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Abstract. Semi-Markov chains (SMCs) are continuous-time probabilis-
tic transition systems where the residence time on states is governed by
generic distributions on the positive real line.
This paper shows the tight relation between the total variation distance
on SMCs and their model checking problem over linear real-time specifi-
cations. Specifically, we prove that the total variation between two SMCs
coincides with the maximal difference w.r.t. the likelihood of satisfying
arbitrary MTL formulas or ω-languages recognized by timed automata.
Computing this distance (i.e., solving its threshold problem) is NP-hard
and its decidability is an open problem. Nevertheless, we propose an
algorithm for approximating it with arbitrary precision.

1 Introduction

The growing interest in quantitative aspects in real world applications motivated
the introduction of quantitative models and formal methods for studying their
behaviors. Classically, the behavior of two models is compared by means of
an equivalence (e.g., bisimilarity, trace equivalence, logical equivalence, etc.).
However, when the models depend on numerical values that are subject to error
estimates or obtained from statistical samplings, any notion of equivalence is too
strong a concept. This motivated the study of behavioral distances. The idea is
to generalize the concept of equivalence with that of pseudometric, aiming at
measuring the behavioral dissimilarities between nonequivalent models.

Given a suitably large set of properties Φ, containing all the properties of
interest, the behavioral dissimilarities of two states s, s′ of a quantitative model
are naturally measured by the pseudometric d(s, s′) = supφ∈Φ |φ(s) − φ(s′)|,
where φ(s) denotes the value of φ at s. This has been the leading idea for several
proposals of behavioral distances, the first one given by Desharnais et al. [12] on
probabilistic systems, and further developed by De Alfaro, van Breugel, Worrell,
and others [10,11,19,16].

For probabilistic models φ(s) may represent the probability of satisfaction of a
modal formula φ measured at s, hence relating the distance d to the probabilistic
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model checking problem. In this context an immediate application is that the
probability φ(s) of satisfying the formula φ at s can be approximated by φ(s′)
with an error bounded by d(s, s′), for any φ ∈ Φ. This may lead to savings in
the overall cost of model checking.

In this paper we study the total variation distance of probabilistic systems,
a popular distance used in a number of domains such as networks security and
artificial intelligence, that measures the maximal difference in the probabilities of
two systems of realizing the same event. We show that it is a genuine behavioral
distance in the above sense by relating it to the probabilistic model checking
problem over linear real-time specifications. Specifically, we prove that the total
variation distance on semi-Markov chains coincides with the maximal difference
in the probability of satisfying the same property, expressed either as an MTL
formula [2,3] or an ω-language accepted by a timed automaton (TA) [1].

Semi-Markov chains (SMCs) are continuous-time probabilistic transition sys-
tems where the residence time on states is governed by generic distributions on
the positive real line. SMCs subsume many probabilistic models, e.g., Markov
chains (MCs) and continuous-time Markov Chains (CTMCs). Our attention on
linear real-time properties is motivated by applications where the system to
be modeled cannot be internally accessed but only tested via observations per-
formed over a set of random executions. For instance, this is mostly common in
domains such as systems biology, modeling/testing and machine learning, where
real-time features are important e.g. for performance evaluation of cyber-physical
systems or dependability analysis.

The total variation distance was already known to be a bound for the maxi-
mal difference w.r.t. the probability of satisfying linear-time formulas; our result
guarantees that it is the tightest one. Since SMCs and MTL subsume MCs and
LTL, respectively, the result holds also in the discrete-time case.

This further motivates the study of efficient methods for computing the total
variation. Unfortunately, in [15,9] the threshold problem for the total variation
distance is proven to be NP-hard in the case of MCs, and to the best of our
knowledge, its decidability is still an open problem. Nevertheless, we prove that
the problem of approximating the total variation distance with arbitrary preci-
sion is computable. This is done providing two effective sequences that converge
from below and above to the total variation distance. This result generalizes that
of [9] to the real-time setting. Our approach, however, is different, as it is based
on a duality that characterizes the total variation between two measures as the
minimal discrepancy associated with their couplings.

The technical contributions of the paper can be summarized as follows.

1. We solved the open problem of how tight is the upper-bound given by the
total variation distance w.r.t. the variational distance ranging over MTL formu-
las and TA specifications, respectively. This has been made possible due to a
more general result (Theorem 6) that entails many other nontrivial characteri-
zations of the total variation distance on SMCs.

2. We provided sufficient conditions to construct sequences that converge,
from below and above, to the total variation distance. Differently from [9], these
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conditions are not specific to the probabilistic transition system at hand, but
the results hold for probability measures on an arbitrary measurable space.

3. Lastly, we proved the computability of the converging sequences of the
previous point. This yields a decidable procedure to approximate the total vari-
ation distance with arbitrary precision.

An extended version of the paper containing all the proofs is available at [5].

2 Preliminaries

The set of functions from X to Y is denoted by Y X and for f ∈ Y X , let
≡f = {(x, x′) | f(x) = f(x′)}. Given an equivalence relation R ⊆ X ×X, X/R
denotes the set of R-equivalence classes and [x]R the equivalence class of x ∈ X.

Measure theory. A field over a set X is a nonempty family Σ ⊆ 2X closed
under complement and finite union. Σ is a σ-algebra if, in addition, it is closed
under countable union; in this case (X,Σ) is called a measurable space and the
elements of Σ measurable sets. The σ-algebra generated by Σ ⊆ 2X , denoted
by σ(Σ), is the smallest σ-algebra containing Σ. Hereafter (R+,B) denotes the
measurable space of positive real numbers (including zero) with Borel algebra.

Given two measurable spaces (X,Σ) and (Y,Θ), a function f : X → Y is
measurable if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. The product space,
(X,Σ) ⊗ (Y,Θ), is the measurable space (X × Y,Σ ⊗ Θ), where Σ ⊗ Θ is the
σ-algebra generated by the rectangles E × F for E ∈ Σ and F ∈ Θ.

A measure on (X,Σ) is a function µ : Σ → R+ s.t. µ(
⋃
E∈F E) =

∑
E∈F µ(E)

for all countable families F of pairwise disjoint measurable sets (σ-additive); it is
a probability measure if, in addition, µ(X) = 1. In what follows ∆(X,Σ) denotes
the set of probability measures on (X,Σ) and let D(X) = ∆(X, 2X).

Given a measurable function f : (X,Σ) → (Y,Θ), any measure µ on (X,Σ)
defines a measure µ[f ] on (Y,Θ) by µ[f ](E) = µ(f−1(E)), for all E ∈ Θ; it is
called the push forward of µ under f .

Given µ and ν measures on (X,Σ) and (Y,Θ), respectively, the product mea-
sure µ×ν on (X,Σ)⊗(Y,Θ) is uniquely defined by (µ×ν)(E×F ) = µ(E) ·ν(E),
for all (E,F ) ∈ Σ ×Θ.

A measure ω on (X,Σ)⊗ (Y,Θ) is a coupling for (µ, ν) if for all E ∈ Σ and
F ∈ Θ, ω(E × Y ) = µ(E) and ω(X × F ) = ν(F ) (µ is the left and ν the right
marginals of ω). We denote by Ω(µ, ν) the set of couplings for (µ, ν).

Metric spaces. Given a set X, d : X ×X → R+ is a pseudometric on X if for
arbitrary x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x) and d(x, y)+d(y, z) ≥ d(x, z);
d is a metric if, in addition, d(x, y) = 0 implies x = y. If d is a (pseudo)metric
on X, (X, d) is called a (pseudo)metric space.

Given a measurable space (X,Σ), the set of measures ∆(X,Σ) is metrized
by the total variation distance, defined by ‖µ− ν‖ = supE∈Σ |µ(E)− ν(E)|.
The space of timed paths. A timed path over a set X is an infinite se-
quence π = x0, t0, x1, t1 . . . , where xi ∈ X and ti ∈ R+; ti are called time
delays. For any i ∈ N, let π[i] = xi, π〈i〉 = ti, π|i = x0, t0, .., ti−1, xi, and
π|i = xi, ti, xi+1, ti+1, . . . . Let Π (X) denote the set of timed paths on X.
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Fig. 1. Two SMCs. (left) the differences are only in the residence time distributions;
(right) the behavioral differences arise only from their transition distributions.

The cylinder set (of rank n) for Xi ⊆ X and Ri ⊆ R+, i = 0..n is the set
C(X0, R0, .., Rn−1, Xn) = {π ∈ Π (X) | π|n ∈ X0 ×R0 × · · · ×Rn−1 ×Xn}. For
F ⊆ 2X and I ⊆ 2R+ , let Cn(F , I) = {C(X0, R0, .., Rn−1, Xn) | Xi ∈ F , Ri ∈ I},
for n ∈ N, and C(F , I) =

⋃
n∈N Cn(F , I).

If (X,Σ) is a measurable space, Π (X,Σ) denotes the measurable space of
timed paths with σ-algebra generated by C(Σ,B). If Σ = σ(F) and B = σ(I),
then σ(C(Σ,B)) = σ(C(F , I)). Moreover, if both F and I are fields, so is C(F , I).

Any function f : X → Y can be stepwise extended to fω : Π (X) → Π (Y ).
Note that if f is measurable, so is fω.

3 Semi-Markov Chains and Trace Distance

In this section we recall labelled semi-Markov chains (SMCs), models that sub-
sume most of the space-finite Markovian models including Markov chains (MCs)
and continuous-time Markov chains (CTMCs). We define the total variation
distance between SMCs, called trace distance, which measures the difference
between two SMCs w.r.t. their probabilities of generating labelled timed traces.

In what follows we fix a countable set A of atomic properties.

Definition 1 (Semi-Markov Chains). A labelled semi-Markov chain is a tu-
pleM = (S, τ, ρ, `) consisting of a finite set S of states, a transition probability
function τ : S → D(S), a residence-time probability function ρ : S → ∆(R+),
and a labelling function ` : S → 2A.

In what follows we use M = (S, τ, ρ, `) to range over the class of SMCs.
Intuitively, ifM is in the state s, it moves to an arbitrary s′ ∈ S within time

t ∈ R+ with probability ρ(s)([0, t]) · τ(s)(s′). For example, in Fig. 1(right) the
SMC moves from s1 to s2 before time t > 0 with probability 1

4 · U [1, 2]([0, t)),
where U [i, j] is the uniform distribution on [i, j]. An atomic proposition p ∈ A
is said to hold in s if p ∈ l(s).

Notice that MCs are the SMCs s.t. for all s ∈ S, ρ(s) is the Dirac measure
at 0 (transitions happen instantaneously); while CTMCs are the SMCs s.t. for
all s ∈ S, ρ(s) = Exp(λ) —the exponential distribution with rate λ > 0.

An SMC in an initial state is a stochastic process generating timed paths.
They are distributed as in the next definition.
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Definition 2. Given s ∈ S state inM, let Ps be the unique probability measure1

on Π (S) such that for all si ∈ S and Ri ∈ B, i = 0..n,

Ps(C({s0}, R0, . . . , Rn−1, {sn})) = 1{s}(s0) ·
∏n−1
i=0 P (si, Ri, si+1) ,

where 1A is the indicator function of A and P (u,R, v) = ρ(u)(R) · τ(u)(v).

Since the only things that we observe in a state are the atomic properties
(labels), timed paths are considered up to label equivalence. This leads to the
definition of trace cylinders, which are elements in C(S/≡`

,B), and to the fol-
lowing equivalence between states.

Definition 3 (Trace Equivalence). For arbitrary M = (S, τ, ρ, `), s, s′ ∈ S
are trace equivalent, written s ≈ s′, if for all T ∈ C(S/≡`

,B), Ps(T ) = Ps′(T ).

Hereafter, we use T to denote the set C(S/≡`
,B) of trace cylinders.

If two states of an SMCs are not trace equivalent, then their difference is
usually measured by the total variation distance between their corresponding
probabilities restricted to events generated by labelled traces.

Definition 4 (Trace Pseudometric). Given M = (S, τ, ρ, `), the trace pseu-
dometric δ : S × S → [0, 1] is defined, for arbitrary s, s′ ∈ S, by

δ(s, s′) = supE∈σ(T ) |Ps(E)− Ps′(E)| .

It is not difficult to observe that two states s, s′ ∈ S are trace equivalent
if and only if δ(s, s′) = 0. This demonstrates that the trace equivalence is a
behavioural distance.

4 Trace Distance and Probabilistic Model Checking

In this section we investigate the connections between the trace distance and
model checking SMCs over linear real-time specifications. We show that the
variational distance over measurable sets expressed either as Metric Temporal
Logic (MTL) formulas or as languages accepted by Timed Automata (TAs)
coincides with the trace distance introduced in the previous section. Both these
results are instances of a more general result (Theorem 6), which also entails
other similar nontrivial characterizations of the trace distance.

A measure µ on (X,Σ) induces the so-called Fréchet-Nikodym pseudometric
on Σ, dµ : Σ×Σ → R+ defined for arbitrary E,F ∈ Σ, by dµ(E,F ) = µ(E4F ),
where E 4 F := (E \ F ) ∪ (F \ E) is the symmetric difference between sets.

Recall that in a (pseudo)metric space a subset D is dense if its closure D (i.e.,
the set of all the points arbitrarily close to D) coincides with the entire space.
In order to prove the aforementioned general result, we need firstly to provide a
sufficient condition for a family of measurable sets to be dense w.r.t. the Fréchet-
Nikodym pseudometric for some finite measure.

1 Existence and uniqueness of Ps is guaranteed by the Hahn-Kolmogorov extension
theorem and by the fact that, for all s ∈ S, τ(s) and ρ(s) are finite measures.
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Lemma 5. Let (X,Σ) be a measurable space and µ be a measure on it. If Σ is
generated by a field F , then F is dense in the pseudometric space (Σ, dµ).

Proof (sketch). We show that F := {E ∈ Σ | ∀ε > 0. ∃F ∈ F . dµ(E,F ) < ε} =
Σ. To prove Σ ⊆ F , it is sufficient to show that F is a σ-algebra. The closure
under complement follows from E4 F = (X \E)4 (X \ F ). The closure under
countable union follows from monotonicity, additivity and ω-continuity from
below of µ given that for any {Ei | i ∈ N} ⊆ F and ε > 0 the following hold:

a) there exists k ∈ N, such that dµ(
⋃
i∈NEi,

⋃k
i=0Ei) <

ε
2 ;

b) for all n ∈ N, there exist F0, . . . , Fn ∈ F , such that dµ(
⋃n
i=0Ei,

⋃n
i=0 Fi) <

ε
2 .

Indeed, by triangular inequality, for arbitrary F0, . . . , Fk ∈ F ,

dµ(
⋃
i∈NEi,

⋃k
i=0 Fi) ≤ dµ(

⋃
i∈NEi,

⋃k
i=0Ei) + dµ(

⋃k
i=0Ei,

⋃k
i=0 Fi) < ε .

Then, the lemma follows since F is a field. ut

With this result in hands we can state the main theorem of this section.

Theorem 6. Let (X,Σ) be a measurable space and µ, ν be two finite measures
on it. If Σ is generated by a field F , then ‖µ− ν‖ = supE∈F |µ(E)− ν(E)|.

Proof. For Y 6= ∅ and f : Y → R bounded and continuous, if D ⊆ Y is dense
then sup f(D) = sup f(Y ). By Lemma 5, F is dense in (Σ, dµ+ν). We show that
|µ− ν| : Σ → R is bounded and continuous. Boundedness follows since µ and ν
are finite. By monotonicity, positivity, and additivity of the measures one can
show that µ and ν are 1-Lipschitz continuous, so |µ− ν| is continuous. ut

4.1 Model Checking for MTL Formulas

Metric Temporal Logic [2] has been introduced as a formalism for reasoning on
sequences of events in a real-time setting. The grammar of formulas is as follows

ϕ ::= p | ⊥ | ϕ→ ϕ | X[t,t′]ϕ | ϕ U[t,t′] ϕ ,

where p ∈ A and [t, t′] are positive-reals intervals with rational boundaries.
The formal semantics2 of MTL is given by means of a satisfiability relation

defined, for an arbitrary SMC M and a timed path π ∈ Π (S), as follows [17].

M, π |= p if p ∈ `(π[0]) ,

M, π |= ⊥ never ,

M, π |= ϕ→ ψ if M, π |= ψ whenever M, π |= ϕ ,

M, π |= X[t,t′]ϕ if π〈0〉 ∈ [t, t′], and M, π|1 |= ϕ ,

M, π |= ϕ U[t,t′] ψ if ∃i > 0 such that
∑i−1
k=0 π〈k〉 ∈ [t, t′], M, π|i |= ψ,

and M, π|j |= ϕ whenever 0 ≤ j < i .

2 This is known as the point-based semantics, since the connectives quantify over a
countable set of positions in the path; it differs from the interval-based semantics,
adopted in [7,18], which associates a state with each point in the real line, and let
the temporal connectives quantify over intervals with uncountable many points.
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Having fixed an SMCM, let JϕK = {π | M, π |= ϕ} and JLK = {JϕK | ϕ ∈ L},
for any L ⊆ MTL. Let MTL− be the fragment of MTL without until operator.

Lemma 7. (i) JMTLK ⊆ σ(T ) and (ii) T ⊆ σ(JMTL−K).

Lemma 7 states that (i) MTL formulas describe events in the σ-algebra gen-
erated by the trace cylinders; and (ii) the trace cylinders are measurable sets gen-
erated by MTL formulas without until operator. Consequently, the probabilistic
model checking problem for SMC, which is to determine the probability Ps(JϕK)
given the initial state s of M, is well defined. Moreover, for any L ⊆ MTL,

δL(s, s′) = supϕ∈L |Ps(JϕK)− Ps′(JϕK)|

is a well-defined pseudometric that distinguishes states w.r.t. their maximal dif-
ference in the likelihood of satisfying formulas in L.

Obviously, the trace distance δ is an upper bound of δL; however, Theorem 6
reveals a set of conditions on L guaranteeing that the two actually coincide.

Corollary 8 (Logical Characterization). Let L be a Boolean-closed frag-
ment of MTL s.t. T ⊆ σ(JLK). Then, δL = δ. In particular, δMTL = δMTL− = δ.

Remark 9. The supremum in the definition of δMTL is not a maximum. Fig.1
shows two examples. The SMC on the right is taken from [9, Example 1]3,
where it is proven that δ(s1, s4) has a maximizing event that is not an ω-regular
language, hence not describable by an LTL formula. As for the SMC on the left,
the maximizing event corresponding to δ(u, v) should have the form XI> for
I = [0, log(3)− log(2)]. However the previous is not an MTL formula since I has
an irrational endpoint. �

4.2 Model Checking for Timed Automata

Timed Automata (TAs) [1] have been introduced to model the behavior of real-
time systems over time. Here we consider TAs without location invariants.

Let X be a finite set of variables (clocks) and V(X ) the set of valuations
v : X → R+. As usual, for v ∈ V(X ), t ∈ R+ and X ⊆ X , we denote by 0 the
null valuation, by v + t the t-delay of v and by v[X := t] the update of X in v.

A clock guard g ∈ G(X ) over X is a finite set of expressions of the form x ./ q,
for x ∈ X , q ∈ Q+ and ./ ∈ {<,≤, >,≥}. We say that a valuation v ∈ V(X )
satisfies a clock guard g ∈ G(X ), written v |= g, if v(x) ./ n holds, for all
x ./ q ∈ g. Two clock guards g, g′ ∈ G(X ) are orthogonal (or non-overlapping),
written g ⊥ g′, if there is no v ∈ V(X ) such that v |= g and v |= g′.

Definition 10 (Timed Automaton). A timed (Muller) automaton over a
set of clocks X is a tuple A = (Q,L, q0, F,→) consisting of a finite set Q of
locations, a set L of input symbols, an initial location q0 ∈ Q, a family F ⊆ 2Q

of final sets of locations, and a transition relation → ⊆ Q×L×G(X )×2X ×Q.
A is deterministic if (q, a, g,X, q′), (q, a, g′, X ′, q′′) ∈ → and g 6= g′ implies

g ⊥ g′; it is resetting if (q, a, g,X, q′) ∈ → implies X = X .

3 The SMC has been adapted to the current setting where the labels are in the state,
instead of in the transitions.



8 G. Bacci, G. Bacci, K. Larsen, R. Mardare

A run of A = (Q,L, q0, F,→) over a timed path π = a0, t0, a1, t1, . . . is an infinite
sequence

(q0, v0)
a0,t0−−−−→ (q1, v1)

a1,t1−−−−→ (q2, v2)
a2,t2−−−−→ · · ·

with qi ∈ Q and vi ∈ V(X ) for all i ≥ 0, satisfying the following requirements:
(initialization) v0 = 0; (consecution) for all i ≥ 0, exists (qi, ai, gi, Xi, qi+1)∈→
such that vi+1 = (vi + ti)[Xi := 0] and vi + ti |= gi.

A run over π is accepting (π is accepted by A) if the set of locations visited
infinitely often is in F . Let L(A) be the set of timed paths accepted by A.

A deterministic TA (DTA) has at most one accepting run over a given timed
path in Π (L). With respect to TAs, which are only closed under finite union
and intersection, DTAs are also closed under complement [1].

To relate TAs and SMCs, considerM = (S, τ, ρ, `) and a TA A that uses the
labels ofM as input symbols. Let JAK = {π | `ω(π) ∈ L(A)} be the set of timed
paths in M accepted by A and JFK = {JAK | A ∈ F} for any set F ∈ TA.

Lemma 11. (i) JTAK ⊆ σ(T ) and (ii) T ⊆ σ(JDTAK).

Lemma 11 states that the model checking problem of an SMC M against a
TA A, which is to determine the probability Ps(JAK) given the initial state s of
M, is well defined and for any Φ ⊆ TA we can define the pseudometric

δΦ(s, s′) = supA∈Φ |Ps(JAK)− Ps′(JAK)|

that distinguishes states looking at a specific subclass Φ of TA specifications.
For a generic Φ ⊆ TA, the trace distance is an upper bound of δΦ. However,
Theorem 6 provides conditions that guarantee the equality of the two distances.

Corollary 12. Let Φ ⊆ TA be closed under Boolean operations and such that
T ⊆ σ(JΦK). Then, δΦ = δ. In particular, δTA = δDTA = δ.

Single-clock Resetting DTAs. The decidability of model checking CTMCs
against TA specifications is open, even for the subclass of DTAs. Recently,
Chen et al. [8] provided a decidable algorithm for the case of single-clock DTAs
(1-DTAs). In this context, an alternative characterization of the trace distance
in terms of 1-DTAs is appealing. Notice however that Corollary 12 cannot be
applied, since 1-DTAs are not closed under union. We show that the resetting
1-DTAs (1-RDTA) satisfy the requirements, hence δ1-DTA = δ1-RDTA = δ.

Lemma 13. (i) J1-RDTAK is a field and (ii) T ⊆ σ(J1-RDTAK).

5 General Convergence Criteria

In this section we provide sufficient conditions to construct sequences that con-
verge, from below and from above, to the total variation distance between a
generic pair of probability measures. Eventually, we instantiate these results to
the specific case of the trace distance on SMCs.

Convergence from Below. To define a converging sequence of under-approxi-
mations of the total variation distance we exploit Theorem 6 as follows.
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Theorem 14. Let (X,Σ) be a measurable space and µ, ν be probability measures
on it. Let F0 ⊆ F1 ⊆ F2 ⊆ . . . be a sequence s.t. F =

⋃
i∈N Fi is a field that

generates Σ and
li = sup {|µ(E)− ν(E)| | E ∈ Fi} .

Then, li ≤ li+1 and supi∈N li = ‖µ− ν‖, for all i ∈ N.

Proof. li ≤ li+1 follows from Fi ⊆ Fi+1. Because F is a field s.t. σ(F) = Σ,
µ and ν are finite measures and supi∈N li = supE∈F |µ(E) − ν(E)|, Theorem 6
concludes our proof. ut

According to Theorem 14, to approximate the trace distance δ from below,
we just need to find an increasing sequence of collections of measurable sets of
timed paths whose union is a field generating σ(T ). We define it as follows.

For k ∈ N, let Ek be the set of all finite unions of cylinders in Ck(S/≡`
,Rk),

where Rk =
{[

n
2k
, n+1

2k

)
| 0≤ n < k2k

}
∪{[k,∞)}. Note that, these cylinders are

pairwise disjoint and, in particular, they form a σ(T )-measurable partition of
Π (S). The choice is justified by the following result.

Lemma 15. For all k ∈ N, Ek ⊆ Ek+1 and
⋃
k∈N Ek is a field generating σ(T ).

Given an SMCM, a sequence of under-approximations of the trace distance
δ is given, for k ∈ N, by δ↑k : S × S → [0, 1] defined by

δ↑k(s, s′) = sup {|Ps(E)− Ps′(E)| | E ∈ Ek} . (1)

The next result is an immediate consequence of Lemma 15 and Theorem 14.

Corollary 16. For all k ∈ N, δ↑k ≤ δ↑k+1 and δ = supk∈N δ↑k.

Remark 17 (A logical convergence). Note that Theorem 14 suggests alternative
constructions of convergent sequences. For example, as lower-approximations
of δ one can use the pseudometrics δMTL−k

, where MTL−k is the set of MTL−

formulas with modal depth at most k ∈ N. �

Convergence from Above. The construction of the converging sequence of
over-approximations of the total variation is based on a classic duality result
asserting that the total variation of two measures corresponds to the minimal
discrepancy measured among all their possible couplings [14].

Recall that a coupling ω ∈ Ω(µ, ν) for two probability measures µ, ν on
(X,Σ) is a measure in the product space (X,Σ) ⊗ (X,Σ) whose left and right
marginals are µ and ν, respectively. The discrepancy associated with ω is the
value ω(6∼=), where ∼= =

⋂
E∈Σ {(x, y) | x ∈ E iff y ∈ E} is the inseparability re-

lation w.r.t. measurable sets in Σ. Then, the following duality holds.

Lemma 18 ([14, Th.5.2]). Let µ, ν be probability measures on (X,Σ). Then,
provided that 6∼= is measurable in Σ ⊗Σ, ‖µ− ν‖ = min {ω(6∼=) | ω ∈ Ω(µ, ν)}.

Given the above result, we can state a second general converging criterion to
approach the total variation distance from above.
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Theorem 19. Let (X,Σ) be a measurable space s.t. ∼= ∈ Σ ⊗ Σ and µ, ν be
probability measures on it. Let Ω0 ⊆ Ω1 ⊆ Ω2 . . . be an increasing sequence s.t.⋃
i∈NΩi is dense in Ω(µ, ν) w.r.t. the total variation distance and define

ui = inf {ω( 6∼=) | ω ∈ Ωi} .

Then, ui ≥ ui+1 and infi∈N ui = ‖µ− ν‖, for all i ∈ N.

Proof. ui ≥ ui+1 follows from Ωi ⊆ Ωi+1. To prove infi∈N ui = ‖µ − ν‖, recall
that for Y 6= ∅ and f : Y → R bounded and continuous, if D ⊆ Y is dense
then inf f(D) = inf f(Y ). By hypothesis

⋃
i∈NΩi ⊆ Ω(µ, ν) is dense; moreover,

µ × ν ∈ Ω(µ, ν) 6= ∅. We show that ev 6∼= : Ω(µ, ν) → R, defined by ev 6∼=(ω) =
ω( 6∼=) is bounded and continuous. It is bounded since all ω ∈ Ω(µ, ν) are finite
measures. It is continuous because ‖ω−ω′‖ ≥ |ω(6∼=)−ω′( 6∼=)| = |ev 6∼=(ω)−ev 6∼=(ω′)|
(1-Lipschitz continuity). Now, applying Lemma 18, we derive our result. ut

To conclude this section, we define a sequence of sets of couplings that,
according to Theorem 19, characterizes the trace distance δ on SMCs.

Observe that the inseparability relation w.r.t. the σ-algebra generated by
trace cylinders is measurable and it can be characterized as follows.

Lemma 20. ≡`ω =
⋂
E∈σ(T ) {(π, π′) | π ∈ E iff π′ ∈ E} ∈ σ(T )⊗ σ(T ).

Next we introduce the notion of coupling structure for an SMC. Let Πk(S) =
{s0, t0, .., tk−1, sk | si ∈ S, ti ∈ R+} be the measurable space with σ-algebra gen-
erated by Rk = {{s0} ×R0 × ..×Rk−1 × {sk} | si ∈ S, Ri ∈ B}. Note that, the
prefix function (·)|k : Π (S) → Πk(S) is measurable, hence, the push forward
w.r.t. it on µ ∈ ∆(Π (S)), denoted by µ|k, is a measure in Πk(S).

Definition 21 (Coupling Structure). A coupling structure of rank k ∈ N
for an SMC M is a function C : S × S → ∆(Πk(S)×Πk(S)) such that, for all
states s, s′ ∈ S, C(s, s′) ∈ Ω(Ps|k,Ps′ |k).

The set of coupling structures of rank k for M is denoted by Ck(M).
A coupling structure of rank k together with a distinguished initial pair

of states, can be intuitively seen as a stochastic process generating pairs of
timed paths divided in multi-steps of length k and distributed according to the
following probability.

Definition 22. For k ∈ N, s, s′ ∈ S states in M and C ∈ Ck(M), let PCs,s′ be

the unique probability measure4 on Π (S) ⊗ Π (S) such that, for all n ∈ N and
E = {u0} ×R0 × ..×Rnk−1×{unk}, F = {v0}×H0× ..×Hnk−1×{vnk}∈Rnk

PCs,s′(C(E)×C(F )) = 1{(s,s′)}(u0, v0) ·
∏n−1
h=0 C(uhk, vhk)(Eh×Fh) ,

where C(E) denotes the cylinder obtained as the pre-image under (·)|nk of E and
Eh = {uhk} ×Rhk × ..×R(h+1)k−1×{u(h+1)k} (similarly for F ).

4 The existence and the uniqueness of this measure follow by Hahn-Kolmogorov ex-
tension theorem and the fact that any cylinder of rank k can always be represented
as a disjoint union of cylinders of rank k′ ≥ k (see e.g., [6, pp.29–32]).
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The name “coupling structure” is justified by the following result.

Lemma 23. Let C be a coupling structure for M, then PCs,s′ ∈ Ω(Ps,Ps′).

We are finally ready to describe a decreasing sequence that converges to the
trace distance on SMCs. Given M, let δ↓k : S × S → [0, 1] for k ∈ N, be

δ↓k(s, s′) = min
{
PCs,s′(6≡`ω ) | C ∈ C2k(M)

}
. (2)

According to Theorem 14 the following suffices to prove the convergence.

Lemma 24. Let s, s′ ∈ S be a pair of states of an SMC M. Then,

(i) for all k ∈ N,
{
PCs,s′ | C ∈ Ck(M)

}
⊆
{
PCs,s′ | C ∈ C2k(M)

}
;

(ii)
⋃
k∈N

{
PCs,s′ | C ∈ C2k(M)

}
is dense in Ω(Ps,Ps′) w.r.t. the total variation.

Proof (sketch). (i) Let k > 0 and C ∈ Ck(M). Define D(s, s′) as the unique
measure on Π2k(S) ⊗ Π2k(S) s.t., for all E = {u0}×R0× ..×R2k−1×{u2k}
and F = {v0}×H0× ..×H2k−1×{v2k} in R2k

D(s, s′)(E × F ) = C(s, s′)(E′ × F ′) · C(uk, vk)(E′′ × F ′′) ,

where E′={u0}×R0×..×Rk−1×{uk} and E′′={uk}×Rk ×..×R2k−1×{u2k}
(similarly for F ). One can check that D ∈ C2k(M) and PCs,s′ = PDs,s′ .

(ii) Let Ω =
⋃
k∈N

{
PCs,s′ | C ∈ C2k(M)

}
. Let Fk be the collection of all finite

union of sets of the form C(E)×C(F ), for E,F ∈ Rk. Note that F =
⋃
k∈N Fk is a

field generating the σ-algebra of Π (S)⊗Π (S). By Lemma 5 and Definition 22, to
prove that Ω is dense it suffices that for all µ ∈ Ω(Ps,Ps′), k ∈ N and F ∈ Fk,
there exists ω ∈ Ω s.t. ω(F ) = µ(F ). One can check that ω = PCs,s′ , where

C ∈ C2k(M) is s.t. C(s, s′) = µ[(·)|2k × (·)|2k ] (i.e., the push forward of µ along

the function (π, π′) 7→ (π|2k , π′|2k)) has the desired property. ut

The following corollary derives from Lemma 24 and Theorem 19.

Corollary 25. For all k ∈ N, δ↓k ≥ δ↓k+1 and δ = infk∈N δ↓k.

6 An Approximation Algorithm

This section exploits the aforementioned results to propose a decidable procedure
for approximating the trace distance δ on SMCs with arbitrary precision.

Let ε > 0 and consider the sequences {δ↑k}k∈N and {δ↓k}k∈N from Section 5.
The procedure proceeds step-wise (increasing k ≥ 0) by computing the point-
wise difference δ↓k − δ↑k until is smaller then ε. Termination and correctness is
ensured by the convergence of the sequences from above and below to δ.

Theorem 26. LetM be a SMC. There exists an algorithm that, given a rational
number ε > 0, computes a function d : S×S → [0, 1]∩Q+ such that |d− δ| < ε.

We prove this theorem under two reasonable assumptions regarding SMCs:
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A1. For all s ∈ S and q, q′ ∈ Q+, ρ(s)([q, q′)) is computable;
A2. For all s, s′ ∈ S, ‖ρ(s)− ρ(s′)‖ is computable.

In the above ρ(s)([q, q′)) and ‖ρ(s) − ρ(s′)‖ may assume real values, and with
the term “compute” we mean that there exists an effective Cauchy sequence of
rationals that converges to the value.

Lemma 27. Assuming A1, δ↑k is computable for all k ∈ N.

Proof (sketch). For each k ∈ N, the set Ek is finite. Moreover, for each s ∈ S and
E ∈ Ek, Ps(E) is computable thanks to its additivity and the hypothesis A1. ut

The computability of the sequence {δ↓k}k∈N is less trivial. Equation (2) sug-
gests to look for a coupling structure C ∈ C2k(M) that minimizes the discrepancy
PCs,s′(6≡`ω ). This is done by following a searching strategy similar to the one in [4]
and structured as follows: (i) we provide an alternative characterization of the
discrepancy associated with a coupling structure (Section 6.1); (ii) we describe
how to construct an optimal coupling structure and show that its associated
discrepancy is computable (Section 6.2).

6.1 Fixed Point Characterization of the Discrepancy

We characterize the discrepancy associated with a coupling structure C by means
of the least fixed point of a suitable operator parametric in C. To define the fixed
point operator it is convenient to split a coupling structure into two “projec-
tions”: on discrete state transitions (regardless of time delays); and on residence
times (given that a sequence of transitions has occurred). To this end define
Sk : S → D(Sk+1) and Tk : Sk → ∆(Rk+) as follows

Sk(s)(u0..uk) = 1s(u0) ·
∏k−1
i=0 τ(ui)(ui+1) , Tk(v1..vk) = ρ(v1)× ··· × ρ(vk) .

Lemma 28. The set Ck(M) is in bijection with the set of pairs of functions
τC : S × S → D(Sk+1 × Sk+1) and ρC : Sk × Sk → ∆(Rk+ × Rk+) such that

τC(u, v) ∈Ω(Sk(u),Sk(v)) and ρC(u1..uk, v1..vk) ∈Ω(Tk(u1..uk),Tk(v1..vk)) .

Hereafter we identify the coupling structure C with its bijective image (τC , ρC).
Intuitively, τC(u, v)(u0..uk, v0..vk) is the probability that two copies of M,

scheduled according to C, have respectively generated the sequences of states
u0..uk and v0..vk starting from u and v; while ρ(u0..uk−1, v0..vk−1)(R × R′)
is the probability that, having observed u0..uk−1 and v0..vk−1, the generated
sequence of time delays are in R,R′ ⊆ Rk+, respectively.

For a coupling structure C = (τC , ρC) ∈ Ck(M), define the self-map Γ C over
[0, 1]-valued functions on Sk+1 × Sk+1 as follows5

Γ C(d)(u0..uk, v0..vk) =


0 if α = 0

1 if α 6= 0, ∃i. ui 6≡` vi
β + (1− β) ·

∫
d dτC(uk, vk) otherwise

5 Since, for all u, v ∈ S, τC(u, v) is a discrete measure on a finite space, the Lebesgue
integral

∫
d dτC(u, v) in the definition of Γ C is

∑
x,y∈Sk+1 d(x, y) · τC(u, v)(x, y).
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where β = ρC(u0..uk−1, v0..vk−1)( 6=) and α = τC(u0, v0)(u0..uk, v0..vk).
The operator Γ C is monotonic w.r.t. the point-wise order on [0, 1]-valued

functions. Hence, by Tarski’s fixed point theorem, Γ C has a least fixed point,
which we denote by γC . The next result shows that γC is closely related to the
discrepancy associated with the coupling structure C, and this will eventually be
used to compute it.

Lemma 29. For any coupling structure C, PCs,s′(6≡`ω ) =
∫
γC dτC(s, s

′).

6.2 Construction of an Optimal Coupling Structure

In this subsection we construct an optimal coupling structure by iterating suc-
cessive updates of a given coupling structure. We provide necessary and sufficient
conditions for a coupling structure C to ensure that δ↓k is obtained from γC .

To this end, we first introduce the notion of update for a coupling structure.

Definition 30 (Update). Let C = (τC , ρC) ∈ Ck(M). For µ ∈ Ω(Sk(u),Sk(v))
and ν ∈ Ω(Tk(u1..uk),Tk(v1..vk)), define

– transition update: C[(u, v)/µ] = (τC [(u, v) 7→ µ], ρC);
– delay update: C〈(u1..uk, v1..vk)/ν〉 = (τC , ρC [(u1..uk, v1..vk) 7→ ν]).

where, for a function f : X → Y , f [x 7→ y] denotes the update of f at x with y.

Our update strategy relies on the following result.

Lemma 31 (Update criteria). Let C = (τC , ρC) ∈ Ck(M) be a coupling struc-
ture and u0..uk, v0..vk ∈ S such that τC(u0..uk, v0..vk) > 0 and, for all i ≤ k,
ui ≡` vi. Then, for µ ∈ Ω(Sk(uk),Sk(vk)), ν ∈ Ω(Tk(u0..uk−1),Tk(v0..vk−1))
and D = C[(uk, vk)/µ]〈(u0..uk−1, v1..vk−1)/ν〉, it holds γD < γC whenever

(i) ν(6=) < ρC(u0..uk−1, v1..vk−1)( 6=) and
∫
γC dµ ≤

∫
γC dτC(uk, vk), or

(ii) ν(6=) ≤ ρC(u0..uk−1, v1..vk−1)( 6=) and
∫
γC dµ <

∫
γC dτC(uk, vk).

Condition (i) in Lemma 31 ensures that any C = (τC , ρC) ∈ Ck(M) is improved
by replacing ρC with the function ρ∗ : Sk × Sk → ∆(Rk+ × Rk+) defined as

ρ∗(u0..uk−1, v1..vk−1) = min
{
ν( 6=) | ν ∈ Ω(Tk(u0..uk−1),Tk(v0..vk−1))

}
= ‖Tk(u0..uk−1)− Tk(v0..vk−1)‖ (Lemma 18)

= 1−
∏k−1
i=0 (1− ‖ρ(ui)− ρ(vi)‖) = β∗ ,

where the last equality follows by the definition of Tk(u0..uk−1) and Tk(v0..vk−1)
as product measures. Notice that, assuming A2, the above is computable. By
replacing β in the definition of Γ C with β∗, γC can be computed as the least
solution of the linear equation system induced by the definition of Γ C .

Condition (ii) of Lemma 31 suggests to improve C with C[(uk, vk)/µ∗] where

µ∗ = arg min
{∫

γC dµ | µ ∈ Ω(Sk(uk),Sk(vk))
}

= arg min
{∑

x,y∈Sk+1 γC(x, y) · µ(x, y) | µ ∈ Ω(Sk(uk),Sk(vk))
}
.
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The above is a linear program (a.k.a. transportation problem), hence computable.
The sufficient conditions for termination is provided by the following lemma.

Lemma 32. Let C = (τC , ρ
∗) ∈ C2k(M) be such that δ↓k(u, v) 6=

∫
γC dτC(u, v)

for some u, v ∈ S. Then there exist u′, v′ ∈ S and µ ∈ Ω(S2k(u′),S2k(v′)) such
that

∫
γC dµ <

∫
γC dτC(u

′, v′).

Intuitively, the above ensures that, unless C is an optimal coupling structure, (ii)
in Lemma 31 is satisfied, so that, we can further improve C as aforesaid.

Proposition 33. Assuming A2, δ↓k is computable for all k ∈ N.

Proof (sketch). The aforementioned strategy ensures that the updated couplings
are chosen from the vertices of the polytopes Ω(Sk(u),Sk(v)), for u, v ∈ S. Since
these polytopes have finitely many vertexes, the procedure eventually terminates.
By Lemma 32, the last coupling describes δ↓k. ut

7 Conclusions and Future Work

In this paper we showed that the total variation distance of SMCs (i.e., the trace
distance) is the appropriate behavioral distance to reason about linear real-time
properties. This has been done by giving characterizations in terms of MTL for-
mulas or timed ω-regular languages that arise naturally in the context of linear
real-time probabilistic model checking. Notably, the technique that has been pro-
posed to prove this result is more general and allows for many more interesting
characterizations. We showed, for instance, that the distance can be character-
ized by considering strictly less expressive fragments of MTL, namely MTL−;
analogously, it suffices to consider only the subclass of ω-languages recognized
by single-clock always resetting DTAs.

Moreover, we studied the problem of approximating the trace distance within
any absolute error. We showed that the problem is computable by approximating
the total variation distance both from above and below by means of the sequences
{δ↓k}k and {δ↑k}k, that are proved to be effective. This both extends the result
of [9] to the real-time setting and gives an alternative way to approximate the
total variation distance on MCs.

As a future work we consider to further explore the potentiality of the pre-
sented results by studying how fast the sequences converge to the total variation
distance. Moreover, we would like to see if similar results can be used to link dif-
ferent behavioral distances, such as the Kantorovich-based bisimilarity distance
and the total variation (for which the former is know to be an upper bound of
the latter), opening for the possibility of “bridging the gap” between trace and
branching-based behavioral distances.

From a computational perspective, also motivated by our previous work [4]
on MCs, we would like to implement an on-the-fly algorithm for computing tight
over-approximations of the trace distance.
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A Technical proofs

This section contains all the technical proofs that have been omitted or only
sketched in the paper.

Proof (of Lemma 5). The closure of F under dµ is given by

F = {E ∈ Σ | ∀ε > 0. ∃F ∈ F . dµ(E,F ) < ε} .

We show that F = Σ. Clearly F ⊆ Σ. The converse inclusion follows by F ⊆ F
and Σ = σ(F), showing that F is a σ-algebra:

Complement. Let E ∈ F . We want to show that Ec ∈ F , where Ec := Σ \ E
denotes the complement of E in Σ. Let ε > 0. By E ∈ F , there exists F ∈ F
such that dµ(E,F ) < ε. Moreover, note that E 4 F = Ec 4 F c, so

dµ(Ec, F c) = µ(Ec 4 F c) = µ(E 4 F ) = dµ(E,F ) ,

and dµ(Ec, F c) < ε. By hypothesis, F is a field, hence F c ∈ F . Due to the
generality of ε > 0, this proves Ec ∈ F .

Countable Union. Let {Ei | i ∈ N} ⊆ F . We want to show that
⋃
i∈NEi ∈ F .

Let ε > 0. To prove the thesis it suffices to show that following statements hold:

a) there exists k ∈ N, such that dµ(
⋃
i∈NEi,

⋃k
i=0Ei) <

ε
2 ;

b) for all n ∈ N, there exist F0, . . . , Fn ∈ F , such that dµ(
⋃n
i=0Ei,

⋃n
i=0 Fi) <

ε
2 .

Indeed, by applying the triangular inequality on (a) and (b), we have that there
exist k ∈ N and F0, . . . , Fk ∈ F such that

dµ(
⋃
i∈NEi,

⋃k
i=0 Fi) ≤ dµ(

⋃
i∈NEi,

⋃k
i=0Ei) + dµ(

⋃k
i=0Ei,

⋃k
i=0 Fi) < ε .

Since by hypothesis F is a field, we also have
⋃k
i=0 Fi ∈ F . Therefore, due to

the generality of ε > 0, we obtain
⋃
i∈NEi ∈ F .

(a). Since {
⋃n
i=0Ei}n∈N is an increasing sequence converging to

⋃
i∈NEi, by

ω-continuity from below of µ, we have that {µ(
⋃n
i=0Ei)}n∈N converges in R to

µ(
⋃
i∈NEi), hence there exists and index k ∈ N such that

|µ(
⋃
i∈NEi)− µ(

⋃k
i=0Ei)| <

ε
2 .

By
⋃
i∈NEi ⊆

⋃k
i=0Ei and monotonicity, additivity and finiteness of µ,

dµ(
⋃
i∈NEi,

⋃k
i=0Ei) = µ(

⋃
i∈NEi 4

⋃k
i=0Ei)

= µ(
⋃
i∈NEi \

⋃k
i=0Ei)

= µ(
⋃
i∈NEi)− µ(

⋃k
i=0Ei) <

ε
2 .

(b). Let n ∈ N. By E0, . . . , En ∈ F , there exists F0, . . . , Fn ∈ F such that
dµ(Ei, Fi) <

ε
2n . Moreover, note that

⋃n
i=0Ei 4

⋃n
i=0 Fi ⊆

⋃n
i=0(Ei 4 Fi), so

that by monotonicity and sub-additivity of µ we have

dµ(
⋃n
i=0Ei,

⋃k
i=0 Fi) = µ(

⋃n
i=0Ei 4

⋃n
i=0 Fi)

≤ µ(
⋃n
i=0(Ei 4 Fi))

≤
∑n
i=0 µ(Ei 4 Fi) <

∑n
i=0

ε
2n = ε

2 . ut
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Proof (of Theorem 6). For Y 6= ∅ and f : Y → R bounded and continuous,
if D ⊆ Y is dense then sup f(D) = sup f(Y ). By Lemma 5, F is dense in
(Σ, dµ+ν). We show that |µ− ν| : Σ → R is bounded and continuous. Let E and
F be arbitrary measurable sets in Σ, then

µ(E) = µ(E \ F ) + µ(E ∩ F ) (µ additive)

≤ µ((E \ F ) ∪ (F \ E)) + µ(F ) (µ monotone)

= µ(E 4 F ) + µ(E) (by def)

≤ µ(E 4 F ) + ν(E 4 F ) + µ(F ) (ν positive)

= dµ+ν(E,F ) + µ(F ) . (by def)

This implies that, for all E,F ∈ Σ, dµ+ν(E,F ) ≥ |µ(E)−µ(F )|, hence µ : Σ → R
is 1-Lipschitz continuous. Analogously, also ν : Σ → R is 1-Lipschitz continuous.
Then, continuity of |µ− ν| : Σ → R follows by composition of continuous func-
tions. Moreover, |µ−ν| is bounded because, by hypothesis, µ and ν are finite. ut

Proof (of Lemma 7). We prove the two statements separately.

(i) By structural induction on the syntax of ϕ ∈ MTL we prove that JϕK ∈ σ(T ).

Atomic prop. JaK = {π | a ∈ `(π[0])} =
⋃{

C([s]≡`
) | s ∈ `−1({a})

}
. Since S

is finite and C([s]≡`
) ∈ T for all s ∈ S, then JaK ∈ σ(T ).

False. J⊥K = ∅ ∈ σ(T ).

Implication. Jφ → ψK = J¬φ ∨ ψK = JφKc ∪ JψK. By inductive hypothesis,
JφK, JψK ∈ σ(T ), therefore Jφ→ ψK ∈ σ(T ).

Next. Consider XIφ. The following hold

JXIφK = {π | π〈0〉 ∈ I, and M, π|1 |= φ} (by def. of X)

= {π | π〈0〉 ∈ I, and π|1 ∈ JφK} (by def. of J·K)

= (·)〈0〉−1(I) ∩ (·)|−11 (JφK) (by def. of (·)〈0〉 and (·)|1)

By inductive hypothesis and the fact that both (·)〈0〉 and (·)|1 are measurable
functions, it follows that JXIφK ∈ σ(T ).

Until. Consider Jφ U[a,b] ψK. For k > 0 we define the set OnTime@k as

OnTime@k =
⋃C(X)

∣∣∣∣∣∣∣
Ci ∈ S/≡`

, t−i , t
+
i ∈ Q+, for 0 ≤ i ≤ k,∑k−1

i=0 t
−
i ≥ a,

∑k−1
i=0 t

+
i ≤ b, t

−
i ≤ t

+
i ,

X = C0, [t
−
0 , t

+
0 ], . . . , [t−k−1, t

+
k−1], Cn


Notice that OnTime@k is a countable union of cylinders in T (the number of
unions is bounded by |(S ×Q2

+)k+1|), hence it is a measurable set in σ(T ).

OnTime@k = {π | ∀i < k.
∑k−1
i=0 π〈i〉 ∈ [a, b]} (3)

The inclusion from left to right trivially holds by definition of OnTime@k.
As for the reverse inclusion, let π be a timed path over S, such that π〈i〉 = ti
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(i = 0..k−1) and
∑k−1
i=0 ti ∈ [a, b]. We have to prove that there exist t−i , t

+
i ∈ Q+

such that t−i ≤ ti ≤ t
+
i ,
∑k−1
i=0 t

−
i ≥ a, and

∑k−1
i=0 t

+
i ≤ b. When k = 1 it suffices

to take t−1 = a and t+1 = b. Assume k > 1. Let ∆ = 2h/10h for some h ∈ N
large enough to satisfy the following two inequalities

∑k−1
i=0 ti − ∆ > a and∑k−2

i=0 ti + ∆ < b. Let t−i = ti = t+i if ti ∈ Q+, otherwise we choose some
t−i , t

+
i ∈ Q+ that satisfy

t−i < ti < t+i , t−i > ti −∆/2k, and t+i < ti +∆/2k . (4)

We proceed by showing that the constraints (4) are sufficient to prove that∑k−1
i=0 t

−
i ≥ a and

∑k−1
i=0 t

+
i ≤ b, then we show how to pick t−i , t

+
i ∈ Q+ in order

to satisfy (4). The following hold∑k−1
i=0 ti −∆ <

∑k−1
i=0 (t−i +∆/2k)−∆ = (by (4))

=
∑k−1
i=0 t

−
i −∆/2 ≤

∑k−1
i=0 t

−
i . (by ∆ ≥ 0)

By construction,
∑k−1
i=0 ti −∆ > a, hence

∑k−1
i=0 t

−
i > a. Analogously,∑k−2

i=0 ti +∆ >
∑k−1
i=0 (t+i −∆/2k)−∆ = (by (4))

=
∑k−2
i=0 t

+
i + (k + 1)∆/2k ≥

∑k−2
i=0 t

+
i . (by ∆ ≥ 0)

By construction,
∑k−2
i=0 ti +∆ < b, hence

∑k−2
i=0 t

+
i < b.

One can check that the constraints (4) are easily satisfied if we pick

t−i = btic+
b10h · {ti}c

10h
, t+i = btic+

b10h · {ti}c+ 1

10h
,

for some large enough h ∈ N, where {ti} denotes the fractional part of ti 6∈ Q+.
This proves (3).

Jφ U[a,b] ψK

=

{
π

∣∣∣∣∣ ∃i > 0.
∑i−1
k=0 π〈i〉 ∈ [a, b], and M, π|i |= ψ,

∀0 ≤ j < i.M, π|j |= φ

}
(by def. U)

=

{
π

∣∣∣∣∣ ∃i > 0.
∑i−1
k=0 π〈i〉 ∈ [a, b], and π|i ∈ JψK,

∀0 ≤ j < i. π|j ∈ JφK

}
(by def. J·K)

=
⋃
i>0

⋂
0≤j<i

((·)|−1j (JφK) ∩ (·)|−1i (JψK) ∩OnTime@i) . (by def. (·)|k and (3))

By inductive hypothesis on φ, ψ and measurability of (·)|k for arbitrary k ∈ N,
it follows that Jφ U[a,b] ψK ∈ σ(T ).

(ii) We show σ(T ) ⊆ σ(JMTL−K). Let I be the family of closed intervals in R+

with rational endpoints. It is standard that σ(I) = B, and from it one can easily
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verify σ(C(S/≡`
, I)) = σ(T ). Therefore, to prove σ(T ) ⊆ σ(JMTL−K), it suffices

to show C(S/≡`
, I) ⊆ σ(JMTL−K). Let define Ap : A× C(S/≡`

, I)→ MTL− as

Ap(a,C(C)) =

{
a if C ⊆ `−1(a)

¬a othewise

Ap(a,C(C, I,X)) =

{
a ∧ XIAp(a,C(X)) if C ⊆ `−1(a)

¬a ∧ XIAp(a,C(X)) otherwise ,

Let C = C(C0, I0, . . . , In−1, Cn) ∈ C(S/≡`
, I), one can prove by induction

on n that
⋂
a∈AJAp(a,C)K = C. Since σ(JMTL−K) is closed under countable

intersection, we conclude that C ∈ σ(JMTL−K). ut

Proof (of Corollary 8). L is closed under all Boolean operators, therefore JLK
is a field. By Lemma 7(i) and L ⊆ MTL, JLK ⊆ σ(T ). Since T ⊆ σ(JLK), it
follows that σ(JLK) = σ(T ). The equality δL = δ now follows by Theorem 6. In
particular δMTL = δMTL− = δ follows by Lemma 7(ii). ut

Proof (Lemma 11). We prove the two statements separately.

(i) This is proven in [8, Theorem 3.2] and the proof can be left unchanged.
(ii) We show σ(T ) ⊆ σ(JDTAK). Let I be the family of closed intervals in R+

with rational endpoints. It is standard that σ(I) = B, and from it one can easily
verify σ(C(S/≡`

, I)) = σ(T ). Therefore, to show σ(T ) ⊆ σ(JDTAK) it suffices to
prove C(S/≡`

, I) ⊆ σ(JDTAK).
Let C = C([s0]≡`

, I0, . . . , In−1, [sn]≡`
) ∈ C(S/≡`

, I). We define a DTA A =
(Q, 2A, q0, F,→) such that JAK = C. Let Q = {q0, . . . , qn}, F = {{qn}}, and, for
a (shared) clock x ∈ X in each guard,

→ = {(qi, `(si), gi,X , qi+1) | gi = a ≤ x ≤ b for Ii = [a, b], 0 ≤ i ≤ n}
∪ {(qn, l, ∅,X , qn) | l ⊆ A} .

It is easy to see that the only accepted timed paths π ∈ L(A) are such that
π|n = `(s0), t0, . . . , tn−1, `(sn), and ti ∈ Ii (0 ≤ i ≤ n − 1), because clocks are
always resetting. So the thesis. ut

Proof (of Corollary 12). Φ is closed under all Boolean operators, therefore JΦK is
a field. By Lemma 11(i) and Φ ⊆ TA, JΦK ⊆ σ(T ). Since T ⊆ σ(JΦK), it follows
that σ(JΦK) = σ(T ). The equality δΦ = δ follows by Theorem 6. In particular
δDTA = δ follows by Lemma 11(ii) and the fact that DTAs are closed under all
Boolean operators [1]. The equality δTA = δ, follows by δ ≥ δTA ≥ δDTA. ut

Proof (of Lemma 13).

(i) It suffices to prove that 1-RDTAs are closed under union and complement.
As for the latter, one need only to complement the set of final locations (similar
to [1]). Closure under union is proven via a product construction similar to [1,
p.334], by noticing that the resetting condition on the automata allows one to
use a single clock in the product.
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(ii) The proof of Lemma 11(ii) actually uses 1-RDTAs. ut

Proof (of Lemma 15). For Ek ⊆ Ek+1, it suffices to prove Ck(S/≡`
,Rk) ⊆ Ek+1.

We proceed by induction on k ≥ 0. The base case is trivial. Assume k > 0
and let C ∈ Ck(S/≡`

,Rk). Note that, for any n ∈ N such that 0 ≤ n < k2k,
n
2k

= 2n
2k+1 and 2n < (k + 1)2k+1. From this is immediate to prove that there

exists F ⊆ Ck(S/≡`
,Rk+1) such that C =

⋃
F . Note that Rk+1 is a partition

of R+ (i.e., a family of pairwise disjoint subsets of R+ whose union is R+). So,
any C ′ = C(C0, R0, .., Rk−1, Ck) ∈ Ck(S/≡`

,Rk+1) can be represented as

C ′ =
⋃
{C(C0, R0, .., Rk−1, Ck, R

′′, C ′′) | R′′ ∈ Rk+1, C
′′ ∈ S/≡`

} .

Since Rk+1 and S/≡`
are finite, from the above we get that C can be represented

as a finite union of cylinders in Ck+1(S/≡`
,Rk+1), hence C ∈ Ek+1.

Let E =
⋃
k∈N Ek. Since each Ck(S/≡`

,Rk) forms a finite partition of Π (S), it
is immediate to prove that Ek is a field. Since the limit of an increasing sequence
of fields is a field, then E is a field.

It remains to show σ(E) = σ(T ). Clearly E ⊆ σ(T ), hence σ(E) ⊆ σ(T ).
As for the converse inclusion, let R =

⋃
k∈N Rk and recall that B = σ(CO),

where CO = {[q, q′) | q < q′ ∈ Q+}∪{[q,∞) | q ∈ Q+} is the family of left-closed
right-open intervals with rational endpoints (or ∞). Let q < q′ ∈ Q+, then the
following hold

[q, q′) =
⋃{[

n

2k
,
n+ 1

2k

)∣∣∣∣ q ≤ n

2k
<
n+ 1

2k
≤ q′, for k ∈ N, 0 ≤ n < k2k

}
,

[q,∞) =
⋃{[

n

2k
,
n+ 1

2k

)∣∣∣∣ q ≤ n

2k
, for k ∈ N, 0 ≤ n < k2k

}
.

The above suffices to prove CO ⊆ σ(R), hence B = σ(CO) ⊆ σ(R). This proves
σ(C(S/≡`

,R)) ⊆ σ(T ). Clearly, E ⊆ σ(C(S/≡`
,R)), therefore σ(E) ⊆ σ(T ). ut

Proof (of Lemma 18 —restated from [14, Th.5.2]). We prove that ‖µ − ν‖ is a
lower bound for {ω(6∼=) | ω ∈ Ω(µ, ν)}. Let ω ∈ Ω(µ, ν) and E ∈ Σ, then

µ(E) = ω(E ×X) (ω ∈ Ω(µ, ν))

≥ ω((X × E) ∩ ∼=) (def. ∼=)

= 1− ω((X × E)c ∪ 6∼=) (complement)

≥ 1− ω((X × E)c)− ω(6∼=) (sub additivity)

= ω(X × E)− ω(6∼=) (complement)

= ν(E)− ω(6∼=) . (ω ∈ Ω(µ, ν))

Thus, by the generality of ω ∈ Ω(µ, ν) and E ∈ Σ, it immediately follows that
‖µ− ν‖ = supE∈Σ |µ(E)− ν(E)| ≤ min {ω(6∼=) | ω ∈ Ω(µ, ν)}.

Now we prove that there exists an optimal coupling ω∗ ∈ Ω(µ, ν) such that
ω∗(6∼=) = ‖µ − ν‖. Define ψ : X → X × X by ψ(x) = (x, x) (it is measurable
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because ψ−1(E×E′) = E∩E′, for all E,E′ ∈ Σ). Note that ψ−1(∼=) = X, since
ψ(x) = (x, x) ∈ ∼=.

If µ = ν, just define ω∗ = µ[ψ] (to check that this is a coupling and that it
is such that ω∗(6∼=) = ‖µ − ν‖ is trivial). Let µ 6= ν. Define µ ∧ ν : Σ → R+ as
follows, for E ∈ Σ

(µ ∧ ν)(E) = inf {µ(F ) + ν(E \ F ) | F ∈ Σ and F ⊆ E} .

The above is a well defined measure (a.k.a. the meet of µ and ν, see [13, Corr.6
pp.163]). Now define the following derived measures

η = µ− (µ ∧ ν) , η′ = ν − (µ ∧ ν) , ω∗ =
η × η′

1− γ
+ (µ ∧ ν)[ψ] .

where γ = (µ ∧ ν)[ψ](∼=). Note that, since ψ−1(∼=) = X, (µ ∧ ν)[ψ] puts all its
mass in ∼=. Moreover, since µ 6= ν, we get γ < 1, so ω∗ is well defined and, in
particular, ω∗(∼=) = γ. Now we show that ω∗ ∈ Ω(µ, ν). Let E ∈ Σ, then

ω∗(E ×X) =
η(E) · η′(X)

1− γ
+ (µ ∧ ν)[ψ](E ×Π (S)) (def. ω∗)

=
η(E) · (ν(X)− (µ ∧ ν)(X))

1− γ
+ (µ ∧ ν)[ψ](E ×X) (def. η′)

=
η(E) · (1− γ)

1− γ
+ (µ ∧ ν)[ψ](E ×X) (def. µ ∧ ν)

= µ(E)− (µ ∧ ν)(E) + (µ ∧ ν)[ψ](E ×X) (def. η)

= µ(E)− (µ ∧ ν)(E) + (µ ∧ ν)(E) (def. (µ ∧ ν)[ψ])

= µ(E) .

Similarly ω∗(X × E) = ν(E). The following shows that ω∗ is optimal

‖µ− ν‖ = 1− (µ ∧ ν)(X) (def. µ ∧ ν and compl.)

= 1− (µ ∧ ν)[ψ](∼=) (def. ψ)

= 1− γ (def. γ)

= 1− ω∗(∼=) (def. ω∗)

= ω∗(6∼=) (compl.)

ut

Proof (of Lemma 20). We first show ≡`ω = ∩E∈σ(T ) {(π, π′) | π ∈ E iff π′ ∈ E}.
(⊆) It suffices to prove inseparability w.r.t trace cylinders. Let π ≡`ω π′ and
π ∈ C = C(C0, R0, . . . , Rn−1, Cn) ∈ T , for Ci ∈ S/≡`

and Ri ∈ B, i = 0..n.
Then, for all j ∈ N, `(π[j]) = `(π′[j]) (hence, π[j] ≡` π′[j]) and π〈j〉 = π′〈j〉, so
that π′ ∈ C. (⊇) By contraposition. Let π 6≡`ω π′, then there exist j ∈ N such
that π[j] 6≡` π[j] or π〈j〉 6= π′〈j〉. Let E = (·)|−1j (C([π[j]]≡`

, {π〈j〉} , S)), then
π ∈ E but π′ /∈ E. The inclusion follows since the function (·)|j is measurable.
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As for the measurability of ≡`ω , it suffices to show that its complement
6≡`ω∈ σ(T )⊗ σ(T ). Define DiffS (k) and DiffT (k), for k ≥ 0, as

DiffS (k) :=
⋃
C∈S/≡`

(·)|−1k (C(C))× (·)|−1k (C(S \ C)) ,

DiffT (k) :=
⋃
t<t′∈Q+

(·)|−1k (C(S, (t, t′), S))× (·)|−1k (C(S,R+ \ (t, t′), S)) .

Measurability of DiffS (k) and DiffT (k) follows immediately by measurability of
(·)|k. Now we show that 6≡`ω=

⋃
k∈N

(
DiffS (k) ∪DiffT (k)

)
.

(⊆) Let π 6≡`ω π′. Then, π[j] 6≡` π′[j] or π〈j〉 6= π′〈j〉, for some j ∈ N. Assume
π[j] 6≡` π′[j], then (π, π′) ∈ (·)|−1j (C(C))×(·)|−1j (C(S\C)). Assume π〈j〉 6= π′〈j〉.
Let ε = |π〈j〉 − π′〈j〉|. Since Q+ is dense in R+, every nonempty open set has
nonempty intersection with Q+, so that there exist t ∈ Q+∩ (π〈j〉− ε, π〈j〉) and
t′ ∈ Q+ ∩ (π〈j〉, π〈j〉 + ε). Clearly, π〈j〉 ∈ (t, t′) and π′〈j〉 /∈ (t, t′), therefore,
(π, π′) ∈ (·)|−1j (C(S, (t, t′), S))× (·)|−1j (C(S,R+ \ (t, t′), S)).

(⊇) Let (π, π′) ∈ DiffS (k) ∪DiffT (k), for some k ∈ N. Then, since

DiffS (k) =
⋃
C∈S/≡`

{(π, π′) | π|k ∈ C(C) and π′|k ∈ C(S \ C)}

= {(π, π′) | π[k] 6≡` π′[k]} ,

DiffT (k) =
⋃
t<t′∈Q+

{(π, π′) | π|k ∈ C(S, (t, t′), S), π′|k ∈ C(S,R+\(t, t′), S)}

=
⋃
t<t′∈Q+

{(π, π′) | π〈k〉 ∈ (t, t′) and π′〈k〉 /∈ (t, t′)}

⊆ {(π, π′) | π〈k〉 6= π′〈k〉} ,

there exists k ∈ N such that π[k] 6≡` π′[k] or π〈k〉 6= π′〈k〉. Thus, π 6≡`ω π′. ut

Proof (of Lemma 23). Let C ∈ Ck(M). To prove PCs,s′ ∈ Ω(Ps,Ps′) it suffices to
show that, for all n ∈ N and E = {u0} ×R0 × ..×Rnk−1×{unk} ∈ Rnk

PCs,s′(C(E)×Π (S))
(i)
= Ps(C(E)) , PCs,s′(Π (S)× C(E))

(ii)
= Ps′(C(E)) .

We prove (i) by induction on n ≥ 0. The base case is trivial. Let n > 0. For
any v ∈ Snk+1 define F v = {v0} × R+ × .. × R+ × {vnk} and, for h < n, let
F v
h = {vhk} × R+ × ..× R+ × {v(h+1)k}. Then the following hold

PCs,s′(C(E)×Π (S)) =

=
∑

v∈Snk+1

PCs,s′(C(E)× C(F v)) (additivity)

=
∑

v∈Snk+1

1{(s,s′)}(u0, v0) ·
n−1∏
h=0

C(uhk, vhk)(Eh × F v
h ) (def. PCs,s′)

=
∑

v∈S(n−1)k+1

PCs,s′(C(E′)× C(F v)) · C(s(n−1)k, v(n−1)k)(E(n−1) ×Πk(S))

(def. PCs,s′)
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=
∑

v∈S(n−1)k+1

PCs,s′(C(E′)× C(F v)) · Ps(n−1)k
(E(n−1)) (C ∈ Ck(M))

= PCs,s′(C(E′)×Π (S)) · Ps(n−1)k
(E(n−1)) (additivity)

= Ps(C(E′)) · Ps(n−1)k
(E(n−1)) (inductive hp.)

= Ps(C(E)) (def. PCs,s′)

where E′ = {u0} ×R0 × ..×R(n−1)k−1×{u(n−1)k}. (ii) follows similarly. ut

Proof (of Lemma 24). We prove the two items separately.

(i) Let k > 0 and C ∈ Ck(M). Define, for all s, s′ ∈ S, D(s, s′) as the unique
measure on Π2k(S) ⊗ Π2k(S) s.t., for all E = {u0}×R0× ..×R2k−1×{u2k}
and F = {v0}×H0× ..×H2k−1×{v2k} in R2k

D(s, s′)(E × F ) = C(s, s′)(E′ × F ′) · C(uk, vk)(E′′ × F ′′) ,

where E′={u0}×R0×..×Rk−1×{uk} and E′′={uk}×Rk ×..×R2k−1×{u2k}
(similarly for F ). To show D ∈ C2k(M) we need to prove that for all s, s′ ∈ S,
D(s, s′) ∈ Ω(Ps|2k,Ps′ |2k). To this end it is sufficient that, for all measurable
sets E = {u0}×R0× ..×R2k−1×{u2k} ∈ R2k, the following hold

D(s, s′)(E ×Π2k(S))
(i)
= Ps|2k(E) , D(s, s′)(Π2k(S)× E)

(ii)
= Ps′ |2k(E) .

We prove only (i). For any v ∈ S2k+1 define F v = {v0} × R+ × ..× R+ × {v2k}
and, for h = 0..1, let F v

h = {vhk} × R+ × ..× R+ × {v(h+1)k}. Then we have

D(s, s′)(E ×Π2k(S)) =

=
∑

v∈S2k+1 D(s, s′)(E × F v) (additivity)

=
∑

v∈S2k+1 C(s, s′)(E′ × F v
0 ) · C(uk, vk)(E′′ × F v

1 ) (def. D)

=
∑

v∈Sk+1 C(s, s′)(E′ × F v
0 ) · C(uk, vk)(E′′ ×Πk(S)) (additivity)

=
∑

v∈Sk+1 C(s, s′)(E′ × F v
0 ) · Puk

|k(E′′) (C ∈ Ck(M))

= C(s, s′)(E′ ×Πk(S)) · Puk
|k(E′′) (additivity)

= Ps|k(E′) · Puk
|k(E′′) (C ∈ Ck(M))

= Ps(C(E′)) · Puk
(C(E′′)) (preimage)

= Ps(C(E)) (def. Ps)
= Ps|2k(E) . (preimage)

We show that, for arbitrary s, s′ ∈ S, PCs,s′ = PDs,s′ . To this end it suffices to
check the following for all n ∈ N and E = {u0}×R0× ..×R2nk−1×{u2nk},
F = {v0}×H0× ..×H2nk−1×{v2nk} in R2nk:

PCs,s′(C(E)× C(F )) = PDs,s′(C(E)× C(F ))
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We proceed by induction on n ≥ 0. The base case is trivial. Assume n > 0 and,
for i ∈ {k, 2k}, define Eih = {uhi} × Rhi × .. × R(h+1)i−1×{u(h+1)i} (similarly
for F ). Then the following holds:

PCs,s′(C(E)×C(F )) = 1{(s,s′)}(u0, v0) ·
∏2n−1
h=0 C(uhk, vhk)(Ekh ×F kh ) (def. PC)

= 1{(s,s′)}(u0, v0) ·
∏n−1
h=0 D(u2hk, v2hk)(E2k

h ×F 2k
h ) (def. D)

= PDs,s′(C(E)×C(F )) . (def. PD)

From the above it immediately follows that Ck(M) ⊆ C2k(M).
(ii) We prove the following more general result from which we will obtain (ii).

Let (X,Σ) be a measurable space such that F is a field that generates Σ and
let D ⊆ ∆(X) be such that, for all µ ∈ ∆(X) and F ∈ F , there exists ν ∈ D such
that ν(F ) = µ(F ). Then D is dense in ∆(X) w.r.t. the total variation distance.

Let E ∈ Σ be an arbitrary measurable set and dE : ∆(X) × ∆(X) → R+

be the pseudometric defined as dE(µ, ν) = |µ(E) − ν(E)|, for µ, ν ∈ ∆(X).
Since ‖µ − ν‖ = supE∈Σ dE(µ, ν), to prove that D is dense w.r.t. the total
variation distance it suffices to show that D is dense w.r.t. dE , for any E ∈ Σ
(see Proposition 37). Let E ∈ Σ and ε > 0. For any µ ∈ ∆(X) we have to
provide ν ∈ D such that dE(µ, ν) < ε. Define the measure µ̃ as the least upper
bound of D ∪ {µ} w.r.t. the point-wise partial order between measures (ν v ν′

iff ν(A) ≤ ν′(A), for all A ∈ Σ). The existence of µ̃ is guaranteed by [13, Corr.6
pp.163] (note that µ̃ is not necessarily finite). By Lemma 5, F ⊆ Σ is dense
in (Σ, dµ̃), where dµ̃ is the Fréchet-Nikodym pseudometric6, hence there exists
F ∈ F such that dµ̃(E,F ) < ε

2 . By hypothesis, there exists ν ∈ D, such that
ν(F ) = µ(F ). Let ω ∈ {µ, ν} then

ω(E) = ω(E \ F ) + ω(E ∩ F ) (ω additive)

≤ ω((E \ F ) ∪ (F \ E)) + ω(F ) (ω monotone)

= ω(E 4 F ) + ω(E) (by def)

≤ µ̃(E 4 F ) + ω(F ) (ω v µ̃)

= dµ̃(E,F ) + ω(F ) . (by def)

This implies |ω(E)−ω(F )| ≤ dµ̃(E,F ), and in particular that |µ(E)−µ(F )| < ε
2

and |ν(E)− ν(F )| < ε
2 . Then, the density of D follows by

dE(µ, ν) = |µ(E)− ν(E)| (def. dE)

≤ |µ(E)− µ(F )|+ |µ(F )− ν(E)| (triangular ineq.)

= |µ(E)− µ(F )|+ |ν(F )− ν(E)| (ν(F ) = µ(F ))

<
ε

2
+
ε

2
= ε .

6 Notice that Lemma 5 does not assume the measure to be finite, hence it can be
safely applied to µ̃.
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Let s, s′ ∈ S,Ω =
⋃
i∈N
{
PCs,s′ | C ∈ C2i(M)

}
. Given the general result above,

to prove (ii) it is sufficient to provide a field F that generates the σ-algebra of
Π (S)⊗Π (S) and to show that, for every µ ∈ Ω(Ps,Ps′) and F ∈ F , there exists
ω ∈ Ω such that ω(F ) = µ(F ).

Define F =
⋃
k∈N Fk, where Fk denotes the collection of all finite union of

measurable sets of the form C(E) × C(F ), for some E,F ∈ Rk. It holds that
Fk ⊆ Fk+1 and Fk is a field, for all k ∈ N. Therefore F is a field that generates
the σ-algebra of Π (S)⊗Π (S).

Let µ ∈ Ω(Ps,Ps′), k ∈ N and D ∈ Ck(M). We define ωk = PCks,s′ , where

Ck : S × S → ∆(Πk(S)×Πk(S)) is defined by

Ck(u, v) =

{
µ[(·)|k × (·)|k] if (u, v) = (s, s′)

D(u, v) otherwise

where µ[(·)|k × (·)|k] denotes the push forward of µ along (π, π′) 7→ (π|k, π′|k).
Note that, since Ck(M) is nonempty, Ck is well defined. We show Ck ∈ Ck(M).
We just need to prove µ[(·)|k × (·)|k] ∈ Ω(Ps|k,Ps′ |k) that corresponds to check
µ[(·)|k×(·)|k](E×Πk(S)) = Ps|k(E) and µ[(·)|k×(·)|k](Πk(S)×E) = Ps′ |k(E)
for arbitrary E ∈ Rk (we check one equality, the other follows similarly):

µ[(·)|k × (·)|k](E ×Πk(S)) = µ(C(E)×Π (S)) (preimage)

= Ps(C(E)) (µ ∈ Ω(Ps,Ps′))
= Ps|k(E) . (preimage)

Next we prove that for all A ∈ Fk, ωk(A) = µ(A). Note that since Fk ⊆ Fk+1,
this suffices to show that ωk(B) = µ(B) holds for all B ∈ Fj such that j ≤ k.
Let A =

⋃n
i=0 C(Ei) × C(Fi) ∈ Fk, for some n ∈ N and Ei, Fi ∈ Rk (i = 0..n).

Without loss of generality we can assume that the C(Ei) × C(Fi)’s forming A
are pairwise disjoint (indeed, Fk is a field, hence we can simply replace any two
“overlapping” sets by taking the intersection and their symmetric difference).

ωk(A) = PCks,s′(A) (def. ωk)

=
∑n
i=0 P

Ck
s,s′(C(Ei)× C(Fi)) (additivity)

=
∑n
i=0 Ck(s, s′)(Ei × Fi) (def. PCks,s′)

=
∑n
i=0 µ(C(Ei)× C(Fi)) (def. Ck)

= µ(A) . (additivity)

To conclude the proof, observe that, given µ ∈ Ω(Ps,Ps′) and F ∈ F , there
exists i ∈ N such that F ∈ Fi, and that for ω2i defined as above (w.r.t. µ) is
such that ω2i(F ) = µ(F ) and ω2i ∈ Ω. ut

Proof (of Lemma 28). Consider the functions p1 and p2 defined as

p1 : Πk(S)→ Sk+1 p2 : Πk(S)→ Rk+
p1(s0, t0, . . . , tk−1, sk) = (s0, . . . , sk) p2(s0, t0, . . . , tk−1, sk) = (t0, . . . , tk−1) .
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Note that p1, p2 are measurable. For C ∈ Ck(M) and (ϑ, η) satisfying the con-
ditions of the statement, the bijection is given by C 7→ (τC , ρC) and (ϑ, η) 7→ D,
where

τC(u, v) = C(u, v)[p1 × p1] ,

ρC(u1..uk, v1..vk) =

{
C(u1,v1)[p2×p2]

α if α = τC(u1, v1)(u1..ukS×v1..vkS) 6= 0

0 otherwise

and

D(s, s′)(E × F ) = ϑ(u0, v0)(u0..uk, v0..vk) · η(u0..uk−1, v0..vk−1)(R,H) .

for E = {u0} ×R0 × ..×Rk−1×{uk}, F = {v0}×H0× ..×Hk−1×{vk}∈Rk,
and R = R0 × ..×Rk−1, H = H0 × ..×Hk−1. ut

Proof (of Lemma 29). Let k ∈ N and C = (τC , ρC) ∈ Ck(M) be a coupling
structure forM = (S, τ, ρ, `). Define g : Sk+1×Sk+1 → [0, 1], for x, y ∈ Sk+1, as

g(x, y) =

{
0 if τC(x0, y0)(x, y) = 0

PCx0,y0( 6≡`ω |{(π1, π2)[0..k] = (x, y)}) otherwise
(5)

where P(A|B) denotes the conditional probability of A given B w.r.t. P (defined
as P(A|B) = P(A ∩ B)/P(B), when P(B) > 0) and {(π1, π2)[0..k] = (x, y)}
stands for the event (·, ·)[0..k]−1({(x, y)}), where the function (·, ·)[0..k] is defined
by (π1, π2) 7→ (π1[0]..π1[k], π2[0]..π2[k]) (easily checked to be measurable). Note
that g is well defined since PCx0,y0({(π1, π2)[0..k] = (x, y)}) = τC(x0, y0)(x, y).

To prove PCs,s′(6≡`ω ) =
∫
γC dτC(s, s

′) it suffices to show that g = γC . Indeed

PCs,s′( 6≡`ω ) =

∫
PCs,s′(6≡`ω |{(π1, π2)[0..k] = (·, ·)}) dPCs,s′ [(·, ·)[0..k]] (cond. pr.)

=

∫
PCs,s′(6≡`ω |{(π1, π2)[0..k] = (· , ·)}) dτC(s, s

′) (def. PC)

=

∫
g dτC(s, s

′) =

∫
γC dτC(s, s

′) . (by (5) and g = γC)

First we prove that g is a fixed point of Γ C . We proceed by cases

Case τC(x0, y0)(x, y) = 0. By definition of Γ C and (5), Γ C(g)(x, y) = 0 = g(x, y).

Case τC(x0, y0)(x, y) > 0 and ∃i ≤ k. xi 6≡` yi. The following hold

g(x, y) = PCx0,y0(6≡`ω |{(π1, π2)[0..k] = (x, y)}) (by (5))

=
PCx0,y0( 6≡`ω ∩ {(π1, π2)[0..k] = (x, y)})

PCx0,y0({(π1, π2)[0..k] = (x, y)})
(cond. pr.)

=
PCx0,y0({(π1, π2)[0..k] = (x, y)})
PCx0,y0({(π1, π2)[0..k] = (x, y)})

= 1 = Γ C(g)(x, y) ,

where the last equalities follow by {(π1, π2)[0..k] = (x, y)} ⊆ 6≡`ω (because by
hypothesis ∃i. xi 6≡` yi) and definition of Γ C .



On the Total Variation Distance of Semi-Markov Chains 27

Case τC(x0, y0)(x, y) > 0 and ∀i ≤ k. xi ≡` yi. Let A = {(π1, π2)[0..k] = (x, y)}
and B = {(π1, π2)〈0..k − 1〉 ∈ 6=} (i.e., the event (·, ·)〈0..k − 1〉−1(6=), where the
function (·, ·)〈0..k−1〉 is defined by (π1, π2) 7→ (π1〈0〉..π1〈k−1〉, π2〈0〉..π2〈k−1〉)
and it is easy to see that it is measurable).
Let β = ρC(x0..xk−1, y0..yk−1)( 6=). We show that the following hold

(i) PCx0,y0(6≡`ω ∩B|A) = β;

(ii) PCx0,y0(6≡`ω ∩Bc|A) = (1− β) ·
∫
g dτC(xk, yk).

Note that once we have shown (i–ii), g(x, y) = Γ C(g)(x, y) follows immediately:

g(x, y) = PCx0,y0( 6≡`ω |A) (by (5))

= PCx0,y0( 6≡`ω ∩B|A) + PCx0,y0(6≡`ω ∩Bc|A) (by additivity)

= β + (1− β) ·
∫
g dτC(xk, yk) (by (i) and (ii))

= Γ C(g)(x, y) . (by def. Γ C)

We show (i):

PCx0,y0( 6≡`ω ∩B|A) = PCx0,y0(B|A) (by B ⊆ 6≡`ω )

= ρC(x0..xk−1, y0..yk−1)(6=) (by def. PC)
= β (by def. β)

We show (ii):

PCx0,y0(6≡`ω ∩Bc|A) =

=
PCx0,y0(6≡`ω ∩Bc ∩A)

PCx0,y0(A)
(by cond. pr.)

=
τC(x0, y0)(x, y) · ρC(x0..xk−1, y0..yk−1)(=) · PCxk,yk

(6≡`ω )

τC(x0, y0)(x, y)
(by def. PC)

= (1− β) · PCxk,yk
(6≡`ω ) (by def. β and compl.)

= (1− β) ·
∫

PCxk,yk
(6≡`ω |{(π1, π2)[0..k] = (·, ·)}) dPCxk,yk

[(·, ·)[0..k]]

(cond. pr.)

= (1− β) ·
∫

PCxk,yk
(6≡`ω |{(π1, π2)[0..k] = (· , ·)}) dτC(xk, yk) (def. PC)

= (1− β) ·
∫
g dτC(xk, yk) . (by (5))

Now we prove by contradiction that g is actually the least fixed point of Γ C

(i.e., γC = g). Assume that γC < g and let

m = maxx,y∈Sk+1

{
g(x, y)− γC(x, y)

}
, x M y ⇐⇒ g(x, y)− γC(x, y) = m.

We show that m = 0, that is γC = g. Assume x M y, we distinguish 3 cases
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1. If τC(x0, y0)(x, y) = 0, then by definition of Γ C and the fact that g and γC

are fixed points of it, we have that m = g(x, y)− γC(x, y) = 0− 0 = 0.

2. If τC(x0, y0)(x, y) > 0 and xi 6≡` yi for some 0 ≤ i ≤ k. Analogously, we have
that m = g(x, y)− γC(x, y) = 1− 1 = 0.

3. If τC(x0, y0)(x, y) > 0 and xi ≡` yi for all 0 ≤ i ≤ k. Let β = ρC(x, y)( 6=),
then the following equalities hold

m = g(x, y)− γC(x, y) (by x M y)

= Γ C(g)(x, y)− Γ C(γC)(x, y) (g and γC fixed points)

= (1− β) ·
∫

(g − γC) dτC(xk, yk) (by def. Γ C)

= (1− β) ·
∑
u,v∈Sk+1

(
g(u, v)− γC(u, v)

)
· τC(xk, yk)(u, v) . (6)

By hypothesis on m and τC we have respectively that g(u, v)− γC(u, v) ≤ m
for all u, v ∈ Sk+1 and

∑
u,v∈Sk+1 τC(xk, yk)(u, v) = 1, therefore it holds that

(1− β) ·
∑
u,v∈Sk+1

(
g(u, v)− γC(u, v)

)
· τC(xk, yk)(u, v) ≤ (1− β)m. (7)

We distinguish two cases:

– if β > 0, then 1− β < 1. By (6) and (7) we have that m ≤ (1− β)m. By
the assumption on β this holds only for m = 0;

– if β = 0, by (7) and (7) we have that g(u, v) − γC(u, v) = m whenever
τC(xk, yk)(u, v) > 0. Thus τC(xk, yk) has support contained in M . By the
generality of x and y one can prove that

g(x, y)
(5)
= PCx0,y0( 6≡`ω | {π1[0..k] = x, π2[0..k] = y}) = 0 .

Therefore γC(x, y) 6< g(x, y) = 0, hence m = 0.

This proves that γC = g.

This proves the thesis. ut

Proof (of Lemma 31). Let C = (τC , ρC) ∈ Ck(M) be a coupling structure and
u0..uk, v0..vk ∈ S such that τC(u0..uk, v0..vk) > 0 and, for all i ≤ k, ui ≡` vi.
Consider µ ∈ Ω(Sk(uk),Sk(vk)), ν ∈ Ω(Tk(u0..uk−1),Tk(v0..vk−1)) and let D =
C[(uk, vk)/µ]〈(u0..uk−1, v1..vk−1)/ν〉 be an update of C.

We will prove that if (i) or (ii) holds then γC is a proper prefix point of ΓD,
that is, ΓD(γC) < γC . Then, the thesis follows by Tarski’s fixed point theorem.

To this end, define α, α′ and β, β′ as

α =
∫
γC dµ α′ =

∫
γC dτC(uk, vk) ,

β = ν(6=) β′ = ρC(u0..uk−1, v1..vk−1)(6=) .
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Then, the following inequalities hold

ΓD(γC)(u0..uk, v0..vk) =

= β + (1− β)α (def. ΓD)

≤ β + (1− β)α′ (α ≤ α′)
= α′ − α′ + β + (1− β)α′

= α′ − βα′ − (1− β)α′ + β + (1− β)α′ (0 ≤ β ≤ 1)

= α′ − βα′ + β = α′ + (1− α′)β
≤ α′ + (1− α′)β′ (β ≤ β′)
= β′ + (1− β′)α′ (same as for β + (1− β)α′ = α′ + (1− α′)β)

= Γ C(γC)(u0..uk, v0..vk) (def. Γ C)

= γC . (def. γC)

In particular, for (i) β < β′ or (ii) α < α, the above inequality is strict.
By construction of D and definition of Γ , it is immediate to prove that, for

arbitrary u, v ∈ Sk+1, ΓD(γC)(u, v) ≤ γC(u, v). This proves that if (i) or (ii)
hold, then γD < γC . ut

Proof (of Lemma 32). By contradiction. Assume δ↓k(u, v) 6=
∫
γC dτC(u, v) for

some u, v ∈ S and that for all u′, v′ ∈ S and all µ ∈ Ω(S2k(u′),S2k(v′)) it holds
that

∫
γC dµ ≥

∫
γC dτC(u

′, v′). By hypothesis and Lemma 31, we have that∫
γC dτC(u, v) = min

{∫
γD dτD(u, v) | D ∈ C2k(M)

}
. But at the same time

δ↓k(u, v) = min
{
PDu,v(6≡`ω ) | D ∈ C2k(M)

}
(by (2))

= min
{∫

γD dτD(u, v) | D ∈ C2k(M)
}
. (by Lemma 29)

This contradicts hypothesis that
∫
γC dτC(u, v) 6= δ↓k(u, v). ut

B Folklore Results about Metric Spaces

Proposition 34. Let A ⊆ R be a bounded nonempty set. Then,

(i) supA ∈ A;

(ii) supA = supA.

Proof. First, notice that since A 6= ∅ and is bounded, by Dedekind axiom, the
supremum of A (and A) in R exists. Moreover, recall that, for any B ⊆ R,

B = ad(B) := {x ∈ R | ∀ε > 0. (x− ε, x+ ε) ∩B 6= ∅} ,

where ad(B) denotes the set of points adherent to B.
Let α = supA. (i) We prove that α ∈ A. Let ε > 0, then α−ε is not an upper

bound for A. This means that there exists x ∈ A such that α− ε < x ≤ α and,
in particular, that x ∈ (α − ε, α + ε) ∩ A. Therefore α ∈ A. (ii) Let β = supA.
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By A ⊆ A = A and (i), we have α ≤ β ∈ A. We prove that α = β. Assume by
contradiction that α 6= β and let ε := β − α. Clearly ε > 0, so that, by β ∈ A,
we have that (β − ε, β + ε) ∩ A 6= ∅. This means that there exists x ∈ A such
that α = β − ε < x, in contradiction with the hypothesis that α = supA. ut

Proposition 35. Let f : X → Y be continuous and A ⊆ X, then f(A) = f(A).

Proof. (⊇) A function f : X → Y is continuous iff for all B ⊆ X, f(B) ⊆ f(B).

Therefore f(A) ⊆ f(A). Since f(A) is closed, we have f(A) ⊆ f(A). (⊆) The
result follows by A ⊆ A and monotonicity of f(·) and (·). ut

Proposition 36. Let X be nonempty, f : X → R be a bounded continuous real-
valued function, and D ⊆ X be dense in X. Then sup f(D) = sup f(X).

Proof. Notice that, since X 6= ∅ and f is bounded, by Dedekind axiom, both
sup f(D) and sup f(X) exist. By Propositions 34, 35, and D = X, we have

sup f(D)
(Prop.34)

= sup f(D)
(Prop.35)

= sup f(D) = sup f(X)
(Prop.34)

= sup f(X) ,

which proves the thesis. ut

Proposition 37.

(i) The set of 1-bounded pseudometrics over a set X is a complete lattice
w.r.t. the point-wise order d v d′ iff for all x, y ∈ X, d(x, y) ≤ d′(x, y);

(ii) D ⊆ X is dense in all 1-bounded pseudometric spaces {(X, di) | i ∈ I} iff
is dense in (X,

⊔
i∈I di).

Proof. (i) Bottom and top elements are respectively given by the constant func-
tion 0 and the indiscrete metric 1(x, y) = 0 if x = y and 1(x, y) = 1 otherwise.
To complete the proof it suffices to show that the set of 1-bounded pseudomet-
rics is closed under supremum. Let P be a set of 1-bounded pseudometrics over
X. We define (

⊔
P )(x, y) = supd∈P d(x, y). It is easy to see that

⊔
P is the least

upper bound of P w.r.t. v and that is 1-bounded. We only have to check that⊔
P is a pseudometric. Reflexivity and symmetry are trivial. The only nontrivial

part is to prove the triangular inequality:

(
⊔
P )(x, y) + (

⊔
P )(y, z) ≤ sup

d∈P
d(x, y) + sup

d∈P
d(y, z) (def. and upper bound)

≤ sup
d∈P

d(x, y) + d(y, z) . (triang. ineq. d ∈ P )

(ii) Recall that a subset K ⊆ Y is dense in a pseudometric space (Y, d) iff
K = {y ∈ Y | d(y,K) = 0} = X, where d(y,K) = infy′∈K d(y, y′). Then, both
directions immediately follow by the equality below{

x ∈ X | (
⊔
i∈I di)(x,D) = 0

}
=
⋂
{x ∈ X | di(x,D) = 0} ,

which holds since all the pseudometrics di are positive. ut
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