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Motivations®

Equations are at the heart of mathematical reasoning

Reasoning about programs is also based on program
equivalences

This is the dawning of the age of quantitative reasoning
We want quantitative analogues of algebraic reasoning
(Pseudo)metrics instead of equivalence relations

Quantitative Effects: monads on categories of metric spaces

2 (*) from P. Panangaden (Category Theory Seminar)



A Trinity of ldeas
["":;zﬁfg:sizsf;?;‘rﬁ“]

—
Equational Monads

theories on Set

Lawvere
Theories
Theories are
cartesian categoires
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Equational Theories by Example
(Barycentric Algebras - M. Stone 1949)

Signature:  { +,: 2 | e € [0,1]}

( convex sum ) 4 )
Equational theory is obtained by
_ closing under reflexivity, symmetry,
(B1) s tTr=s transitivity of =, and congruence
B2) t+,t=t Y 4

(SC) s+, t=t+_,s
(SA) (s+,H+u=s+,,(t +u-ou u), fore,d € (0,1)

The models interpret +, while respecting the axioms

The free algebra for this equational theory corresponds to
the set of finitely supported distributions
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the Quantitative Picture

operations + quantitative
quantitative equations effects
(logical deduction)

Quantitative Monads
Equational Theories on EMet

\\ EMet Lawvere /

Theories

Theories are
EMet categones




The Basic Idea

replace standard equations with quantitative equations

C quantitative equation )

s =1

"s is within &€ of t"

Goals: completeness theorem, universal free algebras,
algebraic effects, and Birkhoff-like variety theorem...



Quantitative Equational Theories

Mardare, Panangaden, Plotkin (LICS’16)

Lfvinite arity )

 Signature of operations: X = {(fy: ny), ..., (f¢: 1), ...}

e Terms: s,t :=x | f(¢;,...,1,) (TyX set of terms over X))
e Quantitative equations: s =, ¢ where ¢ € Q,
e Quantitative inferences: {s; =, #;,....,5, =, f,} Fs=_1

e Quantitative equational theories: sets % of quantitative

iInferences satisfying certain closure properties telling us
what can be deduced...



Closure Properties

4 )
Dt =0 re U typically, we describe
a quantitative theory
{s =, t} -t =.85 € U using a set of axioms

J

s=Lt=s5ulbs=_su€c s
s=,t}Fs=_st€ (for 6 > 0)

forf: n € X,

sy =.t,....8, =t} Ff(s,....8) =, f(t;,....t) EU

I'Es=5t|0>€e} CU implies ' Fs=,te%
I'-s=_t€ % implies I'[u/x] & s[u/x] =, tlu/x] € %
'FOCUandOFs=,1t€ U impliesl' -s=,1r€ %
s=,t€l impliesl' Fs=,1te%
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Quantitative Algebras

o =(Ady,{fy: A" > A|fine X}

e (A,d,) is an extended metric space (carrier)

e fy: A" = A interpretations of operations are non-expansive
A

[ max ds(a;, b)) =2 d(f(ay, ..., a,), fo/(Dy, ..., D)) ]

Morphisms: h: o - A

e 2-homomorphisms

h(f(ay,...,a,)) = fgz(h(a)),...,h(a,)) foralf:ne€X
e non-expansive d,(a,a’) > dgz(h(a),h(a’))
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Models of a Theory

- Satisfiability ~
dE({;=,5li=1..n}Fr=,5s)
Iff

for any 2-homomorphismi: I+ X — A
d,(1(t),1(s)) < e ,fori=1,...,n implies d,0(),1(s)) <e¢

A quantitative algebra & is a model for a quantitative theory %
If it satisfies all quantitative inferences in it
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Interpolative Barycentric Algebras

Mardare, Panangaden, Plotkin (LICS’16)

Signature:  { +,: 2 | e € [0,1]}

( convex sum J

B1) Fs+,t=ys
B2) Fit+,t=,t
(SC) Fs+,t=gt+,_,5
(SA) F(G+,H)+,u=ys+,,(1 +u-ou u), fore,d € (0,1)
(IB) {s=.t,5'=,t}Fs+,s=5t+,1,
where 6 > ec + (1 — e)e’
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A geometric intuition

(IB) {s=,t,s'=,t}Fs+,5=5t+,1, where 6 > ec+ (1 — e)¢’




..some of models

( )
Unit interval with Euclidian distance and convex combinators
([0,1], d[(),1]) (+, )[0’1](aa b) =ea+ (1 —e)b
\ W,
4 )
Finitely supported distributions with Kantorovich distance
. (DM, K(dy) () (uv)=eu+(1—ew )
( )
Radon probability measures with Kantorovich distance
g (AM), K(dyp))  (+)*w.v) =eu+ (1 —ew )
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Main general results
0 Completeness

e Free-universal algebras

e Quantitative effects (monads)
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Completeness

Mardare, Panangaden, Plotkin (LICS’16)

For quantitative the equational logic we have an
analogue of the usual completeness theorem

Theorem (Birkhoff completeness) \
Vd e Mod(%). o F (' F1t=,s)
Iff
T'kFt=,5)e€U




Free Models

e Given % quantitative theory for the signature X
e and (M, d,,;) an extended metric space,

« we define %,, as the quantitative theory for the signature 2 + M
with % and { - m =_n | d,,(m,n) < €} as set of axioms

C An extended (pseudo)metric on TsM )

v
do/(s,t)y=1mt{e | @ Ht=_5€ U}

Free model of % over (M, d,,) N

ToM = (TgM,dyy, {fo | f: n € Z})

.
quotentied wrt =-provability
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Universal Property

The free-model enjoys the expected universal
property of free-algebras

EMet Mod(%)

v

M . _|]_2 M T % ﬁFre(e)fr;;delj
 h

a :
A v

C non-expansive ) A (Q{

h




Algebraic Effects on EMet
Mod(%)

4 4 )
Free Model functor Forgetful functor
(maps an extended metric _| — (maps a quantitative
space to the free model of %)

algebra to its carrier)
\_ J

\_

quantitative effects! Monad induced
by % on EMet

This is how we get algebraic J
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Representation Theorem

Bacci, Mardare, Panangaden, Plotkin (LICS’18)

- Theorem N
For any quantitative equational theory %
Mod(%) = T,,~Alg
A
.

L EM algebras for the monad Ty, I

A gquantitative equational theory % is basic if it can be axiomatised
by a set of quantitative inferences of the form

{xl —¢ Y1 "/\'?xn —e¢, yn} =5 =l

C only quantitative equations between variables )




Examples



Ex1: Barycentric Algebras

Mardare, Panangaden, Plotkin (LICS’16)

Signature: { +,:2 | e € [0,1]}

B1) Fs+,t=ys
B2) Fit+,t=,t
(SC) Fs+,t=gt+,_,s
(SA) F(+,0)+,u=ys+,,(t +u-od u), fore,d € (0,1)
(IB) {s=.t.s'=.t} s+, =5t+,1,
where 6 > ec + (1 — e)€’

Mod(%)” L  EMet = T, =9
A

Finitely supported distributions
with Kantorovic distance
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Ex2: Quantitative Semilattices

Mardare, Panangaden, Plotkin (LICS’16)

Signature: {9 O, & 2}
(Cvorom )

(S0) HOPr=,t
(S1) FHtpr=,t
(S2) FsPt=ytDs
S3) HGEB®HBu=ys® (D u

(S4) {s=.t.s'=.t}FsDs' =5tDt, where 5 > max{e, e’}

Mod($)” L EMet = T;= %

Finite powerset monad with
Hausdorff distance
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Ex3: Quantitative Exceptions

Bacci, Mardare, Panangaden, Plotkin (LICS’18)

Signature: {e: 0| e € E}

(A metric space (E, di) of exceptions)

(EO) I_ 61 —c 62 ) Where E Z dE(el, 82)

MOd(%E)\‘/J_; EMet = T, =( —A+ E)

Quantitative
Exception Monad
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Ex4: Quantitative Reader

Bacci, Mardare, Panangaden, Plotkin (CALCQO’21)

Signature:  {r: [A|}
I\

( reads from a finite set of input actions A = {ay, ..., a,} and proceeds J

(ldem) Fx=,r(x,...,x)

(Diag) I_ I"(xl,l, cees .xn,n) =0 r(r(.xl,l, cees xl,n), cees I"(xn,l, cees .xn,n))

Monad in EMet only for

discrete spaces of inputs!

Mod(%)\‘/J_:EMet - T@%(;)é

Reader monad for
the discrete space A
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Ex5: Quantitative Writer

( ) Bacci, Mardare, Panangaden, Plotkin (CALCQO’21)

\'4
Let (A, % ,0) be a monoid with non-expansive multiplication

Signature: {W,: 1 |a € A}

(Awrites the output symbol a and proceeds J

(Zero) F x =, wg(x)
(Mult)  F w,(Wp(x)) =) Waxp(x)
(Diff) {x =, x} Fw,(x) =5 Wy(x"), foro>d,(ab)+e

Mod(#) " 1  EMet = Ty =(A®-)
A

Writer monad for the
metric space A
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...on Complete metric
Spaces
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Representation Theorem

Bacci, Mardare, Panangaden, Plotkin (LICS’18)

- Theorem ~

For any quantitative equational theory %

CMod(%) = CT,,~Alg
A

- -
L EM algebras for the monad CT5, I

A quantitative equational theory is continuous if it can be axiomatised
by a collection of continuous schemata of quantitative inferences

()= Voo Xy =, Wy} Et=,s —fore 2{(81, s &)

( continuous real-valued function )




Algebraic Effects on CEMet

... this happens because, for continuous equational theories the
completion functor lifts to the models of a theory

o\

MOd(%) C . CMOd(%){ Models of % j

over complete
metric spaces

= -

EMet — & . CEMet

l l effects on complete
TCZZ C T% metric spaces




Barycentric Algebras (again!)

Mardare, Panangaden, Plotkin (LICS’16)

Signature: { +,:2 | e € [0,1]}

B1) Fs+,t=ys
B2) Fit+,t=,t
(SC) Fs+,t=gt+,_,s
(SA) F(+,0)+,u=ys+,,(t +u-od u), fore,d € (0,1)
(IB) {s=.t.s'=.t} s+, =5t+,1,
where 6 > ec + (1 — e)€’

CMod(%’)@ CEMet = CTg=A
A

Radon probability measures with
Kantorovic distance
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Quantitative Semilattices (again)

Mardare, Panangaden, Plotkin (LICS’16)

Signature: {9 O, & 2}
(Cvorom )

(S0) HOPr=,t
(S1) FHtdr=,t
(S2) FsPt=ytDs
S3) FHE®NBu=sB (D u)

(S4) {s=.t.s'=.t}FsDs' =5tDt, where 5 > max{e, e’}

CMod($) ~ 1 CEMet = CTs =6

Compact powerset monad
with Hausdorff distance
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There’s much more!

€ Birkhoff-like variety theorem
9 Expressiveness of Quantitative Effects

e Compositionality results

Q Fixed points

31



Birkhoff Variety Theorem

Mardare, Panangaden, Plotkin (LICS’17)
Milius and Urbat (FoSSaCS’19)

It is stated for signatures of operators of possibly infinite arity

Axiomatised by a set of basic inferences of the form
I'Fs=,t,where |Vars(I')| < A (regular cardinal)

Theorem ~

A full subcategory of QA is a A-variety iff it is closed under
products, subalgebras, and A-reflexive homomorphic images

|

\
surjections e: M — N s.t.,, forall N' C N with |N'| < 4,
there exists M’ C M such that e restrictsto M’ S N’ )
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Expressiveness of Effects

Ford, Milius, Schréder (CALCQO’21)
Adamek (LICS’22)+(CALCQO’23)

The format of the equations determines the class of
monads that quantitative equational theories characterise

Enriched monads Quantitative Algebras

A-accessible \1 / generalised )

<R, A-varieties

| [raccessible + A-basic varieties
kpreserve surjections | k |

regular cardinal

112

The cases for A = 1 and A = N are still open problems!
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Compositionality Results

Bacci, Mardare, Panangaden, Plotkin (LICS’18)+(CALCO’21)

Following Hyland, Plotkin, and Power (TCS’06) we
considered the combinations of theories via sum and tensor

Theorem \

Given % and ?/' over disjoint signatures it holds that

T% + T%/ = T%_l_%/ T% ® T%/ = T%®%/
\ | )

I\ /1
disjoint union the operations of the theories
of their axioms commutes over each other

We get compositional axiomatization of bahavioral metrics for
(labelled) Markov Processes, MDPs, Mealy machines...
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Quantitative Theory Transformers

We can obtain quantitative analogues of Cenciarelli and Moggi's
monad transformers at the level of theories via sum & tensor

Exception transformer
[ U U+ & - Ty,+ Er=T,(—+E) J

Reader transformer
[ U URQA - T%(X)Q?%(T%—)A ]

Writer transformer
[ U — USQW - T, QW ~(ADTy,—) ]
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Fixed points

Mardare, Panangaden, Plotkin (LICS’21)

Quantitative equational logic has been extended with “Banach” fixed
points: reasoning about the distance of recursively defined terms

a Key idea ~
The fixed point operators f: A" — A should admit a finite
Banach pattern 6 C {(al, s | Ziai < 1}, that is:

ael

d\(f(ay. ....a,). f(by, ....n,)) <max Y a;-dy(a,b)

The resulting theory is the qualjtitative analogue of an
iteration theory (Bloom-Esik // Hasegawa)
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Conclusions

Quantitative theories are the right tool to algebraically
describe quantitative effects ("effects with a metric twist")

Plenty of non-trivial examples: Kantorovich metric, Hausdorff
metric, Total variation, p-Wasserstein metric, etc.

Non-trivial generalisations of results holding in Set
(Birkhoff variety theorem, enriched accessible monads,
combination of theories via sum & tensor, fixed points)

Still many interesting (unexpected) open problems
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