Structural Operational Semantics for continuous state probabilistic processes*

Giorgio Bacci

(joint with Marino Miculan)

Dept. of Mathematics and Computer Science University of Udine, Italy

Breakfast Talk

24 May, Aalborg

Structural Operational Semantics for CCS

$$\Sigma X = \overbrace{1}^{\text{nil}} + \underbrace{\underbrace{A \times X}_{A \times X}}_{\underbrace{A \times X}} + \underbrace{\underbrace{A \times X}_{A \times X}}_{\underbrace{X \times X}} + \underbrace{\underbrace{X \times X}_{X \times X}}_{\underbrace{X \times X}} + \underbrace{\underbrace{X \times X}_{X \times X}}_{\underbrace{X \times X}}$$

$$\frac{x \xrightarrow{\alpha} x'}{x + y \xrightarrow{\alpha} x'} \qquad \frac{y \xrightarrow{\alpha} y'}{x + y \xrightarrow{\alpha} y'}$$

$$\frac{x \xrightarrow{\alpha} x'}{x \parallel y \xrightarrow{\alpha} x' \parallel y} \qquad \frac{y \xrightarrow{\alpha} y'}{x \parallel y \xrightarrow{\alpha} x \parallel y'}$$

$$\frac{x \xrightarrow{\alpha} x'}{x \parallel y \xrightarrow{\alpha} x' \parallel y} \qquad \frac{x \xrightarrow{\bar{a}} x'}{x \parallel y \xrightarrow{\bar{a}} y'}$$

$$\frac{x \xrightarrow{\bar{a}} x'}{x \parallel y \xrightarrow{\bar{a}} x' \parallel y'}$$

$$\frac{x \xrightarrow{\bar{a}} x'}{x \parallel y \xrightarrow{\bar{a}} x' \parallel y'}$$

This corresponds to: $\lambda : \Sigma(Id \times (\mathcal{P}_{fin})^L) \Rightarrow (\mathcal{P}_{fin} T_{\Sigma})^L$

Abstract Structural Operational Semantics

(distributing syntax over behaviours: $\lambda \colon \Sigma B \Rightarrow B\Sigma$)

Benefits of the bialgebraic framework

[Turi-Plotkin'97]

- + denotational model on the final *B*-coalgebra (by co-induction)
- + operational model on the initial Σ -algebra (by induction)
- + universal semantics (full-abstaction) initial algebra semantics = final coalgebra semantics
- + B-behavioural equivalence is a Σ -congruence
- + B-bisimilarity is a Σ -congruence (if B pres. weak pullbacks)

Congruential Rule Formats [Turi-Plotkin'97]

Distributive laws can be specified as sets of derivation rules

$$\left\{ \begin{array}{c} \frac{\left\{ x_{i} \xrightarrow{a} y_{ij}^{a} \right\}_{1 \leq i \leq n, \, a \in A_{i}}^{1 \leq j \leq m_{i}^{a}} \quad \left\{ x_{i} \xrightarrow{b} \right\}_{1 \leq i \leq n}^{b \in B_{i}}}{f(x_{1}, \dots, x_{n}) \xrightarrow{c} t} \end{array} \right\}_{\text{image finite}}$$
 (GSOS)

corresponds to...

$$\lambda \colon \mathbf{\Sigma}(Id \times (\mathcal{P}_{fin})^L) \Rightarrow (\mathcal{P}_{fin} T_{\mathbf{\Sigma}})^L$$

Discrete state sub-Probabilistic Systems

... hence labelled sub-probabilistic Markov chains

$$X o (\mathcal{D}_{fin}X)^L$$
 in **Set**

where

$$\mathcal{D}_{\mathsf{fin}} \colon \mathbf{Set} \to \mathbf{Set} \qquad \text{(sub-probability distribution functor)}$$

$$\mathcal{D}_{\mathsf{fin}} X = \{ \varphi \colon X \to [0,1] \mid \sum_{x \in X} \varphi(x) \leq 1, |\mathit{supp}(\varphi)| < \infty \}$$

Rule Formats for Probabilistic Systems

[Bartels'04]

$$\left\{\begin{array}{ccc} x_{i} \xrightarrow{a} & a \in A_{i}, 1 \leq i \leq n \\ x_{i} \xrightarrow{b} & b \in B_{i}, 1 \leq i \leq n \\ \underline{x_{a_{j}} \xrightarrow{l_{j}[p_{j}]}} y_{j} & 1 \leq i \leq J \\ \underline{f(x_{1}, \dots, x_{n}) \xrightarrow{c[w \cdot p_{1} \cdot \dots \cdot p_{J}]}} t \end{array}\right\}_{image}$$

image finite

corresponds to...

$$\lambda \colon \mathbf{\Sigma} (Id \times (\mathcal{D}_{\mathsf{fin}})^L) \Rightarrow (\mathcal{D}_{\mathsf{fin}} T_{\mathbf{\Sigma}})^L$$

where

$$\begin{split} \mathcal{D}_{\mathsf{fin}} \colon \mathbf{Set} &\to \mathbf{Set} \qquad \text{(sub-probability distribution functor)} \\ \mathcal{D}_{\mathsf{fin}} X &= \{\varphi \colon X \to [0,1] \mid \sum_{x \in X} \varphi(x) \leq 1, |\mathit{supp}(\varphi)| < \infty \} \end{split}$$

Let us extend CCS with a quantitative operator

$$P ::= \operatorname{nil} \mid (c \text{ of } \alpha).P \mid P+P \mid P \mid P \mid P$$
 $(c \in \mathbb{R}_{\geq 0})$
 $\alpha ::= a \mid \overline{a} \mid \tau$ $(a \in A)$

ideally we want that the outcomes are uniformly distributed...

$$U((c \text{ of } a).P)(\{(i \text{ of } a).P \mid i \in [a,b]\}) = \int_a^b \frac{1}{c} dx \quad (0 \le a \le b \le c)$$

Discrete state (labelled Markov chains)

Continuous state

(labelled Markov processes)

Discrete state

(labelled Markov chains)

$$X \to (\mathcal{D}_{fin}X)^L$$
 in **Set**

Continuous state

(labelled Markov processes)

$$\mathcal{D}_{\mathsf{fin}} \colon \mathsf{Set} o \mathsf{Set}$$

 $\mathcal{D}_{fin}: \mathbf{Set} \to \mathbf{Set}$ (sub-probability distribution functor)

$$\mathcal{D}_{\mathsf{fin}}X = \{\varphi \colon X \to [0,1] \mid \sum_{\mathsf{x} \in Y} \varphi(\mathsf{x}) \leq 1, |\mathsf{supp}(\varphi)| < \infty\}$$

Discrete state

(labelled Markov chains)

$$X \to (\mathcal{D}_{fin}X)^L$$
 in **Set**

Continuous state

(labelled Markov processes)

$$X o (\Delta X)^L$$
 in Meas

$$\mathcal{D}_{\mathsf{fin}} \colon \mathsf{Set} o \mathsf{Set}$$

 $\mathcal{D}_{fin}: \mathbf{Set} \to \mathbf{Set}$ (sub-probability distribution functor)

$$\mathcal{D}_{\mathsf{fin}}X = \{\varphi \colon X \to [0,1] \mid \sum_{\mathsf{x} \in X} \varphi(\mathsf{x}) \leq 1, |\mathit{supp}(\varphi)| < \infty\}$$

$$\Delta \colon \mathsf{Meas} \to \mathsf{Meas}$$

(Giry functor)

$$\Delta X = \{ \mu \colon \Sigma_X \to [0,1] \mid \mu \text{ sub-probability measure} \}$$

Aim:

Congruential Rule Formats for Probabilistic Processes with Continuous State Spaces

...hence, inducing distributive laws of type

$$\lambda \colon \mathbf{\Sigma}(Id \times \Delta^L) \Rightarrow (\Delta T_{\mathbf{\Sigma}})^L$$

The shape of transitions

The behaviour functor suggests the shape of transitions. . .

Continuous state

$$t \xrightarrow{a} \mu$$
measure
on Σ -terms

The Measurable Space of Stochastic Processes

Luca Cardelli

Microsoft Research Cambridge, UK

Email: luca@microsoft.com

Radu Mardare
The Microsoft Research-University of Trento
Centre for Computational and Systems Biology
Trento, Italy
Email: mardare@cosbi.eu

$$0 \to \overline{\omega}$$

$$\varepsilon.P \to [^\varepsilon_P]$$

$$\frac{P \to \mu' \qquad Q \to \mu''}{P + Q \to \mu' \oplus \mu''}$$

$$(Par). \qquad \frac{P \to \mu' \qquad Q \to \mu''}{P|Q \to \mu' \ _{P} \otimes_{Q} \mu''}$$

Table I
STRUCTURAL OPERATIONAL SEMANTICS

ID Transport Schools and Source transport and the Section of the S

The Measurable Space of Stochastic Processes

Luca Cardelli

Microsoft Research Cambridge, UK

Email: luca@microsoft.com

Radu Mardare
The Microsoft Research-University of Trento
Centre for Computational and Systems Biology
Trento, Italy
Email: mardare@cosbi.eu

$$0 \to \overline{\omega}$$

$$\varepsilon.P \to [^\varepsilon_P]$$

$$\frac{P \to \mu' \qquad Q \to \mu''}{P + Q \to \mu' \oplus \mu''}$$

$$(Par). \qquad \frac{P \to \mu' \qquad Q \to \mu''}{P|Q \to \mu' \ _{P} \otimes_{Q} \mu''}$$

Table I
STRUCTURAL OPERATIONAL SEMANTICS

ID Transport Schools and Source transport and the Section of the S

The Measurable Space of Stochastic Processes

Luca Cardelli Microsoft Research Cambridge, UK Email: luca@microsoft.com Radu Mardare
The Microsoft Research-University of Trento
Centre for Computational and Systems Biology
Trento, Italy
Email: mardare@cosbi.eu

rather ac (no general

$$0 \to \overline{\omega}$$

$$\varepsilon.P \to \left[egin{array}{c} arepsilon \ P \end{array}
ight]$$

$$\frac{P \to \mu' \qquad Q \to \mu''}{P + Q \to \mu' \oplus \mu''}$$

$$\frac{P \to \mu' \qquad Q \to \mu''}{P|Q \to \mu' \ _{P} \otimes_{Q} \mu''}$$

Table I
STRUCTURAL OPERATIONAL SEMANTICS

ID Transport Schools and Source transport and the Section of the S

Measure terms

We adopt a new syntax to handle measures syntactically

 Σ : Meas \rightarrow Meas (process syntax) $M: \mathbf{Meas} \to \mathbf{Meas}$ (measure syntax) it's a M-term!

Measure GSOS rule format

$$\frac{\left\{x_{i} \xrightarrow{a_{ij}} \mu_{ij}\right\}_{1 \leq i \leq n, \, a_{ij} \in A_{i}}^{1 \leq j \leq m_{i}} \quad \left\{x_{i} \xrightarrow{b}\right\}_{1 \leq i \leq n}^{b \in B_{i}}}{f(x_{1}, \dots, x_{n}) \xrightarrow{c} \mu}$$
(MGSOS)

where

- + $f \in \Sigma$ with ar(f) = n;
- + $\{x_1, \ldots, x_n\}$ and $\{\mu_{ij} \mid 1 \le i \le n, 1 \le j \le m_i\}$ are pairwise distinct process and measure *variables*;
- + $A_i \cap B_i = \emptyset$ are disjoint subsets of labels in L, and $c \in L$;
- + μ is a M-term with variables in $\{x_1, \ldots, x_n\}$ and $\{\mu_{ij} \mid 1 \le i \le n, 1 \le j \le m_i\}$.

Measure GSOS specification systems

An MGSOS specification system consists of

Set of MGSOS rules:

$$\mathcal{R} = \left\{ \frac{\left\{ x_i \xrightarrow{a_{ij}} \mu_{ij} \right\}_{1 \leq i \leq n, \ a_{ij} \in A_i}^{1 \leq j \leq m_i} \quad \left\{ x_i \xrightarrow{b_i} \right\}_{1 \leq i \leq n}^{b \in B_i}}{f(x_1, \dots, x_n) \xrightarrow{c} \mu} \right\}_{\text{image finte}}$$

Measure terms interpretation:

$$\langle \cdot \rangle : T_M \Delta \Rightarrow \Delta T_{\Sigma}$$

From MGSOS to labelled Markov processes

We can obtain a Δ^L -coalgebra on the set of closed Σ -terms

$$\gamma \colon T_{\Sigma} 0 \to \Delta^L T_{\Sigma} 0$$

as

$$\gamma(t)(\alpha) = \bigoplus_{\mathsf{T}_{\Sigma}0} \left(\{ \langle \mu \rangle_{\mathsf{T}_{\Sigma}0} \mid t \xrightarrow{\alpha} \mu \} \right)$$

where, for a finite set of $U = \{\mu_1, \dots, \mu_n\}$ of sub-probability measures over X,

$$\bigoplus_{X}(\{\mu_1,\ldots,\mu_n\})(E)=\frac{\mu_1(E)+\cdots+\mu_n(E)}{\mu_1(X)+\cdots+\mu_n(X)}$$

(weighted sum of sub-probability measures)

Example: Quantitative CCS

Measure terms syntax:

$$\mu ::= U_c^{\alpha}[P] \mid D[P] \mid \mu \mid \mu \mid \mu \bigvee_{c,c'} \mu \quad (c,c' \in \mathbb{R}_{\geq 0})$$

Measure GSOS Rules*:

$$\frac{x \xrightarrow{\alpha,c} \mu}{x + x' \xrightarrow{\alpha,c} \mu} \qquad x \xrightarrow{\alpha,c} \mu \qquad x' \xrightarrow{\overline{a},c'} \mu' \qquad x \parallel x' \xrightarrow{\alpha,c+c'} \mu \mid \mu' \qquad x \parallel x' \xrightarrow{\tau} \mu \, \Psi_{c,c'} \mu'$$

(*) dual rules for + and $\|$ are omitted

Example: Quantitative CCS

Measure term interpretation:

$$\langle \cdot \rangle_X \colon T_M \Delta X \Rightarrow \Delta T_{\Sigma} X$$

$$\langle U_c^{\alpha}[x] \rangle_X(E) = \int_{E'} \frac{1}{c} \, dy \qquad \text{where } E' = [0, c] \cap (\lambda \epsilon. (\epsilon \text{ of } \alpha).x)^{-1}(E)$$

$$\langle D[x] \rangle_X(E) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\langle \mu | \mu' \rangle_X(E) = (\langle \mu \rangle_X \otimes \langle \mu' \rangle_X) \circ (\lambda(x, x').x \parallel x')^{-1}(E)$$

$$\langle \mu | \Psi_{c,c'} \mu' \rangle_X(E) = \begin{cases} 1 & \text{if } c \cdot \langle \mu \rangle_X(A_1) = c' \cdot \langle \mu' \rangle_X(A_2), \\ & \text{for } A_i = \pi_i((\lambda(x, x').x \parallel x')^{-1}(E)) \\ 0 & \text{otherwise} \end{cases}$$

how do we get the distributive law λ out of an MGSOS specification systems?

$$\sum (Id \times \Delta^{L})$$

$$\downarrow \mathbb{R}$$

$$(\mathcal{P}_{fin} T_{M} \Delta)^{L}$$

1. define the natural transformation $[\![\mathcal{R}]\!]$ from the image finite set MGSOS rules

$$(\Delta T_{\Sigma})^{L}$$

$$\Sigma(Id \times \Delta^{L})$$

$$\downarrow [R]$$

$$(\mathcal{P}_{fin} T_{M} \Delta)^{L}$$

$$\downarrow (\mathcal{P}_{fin} \langle \cdot \rangle)^{L}$$

$$(\mathcal{P}_{fin} \Delta T_{\Sigma})^{L}$$

- 1. define the natural transformation $[\![\mathcal{R}]\!]$ from the image finite set MGSOS rules
- 2. apply the measure terms interpretation

$$\langle \cdot \rangle : T_M \Delta \Rightarrow \Delta T_{\Sigma}$$

$$(\Delta T_{\Sigma})^{L}$$

$$\begin{array}{c}
\Sigma(Id \times \Delta^{L}) \\
\downarrow \mathbb{R} \mathbb{R} \\
(\mathcal{P}_{fin} T_{M} \Delta)^{L} \\
\downarrow (\mathcal{P}_{fin} \langle \cdot \rangle)^{L} \\
(\mathcal{P}_{fin} \Delta T_{\Sigma})^{L} \\
\downarrow (\oplus T_{\Sigma})^{L} \\
(\Delta T_{\Sigma})^{L}
\end{array}$$

- 1. define the natural transformation $[\![\mathcal{R}]\!]$ from the image finite set MGSOS rules
- 2. apply the measure terms interpretation

$$\langle \cdot \rangle : T_M \Delta \Rightarrow \Delta T_{\Sigma}$$

3. obtain the actual measure by averaging

$$\bigoplus_X (\{\mu_1,\ldots,\mu_n\})(E) = \frac{\mu_1(E)+\cdots+\mu_n(E)}{\mu_1(X)+\cdots+\mu_n(X)}$$

Benefits from the bialgebraic framework

For continuous state probabilistic processes described by means of MGSOS specification systems we have:

- + denotational model on the final Δ^L -coalgebra
- + operational model on the initial Σ -algebra
- + universal semantics (full-abstaction) initial algebra semantics = final coalgebra semantics
- + Δ^L -behavioural equivalence is a Σ -congruence
- + is Δ^L -bisimilarity a Σ -congruence? (Δ^L does not preserves weak pullbacks! [Viglizzo'05])

$$\begin{array}{c} \boldsymbol{\Sigma}(Id\times\boldsymbol{\Delta}^L)\\ \qquad \qquad \qquad \qquad \downarrow [\mathbb{R}]\\ (\mathcal{P}_{\mathsf{fin}}T_{M}\boldsymbol{\Delta})^L\\ \qquad \qquad \qquad \downarrow (\mathcal{P}_{\mathsf{fin}}\langle\cdot\rangle)^L\\ (\mathcal{P}_{\mathsf{fin}}\boldsymbol{\Delta}T_{\boldsymbol{\Sigma}})^L\\ \qquad \qquad \qquad \downarrow (\oplus T_{\boldsymbol{\Sigma}})^L\\ (\boldsymbol{\Delta}T_{\boldsymbol{\Sigma}})^L \end{array}$$

Naturality of the distributive laws depends on naturality of $\langle \cdot \rangle : T_M \Delta \Rightarrow \Delta T_{\Sigma}$

we need (general) techniques in order to derive natural transformations of type

$$T_{M}\Delta \Rightarrow \Delta T_{\Sigma}$$

We adopt a generalized induction proof principle. . .

For any distributive law $\lambda \colon SB \Rightarrow BS$ and SB-algebra (X,φ) there exists a unique $f \colon A \to X$ making the following commute

$$SBX \stackrel{SBf}{\longleftarrow} SBA \stackrel{S\beta_{\lambda}}{\longleftarrow} SA \qquad SA \stackrel{\alpha}{\longrightarrow} A \stackrel{\beta_{\lambda}}{\longrightarrow} BA$$

$$\varphi \downarrow \qquad \qquad \downarrow \alpha \qquad S\beta_{\lambda} \downarrow \qquad \qquad \downarrow \beta\alpha$$

$$X \longleftarrow A \longrightarrow BSA$$

$$SBA \longrightarrow A \longrightarrow BSA$$

Structural λ -iterative recursion

... can be extended on the free monad (T_S, η^s, μ^s)

$$SBY \stackrel{SBf}{\longleftarrow} SBT_{S}X \stackrel{S\beta_{\lambda}}{\longleftarrow} ST_{S}X$$

$$\downarrow \psi_{X}$$

$$Y \stackrel{f}{\longleftarrow} T_{S}X$$

$$\downarrow \eta_{X}^{s}$$

$$\downarrow \eta_{X}^{s}$$

$$\downarrow \chi_{X}$$

$$\downarrow \eta_{X}^{s}$$

$$\downarrow \chi_{X}$$

...and can be turned to a proof principle on natural transformations

... to be used to derive measure terms interpretations

Conclusions and future work

Done:

- + rule format for continuous state probabilistic processes
- + syntactical treatment of measures via M-terms
- + general techniques for defining interpretations
- + initial algebra for polynomial functors in Meas (not in this talk)

To do:

- + move from probabilistic to general measures (bounded?)
- + find a rule format that coincides with the distributive law
- + formal expressivity analysis of the intermediate syntax + interpretation method

Thanks

Appendix

Bisimulation vs Kernel-bisimulation

Bisimulation (a span)

Kernel-bisimulation (pullback of a cospan)

if *B* preserves weak-pullbacks, bisimulation and kernel-bisimulation coincide (provided that *C* has pullbacks and pushouts) [Staton'11]