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Abstract Reduction of greenhouse gas (GHG) emissions from transportation is an essen-
tial part of the efforts to prevent global warming and climate change. Eco-routing, which
enables drivers to use the most environmentally friendly routes, is able to substantially
reduce GHG emissions from vehicular transportation. The foundation of eco-routing is a
weighted-graph representation of a road network in which road segments, or edges, are asso-
ciated with eco-weights that capture the GHG emissions caused by traversing the edges. Due
to the dynamics of traffic, the eco-weights are best modeled as being time dependent and
uncertain. We formalize the problem of assigning a time-dependent, uncertain eco-weight
to each edge in a road network based on historical GPS records. In particular, a sequence
of histograms is employed to describe the uncertain eco-weight of an edge at different time
intervals. Compression techniques, including histogram merging and buckets reduction, are
proposed to maintain compact histograms while retaining their accuracy. In addition, to bet-
ter model real traffic conditions, virtual edges and extended virtual edges are proposed in
order to represent adjacent edges with highly dependent travel costs. Based on the tech-
niques above, different histogram aggregation methods are proposed to accurately estimate
time-dependent GHG emissions for routes. Based on a 200-million GPS record data set
collected from 150 vehicles in Denmark over two years, a comprehensive empirical study
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is conducted in order to gain insight into the effectiveness and efficiency of the proposed
approach.

Keywords Road network · Eco-routing · Time-dependent uncertain edge weight

1 Introduction

The greenhouse effect is due to the concentration of greenhouse gases (GHG) in the Earth’s
atmosphere, which prevents heat from escaping into space. The combustion of fossil fuel
results in GHG emissions, and transportation is a prominent fossil fuels burning sector.
Thus, reducing the GHG emissions from transportation is crucial in combating global
warming.

Eco-routing is an easy-to-employ and effective approach to reducing GHG emissions
from transportation. Given a source-destination pair, eco-routing returns the most environ-
mentally friendly route, i.e., the route that produces the least GHG emissions [2, 8]. The
literature reports that eco-routing can yield 8–20 % reductions in GHG emissions from road
transportation [6].

Neither the shortest nor the fastest routes generally have the least environmental impact
[2]. Figure 1 shows an example of the shortest route, the fastest route, and the eco-route
between source A and destination D.

Vehicle routing generally relies on a weighted-graph representation of a road network,
where the vertices and edges represent road intersections and road segments, respec-
tively. The key to enabling effective eco-routing is to assign eco-weights to the edges that
accurately capture the environmental costs (i.e., GHG emissions or fuel consumption) of
traversing the edges. Based on the resulting weighted graph and the types of weights,
e.g., single-value weights, time-dependent weights, or uncertain weights, existing routing
algorithms [12, 17, 23, 25, 26] can be applied to enable eco-routing.

Fig. 1 Eco-Route, Fastest Route, and Shortest Route
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A single-valued edge weight typically cannot fully capture the environmental cost of
traversing an edge. For instance, while traversing an edge, aggressive drivers may generate
more GHG emissions than average drivers. Thus, emissions vary across drivers, and an
uncertain eco-weight that records the distribution of the cost of traversing an edge captures
reality better [22]. Further, eco-weights are generally time dependent, due to the temporal
variation in traffic. For instance, during peak hours, traversing an edge normally produces
more GHG emissions than during off-peak hours. As an example, Fig. 2a shows GHG
emissions cost values observed on an edge in our road network during off-peak and peak
hours, and Fig. 2b shows the corresponding uncertain edge weights of the edge during off-
peak and peak hours as histograms.

According to a recent benchmark on vehicular environmental impact models [6, 7],
environmental costs of traversing edges can be derived from GPS data using vehicular envi-
ronmental impact models. Based on such models, a previous study [16] offers a preliminary
attempt at assigning time-dependent, uncertain eco-weights to edges. That study derives
a time-dependent histogram for each edge to represent the eco-weight of each edge. That
study makes the assumption that the histograms on different edges are independent and pro-
poses a method to estimate the GHG emission distributions of a route at a given time using
the eco-weights.

This paper makes three main contributions to extend and enhance the previous study
[16]. First, by introducing virtual edges and extended virtual edges, we make it possible to
capture the dependence among eco-weights of adjacent edges. Second, we propose several
histogram aggregation methods that are able to estimate GHG emissions of routes based
on the eco-weights of edges, virtual edges, and extended virtual edges. Third, experiments
are conducted on a comprehensive GPS data set that provide insight into the efficiency and
accuracy of the paper’s proposals.

The remainder of the paper is organized as follows. Section 2 reviews related work, and
Section 3 covers preliminaries and formalizes the problem. In Section 4, the methods for
building and using an Eco Road Network with histogram-based eco-weights is proposed,
and Section 5 describes how to estimate GHG emissions using the Eco Road Network.
Section 6 reports on the experimental results, and Section 7 concludes.

2 Related work

Although much work has been conducted to enable time-dependent (e.g., [4, 5]) and
stochastic (e.g., [9]) routing services in different application scenarios, existing proposals
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do not provide a detailed description of how to obtain the time-dependent and uncertain
weights, and most studies simply rely on synthetically generated weights.

T-drive [28] is the most relevant work to our study. T-drive aims at providing a fastest-
route service based on travel-time weights learned from GPS records obtained from taxis.
Our study differs from T-drive in several respects. First, due to its different focus, T-
drive does not assign weights to road-network edges, but identifies so-called landmarks
and assigns weights to landmark edges that connect pairs of landmarks. This setup makes
the T-drive approach inappropriate for general-purpose routing because T-drive suggests
sequences of landmark edges, not sequences of road-network edges because landmark edges
typically correspond to multiple paths in the road network. In contrast, our study assigns
weights to edges and thus provides a general-purpose foundation for stochastic routing. Sec-
ond, T-drive uses a sequence of histograms as the weight of a landmark edge, where each
histogram represents the distribution of travel times during an interval. When doing so, T-
drive uses the same buckets for all histograms on a landmark edge. In contrast, our proposal
is able to assign different buckets (based on distinct distributions) to the histograms on an
edge during different intervals. For instance, more buckets are used for representing more
complex distributions, e.g., the GHG emissions distributions during peak hours. Third, T-
drive assumes that adjacent landmark edges are independent. In contrast, we consider the
travel cost dependencies between adjacent edges, which better captures reality. The experi-
mental studies confirm that our approach achieves better travel cost estimations for routes.
Fourth, T-drive does not compute a travel cost histogram for a sequence of landmark edges,
but instead computes a single value based on individual drivers’ optimism indices. Going
beyond the T-drive study, we propose different histogram aggregation methods to aggre-
gate the histograms of the edges in a route such that the travel cost histogram of a route can
be computed. Thus, our approach provides a foundation for stochastic routing. Finally, we
consider also eco-weights, not only time-weights.

A few recent studies also consider how to derive weights using GPS data. One study [27]
covers the estimation of single-valued eco-weights for edges with infrequent or no GPS
records. However, it is unable to capture time-dependence and uncertainty. Orthogonal to
this study, we assume a setting where edges have considerable amounts of GPS records, and
we focus on capturing detailed GHG emissions distributions during different intervals for
the edges. Another recent study [21] concerns the update of near-future (e.g., the next 15-
min or 30-min) eco-weights based on incoming real-time GPS data. In contrast, we capture
time-dependent GHG emissions for longer periods, e.g., a day, a week, or a month, based
on historical GPS data. As a result, our work is complementary to that study. Further, some
studies propose methods to enable time-dependent weights [13, 14] using various traffic
sensor data, but they do not consider the uncertainty of the weights.

3 Problem setting and definition

We proceed to cover the problem setting and to formalize the problem.

3.1 Time-dependent histograms

Given a multiset of cost values C, the range of the cost values Range(C) is the set of non-
duplicated values that occur in C [11]. The data distribution of the cost values in C, denoted
as DD(C), is a set of (val, prob) pairs, where val indicates a value in Range(C), and prob
is the number of occurrences of the value in C divided by the total number of values in C.



Geoinformatica (2017) 21:57–88 61

An example is shown as follows, where multiset C contains GHG emission values observed
from an edge.

C = {{5, 8, 10, 20, 15, 10, 20, 20, 34, 28}};
Range(C) = {5, 8, 10, 15, 20, 28, 34};

DD(C) = {(5, 0.1), (8, 0.1), (10, 0.2), (15, 0.1),
(20, 0.3), (28, 0.1), (34, 0.1)}.

In particular, a histogram H = 〈(b1, p1), . . . , (bn, pn)〉 is a vector of (bucket, pro-
bability) pairs, where a bucket bi = [fi, li ) indicates a range of cost values, where fi and li
indicate the starting and ending values of the range. The buckets are disjoint, i.e., bi∩bj = ∅
if i �= j ; and all elements in Range(C) belong to the union of the buckets, i.e., b1 ∪ . . .∪bn.
The width of a bucket is defined as |bi | = li − fi . If every bucket in a histogram has the
same width, the histogram is an equi-width histogram. A probability pi records the percent-
age of the cost values that are in the range indicated by bi . The sum of all probabilities is 1,
i.e.,

∑n
i=1 pi = 1.

Next, two equi-width histogramsH1 andH2 are isomorphic if they have the same number
of buckets representing the same data range. However, the probabilities of corresponding
pairs of buckets may still be different.

Given a time interval of interest TI, a Time Dependent Histogram is a vector of
(period, histogram) pairs, where the time interval TI is partitioned into periods. Specifi-
cally, in a time dependent histogram tdh = 〈(T1, H1), . . . , (Tm,Hm)〉, period Ti is a period
in TI, and histogram Hi is the histogram of the cost values observed in period Ti . The
periods partition the time interval of interest, i.e., T1 ∪ . . . ∪ Tm = TI.

3.2 Road networks and trajectories

An Eco Road Network (ERN) is a weighted, directed graph G = (V ,E, F ), where V and
E are vertex and edge sets. A vertex vi ∈ V models a road intersection or the end of a road,
and an edge ek = (vi, vj ) ∈ E models a directed road segment that enables travel from
vertex vi to vertex vj . Function F : E → TDH in G assigns time-dependent and uncertain
eco-weights to edges in E; and TDH is the set of all possible time dependent histograms.

A Trajectory trj = 〈r1, r2, . . . , rx〉 is a sequence of GPS records. Each GPS record ri
specifies the location (typically with latitude and longitude coordinates) and velocity of a
vehicle at a particular time ri.t. Furthermore, the GPS records in a trajectory are ordered
based on their timestamps. Given the road network where the trajectories occurred, a GPS
record in a trajectory can be mapped to a specific location on an edge in the road network
using some map-matching algorithm [19].

3.3 Computing GHG emissions

GHG emissions are computed using vehicular environmental impact models [6, 7]. Specif-
ically, such models take as input a vehicle’s instantaneous speeds, average speeds, instanta-
neous accelerations, travel distance, road grades [24], and vehicle type (e.g., passenger car,
truck), and output GHG emissions for the vehicle and trip considered. Most of the input
such as instantaneous speeds, average speeds, instantaneous accelerations, and travel dis-
tance, can be derived from GPS trajectories, and the vehicle type is typically obtained from
the meta-data of the GPS data.
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In the transportation research literature, a dozen different vehicular environmental impact
models have been presented. In this study, we use the VT-micro model to compute the GHG
emissions because a recent benchmark study indicates that it is the most accurate model [6].
Essentially, VT-micro is a polynomial function of instantaneous speeds and accelerations
that returns GHG emissions. Specifically, VT-micro takes as input the instantaneous veloc-
ity vt (km/h) and acceleration at (km/h/s), and it estimates GHG emissions ft (mg/s) at
time point t as follows.

ft =
{
exp(

∑3
i=0

∑3
j=0(Ki,j · vi

t · a
j
t )) if at � 0

exp(
∑3

i=0
∑3

j=0(Li,j · vi
t · a

j
t )) if at < 0,

where Ki,j and Li,j are model coefficients for accelerating (at � 0) and decelerating (at <

0) conditions, respectively. The coefficients are calibrated based on vehicle types, etc. [29].
Although we use VT-Micro in the study, the paper’s proposal on enabling time-dependent

and uncertain eco-weights does not dependent on the specific choices of vehicular environ-
mental impact model, and users can choose any vehicular environmental impact model that
fits their needs to compute GHG emissions and thus enable the ERN.

Since different types of vehicles emits significantly different amounts of GHG, it is nec-
essary to build different ERNs for different types of vehicles. In the experiments, all the
GPS trajectories are collected from normal passenger cars, and the resulting ERN is applica-
ble only to passenger cars, not to, e.g., trucks. However, the paper’s proposal can be applied
straightforwardly to generate the ERN for trucks provided that GPS data from trucks is
available.

3.4 Problem definition and solution framework

Given a set TRJ of map matched trajectories in a road network G′ = (V ,E, null), the paper
studies how to obtain the corresponding Eco-Road Network G = (V ,E, F ). Specifically,
the key task is to determine G.F , which assigns time dependent histograms to edges, based
on trajectory set TRJ.

An overview of the framework that determines G.F is shown in Fig. 3. The pre-
processing module transforms the map matched trajectories into a set TRR of traversal
records of the form trr = (e, ts , tt, ge, trjj ). A traversal record r indicates that edge e is
traversed by trajectory trjj starting at time ts . The travel time and the GHG emissions of
the traversal are tt and ge, respectively. The travel times can be derived directly from the
GPS records as the difference between the times of the first and last GPS records. Different
vehicular environmental impact models [7] can be applied to compute the GHG emissions
from the GPS records, as discussed in Section 3.3.

After pre-processing, each edge ei is associated with a set of traversal records TRRi =
{trr ∈ TRR|r.e = ei}.

The ERN construction module builds initial time-dependent histograms for edges based
on their traversal records. Maintaining the time-dependent histograms of all edges in a large
road network may incur a large storage overhead. To reduce the overhead, approximation
and compression techniques are employed to reduce both the number of (period, histogram)

pairs in the time-dependent histograms and the number of the buckets in individual his-
tograms. Specifically, histogram merging and bucket reduction are applied to obtain a
compact representation of an ERN.

Next, virtual edge and extended virtual edge generation module identifies virtual edges
(i.e., pairs of adjacent edges whose GHG emissions are dependent) and extended virtual
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Fig. 3 Framework Overview

edges (i.e., sequences of adjacent edges whose GHG emissions are dependent). The module
also assigns time-dependent histograms for virtual edges and extended virtual edges based
on the trajectories occurred on them. Finally, the Eco-Road Network G is returned, where
the function G.F assigns compact, time-dependent, uncertain eco-weights to edges, virtual
edges, and extended virtual edges.

Based on the obtained ERN, the GHG emissions distribution of any given route R can
be estimated based different histogram aggregation methods.

4 ERN construction

We propose methods to generate an Eco-Road Network from traversal records.

4.1 Initial time dependent histograms

An initial time dependent histogram is built for every edge ei ∈ E based on the traversal
records associated with ei , i.e., Ri . Given a time interval of interest TI, e.g., a day or a week,
and the finest temporal granularity α, e.g., 15 minutes or one hour, TI is split into �TI

α
�

periods, where the j -th period Tj is [(j −1) ·α, j ·α). For each Tj , an equi-width histogram

Hj is built based on the traversal records that occurred in the period, i.e., R(j)
i = {r|r.e =

ei ∧ r.ts ∈ Tj }.
To ease the following histogram compression operations, we make sure the initial his-

tograms on edge ei are isomorphic. The initial histograms share the same range [l, u]
where l and u are the lowest and highest GHG emissions (or travel times) observed in Ri .
Further, the same number of buckets Nbucket is used for all histograms, where Nbucket is
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an configurable parameter. Thus, �TI
α

� isomorphic histograms are obtained for each edge,
where each histogram has Nbucket buckets.

Assuming α is set to 1 hour, Fig. 4a shows two isomorphic histograms during periods
[8 a.m., 9 a.m.) and [9 a.m., 10 a.m.) for an edge in North Jutland, Denmark. The high
similarity of the two histograms motivates us to compress them into one histogramwith little
loss of information. We proceed to show how to compress the histograms using histogram
merging and bucket reduction. Our methods are configurable so that histogram accuracy
can be controlled.

4.2 Histogram merging

If two temporally adjacent histograms Hi and Hi+1 represent similar data distributions, it is
potentially attractive to merge the two histograms [16] into one histogram H that represents
the data distribution for the longer period T = Ti ∪ Ti+1.

Given two distributions, several techniques exist to measure their similarity, such as
cosine similarity, the K-S test, and the χ -square test. The simplicity and efficiency of
computing cosine similarity makes it appropriate for evaluating the similarity of two
histograms.

To facilitate the use of cosine similarity, we treat a histogram as a vector of probabilities.
A histogram H = 〈(b1, p1), . . . , (bn, pn)〉 has the vector V (H) = 〈p1, . . . , pn〉. Since the
initial histograms are isomorphic and equi-width, they have the same number of buckets, and
each bucket in a corresponding pair has the same range. Thus, all the vectors are isomorphic,
meaning that they have the same number of dimensions, with each dimension representing
the same entity, i.e., the probability in a particular sub-range. The similarity between two
histograms is defined by Eq. 1.

sim(Hi,Hj ) = V (Hi) � V (Hj )

‖V (Hi)‖ · ‖V (Hj )‖ , (1)

where � indicates dot product between two vectors, · indicates the product between two
reals, and ‖V ‖ indicates the magnitude of vector V .

When the similarity of adjacent isomorphic histograms Hi and Hi+1 exceeds a threshold
Tmerge, they are merged into a new histogram H . The weight of Hi is Wi = Hi.c

Hi.c+Hi+1.c
,

where Hi.c is the total number of cost values that are used to derive Hi , which is equivalent
to the number of traversal records in the i-th period. The probability value for the k-th bucket
in H is given by Eq. 2.

H.pk = Hi.pk · Wi + Hi+1.pk · Wi+1, ∀k ∈ [1, n] (2)
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When merging two isomorphic histograms, the obtained histogram H is isomorphic to Hi

and Hi+1. The probability given by the k-th bucket in H is not just the average of Hi.pk and
Hi+1.pk . As the number of traversal records in the k-th buckets of histograms Hi and Hi+1
may be different, we use the weighted average to construct the data probability of the k-th
bucket in H , as shown in Eq. 2. We also maintain H.c = Hi.c + Hi+1.c so that the count
of traversal records in H is available for subsequent merging steps.

Given an initial time-dependent histogram tdh for an edge, a corresponding merged
time-dependent histogram tdh is computed iteratively. In each iteration, a pair of adjacent
histograms with the highest histogram similarity is identified. If the similarity exceeds a
user-defined threshold Tmerge, the two histograms are merged according to Eq. 2, and the
union of the two argument histograms’ periods becomes the period of the new histogram.
The iteration terminates when Tmerge exceeds the highest histogram similarity. For exam-
ple, the two histograms for adjacent periods shown in Fig. 4a are merged into the single
histogram shown in Fig. 4b.

Assume that an initial time-dependent histogram has m histograms and each histogram
has n buckets, wherem = � TI

α
�, TI is the time interval of interest, and α is the finest temporal

granularity. The worst case asymptotic run-time of histogram merging is then O(m2 · n).

4.3 Bucket reduction

Histogram merging reduces the numbers of histograms. Bucket reduction reduces the sizes
of individual histograms, which is orthogonal to histogram merging.

Bucket reduction transforms a histogram H into a new histogram Ĥ that approxi-
mates the data distribution represented by H using fewer buckets [10, 11, 16]. Ĥ is not
necessarily equi-width, meaning that different buckets may have different widths. His-
togram regression is conducted by merging two adjacent buckets. The range of the new
bucket is the union of the range of two original buckets, and the probability of the buck-
ets is the sum of the probabilities of the two original buckets. Thus, given a histogram
H = 〈(b1, p1), . . . , (bi, pi), (bi+1, pi+1), . . . , (bn, pn)〉, after merging buckets bi and
bi+1, the new histogram is Ĥ = 〈(b1, p1), . . . , (bi−1, pi−1), (bx, px), (bi+2, pi+2), . . .,
(bn, pn)〉, where bx = bi ∪ bi+1 and px = pi + pi+1.

The sum of squared error (SSE) is employed to measure the discrepancy between the
original histogram H and the histogram after bucket reduction Ĥ . Since the error is only
introduced by the buckets we merge and we merge only two adjacent buckets bi and bi+1,
the error introduced by this operation is given by Eq. 3.

SSE(H, Ĥ ) =
( |H.bi |

|H.bi | + |H.bi+1| Ĥ .px − H.pi

)2

+
( |H.bi+1|

|H.bi | + |H.bi+1| Ĥ .px − H.pi+1

)2

, (3)

where |H.bi | is the range of the i-th bucket in histogram H , and H.pi is the probability of
the i-th bucket in histogramH . The accuracy of the histograms is defined to be the deviation
of the distribution described by the histograms from the distribution of the original data,
and our goal is to achieve small deviations, which indicate small accuracy losses. Moreover,
a smaller SSE indicates that Ĥ achieves a smaller accuracy loss compared to the original
histogram H .

We consider a scenario where a storage budget (i.e., a number of buckets) for an edge
is given, and where we need to decide how to merge the buckets in the histograms that
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represent the GHG emissions for different periods so that we maximize the overall accuracy.
For example, rather than distributing the buckets uniformly, we may use higher (lower)
bucket budgets for histograms representing peak hours (off-peak hours).

Given a merged time dependent histogram tdh of an edge and a reduction threshold Tred
indicating the total number of buckets available for the edge, Algorithm 1 describes how
to obtain a time dependent histogram that meets the storage budget while achieving least
accuracy loss. Note that for different edges, the reduction threshold Tred, i.e., the bucket
budget, may be different. A simple heuristic is to assign higher bucket quotas to edges that
have many merged histograms in their time dependent histograms after histogram merging.
The number of buckets used for an edge e is proportional to the number of histograms
associated with e.

Algorithm 1 works iteratively. For each iteration, it linearly scans all adjacent buckets
pairs and finds the pair that achieves the smallest SSE to merge (lines 2–9). Note that to
identify two buckets that need to be merged, every histogram in the given tdh has to be
checked. This process terminates when the total number of buckets for the edge is below
the reduction threshold Tred.

Alternatively, a priority queue Q can be used, where an element is an adjacent bucket
pair and the priority of the element is the SSE value of merging the two adjacent buckets.
We do not use such a priority queue because maintaining the priority queue is complex
when a pair of adjacent buckets are merged into one bucket. For example, assuming that the
highest-priority element is p = 〈b1, b2〉, after merging b1 and b2 into a new bucket b′, if
there exist elements containing b1 or b2 in Q, i.e., e1 = 〈b0, b1〉 and e1 = 〈b2, b3〉, these
should be updated to e′

1 = 〈b0, b′〉 and e′
1 = 〈b′, b3〉.

Assume that a merged time-dependent histogram tdh consists of m′ histograms each with
n buckets. The worst case run-time of bucket reduction is then O(m′2 · n2).
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5 GHG emissions estimation

After histogram merging and bucket reduction, we obtain an ERN where each edge is asso-
ciated with a compact time dependent histogram. Here, we study how to use the obtained
ERN to estimate the GHG emissions of traversing a route.

Rather than estimating a single value for a traversal of a route, e.g., the expected GHG
emissions, we estimate the GHG emissions distribution using histograms. This yields much
more detailed information than a single value and is useful in many applications, e.g.,
stochastic route planing [15, 25] and probabilistic threshold-based routing [9].

The distribution of the GHG emissions of a traversal on a route is estimated based on the
ERN. In particular, the distribution of the GHG emissions of the traversal, also represented
by a histogram, is achieved by aggregating pertinent (w.r.t. the traversal time) histograms of
sub-routes of the route, where a sub-route is an edge or a sequence of adjacent edges if the
edges have highly dependent GHG emissions. In particular, if the starting traversal time of
a sub-route with time-dependent histogram tdh = 〈(T1, H1), . . ., (Tm,Hm)〉 is t , histogram
Hi is selected for histogram aggregation if t ∈ Ti .

5.1 Modeling dependence among adjacent edges

When aggregating the histograms of the edges in a route, we need to consider the depen-
dencies of the GHG emissions distributions of adjacent edges. A route R = 〈e1, e2, . . . , en〉
is a sequence of edges where the ending vertex of ei is the starting vertex of ei+1, for
1 � i � n−1. The adjacent edges in a route are the edges ei and ei+1, where 1 � i � n−1.

5.1.1 Dependence analysis

Most existing studies [3, 15, 18, 20] assume that the travel costs (e.g., travel times) of
adjacent edges are independent. To evaluate this assumption, we conducted an empirical
study on a collection of frequently traversed adjacent edge pairs. Specifically, we identified
82 edge pairs that each is traversed by at least 1,000 trajectories.

The GHG emissions distributions of two adjacent edges are modeled as two random
variables X and Y , and the normalized mutual informationNMI(X, Y ) is applied to quantify
the dependency between X and Y , as defined in Eq. 4.

MI(X, Y ) = ∑

y∈Y

∑

x∈X

p(x, y) · log( p(x,y)
p(x)p(y)

)

NMI(X, Y ) = 2 · MI(X,Y )
ET (X)+ET (Y )

,
(4)

where MI(X, Y ) is the mutual information between X and Y , which quantifies the mutual
dependency between the two random variables, ET (X) denotes the entropy of random
variable X, and NMI(X, Y ) is the normalized mutual information between X and Y . We
use mutual information to represent the degree of GHG emissions dependency between
two edges, as this enable us to identify both linear dependency and non-linear dependency.
Further, the use of normalized mutual information values makes it easier to evaluate and
visualize the degree of dependency between two random variables. TheNMI values are nor-
malized to the range [0, 1]. An NMI value of 0 means that the two edges are independent,
and the larger the NMI value, the higher the dependency.

Figure 5 shows the percentage of edge pairs w.r.t. different ranges of NMI values, it
shows the NMI values for both the scenarios where time dependence is considered (with
time) and not considered (without time). It suggests that most adjacent edges tend to be
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Fig. 5 NMI Study
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independent, which complies with the independence assumption. However, some adjacent
edges do have non-negligible dependencies, as indicated by the last two buckets in Fig. 5.

It is also of interest to further investigate the dependency between two edges when tak-
ing the times of the traversals into consideration. For each edge pair, we partition the time
domain according to the intervals obtained from both edges’ corresponding time dependent
histograms. For each partition, we compute NMI using only the trajectories that occurred
in the partition. The results, also shown in Fig. 5, suggest that the GHG emissions depen-
dencies between adjacent edges are reduced when we take into account the traversal times.
However, some adjacent edges still have relatively high dependencies (shown by the last
two buckets).

5.1.2 Virtual edges

The above study shows that the independence assumption does not always hold. To better
model dependencies and thus improve on the state-of-the-art, we introduce the notion of
a virtual edge for each pair of dependent adjacent edges (i.e., edges whose NMI exceeds
the dependency threshold Tdep). It is worth noting that using a smaller Tdep results in more
virtual edges being generated in the ERN and also results in more preprocessing. As for
normal edges, time dependent histograms can be obtained that represent the distributions of
GHG emissions and travel times for virtual edges.

Figure 6 shows an example with a simple road network, along with numbers of trajecto-
ries in the road network, shown in Table 1. For example, 200 trajectories traversed e4 (the
5-th line in Table 1). After traversing e4, 140 trajectories continued on e5 (the 6-th line in
Table 1).

Table 2 shows the GHG emissions dependencies between adjacent edges. For example,
to check whether edges e4 and e5 are dependent, we use the traversal records from the 140
trajectories that traversed both e4 and e5 to compute the NMI. As shown in the last line of
Table 2, e4 and e5 have a highNMI value (the default dependency threshold Tdep is 0.2), and
thus they are considered as dependent. A virtual edge ev representing e4 and e5 is created.

Fig. 6 Edges, Virtual Edges, and
Extended Virtual Edges

e2e1 e6

e5e4

e3

ev

eext

e6
e7
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Table 1 Number of Trajectories
Trajectory Trajectory count

〈e1, e2〉 40

〈e1, e3〉 60

〈e1, e2, e3〉 5

〈e4〉 200

〈e4, e5〉 140

〈e4, e6〉 50

Our empirical study in Section 6 investigates the effect of varying the Tdep value. The time
dependent histograms of the virtual edge ev is generated based on the 140 trajectories that
traversed both e4 and e5. In contrast, we use all 200 trajectories that traversed e4 to generate
the time dependent histograms of edge e4.

5.1.3 Extended virtual edges

Next, it is possible that more than two adjacent edges exist such that each adjacent edge
pair is dependent. We use an extended virtual edge to represent such edges. For instance, e1
and e2 are dependent, and so are e2 and e3. Thus, an extended virtual edge eext is used to
represent e1, e2, and e3.

Intuitively, it is possible to compute a time dependent histogram for an extended virtual
edges based on the trajectories that use the extended virtual edges. However, this approach
becomes unattractive due to two reasons. First, as the number of edges in an extended vir-
tual edge increases, the number of trajectories that use the extended virtual edge decreases
quickly. Based on an analysis on more than 200 million GPS records collected in Denmark
over two years, we show that the average trajectory counts that cover n (where 1 ≤ n ≤ 5)
consecutive edges in Fig. 7.

If we compute time dependent histograms of extended virtual edges using the corre-
sponding trajectories, we risk to obtain biased distributions and then perform over-fitting to
small amounts of trajectories. For example, if we compute a time dependent histogram for
eext in Fig. 6, we may be over-fitting to the 5 trajectories (the third line in Table 1). Second,
it is impractical to store the time dependent histograms for all extended virtual edges as this
calls for excessive storage.

To contend with this problem, we propose a method that estimates GHG emissions for
an extended virtual edge eext = (e1, e2, . . . , eN ), based on all the virtual edges in eext.
Based on the trajectories that use a virtual edge ev = (e1, e2) in the extended virtual edge,

Table 2 GHG Emissions
Dependency Edge pairs Dependency

(e1, e2) 0.2

(e2, e3) 0.25

(e4, e6) 0.05

(e1, e4) 0.03

(e4, e5) 0.23
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Fig. 7 Trajectory Counts
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the joint probability of e1 and e2 is used to represent the correlation between the GHG
emissions on e1 and e2, denoted as fe1,e2(b

i
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2) = Pr[Ge1 = bi
1,Ge2 = b

j
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j
i is the j -th bucket in the histogram of the i-th edge ei , i.e., Hi ; thus,

Gei
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j
i indicates that the GHG emissions on ei are within the width of the i-th bucket in

ei’s histogram.
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2 is given in Eq. 5.
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The estimated GHG emissions of a route R = 〈e1, . . . , en〉 is considered as a range and
is computed using the estimation of GHG emissions ranges of all edges in R, and Rm rep-
resents the first m edges in R. By using one bucket from each of the n histograms, we
get a bucket sequence BS = (bi

1, b
j

2 , . . . , b
p

n−1, b
q
n). Specifically, operator + computes the

union of two ranges, i.e., given two ranges b1 = [l1, r1) and b2 = [l2, r2), b1 + b2 =
[l1+ l2, r1+r2). Thus, the range of BS can be computed as |BS| = bi
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q
n ,

which is the sum of all the buckets in one bucket sequence. The probability of traversing R

that yields |BS| is represented as fR(|BS|). Formally, fR(|BS|) is given by Eq. 6.
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To get the GHG emissions histograms of n adjacent edges with dependence, we have to
enumerate every bucket sequence using one bucket from each edge’s histogram and compute
the GHG emission of each sequence. If each of these n histograms has M buckets, the
number of bucket combinations is Mn. Using the lower bound L and the upper bound U of
the result histogram HR , which are the sum of the lower bounds and the sum of the upper
bounds of n histograms, to construct the result histogram HR as an equi-width histogram of



Geoinformatica (2017) 21:57–88 71

Table 3 Sample GHG
Emissions Edge GHG emissions: (bucket: probability)

Bucket 1 Bucket 2

e1 [20,30):0.2 [30,40):0.8

e2 [20,30):0.5 [30,40):0.5

e3 [15,25):0.3 [25,35):0.7

e4 [10,20):0.4 [20,30):0.6

M buckets, we distribute the probabilities obtained from all the Mn bucket unions into the
buckets in HR . Equation 7 shows how the probabilities of bucket unions are distributed to a
bucket B in HR .

f (B) =
∑ |B ∩ BS|

|BS| · fR(BS), ∀BS (|B| ∩ |BS| �= ∅) (7)

Consider the route R = 〈e1, e2, e3〉 in the road network shown in Fig. 6. The marginal GHG
emissions on all the edges are shown in Table 3. The joint GHG emissions probabilities of
(e1, e2) and (e2, e3) are shown in Table 4.

Table 5 shows the bucket sequences of R together with their GHG emission ranges and
probabilitie, where the resulting histogram HR is an equi-with histogram that consists of
two buckets B1 and B2 whose ranges are [55, 85) and [85, 115).

Take B1 as an example. Its probability to get its range can be computed as follows.

fR(|B1|) = |[55, 85) ∩ [55, 85)|
|[55, 85)| · 0.04 + |[55, 85) ∩ [65, 95)|

|[55, 85)| · 0.06

+|[55, 85) ∩ [65, 95)|
|[55, 85)| · 0.02 + |[55, 85) ∩ [75, 105)|

|[55, 85)| · 0.08

+|[55, 85) ∩ [65, 95)|
|[55, 85)| · 0.08 + |[55, 85) ∩ [75, 105)|

|[55, 85)| · 0.32

+|[55, 85) ∩ [75, 105)|
|[55, 85)| · 0.08

= 30

30
· 0.04 + 20

30
· 0.06 + 20

30
· 0.02 + 10

30
· 0.08 + 20

30
· 0.08

+10

30
· 0.32 + 10

30
· 0.08

= 0.31

5.1.4 Sub-routes

A route R can be split into a set of sub-routes, as described in Algorithm 2, where a sub-
route is an edge, a virtual edge, or an extended virtual edge. Since we model adjacent edges

Table 4 Joint GHG Emissions
(a) fe1,e2 (b

i
1, b

j

2 ) (b) fe2,e3 (b
i
2, b

j

3 )

[20,30) [30,40) [15,25) [25,35)

[20, 30) 0.1 0.1 0.2 0.3

[30, 40) 0.4 0.4 0.1 0.4
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Table 5 GHG Emissions for
Bucket Sequences Bucket sequence GHG emissions range Probability

[20, 30), [20, 30), [15, 25) [55, 85) 0.04

[20, 30), [20, 30), [25, 35) [65, 95) 0.06

[20, 30), [30, 40), [15, 25) [65, 95) 0.02

[20, 30), [30, 40), [25, 35) [75, 105) 0.08

[30, 40), [20, 30), [15, 25) [65, 95) 0.08

[30, 40), [20, 30), [25, 35) [75, 105) 0.32

[30, 40), [30, 40), [15, 25) [75, 105) 0.08

[30, 40), [30, 40), [25, 35) [85, 115) 0.32

with (high) dependencies as virtual edges and extended virtual edges, each adjacent sub-
route pair is independent. The next step is to describe how to estimate the GHG emissions
for a route given an ERN.

5.2 Histogram aggregation

Histogram Aggregation takes two histograms H1 and H2 and yields a histogram H ′ that
represents the aggregated GHG emissions for traversing both edges. The aggregation of H1
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and H2 is also a histogram and is denoted as Hagg. Algorithm 2 shows how to perform a
form of histogram aggregation that we call bucket-wise histogram aggregation because it
operates on all combinations of two bucktes from each input histogram iteratively. Recall
that operator + denotes the union of two ranges, i.e., [f1, l1)+[f2, l2) = [f1 + f2, l1 + l2).
The buckets in Hagg are constructed by combining all bucket pairs from H1 and H2, using
one bucket from each histogram (Lines 2–4). As there might be overlaps between buck-
ets in Hagg, we rearrange the buckets in Hagg to combine two buckets with the same data
range, and we split a data range if it contains the range of another bucket (line 5); thus, we
obtain an equi-width histogram as the final result that contains buckets without overlap and
duplicates.

To illustrate, consider two histograms H1 = 〈([0, 2), 0.2), ([2, 4), 0.8)〉 and H2 =
〈([0, 2), 0.4), ([2, 4), 0.6)〉. Before being rearranged, the aggregated result is Hagg =
〈([0, 4), 0.08), ([2, 6), 0.32), ([2, 6), 0.12), ([4, 8)0.48)〉; after being rearranged, the result
is Hagg = 〈([0, 2), 0.04), ([2, 4), 0.26), ([4, 6), 0.46), ([6, 8), 0.24)〉.

Alternatively, two other histogram aggregation methods, namely point-wise aggregation
andmedian aggregation, can be used.

Point-Wise Aggregation: A histogram H is first transformed into a probability mass
function, which is represented as a list L of (val, prob) pairs that reflect the data distribution
(see Section 3.1) in histogram H . The values here are in the range between the minimum
and maximum data values in H . The resolution of the resulting values is customized by
changing the histogram aggregate parameter Tagg that defines the finest granularity.

For example, consider H1: if Tagg = 1, the transformed list is 〈(0, 0.1), (1, 0.1), (2, 0.4),
(3, 0.4)〉; and if Tagg is 2, the transformed list is 〈(1, 0.2), (3, 0.8)〉. After obtaining the lists
L1 and L2 from histograms H1 and H2, the list L′ for the aggregation of H1 and H2 is given
by Eq. 8.

L′[v] =
∑

pi.prob · pj .prob, (pi ∈ L1 ∧ pj ∈ L2 ∧ pi.val + pj .val = v) (8)

Algorithm 4 shows how point-wise aggregation aggregates two histograms. To illus-
trate, consider lists L1 = 〈(1, 0.2), (3, 0.8)〉 and L2 = 〈(2, 0.4), (4, 0.6)〉 as obtained
from H1 and H2 when Tagg = 2. Following all the iterations in Algorithm 4 (Lines 2–
6), the result list L′ is 〈(3, 0.08), (5, 0.44), (7, 0.48)〉. Initially, (1, 0.2) in L1 means that
the probability of range [1, 1 + Tagg) = [0, 2) is 0.2 and (2, 0.4) in L2 means that the
probability of [2, 4) is 0.4; so after aggregation, (3, 0.08) in L′ means that the probability
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of [3, 7) is 0.08. Based on the probability derived from L′, the result histogram H ′ is
〈([3, 5), 0.04), ([5, 7), 0.26), ([7, 11), 0.7)〉.

Median aggregation The performance of point-wise aggregation deteriorates quickly as
the number of edges in a route grows, which makes it unattractive for long routes. By
making changes to point-wise aggregation, we obtain an alternative method with better per-
formance and reasonable accuracy. When we transform a histogram into a list of (val, prob)
pairs, median aggregation uses the median point of the bucket, instead of using all points
in the bucket. For example, H1 and H2 are transformed into L1 = 〈(2, 0.2), (4, 0.8)〉 and
L2 = 〈(3, 0.4), (5, 0.6)〉. The remaining steps of median aggregation are identical to those
in point-wise aggregation. Thus, the result list L′ is 〈(5, 0.08), (7, 0.44), (9, 0.48)〉. Similar
to point-wise aggregation, (2, 0.2) in L1 means that the probability of range [1, 3) is 0.2 and
(3, 0.4) in L2 means that the probability of [2, 4) is 0.4; and after aggregation, (5, 0.08) in
L′ means that the probability of [3, 7) is 0.08. Thus, the final histogram H ′ derived from L′
is 〈([3, 5), 0.04), ([5, 9), 0.72), ([9, 11), 0.24)〉.

5.3 GHG emissions estimation for routes

Assume that a traversal uses a particular route at a particular time. The distribution of GHG
emissions of this traversal is estimated by aggregating the pertinent histograms (w.r.t. the
traversal time) of the independent sub-routes in the route. To choose the pertinent histogram
for a sub-route sr, we need to know when the traversal of sr starts. Since the travel times of
the sub-routes before sr are uncertain, the traversal starting time of sr is also uncertain.

Take a traversal on route R = 〈e1, e4〉 in Fig. 6 as a running example. Figures 8 and
9 show the distributions of the two edges’ GHG emissions and travel times, respectively.
When starting at 8:58 a.m., the confidences that the traversal arrives at e4 before and after
9 a.m. are both 0.5 according to Fig. 8a. As the GHG emissions distributions on edge e4
are different before and after 9 a.m., as shown in Fig. 9b, histogram aggregation is done
separately for the two periods. Thus, different arrival times at e4 may result in the need to
consider different GHG emissions histograms.

Based on the travel time on e1, the aggregated GHG emissions histograms for
traversing R = 〈e1, e4〉 is represented as H1 = 〈([10, 30), 0.1), ([30, 50), 0.35),
([50, 70), 0.4), ([70, 90), 0.15)〉 with confidence 0.5 (entering e4 before 9 a.m.), and
H2 = 〈([10, 30), 0.15), ([30, 50), 0.4), ([50, 70), 0.35), ([70, 90), 0.1)〉 with confidence
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0.5 (entering e4 after 9 a.m.) using histogram aggregation. Finally, we merge H1 and
H2 into the single histogram 〈([10, 30), 0.1125), ([30, 50), 0.3675), ([50, 70), 0.3875),
([70, 90), 0.1375)〉. Algorithms 4 and 6 show in detail how we get the final result GHG
emissions histogram.

To explain how time-dependent histogram aggregation is done, we introduce the notions
of arrival time period and arrival confidence. Consider a route R = 〈e1, e2〉. The travel
time and GHG emissions costs of e1 and e2 are represented as time-dependent histograms.
Next, if a trip from e1 to e2 starts at time t , an arrival time period P indicates that entering
e2 at any time point tp ∈ P leads to a single travel time histogram associated with a single
GHG emissions histogram for e2. An arrival confidence associated with P that indicates
the confidence of entering e2 during P . To illustrate, consider the running example in Fig. 6
and a traversal that starts from e1 at 8:58 a.m. Table 6 illustrates the arrival time periods for
entering e4 and the corresponding arrival confidence.

Algorithm 5 computes the GHG emissions histogram(s) for a route R at a given starting
time ts. The algorithm starts with the first sub-route in R and calls Algorithm 6 iteratively
to compute the GHG emissions histogram of R, from the first sub-route to the last sub-
route in R. The intermediate result set GR contains travel cost estimation tuples of the
form (HG,HT , c). A tuple indicates that traversing the first i sub-routes 〈sr1, . . . , sri〉 in
R starting at ts, the GHG emissions and travel time cost distributions are HG and HT , with
the confidence of getting HG and HT is c. As shown in Figs. 8–9, when traversing a route
at a given starting time, the potential travel time may overlap with multiple time intervals
with different GHG emissions and travel costs histograms. Therefore, multiple histograms
are needed to reprensent all the possible GHG emissions and travel cost distributions with
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Table 6 Time-Dependent Histogram Aggregation Example

Arrival time period Arrival confidence GHG emissions of e4 Travel time of e4

[8 : 58a.m., 9 : 00a.m.) 0.5 〈([0, 20), 0.4), 〈([1, 3), 0.4),
([20, 40), 0.6)〉 ([3, 5), 0.6)〉

[9 : 00a.m., 9 : 02a.m.) 0.5 〈([0, 20), 0.6), 〈([1, 3), 0.4),
([20, 40), 0.4)〉 ([3, 5), 0.6)〉

corresponding confidences. Set GR is initialized to contain a single travel cost estimation
tuple of the GHG emissions and travel time cost histogram of the first sub-route sr1 of
R (Line 1). Taking the example in Figs. 8–9, if starting at 8:58 a.m., GR is initialized
to (〈([10, 30), 0.5), ([30, 50), 0.5)〉, 〈([0, 2), 0.5), ([2, 4), 0.6)〉, 1). For each, Algorithm 5
(Lines 2–6) considers a sub-route sri , aggregating its GHG emissions histograms and travel
costs histograms with all the tuples in the current GR (Lines 4–5). Using the confidence of
the GHG emissions histograms in GR as their weights and applying Eq. 2, we merge them
into a single histogram HR as the final result (Line 7).

Algorithm 6 aggregates the GHG emissions and travel time cost histograms of the n+1-st
sub-route sr with those of the first n sub-routes in a routeR assuming the traversal of R starts
at time ts. The algorithm first determines the time intervals in which the GHG emissions
time-dependent histograms of sr that overlap with the range of HT (line 1). For the i-th time
interval with its corresponding histograms, we aggregate the the GHG emissions histogram
HG.i with HG and travel time histogram HT.i with HT using the aggregation method shown
in Algorithm 3. The aggregated results represent the corresponding GHG emissions and
travel time cost histograms if traversing sr in the i-th travel time interval, and the confidence
of getting such histograms is the product of ci and c, where ci is the confidence of traversing
sr in the i-th time interval (Lines 3–7). Table 7 shows the intermediate results of the aggre-
gation. In the example in Figs. 8–9, consider route R = 〈e1, e4〉. If the traserval starts from
e1 at 8:58 a.m, a candidate set Gsr of travel cost estimation tuples is returned. Thus, the final
result is 〈([10, 30), 0.1125), ([30, 50), 0.3675), ([50, 70), 0.3875), ([70, 90),0.1375)〉.
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Table 7 Time-Dependent Histogram Aggregation Result

Arrival Time Period Arrival Confidence GHG emissions of e4 Aggregated GHG emissions

[8 : 58a.m., 9 : 00a.m.) 0.5 〈([0, 20), 0.4), 〈([10, 30), 0.1),
([20, 40), 0.6)〉 ([30, 50), 0.35),

([50, 70), 0.4),
([70, 90), 0.15)〉

[9 : 00a.m., 9 : 02a.m.) 0.5 〈([0, 20), 0.6), 〈([10, 30), 0.125),
([20, 40), 0.4)〉 ([30, 50), 0.375),

([50, 70), 0.375),
([70, 90), 0.125)〉

6 Empirical study

We conduct a range of experiments to gain insight into the accuracy, efficiency, and storage
properties of the proposed methods.

6.1 Experimental settings

We use a large GPS tracking data set containing more than 200 million GPS records col-
lected at 1 Hz from 150 vehicles in Denmark from January 2007 to December 2008. A total
of 802K traversal records are generated from the data set.

We use the road network of Denmark from OpenStreetMap.1 To get the best map-
matching, we extract edges from OpenStreetMap data with the finest granularity, with 414K
vertices and 1,628K edges. We apply an existing map-matching tool [19] to match the GPS
records to the road network, from which we get a trajectory set TR of 62K trajectories. We

1http://www.openstreetmap.org/

http://www.openstreetmap.org/
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Fig. 10 Distributions of Edge and Route Length

merge adjacent edges into longer ones when they can be viewed as conceptually a single
edge.

Figure 10 shows the distribution of the lengths of the edges in the road network and the
routes derived from our GPS data.

VT-micro [1], a robust model that can compute vehicular environmental impact from
GPS data [6], is applied to compute GHG emissions of of the road network edges from the
trajectories. The time interval of interest TI is set to a day: [0 a.m., 12 p.m.).

For each edge, we build time dependent eco-weight histograms. Our analysis indicates
that 75.2 % of the major roads in urban region, i.e., Aalborg in North Jutland, have good
coverage of traversal records, and the remaining 24.8 % of the roads are not covered by
sufficient traversal records. For an edge with sufficient traversal records, we use the paper’s
proposal to enable time-dependent eco-weight histograms. For an edge without sufficient
traversal records, a GHG emissions value EH is derived based on the length and the speed
limit of the edge, which can be obtained from OpenStreetMap. Thus, the edge is associated
with a single histogram with only one bucket, indicating an EH with probability 1.

For each edge, we consider a baseline approach that uses isomorphic histograms with
variable bucket width for different time intervals to represent the uncertain time-dependent
weight of each edge. Thus, every edge is assigned an uncertain time-dependent weight in
this baseline approach and no compression techniques are employed.

The values used for the finest temporal granularity α, the merge threshold Tmerge, the
reduction threshold Tred, the dependency threshold Tdep, and the aggregation threshold Tagg
for point-wise aggregation are shown in Table 8, where default values are shown in bold.

The algorithms for histogram merging and bucket reduction are implemented in Python,
which is well suited for scientific and numeric computations. A machine with a 64-core
AMD Opteron(tm) 2.24GHZ CPU, 528GB main memory, and 413GB external memory is
used.

Table 8 Parameter Settings

Parameters Values Note

Nbucket 20, 40 bucket number of initial histograms

Tmerge 0.9, 0.91, 0.92, 0.93, 0.94,

0.95, 0.96, 0.97, 0.98, 0.99 histogram merge threshold

Tred 35, 40, 45, 50, 55, 60 bucket reduction threshold

Tdep 0.15 0.2, 0.25 edge dependence threshold

Tagg 1, 2, 3, 4, 5 point-wise aggregation threshold

α 15 mins, 30 mins, 1 hour finest time granularity
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(a) Run-Time (b) Accuracy

Fig. 11 Histogram Merging Study

6.2 Running time efficiency

Figure 11a shows the time needed to build equi-width histograms and to merge the his-
tograms for an edge. The time increases as the number of GPS records associated with an
edge increases. Thus, if an edge is covered by more GPS records, it takes longer to build
the initial histograms. We show the running time when setting Tmerge to 0.95 and 0.98 in
Fig. 11a, and our experiments suggest that smaller Tmerge leads to less histogram merge
time. Figure 12a depicts the effect of varying the number of buckets Nbucket on the running
time of histogram merging. The figure suggests that a smaller Nbucket renders histogram
merging more efficient. Figure 13a shows the running time of bucket reduction using 6,000
traversal records, which is the largest number of records that an edge has in our dataset.

We further study the efficiency of aggregating histograms. We use a set of 3,849 routes
that each is traversed by at least 1,000 trajectories. On average, a route covers 4.5 edges. If
the NMI of two adjacent edges exceeds Tdep, we treat them as a virtual edge. Figure 14a
shows the performance of our bucket-wise histogram aggregation method (BA) for routes
in comparison to the baseline method, as well as results when virtual edge (BA + VE) and
extended virtual edges (BA + EVE) are considered, where Tdep value is set to 0.2. Similarly,
Figs. 15a and 16a show the performance of the point-wise and median aggregation methods
in comparison to the baseline. Recall that the dependence threshold Tdep is configurable.
To illustrate the impact of Tdep, Fig. 17a shows the performance of bucket-wise aggregation
when varying dependence threshold Tdep and also considering the result of not considering
Tdep, where we assume the GHG emission distributions are completely independent between
any adjacent edges. The results suggest that with a smaller Tdep, the histogram aggregation

(a) Run-Time (b) Accuracy

Fig. 12 Varying the Number Buckets of Initial Histograms
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(a) Run-Time (b) Accuracy

Fig. 13 Bucket Reduction Study

run-time is lower, as more virtual edges are generated when building the ERN. The aver-
age time to generate GHG emissions histograms for a single edge is 45 milliseconds. It is
acceptable as it is considered as one-off preprocessing. Moreover, the generation of a virtual
edge is done in 600 milliseconds.

6.3 Estimation accuracy

To study the approximation accuracy of our histograms, we measure the distance between
the original data distribution and the derived histogram representations, including initial
equi-width histograms, histograms after merging, and histograms after bucket reduction.

Let dd = {(v1, p1), . . . , (vn, pn)} be the original data distribution in a period, where vi

and pi indicate a value and its probability. The accuracy of a histogram in the period is
defined by Eq. 9.

Err(H, dd) = 1

n

n∑

i=1

∣
∣
∣pi − H.pk|H.bk |

∣
∣
∣

max(pi, ε)
, (9)

where the k-th bucket in H contains vi , i.e., vi ∈ H.bk , and H.pk is the total probability of
the k-th bucket, and |H.bk| is the width of the k-th bucket in H . We use a constant ε = 0.1
to avoid fluctuations caused by small probabilities, where ε is the smallest probability we
consider in the our ERN. This accuracy metric captures the relative accumulative deviation
from the original distribution.

Figure 11b shows average Err values of the initial equi-width histograms and the his-
tograms after merging for varying merge thresholds. The initial equi-width histograms

(a) Aggregation Run-Time (b) Aggregation Accuracy

Fig. 14 Bucket-Wise Histogram Aggregation Study
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(a) Aggregation Run-Time (b) Aggregation Accuracy

Fig. 15 Point-wise Histogram Aggregation Study

achieve the least accuracy loss, and the merged histograms achieve improved accuracy as the
merge threshold increases. We also evaluate the accuracy of bucket reduction. We choose
two sets of merged histograms with merge thresholds 0.95 and 0.98, respectively. Moreover,
Fig. 12b shows the impact of varying the number of buckets Nbucket on the accuracy of his-
togram merging. The figure suggests that we can achieve a lower histogram merge loss by
assigning more buckets to the initial histograms at the cost of run time. Figure 13b shows
that the accuracy increases as the reduction threshold increases.

Next, we consider the 3,849 trajectories from Section 6.3 to evaluate the accuracy of
histogram aggregation. We split the trajectories into two sets: training trajectories (from
the first 18 months, 43K trajectories) and testing trajectories (from the last 6 months, 19K
trajectories). For each route, we aggregate the histograms from the ERN to estimate its
GHG emissions histogram. We then generate ground-truth GHG emissions histograms for
the route in each time interval without any data compression using the testing trajectories.
The accuracy of histogram aggregation is defined as the histogram similarity (HSimilarity)
between the estimated histogram and the ground-truth histogram, using Eq. 1. Figure 14b
shows the accuracy of bucket-wise histogram aggregation (BA) with varying the number
of edges in a route, as well as the accuracy when virtual edges (BA + VE) and extended
virtual edges (BA + EVE) are taken into account, and it also includes the baseline method.
Similarly, Figs. 15b and 16b show the accuracy of point-wise and median aggregation and
the baseline method.

Again, Fig. 17b uses bucket-wise histogram aggregation as an example when virtual
edges and extended virtual edges are considered as an example, and it shows the impact of
the dependence threshold Tdep on aggregation accuracy and it also covers the case where
Tdep was not considered. The figure indicates that a smaller Tdep yields more virtual edges

(a) Aggregation Run-Time (b) Aggregation Accuracy

Fig. 16 Median Histogram Aggregation Study
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(a) Aggregation Run-Time (b) Aggregation Accuracy

Fig. 17 Tdep Study (bucket-wise histogram aggregation method)

and extended virtual edges, which better capture the traffic patterns, and thus better GHG
emissions estimation accuracy is achieved. Figure 17a and b show that we can get estimation
accuracy improvements by modeling adjacent edges with high dependency as virtual edges
and extended virtual edges.

The effect of α is shown in Fig. 18. As the the merge threshold and reduction threshold
increase, the more accurate the resulting histograms are. Figure 18a shows that the accuracy
improves with finner time granularities, because histograms can capture distinct distribu-
tions during short intervals. Figure 18b shows that the accuracy decreases with finner time
granularities, because the finer time granularities, the more histograms an edge has and
thus the less buckets of a histogram has. This adversely affect the accuracy of the resulting
histograms.

6.4 Storage consumption

We next evaluate the storage savings that can be obtained by using histogram merging and
bucket reduction. A bucket in a histogram requires two integer values (i.e., 8 bytes) to indi-
cate the lower and upper bound of the bucket and a double (i.e., 8 bytes) for the bucket
probability.

We introduce the memory compression ratio MCR to measure the storage reduction. In
particular, the MCR for histogram merging is computed as MCRm = Minit−Mmerge

Minit
,where

Minit and Mmerge represent the storage required to represent the initial time dependent
histograms and the merged histograms. The MCR for bucket reduction is computed as
MCRr = Mmerge−Mredu

Mmerge
,where Mredu represents the storage required to represent the

histograms after bucket reduction based on merged histograms.

(a) Historgram Merging (b) Bucket Reduction

Fig. 18 Impact of α



Geoinformatica (2017) 21:57–88 83

(a) Histogram Merging (b) Bucket Reduction

Fig. 19 MCR Study

Figure 19a shows that when the merge threshold is set to 0.9, the storage required by the
initial histograms can be reduced by 93 %. When the merge threshold is 0.98, the reduc-
tion is 84 %. Recall that the accuracy when using this merge threshold is quite close to
that of the initial histograms (see Fig. 11b). We fix two sets of merged histograms (with
merge thresholds 0.95 and 0.98) and observe the MCR with varying reduction thresholds.
Figure 19b shows that bucket reduction can further reduce the required storage: smaller
thresholds achieve better MCR.

Figure 20 reports the average storage required for a single edge in order to achieve dif-
ferent accuracies for our different methods (Tdep not considered, VE used and EVE used)
and the baseline method. The figure shows that to achieve a higher accuracy (i.e., a smaller
Err value), more storage is required.

Figure 21 shows the average number of histograms generated with different settings
(α and Tmerge). With smaller α, we have much more histograms in the beginning before
histogram merging. For instance, we have 96 and 24 histograms when α =15 minutes
and α =1 hour, respectively. Thus, after histogram merging, a smaller α results in more
histograms. As Tmerge increases, fewer histograms with similarity higher than Tmerge can be
merged, and thus more histograms remain.

6.5 Eco-routes versus shortest routes

Finally, we conduct experiments to compare eco-routes and shortest routes. Figure 22 shows
an example where the eco-route (in blue) and the shortest route (in black) from a location A

to a location B in Aalborg, Denmark. As can be seen, the two routes differ significantly.

Fig. 20 Storage Usage vs. Err
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Fig. 21 Avg. Numbers

Next, we compute the shortest routes and eco-routes for 1,000 randomly chosen
source-destination pairs. We group the source-destination pairs according to the Euclidean
distances between the sources and the destinations. Figure 23 shows the average percent-
age of the edges that are shared between eco-routes and shortest routes for different groups

Fig. 22 Eco Route vs. Shortest Route
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Fig. 23 Eco-Routes and Shortest Routes Overlapping Percentage

of source-destination pairs. The figure indicates that eco-routes can be significantly dif-
ferent from shortest routes; and the further the source and the destination are apart, the
more different the eco-routes are from the shortest routes. This is partly due to the fact that
highways, which are used often longer routes, may not necessarily be the shortest paths.
However, when traveling for long distances, driving on highways may produce less GHG
emissions compared to driving on roads in urban areas. This is because frequent brakes and
accelerations, due to traffic lights in urban areas, produce more emissions.

6.6 Summary

Based on our experimental results, the recommended parameter settings for Tmerge, Tred, and
Tdep are 0.95, 50, and 0.2, respectively. With these settings, each edge requires on average
3.98 histograms and about 0.61 KB storage space. Assuming there is sufficient GPS data
for all edges in the Denmark road network, to achieve the accuracy of the initial histograms
without any compression, the storage usage of the compact histograms is 2.82GB. By using
the default settings, the storage usage is 0.50GB for the ERN for the Denmark road network.
This suggests that our compact representation of time-dependent histograms reduces the
storage substantially while maintaining good accuracy.

To sum up, better estimation accuracy can be achieved by using higher settings for Tmerge
and Tred and a lower setting for Tdep. This comes at the cost of more preprocessing time
and higher storage consumption, and our recommended settings are chosen by taking the
tradeoffs among all the different thresholds into consideration.

7 Conclusions

We present techniques capable of using a large trajectory data set for assigning eco-weights
to the edges in a road network. The resulting Eco-Road Network, which assigns com-
pact and time-dependent, uncertain eco-weights to edges, provides the key foundation for
enabling eco-routing. We also study the correlations between the GHG emissions from
adjacent edges, and we propose time-dependent GHG emissions distributions estimation
techniques for routes. The accuracy and compactness of the proposed techniques are eval-
uated based on a 2-year GPS vehicle tracking data set. The experimental study shows that
our method is able to save up to 20 % storage space in comparison with the baseline method
while providing the same accuracy.

In future work, it is of interest to explore advanced routing algorithms that can fully
utilize the time-dependent, uncertain eco-weights, e.g., to compute probabilistic eco-routes.
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Additionally, using an inverted approach that assigns a time dependent histogram based eco-
weight to a group of edges that have similar travel cost distributions may result in further
storage space reductions.
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