Finding a Forest in a Tree

The matching problem for wide reactive systems

Giorgio Bacci, Marino Miculan, Romeo Rizzi
Dept. of Computer Science, Aalborg University

Breakfast Talk
(presented @ TGC 2014)



Outline of the talk

Introduction

The problem: forest matching

NP-completeness
Fixed-parameter Algorithm (the core only)

Concluding remaks



Motivations

® Reactive systems (aka reduction systems)
are common in process calculi

® Defined by

® 3 set of reduction rules  I(x)—r(x)
® 3 contextual closure

I(x)—r(x) a=C[l(x)0] b=CJr(x)0]
a—b

® However: not always easy to apply,
especially in models of global computing



Ex: Message Passing

B A

AM.P|a(x).Q — P|Q[M/X]




Ex: Message Passing

AM.P|a(x).Q — P|Q[M/X]




Ex: Remote Message Passing

Ci[a{M).P] | Cy[a(x).Q] — Ci[P] | Co[Q{M/x}]



Ex: Remote Message Passing

Ci[a{M).P] | Cy[a(x).Q] — Ci[P] | Co[Q{M/x}]

Infinite reduction rules are needed
(one for each pair C;,C)




Ex: Remote Message Passing

A B8

(a{M>).Pa(x).Q> — (P, Q{M/x}




Ex: Remote Message Passing

B B8

(a{M>).Pa(x).Q> — (P, Q{M/x}

Just one wide reduction rule
Context has two holes




Wide reactive systems

A set of wide reaction rules

i(X1)y. o5 In(Xn)> = <ri(Y1),-. .., ra(Yn))
with {yi,..., ¥n} € {xi,..., Xn}

Contextual closure:

h(X1)s..s n(Xn)> = <ri(Yn),..., m(Yn)
a=C[li(x))0,...,k(X)0] b=C[ri(y1)0,..., r(yn)O]
a—b




Wide vs. Non-wide



Wide vs. Non-wide

® VWRSs are more expressive than non-VWRSs



Wide vs. Non-wide

® VWRSs are more expressive than non-VWRSs

® non-wide are a particular case of wide (width = |)



Wide vs. Non-wide

® VWRSs are more expressive than non-VWRSs
® non-wide are a particular case of wide (width = |)

® WRSs need less rules (often, finite instead of infinite)



Wide vs. Non-wide

® VWRSs are more expressive than non-VWRSs
® non-wide are a particular case of wide (width = |)
® WRSs need less rules (often, finite instead of infinite)

® Pattern matching in WRSs is more complex



Wide vs. Non-wide

® VWRSs are more expressive than non-VWRSs

® non-wide are a particular case of wide (width = |)

® WRSs need less rules (often, finite instead of infinite)
® Pattern matching in WRSs is more complex

® T[he bad news: NP-complete



Wide vs. Non-wide

® VVRSs are more expressive than non-VWRSs

® non-wide are a particular case of wide (width = |)

® WRSs need less rules (often, finite instead of infinite)
® Pattern matching in WRSs is more complex

® T[he bad news: NP-complete

® [he good news: combinatorial explosion depends on
redex width only (constant and usually <3)



Linear Context Trees

T(X):z= 0 empty tree
X leaf (x € X)
m[ T(X)] labeled tree

T(X) | T(X”) siblings (X = X" Y X”)

m n

m[T(X)] [ n[T(Y)]




Linear Context Trees

T(X):z= 0 empty tree
X leaf (x € X)
m[ T(X)] labeled tree

T(X) | T(X?)  siblings (X = X’ ¥ X”)

Unordered
(pt structural congru
T(X) T(Y)

m[T(X)] [ n[T(Y)]




The matching problem

Context
T =
Pattern
A - A
D D.. Parameters

T = (C{S/Z}){D ,....0m /XiyreerXm }



The matching problem

Context

Pattern list




Forest matching
is NP-complete

® Jree matching problem is in P
(subtree isomorphim algorithm [Matula’/8])

® Forest matching problem is NP-complete!

The pattern matchings
must not overlap

antichain in T




Forest matching
is NP-complete

® Jree matching problem is in P
(subtree isomorphim algorithm [Matula’/8])

® Forest matching problem is NP-complete!

( #+ sub-forest isomorphism )

The pattern matchings
must not overlap

antichain in T




Rainbow antichain

Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.



Rainbow antichain

Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

Proof sketch of NP-hardness



Rainbow antichain

Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

reduction
from 3-SAT

Proof sketch of NP-hardness



Rainbow antichain

Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

reduction
from 3-SAT

Proof sketch of NP-hardness

_a ) Lo

(XVYVZ)A(XVyVz)




Rainbow antichain

Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

reduction
from 3-SAT

Proof sketch of NP-hardness

Lo ) e Y

(XVYVZ)A(XVyVz)




Rainbow antichain

Instance: a tree T colored on palette P of colors.
Problem: to find a P-colorful antichain in T.

reduction
from 3-SAT

Proof sketch of NP-hardness

o) Lo

(XVYVZ)A(XVyVz)

every truth assignment satisfying
the formula induces a rainbow antichain
...anhd vice versa



Fixed-parameter
Tractability

How to cope with computational intractability?

approximation algorithms, average case analysis,
randomized algorithms, heuristics methods, etc...



Fixed-parameter
Tractability

How to cope with computational intractability?

approximation algorithms, average case analysis,
randomized algorithms, heuristics methods, etc...

FPT’s basic observation:
“for many hard problems, the seemingly inherent
combinatorial explosion really can be restricted to
a ‘small part’ of the input, the parameter”

[Downey-Fellows’99]



Parameterized algorithm for
Rainbow antichain

® Rainbow antichain is the core problem
behind the forest matching problem

® Rainbow antichain is solved in 2 steps:
|. Reduction to kernel-size of the input tree

2. Exhaustive search of a rainbow antichain



Parameterized algorithm for
Rainbow antichain

parameter:
size of P

® Rainbow antichain is the core problem
behind the forest matching problem

® Rainbow antichain is solved in 2 steps:
|. Reduction to kernel-size of the input tree

2. Exhaustive search of a rainbow antichain



|. Reduction by decoloring

delete u

—

1}
1}
A3
.
A3
1}
.
.
.
.
.
A S
.
’ ' .
’ .
’ ' .
. ' .
4 L) .
’ 1 A Y
) .
A
.
A
‘R

(*) we will assume the root cannot be deleted

Deletion of uncolored nodes does not influence
existence of rainbow antichain!



Decoloring (rule 1)

decolor u

—

’ 1 ’ 1
’ ' ' ’ ' '
’ L ' ’ 1 '
’ 1 ’ 1
I 1 “ I ] “
1 ' 1 '
1 Y 1 Y
1 . 1 .
1 ‘ 1 ‘
1 Y 1 \Y
1 . 1 .
1 A 1 A
1 A ! A
1 s ] s
' A [ A
Y Y
[ . ' .
) . ' .
A . A .
) . 1 .
A} A\ 1 A S
) A 1} A
. .
. .
A ' A .
. .
. .
R R

Ancestors with the same color can be decolored




Decoloring (rule 2)

decolor u

—

’ ‘\ . 1Y
’ [y [y 1Y
’ [y [y [y
) [ .
[y [y
1Y A3
' .
. .
. .
.
|‘ .
.
.
.
' .
.
.
.
/\

fout(u) = 4 j (*) fout(u) = out-degree of the whole path from u to the root

If the tree has all leaves of the same color,
then leaves with fan-out > |P| can be decolored



How to apply the rules!?

(an example of reduction to kernel size)

P= { red, yellow, green }



How to apply the rules!?

(an example of reduction to kernel size)

Rule |I: Decoloring of ancestors of the same color



How to apply the rules!?

(an example of reduction to kernel size)

o\

Rule |I: Decoloring of ancestors of the same color



How to apply the rules!?

(an example of reduction to kernel size)

)

Rule |I: Decoloring of ancestors of the same color



How to apply the rules!?

(an example of reduction to kernel size)

G

Rule |I: Decoloring of ancestors of the same color



How to apply the rules!?

(an example of reduction to kernel size)

G

Rule |I: Decoloring of ancestors of the same color



How to apply the rules!?

(an example of reduction to kernel size)

i

Rule |I: Decoloring of ancestors of the same color



How to apply the rules!?

(an example of reduction to kernel size)

i

Rule |I: Decoloring of ancestors of the same color



How to apply the rules!?

(an example of reduction to kernel size)

Uncolored nodes

({‘ can be removed

Rule |I: Decoloring of ancestors of the same color




How to apply the rules!?

(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out > |P|



How to apply the rules!?

(an example of reduction to kernel size)

Only leaves with the
same color

Rule 2: Decoloring of nodes with fan-out > |P|



How to apply the rules!?

(an example of reduction to kernel size)

Rule 2: Decoloring of nodes with fan-out > |P|



How to apply the rules!?

(an example of reduction to kernel size)

< fout(u) = 6 j

Rule 2: Decoloring of nodes with fan-out > |P|



How to apply the rules!?

(an example of reduction to kernel size)

< fout(u) = 6 j

Rule 2: Decoloring of nodes with fan-out > |P|



How to apply the rules!?

(an example of reduction to kernel size)

< fout(u) = 6 j
T fout(u) =5 ]

Rule 2: Decoloring of nodes with fan-out > |P|




How to apply the rules!?

(an example of reduction to kernel size)

< fout(u) = 6 j
T fout(u) =5 ]

Rule 2: Decoloring of nodes with fan-out > |P|




How to apply the rules!?

(an example of reduction to kernel size)

< fout(u) = 6 j
T fout(u) =5 ]

Rule 2: Decoloring of nodes with fan-out > |P|




How to apply the rules!?

(an example of reduction to kernel size)

< fout(u) = 6 j
T fout(u) =5 ]

Rule 2: Decoloring of nodes with fan-out > |P|




How to apply the rules!?

(an example of reduction to kernel size)

[ fout(u) = 3

< fout(u) = 6 j
T fout(u) =5 ]

Rule 2: Decoloring of nodes with fan-out > |P|




How to apply the rules!?

(an example of reduction to kernel size)

[ fout(u) = 3

< fout(u) = 6 j
T fout(u) =5 ]

Rule 2: Decoloring of nodes with fan-out > |P|




How to apply the rules!?

(an example of reduction to kernel size)

and repeat for
each color...

[ fout(u) = 3

< fout(u) = 6 j
T fout(u) =5 ]

Rule 2: Decoloring of nodes with fan-out > |P|




How to apply the rules!?

(an example of reduction to kernel size)

...to obtain the reduced tree



Reduction to Kernel-Size

® by repeating rule | ... height(T) =< |P|

® by repeating rule 2 ...  |c-color(T)| < 2I”



Reduction to Kernel-Size

No repetitions of colors
in a path from the root to a leaf
\%
® by repeating rule | ... height(T) < |P|

® by repeating rule 2 ...  |c-color(T)| < 2I”



Reduction to Kernel-Size

No repetitions of colors
in a path from the root to a leaf
\%
® by repeating rule | ... height(T) < |P|

® by repeating rule 2 ...  |c-color(T)| < 2I”
A

[ If max{ fout(n) | n node inT } < m, then T has at most 2! Ieavesj




Reduction to Kernel-Size

No repetitions of colors
in a path from the root to a leaf
\%
® by repeating rule | ... height(T) < |P|

® by repeating rule 2 ...  |c-color(T)| < 2I”
A

[ If max{ fout(n) | n node inT } < m, then T has at most 2! Ieavesj

as a result Inodes(T)| < |P| 2P



2. Searching for a rainbow

using the fast subset convolution algorithm by
[Bjorklund et al. STOC’97]

ATX) = NTX) vV (ATY)AATY X))
YCX




2. Searching for a rainbow

using the fast subset convolution algorithm by
[Bjorklund et al. STOC’97]

ATX) = NTX) vV (ATY)AATY \ X))
YCX

true iff T contains all
the colors in XCP




2. Searching for a rainbow

using the fast subset convolution algorithm by
[Bjorklund et al. STOC’97]

ATX) = NTX) vV (ATY)AATY \ X))
YCX

true iff T contains all
the colors in XCP

for each node: O(|P|? 2IFl)




From Forest Matching to
Rainbow Antichain

Target T Forest pattern S
n[0] | m[x | n[O]] | k[n[y]] | m[0] | z (m[x] | n[0], m[O])



From Forest Matching to
Rainbow Antichain

Target T Forest pattern S
n[0] | m[x | n[O]] | k[n[y]] | m[0] | z (m[x] | n[0], m[O])
(+)

Ao RS



From Forest Matching to
Rainbow Antichain

Target T Forest pattern S
n[0] | m[x | n[O]] | k[n[y]] | m[0] | z (m[x] | n[0], m[O])




From Forest Matching to
Rainbow Antichain

Target T Forest pattern S
n[0] | m[x | n[O]] | k[n[y]] | m[0] | z (m[x] | n[0], m[O])

matchable

open nodes e R
[ :re freely % subtrees

-------
--------
______

]
= - -
---------------------

~
~
s

-
--
- --
------
------------------



From Forest Matching to
Rainbow Antichain

Target T Forest pattern S
n[0] | m[x | n[O]] | k[n[y]] | m[0] | z (m[x] | n[0], m[O])

matchable

open nodes e R
[ :re freely % subtrees

-------
--------
______

-
_______
-------------------
~ -
-y -
- --
-
- - om =
----------------

closed nodes can only be
matched by closed nodes




From Forest Matching to

Rainbow Antichain
Target T Forest pattern S
n[0] | m[x | n[O]] | k[n[y]] | m[0] | z (m[x] | n[0] , m[O])

---mem
---= ---.--
-
- il
- =~

---------
________
-
- -
~

-------
--------
------

]
= - -
---------------------

the reduction is done on
a 2-level palette




From Forest Matching to

Rainbow Antichain
Target T Forest pattern S
n[0] | m[x | n[O]] | k[n[y]] | m[0] | z (m[x] | n[0] , m[O])

A{; found on the children’s palette

; ( the rainbow antichain is J ~~~~~~ ;

]
= - -
---------------------

~
~
s

-
--
- --
------
------------------

the reduction is done on
a 2-level palette



Forest matching is
Fixed Parameter Tractable

e : . Parameters j
h ="# trees in pattern S i
k = “max # of I°%-level children in S”

® subtree isomorphisms: O(|S| |T|*?)
® reduction to kernel size: O(|T|)

® exhaustive search of antichains: O(h? k 22")



Forest matching is
Fixed Parameter Tractable

» : ' Parameters j
h ="# trees in pattern S i
k =“max # of I5t-level children in S”

® subtree isomorphisms: O(|S| |T|*?)
® reduction to kernel size: O(|T|)

® exhaustive search of antichains: O(h? k 22")

Tol: O(h® k 22) + O(|S| [T[*?)



Conclusions

WRS:s yield simpler and smaller semantics

We have shown that matching for WRSs is feasible:
® exponential in redex width (constant and small)
® but polynomial in the size of agent

Side result: rainbow antichain problem

Applications: abstract machines (distributed 1T, Ambients,
CaSPiS, etc.) and bigraphic reactive systems

Future work: quantitative variants (probabilistic, etc.)



Thanks for your
attention



