. Start the Learn Module
from the Primula Run menu. Set e.g. Sample size = 50 in the Learn Module (press ’return’ after
entering the number into the textfield).

• Push the Sample button of the Learn Module. This will generate 50 complete instantiations of
all the ground atoms defined by the probabilistic relations in mendel.rbn for the objects in
mendel.rdef.

• Load mendel param.rbn as Model source. In this file the salient probabilistic parameters
of mendel.rbn have been replace by parameter variables #mutationprob, #APopulationFreq,
and #AIfMutation.

• Push the Learn button in the Learn Module:Learning tab. The learner starts by building a
Gradient Graph structure for computing the gradient of the likelihood function. This will take a
few seconds; the progress is indicated in the Primula console. After completion of the Gradient
Graph, a gradient ascent likelihood maximization is performed. Again after a few seconds, the
values for the parameter variables in the model are displayed in the Learn Module.

• The learner will automatically restart the gradient ascent with different random initial parameter
values. The number of restarts that have been performed so far is displayed in the Learn Module;
the displayed parameter values are updated when a restart has resulted in parameter values with
higher likelihood value than the previous ones.

• In this example it will be observed that the values for #mutationprob and #APopulationFreq
are learned with a quite good accuracy when compared to the values in the generating model
mendel.rbn, whereas #AIfMutation shows a relatively high variance. This is explained by
the fact that #AIfMutation is a parameter in a mixture component with mixture coefficient 0.01,
and therefore only has a relatively small impact on the generated data.

Table 2: Parameter learning demo
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Parametric RBN for learning

The parameter learning task for RBNs is to learn numeric parameters for an RBN model from data. In
principle, every Constant in the syntax definition of RBNs is such a numeric parameter (cf. Appendix A).
However, constants in an RBN can be of quite different nature: consider the mendel.rbn model. It
contains the probability formula

AFather(v) =
(@fatherInTree(v):

(0.01:
0.6,
mean{AFather(u),AMother(u)|u: father(u,v)}

),
0.3

);

The three constants 0.01, 0.6, 0.3 in this formula represent stochastic parameters of the domain that one
might want to learn from data. Now consider also from mendel.rbn:

Aa(v) = (AFather(v):(AMother(v):0,1),AMother(v));

This formula contains two constants 0 and 1. However, these constants do not represent truly stochastic
parameters; they are needed to represent the deterministic knowledge that a person has genotype Aa if and
only if exactly one of AMother and AFather is true.

In a parametric RBN some, not necessarily all, occurrences of constants are replaced by parameter vari-
ables, represented by strings starting with #. Parameter learning for RBNs will then determine values for
the parameter variables. The same parameter variable can be used in several places in a parametric RBN,
which provides a means of parameter tying, i.e. two different parameters are forced to be set to the same
value.

mendel param is an example for a parametric RBN. It contains the parameter variables #mutationprob,
#APopulationFreq, and #AIfMutation. Each of these variables appears twice, once in the formula for AFa-
ther, and once in the formula for AMother. Thus, it is here assumed prior to learning that the inheritance of
the A-allele follows the same laws in the maternal and paternal lines. The deterministic constants 0,1 in the
formulas defining the genotypes have not been replaced by parameter variables.

Data

The data for learning parameters in a given RBN consists of a collection of input domains for the predefined
relations (often just one input domain), and for each input domain one or several observations (possibly
incomplete) of the ground atoms constructible from probabilistic relations of the RBN and objects from the
input domain.
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AFather(v) =
(@fatherInTree(v):

(#mutationprob:
#AIfMutation,
mean{AFather(u),AMother(u)|u: father(u,v)}

),
#APopulationFreq

);

AMother(v) =
(@motherInTree(v):

(#mutationprob:
#AIfMutation,
mean{AFather(u),AMother(u)|u: mother(u,v)}

),
#APopulationFreq

);

AA(v) = (AFather(v):AMother(v),0);
Aa(v) = (AFather(v):(AMother(v):0,1),AMother(v));
aa(v) = (AFather(v):0,(AMother(v):0,1));

Table 3: Parametric RBN mendel param.rbn

Sampling data When a RBN (without parameter variables) and an input domain are loaded, then a random
sample for this model can be generated using the Sample function of the Learn Module. The Sample size
specified in the Learn Module is the number of observations of the probabilistic atoms for the model and
input domain. Given mendel.rbn as model and mendel.rdef as input domain, a single (complete)
sample contains sampled truthvalues for 5 · 39 ground atoms constructible from the 5 (unary) probabilistic
relations in the model, and the 39 objects in mendel.rdef. When Percent missing is set to c > 0, then
c% of the sampled values are deleted (values are missing completely at random).

Sampled data is immediately set to be the ’active’ data used for learning. It can also be saved in .rdef format
using the Learn Module Save function (see Appendix B for details on the .rdef format).

Loading data from file Using the Load button of the Learn Module, data in .rdef files can be loaded for
learning. The learning data must be contained in a single file.

Learning

After data has been loaded, the learning is controlled from the Learn Module:Learning tab. First, a para-
metric RBN whose predefined and probabilistic relations match the predefined and probabilistic relations
of the dataset must be loaded as the Primula:Model source. Learning is then initiated by pressing the Learn
Module:Learn button.
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Quick Demo: Learning (incomplete data)

• As in Table 2 use model mendel.rbn and input domain mendel.rdef. Now sample 100
cases with 10% missing values.

• Load mendel softparam.rbn as Model source. This is the same as
mendel param.rbn, but with relaxed probability formulas for the relations AA, Aa,
and aa.

• Now push the Learn button in the Learn Module:Learning tab. The learning proceeds as before,
but is considerably slower due to the sampling procedure (which dominates the time require-
ment). To monitor the progress of the optimization, check the Verbose option on the Learn
Module:Learning:Settings panel.

Table 4: Parameter learning demo, continued

The learning algorithm consists of two phases: construction of the Gradient Graph, i.e. the computational
structure used for evaluating the gradient of the likelihood function, and the actual gradient ascent opti-
mization of the parameters. When the gradient ascent has terminated, the computed parameter values are
displayed in the Learn Module, and the gradient ascent restarts with a new random initialization of the
parameter values. Whenever a restarted gradient ascent terminates with parameter values with higher like-
lihood than the previous best values, the Parameter-Value table is updated. This process continues until the
Stop button is pressed.

Incomplete data When data is incomplete, then the learning process also contains a routine for sampling
values of unobserved ground atoms. Likelihood values and gradients needed in the gradient ascent are then
estimated based on these sampled values (see Appendix sec:learnsample for details on the sampling process
in gradient ascent). For the sampled values to be usable for the likelihood and gradient estimation, they must
have non-zero probability given the model with the current parameter values, and the other instantiations in
the training data.

Consider mendel param.rbn as shown in Table 3. If, for example, several truth values for AFather,
AMother, AA, Aa, and aa atoms need to be randomly sampled, then it will be extremely difficult to obtain a
sample that does not violate some of the deterministic dependencies between these relations, and therefore
has probability zero. The message Failed to sample missing values is printed on the Primula console when
the sampler did not obtain samples with nonzero probability. To circumvent this problem, the best solution
is to slightly relax the parametric model, so that no more atoms can have probability zero. The easiest way
to do this, is to modify a probability formula F (v) that may evaluate to zero (or one) into the relaxed form
(0.999 : F (v), 0.5), i.e. a mixture of the original F (v) and the constant probability value 0.5. This formula
can no longer attain the values 0/1, and yet the change of the model is small enough so that the likelihood
function of the parameters to be learned is not significantly different from the likelihood function defined
by the original model.

Setting the parameters and estimating the likelihood The parameters in the parametric model are set
to the learned parameter values by pressing the Set button in Learn Module:Learning. One can perform
inference with this model, or save it to an .rbn file using Primula:Run:Save RBN.

When learning from incomplete data, the data likelihood displayed in the Parameter-Value table will tend
to overestimate the true likelihood of the data, since this value is based on the same random sample of
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instantiations for the missing values as is used to estimate the parameters. An unbiased estimate of the
likelihood is obtained by setting the learned parameters in the model, and pressing the Learn button again.
When the loaded RBN model (no longer) contains unknown parameters, the learn function will just perform
a likelihood computation of the data. Furthermore, restarts of the learning operation are now not used
to mazimize the likelihood, but to improve the accuracy of the estimate. The value displayed after the
termination of each restart is an estimate computed from all the samples in all the restarts. The likelihood
value, therefore, may either increase or decrease after each restart.

Learning Settings Using Learn Module:Learning:Settings various parameters for the learning can be set:

• Restarts: Number of restarts of gradient ascent with initial random parameters. Default is -1, i.e.
process is restarted open-ended until Stop button is pressed

• Verbose: Check this box to have a progress log printed to the system console. See also Appendix D

• All other parameters See Appendix D

7 Interpreting Markov Logic Networks

Primula also supports the language of Markov Logic Networks (MLNs) [14] for model specification and
inference. MLNs are compiled into an RBN using the translation described in [9]. The translation is based
on a MLN semantics that for MLN knowledge bases in conjunctive normal form (cnf) is equivalent to the
one described in [14], and implemented in the Alchemy system (http://alchemy.cs.washington.edu/). The
translation does not incorporate a cnf transformation of the original knowledge base (as specified by Table
2 in [14]).

As a result, Alchemy and Primula should yield the same results for queries on the cnf knowledge base

1 !smokes(x)vcancer(x)
1 smokes(x)v!cancer(x)

(1)

(cf. example file friends and smokers v3.mln). However, for the non-cnf knowledge base

2 (smokes(x) <=> cancer(x)) (2)

(friends and smokers v2.mln) the results differ: Under MLN/Alchemy semantics, knowledge base
(2) is equivalent to (1), because (2) is first transformed into (1) before the features in the ground Markov
network are generated. Thus, both (2) and (1) lead to a feature set where for each constant a that can
be substituted for x there are two boolean features corresponding to the formulas !smokes(a) ∨ cancer(a)
and smokes(a)∨!cancer(a). The Primula semantics for MLN knowledge bases does not require a cnf-
transformation, and (2) defines a distribution determined by one boolean feature smokes(a) ⇔ cancer(a)
for each a.
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Quick Demo

• Load friends and smokers.mln as Primula’s Model source.

– when prompted to Load domain data, select friends and smokers domain.db

– when prompted to Load evidence data, select friends and smokers evidence.db

• Start the Primula Inference Module, and set smokes([person*]) and
cancer([person*]) as query.

• Run exact inference using ACE

• The results include P (smokes(Paul)) = 0.3794, P (cancer(Bob)) = 0.5684.

If Alchemy is available, run for comparison the query
$ALCHEMYHOME/bin/infer

-i friends and smokers.mln -r friends and smokers.result
-e friends and smokers domain.db,friends and smokers evidence.db
-cw friends
-ow cancer,smokes
-q smokes,cancer
-ms -maxSteps 5000

This inference should yield (approximately) the same results as computed by Primula above (with
higher settings of maxSteps leading to a better match of the results).

Table 5: Consistent inference in Alchemy and Primula

7.1 MLN inputs for Primula

Primula takes MLN inputs in the file formats specified for the Alchemy system1. These inputs are distributed
over files in the .mln format containing the general model specification, and files in the .db format containing
relational data. Roughly speaking, the .mln file contains a random relational structure model specified in
the MLN language, whereas .db files will contain the specification of an input domain, as well as evidence
on probabilistic relations.

The MLN interpreter of Primula implements the language of Markov Logic Networks as introduced in [14]
in full generality. However, not all additional features available in Alchemy are implemented in Primula.
The set of admissible .mln input files for Primula, therefore, is a subset of the admissible .mln files for
Alchemy. Specifically, Primula accepts as input .mln files that have the form

Predicate declarations
Type declarations
Hard formulas
Weighted formulas

where:
1http://alchemy.cs.washington.edu/
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Predicate declarations introduce the relations (predefined and probabilistic) with type specifications of their
arguments. Example (we adopt the running example from [14]):

// predicate declarations
friends(person,person)
smokes(person)

Note that relation names have to start with lowercase letters.

Type declarations (optional) specify objects belonging to the different types. E.g.

//type declarations
person={Peter, Anna, Carl, Elisabeth}

Note that constants must start with uppercase letters.

Hard formulas are first-order formulas in the syntax specified by Alchemy, followed by a period “.”. The
syntax of first-order formulas is:

• Atomic formulas can be relational or equational atoms, e.g. friends(x,y),
smokes(someperson). someperson=x. Primula only accepts .mln files in which all argu-
ments of such atoms are variables (starting with lowercase letters), not constants. For example,
friends(Peter,y) is not allowed in .mln input files for Primula (unlike Alchemy)2.

• Boolean operators ! (not), ˆ (and), v (or), => (implies), <=> (if and only if). Precedence of operators
is in this order, i.e.

r(x) v r(y) ˆ !r(z) v s(x) => !s(y)

is evaluated as

(((r(x) v (r(y) ˆ !r(z))) v s(x)) => !s(y))

• Quantifiers exist (or Exist, EXIST) and forall (or Forall, FORALL). Example:

exist x,y (friend(x,y)ˆsmoke(y))

To ensure compatibility with the quantifier scoping rules of Alchemy, it is recommended that the
sub-formula that is the intended scope of the quantifier is enclosed in parenthesis.

2this is not a real limitation of expressivity: a standard workaround would be to introduce a relation symbol peter(person), to
declare (in a .db file) that peter(Peter), and then to replace friends(Peter,y) with friends(z,y), where the variable
z is relativized to the relation peter
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No function symbols are allowed in input MLNs for Primula3. Furthermore, Primula does not support
several syntactic extensions of the MLN framework that are provided by Alchemy, e.g. the + operator in
front of variables.

Weighted formulas are first-order formulas preceded by a weight. Example:

1.1 friend(x,y) => (smokes(x) <=> smokes(y))

The basic definition of MLNs makes no distinction between predefined and probabilistic relations. For all
relations that appear in the MLN knowledge base, (negated) ground atoms can be specified as evidence
(usually collected in one or several data (.db) files). However, for inference, the Alchemy systems applies
the closed-world assumption to some relations, i.e. all ground atoms of these closed-world relations that
are not specified as true in the evidence, are considered to be false. See the Alchemy manual for details on
which relations will be treated as closed-world. In our introductory example, the relation friends is declared
closed-world by the command-line switch -cw, whereas the relations smokes and cancer are declared
open-world. Closed-world relations are completely specified by the input, and therefore can be seen as
predefined relations in the sense of Primula.

For Primula, the distinction between closed- and open-world relations is made by distributing ground ev-
idence atoms over two input .db files: one, the domain data file, for atoms of closed-world relations, and
one, the evidence data file, for atoms of open-world relations. No relation must appear both in the domain
and the evidence data file. The domain data file should not contain any negated atoms. Together with the
Type declarations in the .mln file, this yields the distinction between predefined and probabilistic relations,
and the specification of the input domain:

• Predefined relations are:

– Unary relations corresponding to the types specified in the .mln file
– All relations for which there exists at least one ground atom in the domain data file.

• Probabilistic relations are

– all other relations specified in the .mln file
– new synthetic relations named MLNRel0,MLNRel1,. . . that are generated by the MLN to RBN

compilation process.

• The input domain is constructed as follows:

– The domain contains one object for each constant symbol appearing in the .mln file, or either of
the two .db files.

– A type relation t is true for a constant c iff c is listed in the type declaration for t in the .mln
file, or c appears in one of the .db files in a relation argument that according to the relation
declaration in the .mln file is of type t.

– A predefined relation r is true for a tuple of constants c iff r(c) is contained in the domain data
file.

3Again, this is no limitation of expressivity if the Known function assumption [14] is made, which allows to replace function
symbols by equivalent predefined relations
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7.2 Performing Inference

After reading the MLN model and data files into Primula, inference can be performed using any of Prim-
ula’s inference methods. However, the main benefit of using Primula for MLN inference is to perform exact
inference for small domains. The sampling inference in Primula is not as efficient for MLN models as the
sampling methods provided by Alchemy.

In the inference module numerous MLNRelx-atoms will appear as instantiated to true. This is part of the
translation MLN to RBN translation process, and necessary for representing in Primula the same distribu-
tion over the relations of interest as defined by the original MLN model.

While the input domain can be visualized in the Bavaria editor, it should not be modified in Bavaria: a
modification of the input domain would require the generation and instantiation of additional MLNRelx-
atoms, and an automatic update of the instantiated MLNRelx-atoms is not yet supported.

In the example in Table 5 the inference results obtained by Alchemy and Primula were consistent, because
friends and smokers.mln is a cnf knowledge base. The issues with non-cnf knowledge bases are il-
lustrated using the example inputs friends and smokers v2.mln and
friends and smokers evidence.db The relation friends is now omitted, the domain consists of
the single element Anna of type person (in the absence of predefined relations other than the type rela-
tions, just skip the loading of a domain data file by pushing the ’Cancel’ button of the ’Load domain data’
window), and the MLN knowledge base is just (2).

When querying Primula for the probability of cancer(Anna), one obtains the result 0.1192. Running this
query in Alchemy, on the other hand, gives a value of approximately 0.26, which corresponds to the result
Primulagives for the query cancer(Anna) for inputs friends and smokers v3.mln (i.e. knowledge
base (1)) and friends and smokers evidence.db.

8 The Elements of the Relational Bayesian Network Language

The Primula system reads probabilistic model specifications in the formal language defined in appendix A.
This is essentially the language of Relational Bayesian Networks as introduced in [10]. In a Relational
Bayesian Network, the distribution for a random relation is defined by a single declaration of the form

< RAtom >=< ProbabilityFormula >;

The language for the specification of Probability Formulas is defined by the four basic constructs Constants,
Indicators, Convex Combinations and Combination Functions, and the two additional constructs S-formulas
and Macro-Reference (these are additional in that they do not add to the expressivity of the language, but
facillitate the model specification).

For an illustration of the first three basic constructs, table 6 shows the Relational Bayesian Network con-
tained in classic.rbn. This is an RBN-encoding of a standard Bayesian network. It does not use any
predefined relations, and defines three random attributes a,b,c. Line 1 contains the definition of the random
attribute a, which is true for any object v with probability 0.5. Line 2 defines the distributionof attribute b
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conditional on the truth value of attribute a using the convex combination construct

(< ProbabilityFormula >:< ProbabilityFormula >, < ProbabilityFormula >)

In this case, the second and third probability formula arguments are just the constants 0.4 and 0.9,respec-
tively. The first probability formula argument is the Indicator a(v). The semantics of the whole formula is
that the probability of attribute b being true is 0.4 when attribute a is true, and 0.9 otherwise.

1 a(v)=0.5;
2 b(v)=(a(v):0.4,0.9);
3 c(v)= (a( v):
4 (b(v):0.2,0.4),
5 (b(v):0.1,0.3)
6 );

Table 6: A Standard Bayesian Network

Generally, probability formulas are evaluated by substituting specific objects o for its free variables v. The
indicator formula a(o) then evaluates to 1 if a(o) is true, and to 0 if a(o) is false. A convex combination
with its three constituent probability formulas PF1, PF2, PF3 evaluates to

evalPF1evalPF2 + (1 − evalPF1)evalPF3,

where evalPFi are the (recursively computed) evaluations of its three constituent probability formulas.In
the case where PF1 is deterministic, i.e. always evaluates to either 0 or 1, this reduces to an if-then-else
construct: the value of the convex combination is equal to PF2 if PF1 is 1 (”true”), and to PF3 otherwise.
In most of our examples we use convex combinations in this way, i.e. with deterministic first arguments.

Lines 3-6 define the probability distribution for c in very much the same way, only now nested convex
combinations are used in a way that is equivalent to the specification of a conditional probability table for
c given a and b.

When classic.rbn is instantiated with any relational input structure, it will generate one standard
Bayesian network for the three attributes a,b,c for each object in the domain. The simplest possible input
structure is classic.rdef consisting of only one object. See section 9.2 for an encoding using 0-ary relations.

The key to the expressivity of RBNs is the fourth construct for probability formulas, the combination func-
tion:

< CombinationFunction > { < ProbFormList > | < VarList > : < SFormula > }

where
< CombinationFunction >::= n− or‖mean‖invsum

The combination function construct permits to define a probability value as a function of a set of probability
values {p1, . . . , pk}, which are given by recursively evaluating the probability formulas in ProbFormList.
Currently the three different combination functions shown in table 7 are implemented in Primula.

A simple example for the use of combination functions is in line 5 of mendel.rbn (cf. table 1):

mean{AFather(u), AMother(u)|u : father(u, v)}
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Name Syntax Definition Multilinear
noisy-or n-or 1 −

∏k

i=1(1 − pi) yes
mean mean (1/k)

∑k

i=1 pi yes
esum esum exp(−

∑k

i=1 pi) no
inverse sum invsum min{1, 1/

∑k

i=1 pi} no

Table 7: Combination functions in Primula

This formula contains the free variable v. It is evaluated under the substitution v=Mike by evaluating the
probability formulas AFather(u) and AMother(u) for all u for which father(u, Mike) is true in the
given input structure, and then computing the mean value of the obtained probabilities. According to the
input structure of figure 3 we have to consider the substitution u=Paul. The whole formula then evaluates
to 0 (=mean{0, 0}) if AFather(Paul) and AMother(Paul) both are false, to 1/2 (=mean{1, 0}) if exactly
one is true, and to 1 (=mean{1, 1}) if both are true.

In general, the probability formula arguments of a combination function are evaluated for all objects that
make SFormula true when substituted for the variables in VarList. SFormulas are boolean combinations
of relational atoms in the predefined relations. The syntax definition for SFormulas requires parentheses
around all conjunctions and disjunctions (e.g. ((a&b)&c) must not be written as (a&b&c)).

Given some input structure, any ground SFormula evaluates to true or false, and thus can be used also
as a deterministic probability formula. When used as a stand-alone probability formula (rather than as a
syntactic component of a combination function), SFormulas must be prefixed with the keyword sformula
and enclosed in parentheses.

This use of SFormulas together with a second illustration of combination functions is illustrated in
randgraph3.rbn, which contains the single line

1 edge(v,w)=mean{sformula(u=v)|u:u=u};

This defines a classic (”sparse”) random graph model: according to this model, any two nodes v, w in a
graph of n nodes are connected with probability 1/n. To see how this model is represented by
randgraph3.rbn, let a, b be two nodes. To compute the probability of edge(a, b) substitute a, b for v, w
in the probability formula. As w does not actually occur in the formula, we obtain mean{sformula(u
= a ) | u : u = u }. We have to evaluate the probability formula sformula(u = a) for all
nodes c for which c = c is true, i.e. for all n nodes in the domain. This evaluation will return 0 for all c 6= a,
and 1 for c = a. Thus, we finally apply mean to a set that contains n− 1 zeros and one 1, which gives 1/n.

The combination function noisy-or can be used for existential quantification: in the case where all pi are
either 0 or 1, noisy-or{p1, . . . , pk} returns 1 iff there is at least one pi = 1. This allows first-order quantifi-
cation in the probabilistic modelling with probability formulas. An example for this use is the probability
formula in line 1 of mendel.rbn:

n-or{sformula(father(u,v))|u: u=u}

This evaluates to 1 for v = a iff there exists some b with father(b, a).
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The last syntactic element we have not discussed so far are Macro Definitions. A macro definition has the
same syntactic form as the definition of a random relation, prefixed with the symbol @. The probability
formula in the macro definition can then be referenced by the macro’s name. See table 1 for an example.
When a macro is referenced, variable substitution is performed, i.e. the variables in the macro definition
need not be the same as the variables in the macro reference.

Note: A macro definition must precede any reference to that macro in the input file.

9 Miscellaneous Issues

9.1 Relation Argument Types

In Primula any unary predefined relation can be used as a type constraint on the arguments of a probabilistic
relation. Syntactically, type constraints are specified by preceding the arguments in the probabilistic relation
definitions by the name of the type relations in brackets; e.g. in distributed.rbn:

hasmessage([agent]v,[time]t) = ...

If no type constraint is given for a relation argument, then the argument is assumed to range over all ob-
jects in the domain. For example, in mendel.rbn arguments are not explicitly typed, since all relation-
arguments in this model range over all objects of the domain (for which no explicity ’person’ type needs to
be introduced).

By combining type constraints with unary relations describing unique objects, one can specify probabilistic
attributes for specific objects. For example, in holmes.rbn the specification

earthquake([LA]w)=0.01;

turns ’earthquake’ into an attribute for the specific object ’LA’ (assuming that as intended in this model, the
extension of the relation ’LA’ in the input domain consists of a single city object).

9.2 Arity-0 probabilistic relations

It is also allowed to specify probabilistic relations of arity 0 in an .rbn file. For example, the following is a
valid specification:

exists infected() = n-or{ infected(v)| v:person(v)};

Probabilistic relations of arity 0 represent global properties of a random relational structure (here the ex-
istence of at least one infected person – a more interesting example is contained in colorgraph.rbn).
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Independent of the size of the input structure, they give rise to exactly one random variable. Another exam-
ple for the use of 0-ary relations is classic arity0.rbn, which encodes a standard 3-node Bayesian
network (cf. Section 8) using 0-ary relations. Regardless of the input domain, this model will always yield
a Bayesain network with just 3 nodes.

Note that Primula only permits probabilistic relations of arity 0, not predefined relations of arity 0. The
latter don’t pose any problems in principle, but have not been implemented so far.

9.3 The Use of Predefined Order Relations

On all relational input structures predefined order relations less,pred,zero,last are automatically given.The
user has only indirect control over which order is imposed on the objects of the structure (when the structure
is constructed in the Bavaria editor, it will be the order in which objects were added to the domain). As
a result, these order relations should be considered as a purely arbitrary ordering of the domain, with no
semantic meaning. Consequently, these order relations are safely used in probabilityformulas only when no
assumptioons on the special form of the order are made, and the distribution of the probabilistic relations
remains the same when the underlying order changes. An example for such a use of the predefined order
relations is in the first part of randblock.rbn:

1 @predselected(a,b)=n-or{blocks(a,c)|c: less(c,b)};
2
3 @selprob(v)=mean{sformula(z=v)|z: (less(v,z)|v=z)};
4
5 @selects(a,b)=( @ predselected(a,b):
6 0,@selprob(b)
7 );
8
9 blocks(u,v)=( sformula((block(u) & location(v))):
10 @selects(u,v),0
11 );

Here the probability that a block u is placed on location v is specified sequentially for all v according to the
predefined order less: if u was already placed on a location preceding the current one in the order, i.e. if
the macro @predselected(u, v) evaluates to 1, then this probability is 0. Otherwise the probability
is computed with the macro @selprob(v), which returns 1/m, where m is the number of objects still
following v in the order. Note that the final result of this definition is that every block selects every location
with equal probability, and that this remains the same when the underlying order less is permuted.

An example where this invariance under permutations of the predefined order relations does not hold is
dynamic.rbn: here the probability of a(v) and b(v) depends on the position of v in the ordering.
One could specify with the Bavaria editor two seemingly identical input structures that would instanti-
ate dynamic.rbn to two different models (because the nodes in the structure were added in a different
order,and therefore the invisible order relations are different).
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9.4 Intended, Valid and Invalid Input Structures

The probabilistic models encoded by a RBN are almost always created for a specific class of intended input
structures. The inheritance model in table 1, for instance, is meant to be instantiated with input structures
where every individual has at most one father and one mother. However, one can also instantiate the model
with an input structure that does not satisfy this condition: one may add, for instance, in the input structure
shown in figure 3 another father-edge from Susan to Mike. When Primula is run on this input structure, it
will generate a Bayesian network that represents a probability distribution over the probabilistic relations.
The new input structure is valid for the probabilistic model, even though the resulting distribution may not
be very meaningful.

An input structure only is invalid for a given RBN specification, if it induces cyclic dependencies between
the atoms of the probabilistic relations, and therefore there is no well-defined probability distribution. An
example would be the input structure obtained from figure 3 by inserting a father edge from Katie to Mary.
When run on this input structure Primula will respond with an error message ”Network is cyclic” (where
network refers to the Bayesian network Primula attempted to construct - very often cycles in the Bayesian
network will be induced by cyclic structures in the input structure, but there also can be other reasons).

9.5 Graph layout

The Primula system contains a graph-drawing algorithm based on [16] for computing the layout of the
generated Bayesian networks. This layout is usually far from perfect. The layouts shown in the figures in
this manual were obtained by manually editing the Primula-generated layouts.

A Syntax

Following is a syntax specification of .rbn model files in extended Backus-Naur form.

< RelationalBayesianNetwork > ::= {< MacroDefinition > ”;”| < RandomRelationDefinition > ”;”};
< MacroDefinition > ::= ”@” < MAtom > ”=” < ProbabilityFormula >;
< RandomRelationDefinition > ::= < DefRAtom > ”=” < ProbabilityFormula >;
< ProbabilityFormula > ::=

< Constant >
| < RAtom >
|”(” < ProbabilityFormula > ”:” < ProbabilityFormula > ”,” < ProbabilityFormula > ”)”
| < CombinationFunction > ”{” < ProbFormList > ”|” < VarList > ”:” < SFormula > ”}”
|”sformula(” < SFormula > ”)”
|”@” < MAtom >;

< CombinationFunction > ::= ”n− or” | ”mean” | ”invsum” | ”esum”;
< ProbFormList > ::= < ProbabilityFormula > {”,” < ProbabilityFormula >};
< VarList > ::= < VarName > {”,” < VarName >};
< SFormula > ::=
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< SAtom >
|”∼” < SFormula >
|”(” < SFormula > ”&” < SFormula > ”)”
|”(” < SFormula > ”|” < SFormula > ”)”;

< DefRAtom >=< RRelationName >< TypedRRelationArguments >;
< MAtom >=< MRelationName >< RelationArguments >;
< SAtom >=< SRelationName >< RelationArguments >;
< RAtom >=< RRelationName >< RRelationArguments >;
< MRelationName > ::= < RelationName >;
< SRelationName > ::= < RelationName >;
< RRelationName > ::= < RelationName >;
< RelationName > ::= ”a” | . . . | ”Z” {”a” | . . . | ”Z” | ”0” | . . . | ”9” | ” ” | ”−”};
< MRelationArguments > ::= < EmptyVarList > | < NonEmptyVarList >;
< SRelationArguments > ::= < NonEmptyVarList >;
< RRelationArguments > ::= < EmptyVarList > | < NonEmptyVarList >;
< TypedRRelationArguments >::= < EmptyVarList > | < NonEmptyTypedVarList >;
< EmptyVarList >::= ”()”;
< NonEmptyVarList >::= ”(” < VarName > {, < VarName >}”)”;
< NonEmptyTypedVarList >::= ”(” < TypedVarName > {, < TypedVarName >}”)”;
< TypedVarName >::= {< TypeSpec >} < VarName >;
< TypeSpec >::= ”[” < SRelationName > ”]”;
< VarName > ::= ”a” | . . . | ”z” {”a” | . . . | ”z” | ”0” | . . . | ”9”};
< Constant > ::= ”0” | ”1” | ”0.”{”0” | . . . | ”9”};

An input file may contain comment-lines starting with %. The only syntactic difference between MAtom,
SAtom and RAtom is that MAtoms and RAtoms may have an empty argument list. Another reason for
specifying these three kinds of atoms separately in the syntax is to emphasize the fact that the basic atom
construct is used in three semantically distinct ways, and that one should chose distinct names for the three
types of relations.

B .rdef File Format

The .rdef format is a rich xml file format for relational data. It is used by Primula to save input domains,
sample data for learning, and instantiation (evidence) data for inference.

Figure 13 shows the general structure of the data specification in an .rdef file. It starts with a header enclosed
by <Relations> tags declaring all the relations appearing in the data, distinguished as predefined or
probabilistic. Relations have an attribute default which specifies whether the value of ground atoms of
that relation when not given in the data should be considered as false (i.e. the closed-world assumption is
made for that relation), or as unknown.

Following the relation declarations is a sequence of blocks that are enclosed by <DataForInputDomain>
tags. Each such block of data represents the observation of a single input domain, and possibly multiple
observations (enclosed by <ProbabilisticRelsCase> tags) of the probabilistic relations associated
with that input domain.
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<ProbabilisticRelsCase>

<Domain>
<PredefinedRels>

<ProbabilisticRelsCase>

General Data (learning)

Input Domain Evidence

<ProbabilisticRelsCase>

<ProbabilisticRelsCase>

<PredefinedRels>
<Domain>

<Relations>

<PredefinedRels>
<Domain>

<Relations>

<ProbabilisticRelsCase>

<PredefinedRels>
<Domain>

<Relations>

PSfrag replacements

Relation declarationsRelation declarations

Relation declarations

Input domainInput domain

Input domain

Input domain

Data

Data

Data

Data

Data

• Relation names, arities, argu-
ment types

• Predefined or probabilistic

• Default value: ? or false

• [ colors ]

• Domain objects

• True atoms for predefined re-
lations

• [ coordinates ]

• Observations: True/false
probabilistic atoms

Figure 13: Structure of .rdef files
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Primula’s learn module can read and learn from data of the general structure shown in Figure 13. However,
the sampling facility of of the learn module only can sample from one input structure at a time, so that data
files generated by the sampler will only contain one <DataForInputDomain> block.

Data files representing input domains or evidence have the special structure shown in Figure 13.

B.1 Reading Prolog Data

Using the Primula ’Console:Run:Convert Relational Data’ function one can transform a database in Prolog
format into rdef.

It is assumed that the input file consists of a list of ground relational atoms, each atom terminated by a
period.

Since the rdef format can represent more information than a Prolog database (e.g. distinction of prede-
fined/probabilistic relations, default values, argument types, etc.), an interactive ’upgrade’ dialogue is used
to enrich the source data. Currently, this dialogue only supports the definition of argument types: every
unary relation appearing in the data is considered to be a candidate type predicate. The user can select
from a list of all such unary relations those that are to be considered as type relations. Subsequently, the
arguments of all other relations are assigned a type, if the data contains an atom with an argument belonging
to that type.

Example: the Prolog data contains (among otheres) the ground atoms person(tom),divorced(mary),
owns(tom,account 427645). The user will be asked to select type predicates from the candidates
person and divorced. If the user selects person as the only type predicate, then the relation owns will be
assigned type person for its first argument. The second argument of owns, as well as the single argument of
divorced will have the default type domain that applies to all objects in the domain. The system does not
try to resolve conflicts: if the data contains also male(tom), and the user also specifies male as a type
argument, then the type of the first argument of owns will be an essentially random choice between person
and male (in reality depending on the order in which atoms and relations first appear in the data).

Currently there is no support for an interactive specification of predefined or probabilistic relations. All
declared type relations are interpreted as predefined, all others as probabilistic.

C .rst File Format

The .rst file format is a simpler file format for storing input domains. It was used until PrimulaV. 2.1, and
is still supported for compatibility.

An .rst file contains one domain declaration, one coordinates declaration, and a number of relation decla-
ration.

A domain declaration has the format
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DOMAIN: { <comma-separated list of object names> };

Valid object names are arbitrary alpha-numeric strings that also may contain the special characters . or - or
.

A coordinates declaration has the format

COORDINATES: { <list of x,y-coordinates> };

An x,y-coordinate has the form (i, j) with integers i, j.

A relation declaration has the format

Relation: < SRelationName> / <arity> { <list of tuples> };

Here SRelationName is as in the preceding syntax definition, arity is the arity of the relation specified. The
list of tuples enumerates all tuples of domain objects that belong to the specified relation. Objects here
are referenced by their internal integer representation, which is equal to the position of the object in the
domain declaration list (counting starts with 0). If arity= k, then each tuple has the format (i1, . . . , ik).
The parentheses can be omitted if tuples are separated by white space (there must be no white space within
a tuple specification).

D Details on Gradient Ascent and Sampling

Parameters of the learning procedure that can be set in the Learning Settings menu are printed in bold.

The gradient ascent parameter learning process proceeds in two phases.

In the first phase, a basic iteration starting at current parameter values θ(t) = (θ
(t)
1 , . . . , θ

(t)
K

(K the number
of parameter variables to be learned) consists of

• computing (approximately) the gradient of the likelihood function at θ(t).

• performing a linesearch in the direction of the gradient. This linesearch is essentially a binary search
for a local maximum of the likelihood function in the direction of the gradient. Only likelihood
values, no first or second derivatives are used in this search.

• repeat with θ(t+1): local maximum found in the linesearch

These iterations continue until

|θ(t+1) − θ(t) |< Distance threshold,

or
t > Max. iterations gradient search.
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It can happen that after the this procedure has terminated, some parameters are (approximately) correctly
estimated (assuming the generating model is available for verification), whereas others are not. This will
typically happen when the number of ground atoms that depend on these different parameters greatly differs.
Consider, for example, the very simple parametric RBN

t(v)=#param1;
r(v,w)=#param2;

A random sample for an input domain with 100 objects will then contain 100 ground t=atoms, but 10000
ground r-atoms, i.e. the likelihood function is a product of 100 terms depending on #param1, and 10000
terms depending on #param2. Thus, the value of #param2 dominates the likelihood value, and the gradient
ascent will terminate when it has found a (local) maximum for #param2. For this reason, the gradient ascent
procedure is extended with a second phase, where the likelihood function is optimized individually for each
parameter in turn. A basic iteration of the second phase is:

For i = 1, . . . , K:

• compute (approximately) the partial derivative of the likelihood function at θ(t) with respect to θi (in
fact, only the sign of the derivative is needed)

• perform a linesearch for an optimal value of θi.

• continue with θ(t+1): local maximum found in the linesearch

When data is incomplete, then both the computation of the gradient, and the computation of likelihood
values in the linesearch are based on a random sample of instantiations of the missing values. The random
samples are obtained by Gibbs sampling. During the whole gradient ascent process, Gibbs chains many
Markov chains for Gibbs sampling are maintained. One round of Gibbs sampling (i.e. one resampling of
each ground atom atom with missing value) is performed at the termination of every linesearch in either of
the two phases of the gradient ascent. Computations of gradients and likelihood values are based on the
Gibbs Window Size many recent samples in each chain.

G
ib

bs
 C

ha
in

s

Windowsize

PSfrag replacements
Relation declarations

Input domain
Data

• Relation names, arities, argu-
ment types

• Predefined or probabilistic

• Default value: ? or false

• [ colors ]

• Domain objects

• True atoms for predefined re-
lations

• [ coordinates ]

• Observations: True/false
probabilistic atoms

θ(t−5) θ(t−4) θ(t−3) θ(t−2) θ(t−1) θ(t)

Figure D illustrates the sampling process. Each box represents one instantiation of all unobserved ground
atoms. In this figure Gibbs chains = 3 and Gibbs Window Size = 5. Thus, for the (approximate) compu-
tation of the gradient at θ(t) alltogether 15 complete instantiations of the unobserved atoms are used. Note
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that, ideally, all samples used for the computations at θ(t) should be obtained from Gibbs-sampling using
θ(t). Here, for efficiency reasons, we also re-use samples obtained using previous parameters θ(t−i).

Max. iterations gradient search Max. iterations per phase.

Distance threshold Euclidean distance (linesearch and main loop)

Likelihood threshold (linesearch) 1− Lt < ratio < 1 + Lt.

Max. fails (Sample Missing) Overall Mf · numchains samples of prob. 0 are allowed. If exhausted,
restarts with new random parameters.

E Known Bugs

Some graphics components can reach an unstable state in which they generate exceptions like:

Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException
at javax.swing.plaf.basic.BasicProgressBarUI

.updateSizes(BasicProgressBa rUI.java:470)

This can be annoying, but has no effect on the functionality of the system.

An error

warning: RunAceCompile.run() caught java.lang.Exception: Error reading
network!

occurs when Ace produces a Bayesian network file in .net format (Hugin) that does not comply with the
Hugin naming conventions. Ace inference synthesizes filenames from the input .rbn and .rst files. An
illegal name is generated when any of these files contains characters not admissible for Hugin .net files (e.g.
numbers). Solution: use for .rbn and .rst files names containing only characters a-z,A-Z, and underscore .
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