
Finding a Forest in a Tree
The matching problem for wide reactive systems

Giorgio Bacci, Marino Miculan, Romeo Rizzi
Dept. of Computer Science, Aalborg University

Breakfast Talk
(presented @ TGC 2014)

Outline of the talk

• Introduction

• The problem: forest matching

• NP-completeness

• Fixed-parameter Algorithm (the core only)

• Concluding remaks

Motivations
• Reactive systems (aka reduction systems)

are common in process calculi

• Defined by
• a set of reduction rules l(x)→r(x)
• a contextual closure

 l(x)→r(x) a=C[l(x)σ] b=C[r(x)σ]
 a→b

• However: not always easy to apply,
especially in models of global computing

Ex: Message Passing

S1 S2

x

ā⟨M⟩.P | a(x).Q → P | Q[M/x]

a

M

Ex: Message Passing

S1 S2

x

ā⟨M⟩.P | a(x).Q → P | Q[M/x]

M

C2C1

Ex: Remote Message Passing

S1 S2

M x

C1[ā⟨M⟩.P] | C2[a(x).Q] → C1[P] | C2[Q{M/x}]

a

C2C1

Ex: Remote Message Passing

S1 S2

M x

C1[ā⟨M⟩.P] | C2[a(x).Q] → C1[P] | C2[Q{M/x}]

a

Infinite reduction rules are needed
(one for each pair C1,C2)

⟨C1 , C2⟩

S1 S2

M x

⟨ā⟨M⟩.P, a(x).Q⟩ → ⟨P, Q{M/x}⟩

a

Ex: Remote Message Passing

⟨C1 , C2⟩

S1 S2

M x

⟨ā⟨M⟩.P, a(x).Q⟩ → ⟨P, Q{M/x}⟩

a

Just one wide reduction rule
Context has two holes

Ex: Remote Message Passing

Wide reactive systems

A set of wide reaction rules
⟨l1(x1),…, ln(xn)⟩ → ⟨r1(y1),…, rn(yn)⟩

 with {y1,…, yn} ⊆ {x1,…, xn}

Contextual closure:

⟨l1(x1),…, ln(xn)⟩ → ⟨r1(y1),…, rn(yn)⟩
a=C[l1(x1)σ,…, ln(xn)σ] b=C[r1(y1)σ,…, rn(yn)σ]

a→b

Wide vs. Non-wide

Wide vs. Non-wide

• WRSs are more expressive than non-WRSs

Wide vs. Non-wide

• WRSs are more expressive than non-WRSs

• non-wide are a particular case of wide (width = 1)

Wide vs. Non-wide

• WRSs are more expressive than non-WRSs

• non-wide are a particular case of wide (width = 1)

• WRSs need less rules (often, finite instead of infinite)

Wide vs. Non-wide

• WRSs are more expressive than non-WRSs

• non-wide are a particular case of wide (width = 1)

• WRSs need less rules (often, finite instead of infinite)

• Pattern matching in WRSs is more complex

Wide vs. Non-wide

• WRSs are more expressive than non-WRSs

• non-wide are a particular case of wide (width = 1)

• WRSs need less rules (often, finite instead of infinite)

• Pattern matching in WRSs is more complex

• The bad news: NP-complete

Wide vs. Non-wide

• WRSs are more expressive than non-WRSs

• non-wide are a particular case of wide (width = 1)

• WRSs need less rules (often, finite instead of infinite)

• Pattern matching in WRSs is more complex

• The bad news: NP-complete

• The good news: combinatorial explosion depends on
redex width only (constant and usually ≤3)

Linear Context Trees

T(X) :: 0 empty tree
 x leaf (x ∈ X)
 m[T(X)] labeled tree
 T(X’) | T(X’’) siblings (X = X’ ⊎ X’’)

=

T(X) T(Y)

m n

m[T(X)] | n[T(Y)]

Linear Context Trees

T(X) :: 0 empty tree
 x leaf (x ∈ X)
 m[T(X)] labeled tree
 T(X’) | T(X’’) siblings (X = X’ ⊎ X’’)

=

Unordered
(up to structural congruence ≡)

T(X) T(Y)

m n

m[T(X)] | n[T(Y)]

S

...

The matching problem

T ≡ (C{S/z}){D ,...,D /x ,...,x }1 m 1 m

D D1 m

C
T ≡

Context

Pattern

Parameters

S

...

T ≡ (C{S ,...,S /z ,..., z }){D ,...,D /x ,...,x }1 h 1 h 1 m 1 m

D D1 m

C
T ≡

Context

Pattern list

Parameters

forest

1 S

...
h...

...

The matching problem

Forest matching
is NP-complete

• Tree matching problem is in P
(subtree isomorphim algorithm [Matula’78])

• Forest matching problem is NP-complete!

S

...
D D1 m

C

1 S

...
h...

...

The pattern matchings
must not overlap

=
antichain in T

Forest matching
is NP-complete

• Tree matching problem is in P
(subtree isomorphim algorithm [Matula’78])

• Forest matching problem is NP-complete!

S

...
D D1 m

C

1 S

...
h...

...

The pattern matchings
must not overlap

=
antichain in T

≠ sub-forest isomorphism

Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

Proof sketch of NP-hardness

Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

reduction
from 3-SAT

Proof sketch of NP-hardness

Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

(x v y v z) (x v y v z)
_ _ v

C1 C2

reduction
from 3-SAT

Proof sketch of NP-hardness

Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

(x v y v z) (x v y v z)
_ _ v

C1 C2

x x
_

y y
_

z z
_

C2 C2 C2C1C1C1

reduction
from 3-SAT

Proof sketch of NP-hardness

Rainbow antichain
Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

(x v y v z) (x v y v z)
_ _ v

C1 C2

x x
_

y y
_

z z
_

C2 C2 C2C1C1C1

reduction
from 3-SAT

every truth assignment satisfying
the formula induces a rainbow antichain

...and vice versa

Proof sketch of NP-hardness

Fixed-parameter
Tractability

How to cope with computational intractability?
approximation algorithms, average case analysis,
randomized algorithms, heuristics methods, etc...

Fixed-parameter
Tractability

How to cope with computational intractability?
approximation algorithms, average case analysis,
randomized algorithms, heuristics methods, etc...

[Downey-Fellows’99]

FPT’s basic observation:
“for many hard problems, the seemingly inherent
combinatorial explosion really can be restricted to

a ‘small part’ of the input, the parameter”

Parameterized algorithm for
Rainbow antichain

• Rainbow antichain is the core problem
behind the forest matching problem

• Rainbow antichain is solved in 2 steps:

1. Reduction to kernel-size of the input tree

2. Exhaustive search of a rainbow antichain

Parameterized algorithm for
Rainbow antichain

• Rainbow antichain is the core problem
behind the forest matching problem

• Rainbow antichain is solved in 2 steps:

1. Reduction to kernel-size of the input tree

2. Exhaustive search of a rainbow antichain

parameter:
size of P

1. Reduction by decoloring

delete u

Deletion of uncolored nodes does not influence
existence of rainbow antichain!

u

x y

v

x y

v

(*) we will assume the root cannot be deleted

Decoloring (rule 1)

u

decolor u

u

Ancestors with the same color can be decolored

Decoloring (rule 2)

u

decolor u

If the tree has all leaves of the same color,
then leaves with fan-out ≥ |P| can be decolored

u

fout(u) = 4 (*) fout(u) = out-degree of the whole path from u to the root

How to apply the rules?
(an example of reduction to kernel size)

P = { red, yellow, green }

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 1: Decoloring of ancestors of the same color

Uncolored nodes
can be removed

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

Only leaves with the
same color

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6

fout(u) = 5

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6

fout(u) = 5

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6
fout(u) = 4

fout(u) = 5

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6
fout(u) = 4

fout(u) = 5

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6

fout(u) = 3

fout(u) = 4

fout(u) = 5

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6

fout(u) = 3

fout(u) = 4

fout(u) = 5

How to apply the rules?
(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out ≥ |P|

fout(u) = 6

fout(u) = 3

fout(u) = 4

fout(u) = 5

and repeat for
each color...

How to apply the rules?
(an example of reduction to kernel size)

...to obtain the reduced tree

Reduction to Kernel-Size

• by repeating rule 1 ... height(T) ≤ |P|

• by repeating rule 2 ... |c-color(T)| ≤ 2|P|

Reduction to Kernel-Size

• by repeating rule 1 ... height(T) ≤ |P|

• by repeating rule 2 ... |c-color(T)| ≤ 2|P|

No repetitions of colors
in a path from the root to a leaf

Reduction to Kernel-Size

• by repeating rule 1 ... height(T) ≤ |P|

• by repeating rule 2 ... |c-color(T)| ≤ 2|P|

No repetitions of colors
in a path from the root to a leaf

 If max{ fout(n) | n node in T } ≤ m, then T has at most 2|P| leaves

Reduction to Kernel-Size

• by repeating rule 1 ... height(T) ≤ |P|

• by repeating rule 2 ... |c-color(T)| ≤ 2|P|

as a result |nodes(T)| ≤ |P| 2|P|

No repetitions of colors
in a path from the root to a leaf

 If max{ fout(n) | n node in T } ≤ m, then T has at most 2|P| leaves

2. Searching for a rainbow
using the fast subset convolution algorithm by

[Björklund et al. STOC’97]

A(T, X) = N(T, X) v (A(T’,Y) A(T’’,Y \ X))v
Y⊆X

T’ ...
T =

T’’

2. Searching for a rainbow
using the fast subset convolution algorithm by

[Björklund et al. STOC’97]

A(T, X) = N(T, X) v (A(T’,Y) A(T’’,Y \ X))v
Y⊆X

T’ ...
T =

T’’
true iff T contains all

the colors in X⊆P

2. Searching for a rainbow
using the fast subset convolution algorithm by

[Björklund et al. STOC’97]

A(T, X) = N(T, X) v (A(T’,Y) A(T’’,Y \ X))v
Y⊆X

T’ ...
T =

T’’
true iff T contains all

the colors in X⊆P

O(|P|2 2|P|)for each node:

From Forest Matching to
Rainbow Antichain

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z ⟨m[x] | n[0] , m[0]⟩

Target T Forest pattern S

From Forest Matching to
Rainbow Antichain

mkmn

*

n n

nm

* *

m

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z ⟨m[x] | n[0] , m[0]⟩

Target T Forest pattern S

From Forest Matching to
Rainbow Antichain

mkmn

*

n n

nm

* *

m

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z ⟨m[x] | n[0] , m[0]⟩

Target T Forest pattern S

subtrees
isomorphisms

From Forest Matching to
Rainbow Antichain

mkmn

*

n n

nm

* *

m

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z ⟨m[x] | n[0] , m[0]⟩

Target T Forest pattern S

open nodes
are freely
matchable

subtrees
isomorphisms

From Forest Matching to
Rainbow Antichain

mkmn

*

n n

nm

* *

m

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z ⟨m[x] | n[0] , m[0]⟩

Target T Forest pattern S

closed nodes can only be
matched by closed nodes

open nodes
are freely
matchable

subtrees
isomorphisms

From Forest Matching to
Rainbow Antichain

mkmn

*

n n

nm

* *

m

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z

Target T Forest pattern S

1 2

the reduction is done on
a 2-level palette

⟨m[x] | n[0] , m[0]⟩

From Forest Matching to
Rainbow Antichain

mkmn

*

n n

nm

* *

m

n[0] | m[x | n[0]] | k[n[y]] | m[0] | z

Target T Forest pattern S

the rainbow antichain is
found on the children’s palette

1 2

the reduction is done on
a 2-level palette

⟨m[x] | n[0] , m[0]⟩

Forest matching is
Fixed Parameter Tractable

• subtree isomorphisms:

• reduction to kernel size:

• exhaustive search of antichains: O(h3 k 22h)

O(|T|)

O(|S| |T|3/2)

h = “# trees in pattern S”
k = “max # of 1 -level children in S”st

Parameters

Forest matching is
Fixed Parameter Tractable

• subtree isomorphisms:

• reduction to kernel size:

• exhaustive search of antichains: O(h3 k 22h)

O(|T|)

O(|S| |T|3/2)

h = “# trees in pattern S”
k = “max # of 1 -level children in S”st

Parameters

O(h3 k 22h) + O(|S| |T|3/2)Total:

Conclusions

• WRSs yield simpler and smaller semantics

• We have shown that matching for WRSs is feasible:
• exponential in redex width (constant and small)
• but polynomial in the size of agent

• Side result: rainbow antichain problem

• Applications: abstract machines (distributed π, Ambients,
CaSPiS, etc.) and bigraphic reactive systems

• Future work: quantitative variants (probabilistic, etc.)

Thanks for your
attention

