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Structural Operational Semantics for CCS

Syntax: P :=nil | aP | 3P | 7P | P+P | P|P (ac A)

nil a.x a.x T.X X+x x||x
AN s s AN N
XX= 1 +AXX+AXX+ X +XxX+XxX

o / o /
X —r X y —Yy

ax = x x+y 25 x x+y -5y

o / o /
X —r X y —Yy

x|y x|y x|y = x|y

a / a, . a, . .y a /
X — X y—>y X — X y—)y

x|y = x"[y x|y = x|y

This corresponds to: A X(ld x (Pgin)t) = (Pain Tx)t



Abstract Structural Operational Semantics
(distributing syntax over behaviours: A\: ¥B = BY)

denotations operations

denotations
X % . x " .BX

Y3 A-bialgebra Ba

Y BX - B> X

AX




> BA - B> A
PAGH initial \-bialgebra Ba
initia a B ‘
Z—aI;ellra ZA A %7777)\77* BA
Su 3 u Bu
Y v Y
final
ZZ 777&:\77 Z -, B‘Z} B-coalgebra
Yz final \-bialgebra Bayy,
> BZ B> 7

Az



Benefits of the bialgebraic framework
[Turi-Plotkin'97]

denotational model on the final B-coalgebra (by co-induction)

operational model on the initial X-algebra (by induction)

universal semantics (full-abstaction)
initial algebra semantics = final coalgebra semantics
B-behavioural equivalence is a 2-congruence

B-bisimilarity is a X-congruence (if B pres. weak pullbacks)



Congruential Rule Formats  [Turi-Plotkin'07]

Distributive laws can be specified as sets of derivation rules

{ {6 = yihicnea {7, } (GSOS)
C
f(X1,...,Xn) — t image finite

corresponds to. ..

A Z(ld % (Pan)") = (Pin T)"



Discrete state sub-Probabilistic Systems
... hence labelled sub-probabilistic Markov chains

a[iy \a‘[il

X — (DﬁnX)L in Set

where
Dsin: Set — Set (sub-probability distribution functor)
DinX ={: X = [0,1] | > (x) < 1, |supp(p)| < o0}
xeX



Rule Formats for Probabilistic Systems
[Bartels'04]

a

Xj —r aceA,1<i<n

X,'7bL> bEB,‘,lSI'Sn

I..
xajﬂyj 1<i<J

(X1, .y Xn) —>C[W'p1""'pj] t

image finite

corresponds to. . .
A X (ld x (D)) = (Dsin Tx)"
where

Dsn: Set — Set (sub-probability distribution functor)

DinX = {p: X = [0,1] | Y o(x) < 1,|supp()| < oo}
xeX



What if the state space is continuous? (example)

Let us extend CCS with a quantitative operator

P:=nil | (cofa)P | P+P | P||P (c € R>p)
a=a|a|T (ac A)

(c of a).

2N

(0 of a).P (c of a).P

ideally we want that the outcomes are uniformly distributed. ..

b1
U((cofa).P)({(iofa).Pie[a,b]}):/ de (0<a<b<yc)



Discrete state
(labelled Markov chains)

[ ]
a[iy \9‘@]

Continuous state
(labelled Markov processes)

a[{\.[]

10



Discrete state Continuous state
(labelled Markov chains) (labelled Markov processes)

a[éy Y{i] al3 / N]
[ ] ° .} .

X — (DfinX)L in Set

Dsin: Set — Set (sub-probability distribution functor)

DinX = {p: X = [0,1] | Y (x) < 1, |supp(p)| < oo}
xeX
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Discrete state Continuous state

(labelled Markov chains) (labelled Markov processes)
[ ]
a[;y Y{i] a: / N )
[ ] [ ] .} .
X = (DsnX)E in Set X — (AX)E in
Dsin: Set — Set (sub-probability distribution functor)
DinX = {p: X = [0,1] | Y w(x) < 1,|supp(e)] < oo}
xeX
A: Meas — Meas (Giry functor)

AX ={u: Xx — [0,1] | u sub-probability measure}
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Aim: Congruential Rule Formats
for Probabilistic Processes
with Continuous State Spaces

... hence, inducing distributive laws of type

A X(ld x AN = (ATx)"
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The shape of transitions

The behaviour functor suggests the shape of transitions. . .

Discrete state Continuous state
a[p] / a
t —— t t——

on 2-terms
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Earlier attempts. .. [Cardelli-Mardare’10]

3 L IR Y T S e s P T R R
i
% The Measurable Space of Stochastic Processes

Radu Mardare
The Microsoft Research-University of Trento
Centre for Computational and Systems Biology
Ji Trento, Italy
¥ Email: mardare@cosbi.eu

i Luca Cardell
Microsoft Research Cambridge, UK
Email: luca@microsoft.com

(V). =Y
(Guard). e.P - [5]

P_*MI Q_>,Uf”
P+Q—-p op”

(Sum).

Py Q — p
P|Q — p' p@q "’

(Par).

Table 1
STRUCTURAL OPERATIONAL SEMANTICS

rth i aied
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Earlier attempts. ..

i

(Nwll). 0—w !
(Guard). e.P = [5)]

Py Q —u
P|Q — p' p@q p”’

Table 1
STRUCTURAL OPERATIONAL SEMANTICS

s T o S R o )

[Cardelli-Mardare’10]

rather a

(no general
i
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Measure terms

We adopt a new syntax to handle measures syntactically

Y : Meas — Meas  (process syntax)
M: Meas — Meas  (measure syntax)

it's a M-term!
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Measure GSOS rule format

ajj 1<j<m; b, ybeB;
{Xi—>MU}1§i§n,aU€Ai {Xf74 1<i<n

F(X1, .oy Xn) —

(MGSOS)

where
+ f € X with ar(f) = n;
+ {x1,...,xp} and {p;j | 1<i<n, 1<j<m;} are pairwise
distinct process and measure variables,
+ A; N B; = () are disjoint subsets of labels in L, and c € L;

+ pis a M-term with variables in {x,...,x,} and
{pj | 1<i<nl<j<m}

15



Measure GSOS specification systems

An MGSQOS specification system consists of

Set of MGSOS rules:
1<j<m; b, beB;
R — { {X’ U}lzf';n,a;jeA,- {Xi _7L> lzign }
image finte

F(X1, . Xn) ~—
Measure terms interpretation:

<]D TulA = ATy

16/1



From MGSOS to labelled Markov processes

We can obtain a Al-coalgebra on the set of closed ¥-terms

o Tzo — AL Tzo

as

Y(t) () = Broo({{uh 70 | £ = 11})

where, for a finite set of U = {u1,..., un} of sub-probability
measures over X,

_ (E) - 4 pa(E)

@X({,U/lv""'u”})(E) Hl(X)+“'+Hn(X)

(weighted sum of sub-probability measures)
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Example: Quantitative CCS

Measure terms syntax:

po=UZIPl | DIP] | plp | pVee o (e, € Rxo)

Measure GSOS Rules*:

(c of a).x =55 U2[x] (0 of a).x - D[x]
a,c «,Cc
X —=u X —=u
X+ x5 x | x' == p|DIx]
a,c , o , a,c , ac P
X —= L X' —pu X —= L X' == u
x || x! 2 XX == Ve !

(*) dual rules for 4+ and || are omitted
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Example: Quantitative CCS

Measure term interp

(- Px

(U)X (E) = 1 dy  where E' = [0,] N (Ae. (€ of 0).x)~

E c
if xe E

(Dbdbx B { otherwise

{ulp'hx(E) = ({ubx x).x | X')HE)
1 ifc: A1 )= - u'hx(As),

(1 Yoo i) forA = mi((A(x, x). x || x')"H(E))

0 otherwise

retation:

: TyAX = ATy X

'(E)
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From MGSOS to distributive laws

Y (Id x AL)

how do we get the distributive law A
out of an MGSOS specification systems?

20



From MGSOS to distributive laws

Y (Id x AL)
[R] 1. define the natural transformation [R]
from the image finite set MGSQOS rules
L
(Prin TMA)

20



From MGSOS to distributive laws

T(Id x AL)
[R] 1. define the natural transformation [R]
¥ from the image finite set MGSQOS rules
L
(Piin TmA)
2. apply the measure terms interpretation
(Pan{ - D)
L (-): TuA = AT
(PinATx)

(ATx)t

20/1



From MGSOS to distributive laws

T(Id x AL)
[R] 1. define the natural transformation [R]
¥ from the image finite set MGSQOS rules
L
(Piin TmA)
2. apply the measure terms interpretation
(Pan{ - D)
L (-): TuA = AT
(PinATx)

3. obtain the actual measure by averaging
M(@ Ts)*

Ox({p1, -, pa})(E) = %

(ATx)t

20/1



Benefits from the bialgebraic framework

For continuous state probabilistic processes described by means of
MGSOS specification systems we have:

denotational model on the final Al-coalgebra

operational model on the initial >-algebra

universal semantics (full-abstaction)
initial algebra semantics = final coalgebra semantics
Al-behavioural equivalence is a ¥-congruence
is Al-bisimilarity a ¥-congruence?
(AL does not preserves weak pullbacks! [Viglizzo'05])



From MGSOS to distributive laws

Y(Id x AL
[R] Naturality of the distributive laws depends on
' : .
/ naturality of (- ): TyA = ATx
(Psin TMA)
we need (general) techniques
d ’(Pfinq 1)k in order to derive
Y .
L natural transformations of type
Pl T2) Tl = AT
=
(@T)t M Y

(AT3)-

22/



A-iterative recursion [Bartels’03]

We adopt a generalized induction proof principle. ..

For any distributive law A: SB = BS and SB-algebra (X, ¢) there
exists a unique f: A — X making the following commute

SBf o B

SpBx
SBX «<—— SBA «—— SA SA

- A - BA
© {a 5,8)\ { Ba
X oo A SBA BSA

f AA



Structural )\-iterative recursion

...can be extended on the free monad (Ts,n®, u°)

B SBTsX <2 SToX

sBy >
wl lwx
Y - e TsX
\ I s
¢ X
X ToX 2 STeX
k l B l l SBx
SBT<X

24/1

BX — BTsX
Bnk Bix o Argx



..and can be turned to a proof principle on natural

transformations

sBF <L spT. 22 5T,

g/ ﬂw

F < d
¢
" Y

J [

B —— BT <—— SBTs
Bns BioATs



..to be used to derive measure terms interpretations

MB( ) MpB A
MBA Ty <—— MBTyA <—— MTyA

| Joma

ATy < T
\: ﬂ A
Id :> Ty < M Ty

kﬂ mﬂ [[ms

By o ATy



Conclusions and future work

Done:
rule format for continuous state probabilistic processes

syntactical treatment of measures via M-terms
general techniques for defining interpretations

initial algebra for polynomial functors in Meas (not in this talk)

To do:
move from probabilistic to general measures (bounded?)

find a rule format that coincides with the distributive law

formal expressivity analysis of the
intermediate syntax + interpretation method



Thanks



Appendix



Bisimulation vs Kernel-bisimulation

Bisimulation
(a span)

BX «<— BR — BY
Bf Bg

Kernel-bisimulation
(pullback of a cospan)

R
2N
X ,.cf "y

S

BX — BC «—— BY
Bf Bg

if B preserves weak-pullbacks, bisimulation and kernel-bisimulation
coincide (provided that C has pullbacks and pushouts) [Staton'11]

30



