Quantitative Equational Reasoning

Giorgio Bacci

Dept. Computer Science, Aalborg University, DK

Dagstuhl Seminar 24432

Behavioural Metrics and Quantitative Logics (October 20-25, 2024)

Motivations*

- Equations are at the heart of mathematical reasoning
- Reasoning about programs is also based on program equivalences
- This is the dawning of the age of quantitative reasoning
- We want quantitative analogues of algebraic reasoning
- (Pseudo)metrics instead of equivalence relations
- Quantitative Effects: monads on categories of metric spaces

A Trinity of Ideas

Equational Theories by Example

(Barycentric Algebras - M. Stone 1949)

Signature:
$$\{+_e: 2 \mid e \in [0,1]\}$$
convex sum

Equational theory is obtained by

closing under reflexivity, symmetry,

transitivity of =, and congruence

- **(B1)** $s +_1 t = s$
- **(B2)** $t +_{e} t = t$
- (SC) $s +_e t = t +_{1-e} s$

(SA)
$$(s +_e t) +_d u = s +_{ed} (t +_{\frac{(1-e)d}{1-ed}} u), \text{ for } e, d \in (0,1)$$

The models interpret $+_e$ while respecting the axioms

The free algebra for this equational theory corresponds to the set of *finitely supported distributions*

the Quantitative Picture

The Basic Idea

replace standard equations with quantitative equations

"s is within ε of t"

Goals: completeness theorem, universal free algebras, algebraic effects, and Birkhoff-like variety theorem...

Quantitative Equational Theories

Mardare, Panangaden, Plotkin (LICS'16)

• Signature of operations:
$$\Sigma = \{(f_0\colon n_0), ..., (f_k\colon n_k), ...\}$$

- Terms: $s, t := x \mid f(t_1, ..., t_n)$ ($\mathbb{T}_{\Sigma} X$ set of terms over X)
- Quantitative equations: $s =_{\varepsilon} t$ where $\varepsilon \in \mathbb{Q}_{\geq 0}$
- Quantitative inferences: $\{s_1 =_{\varepsilon_1} t_1, ..., s_n =_{\varepsilon_n} t_n\} \vdash s =_{\varepsilon} t$
- Quantitative equational theories: sets \mathscr{U} of quantitative inferences satisfying certain closure properties telling us what can be deduced...

Closure Properties

Quantitative Algebras

$$\mathcal{A} = (A, d_A, \{f_{\mathcal{A}}: A^n \to A \mid f: n \in \Sigma\})$$

- (A, d_A) is an *extended* metric space (carrier)
- $f_{\mathcal{A}}: A^n \to A$ interpretations of operations are non-expansive

$$\left(\max_{i} d_{A}(a_{i}, b_{i}) \geq d(f_{\mathcal{A}}(a_{1}, \dots, a_{n}), f_{\mathcal{A}}(b_{1}, \dots, b_{n})) \right)$$

Morphisms: $h: \mathcal{A} \to \mathcal{B}$

- Σ -homomorphisms $h(f_{\mathcal{A}}(a_1,...,a_n)) = f_{\mathcal{B}}(h(a_1),...,h(a_n)) \quad \text{for all } f \colon n \in \Sigma$
- non-expansive $d_A(a, a') \ge d_B(h(a), h(a'))$

Models of a Theory

Satisfiability

$$\mathscr{A} \models \left(\{ t_i =_{\varepsilon_i} s_i \mid i = 1, \dots, n \} \vdash t =_{\varepsilon} s \right)$$
iff

for any
$$\Sigma$$
-homomorphism $\iota \colon \mathbb{T}_{\Sigma} X \to A$
$$d_A(\iota(t_i), \iota(s_i)) \leq \varepsilon_i \text{, for } i = 1, \dots, n \text{ implies } d_A(\iota(t), \iota(s)) \leq \varepsilon$$

A quantitative algebra \mathscr{A} is a model for a quantitative theory \mathscr{U} if it satisfies all quantitative inferences in it

Interpolative Barycentric Algebras

Mardare, Panangaden, Plotkin (LICS'16)

Signature:
$$\{+_e:2\mid e\in[0,1]\}$$

(B1)
$$\vdash s +_1 t =_0 s$$

(B2)
$$\vdash t +_{e} t =_{0} t$$

(SC)
$$\vdash s +_e t =_0 t +_{1-e} s$$

(SA)
$$\vdash (s +_e t) +_d u =_0 s +_{ed} (t +_{\frac{(1-e)d}{1-ed}} u), \text{ for } e, d \in (0,1)$$

(IB)
$$\{s =_{\varepsilon} t, s' =_{\varepsilon'} t'\} \vdash s +_{e} s' =_{\delta} t +_{e} t',$$

where
$$\delta \ge e\varepsilon + (1 - e)\varepsilon'$$

A geometric intuition

(IB)
$$\{s =_{\varepsilon} t, s' =_{\varepsilon'} t'\} \vdash s +_{e} s' =_{\delta} t +_{e} t', \text{ where } \delta \geq e\varepsilon + (1 - e)\varepsilon'$$

..some of models

Unit interval with Euclidian distance and convex combinators

$$([0,1], d_{[0,1]})$$
 $(+_e)^{[0,1]}(a,b) = ea + (1-e)b$

Finitely supported distributions with Kantorovich distance

$$(\mathcal{D}(M), \mathcal{K}(d_M)) \qquad (+_e)^{\mathcal{D}}(\mu, \nu) = e\mu + (1 - e)\nu$$

Radon probability measures with Kantorovich distance

$$(\Delta(M), \mathcal{K}(d_M)) \qquad (+_e)^{\Delta}(\mu, \nu) = e\mu + (1 - e)\nu$$

Main general results

- Completeness
- 2 Free-universal algebras
- Quantitative effects (monads)

Completeness

Mardare, Panangaden, Plotkin (LICS'16)

For quantitative the equational logic we have an analogue of the usual completeness theorem

Theorem (Birkhoff completeness)

$$\forall \mathcal{A} \in \mathbf{Mod}(\mathcal{U}) . \mathcal{A} \models (\Gamma \vdash t =_{\varepsilon} s)$$

$$\mathsf{iff}$$

$$(\Gamma \vdash t =_{\varepsilon} s) \in \mathcal{U}$$

Free Models

- Given ${\mathscr U}$ quantitative theory for the signature Σ
- and (M, d_M) an extended metric space,
- we define \mathcal{U}_M as the quantitative theory for the signature $\Sigma + M$ with \mathcal{U} and $\{ \vdash m =_{\varepsilon} n \mid d_M(m,n) \leq \varepsilon \}$ as set of axioms

An extended (pseudo)metric on $\mathbb{T}_{\!\Sigma} M$

$$d_{\mathcal{U}}(s,t) = \inf\{\varepsilon \mid \emptyset \vdash t =_{\varepsilon} s \in \mathcal{U}_{M}\}\$$

Free model of \mathcal{U} over (M, d_M)

$$\mathbf{T}_{\mathcal{U}}M = \left(\mathbb{T}_{\Sigma}M, d_{\mathcal{U}}, \{f_{\mathcal{U}} \mid f : n \in \Sigma\}\right)$$

quotentied wrt $=_0$ -provability

Universal Property

The free-model enjoys the expected universal property of free-algebras

EMet

$\mathbf{Mod}(\mathcal{U})$

Algebraic Effects on EMet

Representation Theorem

Bacci, Mardare, Panangaden, Plotkin (LICS'18)

Theorem

For any **basic** quantitative equational theory \mathscr{U}

$$\mathbf{Mod}(\mathcal{U}) \cong T_{\mathcal{U}} - \mathbf{Alg}$$

EM algebras for the monad $T_{\mathcal{U}}$

A quantitative equational theory \mathcal{U} is **basic** if it can be axiomatised by a set of quantitative inferences of the form

$$\{x_1 =_{\varepsilon_1} y_1, \dots, x_n =_{\varepsilon_n} y_n\} \vdash s =_{\varepsilon} t$$
only quantitative equations between variables

Examples

Ex1: Barycentric Algebras

Mardare, Panangaden, Plotkin (LICS'16)

Signature:
$$\{ +_e : 2 \mid e \in [0,1] \}$$

(B1)
$$\vdash s +_1 t =_0 s$$

(B2)
$$\vdash t +_{e} t =_{0} t$$

(SC)
$$\vdash s +_e t =_0 t +_{1-e} s$$

(SA)
$$\vdash (s +_e t) +_d u =_0 s +_{ed} (t +_{\frac{(1-e)d}{1-ed}} u), \text{ for } e, d \in (0,1)$$

(IB)
$$\{s =_{\varepsilon} t, s' =_{\varepsilon'} t'\} \vdash s +_{e} s' =_{\delta} t +_{e} t',$$

where $\delta \ge e\varepsilon + (1 - e)\varepsilon'$

$$\operatorname{Mod}(\mathscr{B})$$
 \perp \rightarrow $T_{\mathscr{B}} \cong \mathscr{D}$

Finitely supported distributions with **Kantorovic distance**

Ex2: Quantitative Semilattices

Mardare, Panangaden, Plotkin (LICS'16)

Signature:

$$\{0:0,\bigoplus:2\}$$

$$(S0) \qquad \vdash 0 \oplus t =_0 t$$

$$(S1) \qquad \vdash t \oplus t =_0 t$$

$$(S2) \qquad \vdash s \oplus t =_0 t \oplus s$$

(S3)
$$\vdash (s \oplus t) \oplus u =_0 s \oplus (t \oplus u)$$

(S4)
$$\{s =_{\varepsilon} t, s' =_{\varepsilon'} t'\} \vdash s \oplus s' =_{\delta} t \oplus t', \text{ where } \delta \ge \max\{\varepsilon, \varepsilon'\}$$

$$\mathbf{Mod}(\mathcal{S}) \underbrace{\hspace{1cm} \bot \hspace{1cm}} \mathbf{EMet} \xrightarrow{\hspace{1cm}} T_{\mathcal{S}} \cong \mathscr{P}_f$$
 Finite powerset monad with Hausdorff distance

Ex3: Quantitative Exceptions

Bacci, Mardare, Panangaden, Plotkin (LICS'18)

Signature:
$$\{e:0 \mid e \in E\}$$
A metric space (E,d_E) of exceptions

(E0)
$$\vdash e_1 =_{\varepsilon} e_2$$
, where $\varepsilon \geq d_E(e_1, e_2)$

$$\mathbf{Mod}(\mathscr{E}_E) \underbrace{\bot} \mathbf{EMet} \quad \Rightarrow \quad T_{\mathscr{E}_E} \cong (-+E)$$
Quantitative
Exception Monad

Ex4: Quantitative Reader

Bacci, Mardare, Panangaden, Plotkin (CALCO'21)

Signature:
$$\{r:|A|\}$$
 reads from a finite set of input actions $A=\{a_1,...,a_n\}$ and proceeds

(Idem)
$$\vdash x =_0 \mathbf{r}(x, ..., x)$$

(Diag) $\vdash \mathbf{r}(x_{1,1}, ..., x_{n,n}) =_0 \mathbf{r}(\mathbf{r}(x_{1,1}, ..., x_{1,n}), ..., \mathbf{r}(x_{n,1}, ..., x_{n,n}))$

 $\mathbf{Monad \ in \ EMet \ only \ for}$ $discrete \ \operatorname{spaces \ of \ inputs!}$ $\mathbf{Mod}(\mathcal{R}) \stackrel{\perp}{\smile} \mathbf{EMet} \stackrel{}{\smile} T_{\mathcal{R}} \cong (-)^{\underline{A}}$ Reader monad for the discrete space \underline{A}

Ex5: Quantitative Writer

Bacci, Mardare, Panangaden, Plotkin (CALCO'21)

metric space

Let $(\Lambda, \star, 0)$ be a monoid with non-expansive multiplication

Signature:
$$\{\mathbf{W}_a \colon 1 \mid a \in \Lambda\}$$
writes the output symbol a and proceeds

(Zero)
$$\vdash x =_0 \mathbf{w}_0(x)$$

(Mult) $\vdash \mathbf{w}_a(\mathbf{w}_b(x)) =_0 \mathbf{w}_{a \star b}(x)$
(Diff) $\{x =_{\varepsilon} x'\} \vdash \mathbf{w}_a(x) =_{\delta} \mathbf{w}_b(x'), \quad \text{for } \delta \geq d_{\Lambda}(a,b) + \varepsilon$

$$\mathbf{Mod}(\mathscr{W}) \stackrel{\perp}{\smile} \mathbf{EMet} \stackrel{\longrightarrow}{\longrightarrow} T_{\mathscr{W}} \cong (\Lambda \oplus -)$$
Writer monad for the metric space Λ

all Cauchy sequences have limit

...on Complete metric Spaces

Representation Theorem

Bacci, Mardare, Panangaden, Plotkin (LICS'18)

For any ${\it continuous}$ quantitative equational theory ${\mathscr U}$

$$\mathbf{CMod}(\mathcal{U}) \cong \mathbb{C}T_{\mathcal{U}}\text{-}\mathbf{Alg}$$

EM algebras for the monad $\mathbb{C}T_{\mathscr{U}}$

A quantitative equational theory is *continuous* if it can be axiomatised by a collection of *continuous schemata* of quantitative inferences

$$\{x_1 =_{\varepsilon_1} y_1, \dots, x_n =_{\varepsilon_n} y_n\} \vdash t =_{\varepsilon} s \quad -\text{for } \varepsilon \geq f(\varepsilon_1, \dots, \varepsilon_n)$$
continuous real-valued function

Algebraic Effects on CEMet

... this happens because, for *continuous* equational theories the completion functor lifts to the models of a theory

Barycentric Algebras (again!)

Mardare, Panangaden, Plotkin (LICS'16)

Signature:
$$\{ +_e : 2 \mid e \in [0,1] \}$$

(B1)
$$\vdash s +_1 t =_0 s$$

(B2)
$$\vdash t +_{e} t =_{0} t$$

(SC)
$$\vdash s +_e t =_0 t +_{1-e} s$$

(SA)
$$\vdash (s +_e t) +_d u =_0 s +_{ed} (t +_{\frac{(1-e)d}{1-ed}} u), \text{ for } e, d \in (0,1)$$

(IB)
$$\{s =_{\varepsilon} t, s' =_{\varepsilon'} t'\} \vdash s +_{e} s' =_{\delta} t +_{e} t',$$

where
$$\delta \ge e\varepsilon + (1 - e)\varepsilon'$$

$$\mathbf{CMod}(\mathscr{B}) \underbrace{\bot} \mathbf{CEMet} \quad \Longrightarrow \quad \mathbb{C}T_{\mathscr{B}} \cong \Delta$$

Radon probability measures with Kantorovic distance

Quantitative Semilattices (again)

Mardare, Panangaden, Plotkin (LICS'16)

Signature:

$$\{0:0,\bigoplus:2\}$$

$$(S0) \vdash 0 \oplus t =_0 t$$

$$(S1) \qquad \vdash t \oplus t =_0 t$$

$$(S2) \qquad \vdash s \oplus t =_0 t \oplus s$$

(S3)
$$\vdash (s \oplus t) \oplus u =_0 s \oplus (t \oplus u)$$

(S4)
$$\{s =_{\varepsilon} t, s' =_{\varepsilon'} t'\} \vdash s \oplus s' =_{\delta} t \oplus t', \text{ where } \delta \ge \max\{\varepsilon, \varepsilon'\}$$

There's much more!

- Birkhoff-like variety theorem
- 2 Expressiveness of Quantitative Effects
- 3 Compositionality results
- 4 Fixed points

Birkhoff Variety Theorem

Mardare, Panangaden, Plotkin (LICS'17) Milius and Urbat (FoSSaCS'19)

It is stated for signatures of operators of possibly infinite arity

Axiomatised by a set of basic inferences of the form $\Gamma \vdash s =_{\varepsilon} t$, where $|\operatorname{Vars}(\Gamma)| < \lambda$ (regular cardinal)

Theorem

A full subcategory of $\mathbf{Q}\mathbf{A}$ is a λ -variety iff it is closed under products, subalgebras, and λ -reflexive homomorphic images

surjections $e: M \to N$ s.t., for all $N' \subseteq N$ with $|N'| < \lambda$, there exists $M' \subseteq M$ such that e restricts to $M' \stackrel{\cong}{\to} N'$

Expressiveness of Effects

Ford, Milius, Schröder (CALCO'21) Adamek (LICS'22)+(CALCO'23)

The format of the equations determines the class of monads that quantitative equational theories characterise

Enriched monads Quantitative Algebras $\lambda - accessible$ $\lambda - accessible + breserve surjections$ Quantitative Algebras $\lambda - accessible + \lambda - varieties$

The cases for $\lambda = 1$ and $\lambda = \aleph_0$ are still **open problems**!

Compositionality Results

Bacci, Mardare, Panangaden, Plotkin (LICS'18)+(CALCO'21)

Following Hyland, Plotkin, and Power (TCS'06) we considered the combinations of theories via *sum* and *tensor*

Theorem

Given \mathscr{U} and \mathscr{U}' over disjoint signatures it holds that

$$T_{\mathcal{U}} + T_{\mathcal{U}'} \cong T_{\mathcal{U} + \mathcal{U}'} \qquad T_{\mathcal{U}} \otimes T_{\mathcal{U}'} \cong T_{\mathcal{U} \otimes \mathcal{U}'}$$

disjoint union of their axioms

the operations of the theories commutes over each other

We get compositional axiomatization of bahavioral metrics for (labelled) Markov Processes, MDPs, Mealy machines...

Quantitative Theory Transformers

We can obtain quantitative analogues of Cenciarelli and Moggi's monad transformers at the level of theories via sum & tensor

Exception transformer

$$\mathcal{U} \mapsto \mathcal{U} + \mathcal{E}_E$$

$$\mathcal{U} \mapsto \mathcal{U} + \mathcal{E}_E \qquad \qquad T_{\mathcal{U}} + \mathcal{E}_E \cong T_{\mathcal{U}}(-+E)$$

Reader transformer

$$\mathcal{U} \mapsto \mathcal{U} \otimes \mathcal{R}$$

$$\mathcal{U} \mapsto \mathcal{U} \otimes \mathcal{R} \qquad \qquad T_{\mathcal{U}} \otimes \mathcal{R} \cong (T_{\mathcal{U}} -)^{\underline{A}}$$

Writer transformer

$$\mathscr{U}\mapsto \mathscr{U}\otimes \mathscr{W}$$

$$\mathscr{U} \mapsto \mathscr{U} \otimes \mathscr{W} \qquad \qquad T_{\mathscr{U}} \otimes \mathscr{W} \cong (\Lambda \oplus T_{\mathscr{U}} -)$$

Fixed points

Mardare, Panangaden, Plotkin (LICS'21)

Quantitative equational logic has been extended with "Banach" fixed points: reasoning about the distance of recursively defined terms

Key idea

The fixed point operators $f: A^n \to A$ should admit a finite Banach pattern $\theta \subseteq \{(\alpha_1, ..., \alpha_n) \mid \sum_i \alpha_i \leq 1\}$, that is:

$$d_A(f(a_1, ..., a_n), f(b_1, ..., n_n)) \le \max_{\alpha \in \theta} \sum_i \alpha_i \cdot d_A(a_i, b_i)$$

The resulting theory is the *quantitative analogue of an iteration theory (Bloom-Ésik // Hasegawa)*

Conclusions

- Quantitative theories are the right tool to algebraically describe quantitative effects ("effects with a metric twist")
- Plenty of *non-trivial examples*: Kantorovich metric, Hausdorff metric, Total variation, *p*-Wasserstein metric, etc.
- Non-trivial generalisations of results holding in Set
 (Birkhoff variety theorem, enriched accessible monads, combination of theories via sum & tensor, fixed points)
- Still many interesting (unexpected) open problems