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Abstract. Wide reactive systems are rewriting systems specified by
wide reaction rules, where redex and reactum are lists of terms (forests),
i.e. rules of the form 〈l1(x1), . . . , ln(xn)〉 ⇒ 〈r1(y1), . . . , rn(yn)〉 such
that ∪iyi ⊆ ∪ixi. Wide reaction rules are particularly useful for process
calculi for mobile and global computations, because they allow one to
connect processes which can be at different places in the system, pos-
sibly crossing boundaries and firewalls. For instances, remote procedure
calls can be modeled as a process in place i activating a reaction in a
different place j; code mobility can be modeled by instantiating variables
in yi with terms using variables from xj , for a different j; etc.
In order to apply a wide reaction rule, we have to find a matching of
the rule redex within the global state. This problem can be restated as
follows: how to match a given forest (the redex) inside an unordered tree
(the system), possibly finding the subtrees to be grafted at the forest’s
leaves (i.e., instantiating the variables)? We show that, although the
problem is NP-complete in general, the exponential explosion depends
only on the number n of roots of the forest (the width of the redex), and
not on the size of the global tree (the system state). In most practical
cases, the width is constant and small (i.e., ≤ 3), hence our results show
that the wide reaction systems can be actually used for process calculi.

1 Introduction

It is common to present the dynamics of agents of process calculi by means of
a reduction semantics, that is a relation of the form a _ a′, where a and a′ are
agents. This relation is usually defined by means of a set R of (parametric) reac-
tion (or reduction) rules of the form l(x1, . . . , xn)⇒ r(x1, . . . , xn) where xi are
(agent) variables, and l(x), r(x) are terms called redex and reactum, respectively.
Reaction rules induce reactions relations according the usual (non-deterministic)
term rewriting: rule l(x)⇒ r(x) can be applied to an agent (i.e., a closed term)
a if l(x) matches some subterm of a, that is, if a = C[l(x)σ] for some context
C[ ] (indicating the position of the rewriting) and substitution σ. The result
term of this rule application is then a′ = C[r(x)σ]. Many general frameworks
with efficient implementations have been developed around this concept, such
as term rewriting systems [2] and rewriting logics [20].
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However, the approach presented above considers just one subterm replace-
ment at once (or, at most, parallel execution of independent reductions). In fact,
we can easily generalize reactive systems to consider wide reaction rules, as in
Milner’s reactive systems [19]. A wide rule has the form l(x) ⇒ r(y), where
l(x) = 〈l1(x1), . . . , ln(xn)〉 and r(y) = 〈r1(y1), . . . , rn(yn)〉 are lists of terms,
i.e., forests; n is called their width. The variables in the reactum must be a sub-
set of those in the redex (i.e., ∪iyi ⊆ ∪ixi). Applying such a rule to an agent
a means 1) finding a context with n holes C[X1, . . . , Xn] and a substitution
σ for the variables x such that a = C[l(x)σ]; 2) replace each li(di) with the
corresponding ri(yi)[σ]. This can be summarized in the following rule:

l(x)⇒ r(y) ∈ R a = C[l(x)σ] a′ = C[r(y)σ]

a _ a′
(1)

Notice that subtrees li(d) can occur in any order in the agent a, but not one
under another. Traditional reactive systems are the particular case when n = 1.

Although not very widespread in practice, wide rules and wide reactive sys-
tems are quite useful and expressive, especially for process calculi for mobile
and global computations. The key aspect is that in a wide rule we can deal with
processes which can be everywhere in the system, not only “in the same place”.
For example, a remote procedure call can be modeled as a process in a place (i-th
tree of the forest) activating a reaction in a different position (i.e., a rewriting
of the j-th tree); code mobility can be modeled by instantiating some variables
in yi in place i with terms using variables from xj , for a different j; etc.. This
kind of reductions can be represented also using non-wide reaction rules, but at
the expense of a more cumbersome and less natural reduction semantics.

As an example, let us consider CaSPiS [5], a session-centered calculus de-
veloped within the SENSORIA project as a core language for Service Oriented
Computing programming. CaSPiS allows processes to synchronize even if they
are far apart (as long as they share a channel). To define this behaviour using a
standard reduction semantics, we would need an infinite set of rules of the form

C[s.P, s̄.Q]⇒ C[s.P |r . P, r . Q] (r fresh) (ServiceSync)

one for each suitable context C[ 1, 2] with two holes. Actually, the same seman-
tics can be readily defined using a single wide reaction rule:

〈s.x1, s̄.x2〉 ⇒ 〈s.x1|r . x1, r . x2〉 (r fresh) (WideServiceSync)

whilst C[ 1, 2] is the context where the redex 〈s.x1, s̄.x2〉 is found and P,Q are
the parameters the redex is instantiated to. In fact, the redex and the reactum are
forests of two trees each, and the rule is rendered graphically as in Figure 1(a).

However, this added expressivity comes at a price: the problem of matching
a wide redex within an agent is not as easy as the usual term matching. In
this paper, we address precisely this problem, which we call the forest pattern
matching : given a forest l(x) (the pattern) and an unordered tree a (the target),
how to match each of the trees of the pattern within the target (with no overlaps),
singling out the subtrees d that instantiate the parameters for the pattern?
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Fig. 1. A parametric rule (a), and its application as forest pattern matching (b).

As one may expect, forest pattern matching is NP-complete, as we will prove
by means of a reduction from 3-Sat. However, this reduction points out the real
source of time-complexity: the requirement that pattern trees are not overlapping
in the target. The good news is that this combinatorial explosion does not depend
on the size of the target tree, but only on the pattern width! As a consequence,
once we fix a reactive system the exponential part becomes a constant factor, and
the cost of each reduction step is polynomial on the size of the agent. Moreover,
in most cases, rule width is small: e.g., for Ambients, CaSPiS, etc, it is ≤ 3.
Therefore, our results prove that wide reaction rules are feasible for many calculi
and models for global computation, and the implementation of general abstract
machines for calculi for distributed systems, like [?], is viable.

The rest of this paper is structured as follows. In Section 2 we define formally
the forest matching problem, which we show to be NP-complete in Section 3.
In Section 4 we address this issue using Downey and Fellows’ parameterized
complexity theory [10] and indeed in Section 5 we provide an algorithm for it.
As a side result, we introduce the new rainbow antichain problem, which is
NP-complete but fixed-parameter tractable. Final remarks are in Section 6.

2 Labeled Trees, Forest Patterns, and Matches

In this section we define the forest pattern matching problem with no overlaps.
As a first step, we define edge-labeled unordered trees, adopting the syntax of
ambient calculus without actions [6], and extending it to (linear) context trees.

Let m, n range over an enumerable set Λ of labels, and x, y, z over an
enumerable set Ξ of variables. Finite sets of variables are ranged over by X,Y, Z.
The set of terms is the set of labeled context trees, finitely branching and of finite
depth, where variables are interpreted as leaves where other trees can be grafted.
We denote by T (X), S(X) trees whose variables are in X. The syntax of these
trees is defined by the following grammar.

Syntax of context trees
T (X) ::= 0 empty tree

x leaf, x ∈ X
m[T (X) ] labeled tree

T (Y ) | T ′(Z) siblings, where X = Y ] Z
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We often abbreviate m[ 0 ] as m[ ], and T (X) as T . We assume that “|” associates
to the right, i.e. T | T ′ | T ′′ is read T | (T ′ | T ′′). Let lab(T ) ⊂ Λ be the set
of node labels in T , and vars(T ) ⊂ Ξ be the set of the variables occurring in T
(obviously, vars(T (X)) ⊆ X). We say that a term T is ground when vars(T ) = ∅.

The intuitive interpretation of terms T as unordered trees induces an equiv-
alence T ≡ T ′ which is the minimal congruence that includes the commutative
monoidal laws for | and 0. This relation, similar to ambient calculus congruence,
can be axiomatized as follows.

Structural congruence on context trees

T ≡ T
(refl)

T ≡ T ′

T ′ ≡ T
(symm)

T ≡ T ′ T ′ ≡ T ′′

T ≡ T ′′
(trans)

T ≡ T ′

T | T ′′ ≡ T ′ | T ′′
(sibl)

T ≡ T ′

m[T ] ≡ m[T ′ ]
(rooting)

T | T ′ ≡ T ′ | T
(comm)

T | (T ′ | T ′′) ≡ (T | T ′) | T ′′
(assoc)

T | 0 ≡ T
(nil)

The axiomatization of structural congruence is adequate with respect to the
semantic for unordered trees: T ≡ T ′ iff T and T ′ represent the same tree
structure (obviously, where siblings are not ordered). Moreover, if T ≡ T ′ then
lab(T ) = lab(T ′) and vars(T ) = vars(T ′).

Given two tree terms T (X), S(Y ) with X,Y disjoint, we define term sub-
stitution, written T{S/x}, as usual: the occurrence x in T is replaced by the
term S. For x ∈ vars(T ), vars(T{S/x}) = (vars(T ) \ {x})∪ vars(S). Simultane-
ous substitution T{S1/x1, . . . , Sk/xk} is defined by the substitution composition
T{S1/x1} · · · {Sk/xk}, where x1, . . . , xn are supposed to be pairwise distinct; we
denote it by T{S/x}.

Lemma 1. If Si ≡ S′i for i ∈ {1, . . . , k}, then T{S/x} ≡ T{S′/x}.

Intuitively, given a tree list S = S1, . . . , Sn, called a “pattern”, searching for
a (sub-)match of S in a tree T means to find an occurrence of each S1, . . . , Sn
within T , without overlaps and possibly by instantiating variables in Si. This
means that we have to decompose T in a subtree C where all Si can be grafted,
and a list of subtrees to be grafted to the leaves of Si. Formally:

Definition 2. A forest matching instance, denoted by T � S, is given by a tree
T ( target), and a list of trees S(X) = S1(X1), . . . , Sn(Xn) ( pattern) where Xi

are all disjoint and X = ∪ni=1Xi. We say that S(X) matches in T (Y ) if for
some context C(Z) and parameters D = D1, . . . , Dm,

T ≡
(
C{S/z}

)
{D/x} , where z1, . . . , zn ∈ Z and x1, . . . , xm ∈ X .

A match for T � S is denoted by C,D |= T � S, and we write |= T � S if
C,D |= T � S for some C, D.



Finding a Forest in a Tree 5

Proposition 3. If |= T � S and |= Si � Q, for some 1 ≤ i ≤ n and n = |S|,
then |= T � Q; and in particular |= T � S1, . . . , Si−1,Q, Si+1, . . . , Sn.

Proof. We have to prove that if |= T � S and |= Si � Q, for some 1 ≤ i ≤ n
and n = |S|, then |= T � S1, . . . , Si−1,Q, Si+1, . . . , Sn.

Since |= T � S and |= Si � Q there exist contexts C, C ′ and parameters D,
and D′ such that

T ≡ (C{S1/z1, . . . , Sn/zn}){D/x} for some z1, . . . , zn ∈ vars(C)

Si ≡ (C ′{Q/z′}){D′/x′} for some z′1, . . . , z
′
m ∈ vars(C ′)

Without loss of generality, suppose {z1, . . . , zn} disjoint from {z′1, . . . , z′m}, oth-
erwise a variable renaming can be applied. Now, by an easy replacement of Si
and some rearrangements on the context and parameters, we obtain

T ≡ (C{S1/z1, . . . , Si/zi, . . . , Sn/zn}){D/x}
≡ (C{S1/z1, . . . , (C

′{Q/z′}){D′/x′}/zi, . . . , Sn/zn}){D/z}
≡ ((C{C ′/zi}){S1/z1, . . . ,Q/z

′, . . . , Sn/zn}){D,D′/x,x′} .

This means that (C{C ′/zi}, (D,D′)) is a match for S1, . . . , Si−1,Q, Si+1, . . . , Sn
in T , that is, |= T � S1, . . . , Si−1,Q, Si+1, . . . , Sn.

Similarly, we can prove that (C{Si/z1, . . . , C
′/zi, . . . , Sn/zn},D′) is a match

for Q in T , hence |= T � Q holds too. ut

Many tree term patterns give rise to trivial or redundant forest matchings.
For example, the empty tree matches any target T as T ≡ (T | x){0/x}. Another
example of trivial matching instance is when the tree pattern is a variable. In-
deed, a variable x can be matched in any tree T (in fact, x has as many matches
as the number of sub-terms in T ). A typical situation of redundant matching
instances occurs when the pattern has “unguarded” variables at the top level,
e.g. it is of the form x | R. Intuitively, this pattern matches an occurrence of
R “beside anything, possibly nothing”. As an example, let T = m[ 0 ] | n[ k[ 0 ] ]
be the target and S = x | m[ 0 ] be the pattern. Then, we have three differ-
ent matches, namely (y, n[ k[ 0 ] ]), (n[ y ], k[ 0 ]), and (n[ k[ 0 ] ],0)), despite m[ 0 ]
occurs only once in T . A similar situation happens also when sibling variables
x | y occurs in the pattern (note that they can replaced by a single variable z,
because (x | y){D1/x,D2/y} = (z){D1 | D2/z}).

Interestingly, redundant matches can be avoided by restricting our attention
to a particular class of patterns, which we call solid after [15].

Definition 4. A pattern S(X) = S1(X1), . . . , Sn(Xn) is solid if for 1 ≤ i ≤ n:
Si 6≡ 0, for no x ∈ X and S′ it is Si ≡ x | S′, and no two variables x, y ∈ Xi

are siblings, that is, x | y cannot occur in Si (up to ≡).

We can prove that any matching instance can be reduced to a matching
instance whose pattern is solid. To this end let we define the function solid over
forest patterns (i.e., tree lists), which drops empty trees and unguarded variables,
and collapses sibling variables in one:
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Transformation into solid patterns

solid(ε) = ε solid(T,S) =


solid(S) if T ≡ 0

solid(Q,S) if T ≡ x | Q
solid(sld(T ),S) otherwise

sld(0) = 0

sld(x | T ) = x | del(T )

sld(m[T ] | S) = m[sld(T )] | sld(S)

del(0) = 0

del(x | T ) = del(T )

del(m[T ] | S) = m[sld(T )] | del(S)

Solid patterns enjoy the following properties.

Proposition 5. The following statements hold:

(a) no empty trees: |= T � 0,S ⇐⇒ |= T � S;

(b) no sibling variables: |= T � x | y ⇐⇒ |= T � x;

(c) no unguarded variables: |= T � x | S ⇐⇒ |= T � S.

Due to the above, solid patterns suffice for checking match existence.

Lemma 6. |= T � solid(T ) if and only if |= solid(T ) � T .

Proof. It is an easy application of proposition 5 and proposition 3. In fact, propo-
sition 3 ensures that it suffices to check |= T � T ′ ⇐⇒ |= T ′ � T for each
equation T = T ′ defining solid. This is just a straightforward application of (a),
(b), (c) of Proposition 5. ut

Theorem 7. |= T � solid(S) if and only if |= T � S.

Proof. It follows directly from lemma 6 and proposition 3. ut

Actually, all matches against a pattern S can be obtained from matches
against solid(S).

3 NP-completeness of Forest Pattern Matching

The main result of this section is that the problem of finding a pattern matching
of a list of patterns S = S1, . . . , Sn in a target tree T is NP-complete. We show
this by a reduction from 3-Sat [7]. Although the reduction can be done directly,
we do it in two steps by introducing an intermediate problem, called Rain-
bowAntichain, that points out the actual source of time-complexity hardness.

An instance of RainbowAntichain is a tree T (V, E) with nodes V and
edges E , and a finite set P of colors, said palette. Some of the nodes in T have
been colored with colors taken from the palette P. Note that, the same color
can be associated with different nodes, and each node can be associated with
more than one color. RainbowAntichain asks whether there exists a rainbow
antichain R ⊆ V in T , i.e., a subset of nodes such that for no pair u, v ∈ R of
distinct nodes u is an ancestor of v (hence, an antichain) and where each color
c ∈ P has exactly one representative in R (hence, colorful w.r.t. P).
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Theorem 8. RainbowAntichain is NP-complete.

Proof. RainbowAntichain is in NP, since, given a set of nodes R, checking
whether R is a rainbow antichain for T can be done in polynomial time by a
breadth-first visit of T , and for each v ∈ R found, first increase the node counter
nc, then the color counter p[i] (1 ≤ i ≤ |P|) if v has color ci ∈ P. The check fails
whether nc > |P| or p[j] = 0 for some 1 ≤ j ≤ |P|; it succeeds otherwise.

Let C = {c1, . . . , cm} be an instance of 3-Sat on variables {x1, . . . , xn}.
From C we define a colored tree T as follows. Let r be the root node which
is left uncolored. For each variable xi let xi and xi be child nodes of r, and
color them with a fresh color cxi

, distinct for each variable. For each clause
cj ∈ C, let c1j , c

2
j , c

3
j be children nodes of li in T if cj contains li as negated, and

assign to each of them a fresh color ccj , distinct for each clause. An example of
construction for c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x3) is shown below.

r

x1

c11

x1

c12

x2 x2

c21 c22

x3

c31

x3

c32

Let ϕ be a truth assignment satisfying
the formula C. By construction, select-
ing only literal nodes li which are satis-
fied by ϕ, we obtain a rainbow antichain
R′ in T for the palette {cxi

: 1 ≤ i ≤ n}.
Now, we extend R′ to R adding all
clause nodes which are not children of a
element in R′. Such R is clearly an an-
tichain for T , but we must ensure that

is colorful and no more than one representative per color is taken. To do this, it
suffices to prove that R is colorful, indeed if a color occurs more than once in R
we remove the others. By hypothesis, each clause cj is satisfied by ϕ, hence cj
has at least one literal li such that ϕ(li) = T. By construction of T , there exist
a node ckj (1 ≤ k ≤ 3) child of li, hence already in R. This holds for all clauses
cj , hence R is colorful.

Conversely, let R be a rainbow antichain for T . Let ϕ : {x1, . . . , xn} → Bool
be defined by ϕ(xi) = T if xi is a node in R, and ϕ(xi) = F if xi is a node not
in R. Since R has exactly one representative per color, no opposite literals are
in R, hence ϕ is a truth assignment for C. By colorfulness of R, for all colors
ccj (1 ≤ j ≤ m) there exists a node ckj ∈ R (1 ≤ k ≤ 3) such that ckj has color

ccj . By construction of T , each ckj ∈ R is a children of a literal node li /∈ R, and

moreover the clause cj contains li. Since li /∈ R, by definition ϕ(li) = T, hence
ϕ(cj) = T. This holds for all 1 ≤ j ≤ m, hence ϕ satisfies C. ut

It is easy to see that an instance T , P = {c1, . . . , cn} of RainbowAntichain
can be reduced to a forest pattern matching problem, namely, the one that solves
|= T � (c1[x1 ], . . . , cn[xn ]), for a suitable tree term T defined upon T . Thus:

Theorem 9. The forest pattern matching problem is NP-complete.

Theorem 8 states that the complexity hardness is merely due to finding a
rainbow antichain in the given target, which corresponds to locate the list of
trees of the pattern so that they are not in overlap in the target tree.
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4 Tree Representation of Forest Pattern Matching

Despite the NP-completeness result from Theorem 9, in the next section we give
a tractability result for the forest pattern matching problem, when the number of
trees in the matching pattern is bounded by a (relatively small) constant h and
their roots have at most k children, for some (relatively small) constant k. We

propose a parameterized algorithm whose running time is f(h, k) +O(ns · n3/2
t ),

for nt and ns the number of nodes in the target and pattern, respectively. This
proves that the forest pattern matching is a fixed-parameter tractable problem
(FPT) (we refer to [10] for the formal definition of this complexity class).

In presenting the algorithm we switch from edge-labeled tree terms to a more
convenient node-labeled tree representations of them. This translation eases the
description of the proposed algorithm and provides a closer connection between
the concept of (labeled) subtree isomorphism and tree pattern matching.

Formally, a (rooted) node-labeled tree T (V, E , label) is a triple, where V is
the node set, E ⊆ V×V the set of (oriented) edges, and label : V → Λ+×{op, cl}
is a function associating with each node a label m ∈ Λ+ = Λ ] {∗}, and a
flag op or cl. In the following we often abbreviate T (V, E , label) with T and if
label(v) = (m, t) we say that v is m-labeled and open (resp. closed) if t = op
(resp. t = cl); root(T ) denotes the root node; Ch(v) denotes the set of children
of v; and T �v denotes the subtree of T rooted at a node v ∈ V. In the following,
when T is the empty tree (i.e., V = ∅), we assume Ch(root(T )) = ∅.

Definition 10. A node-labeled tree T (V, E , label) is said the graphical repre-
sentation of an edge-labeled tree term T ≡ m1[T1 ] | · · · | mn[Tn ] | x1 | · · · | xk,
for n, k ≥ 0, if the following conditions hold:

1. if n = 0, then T is the empty tree ;
2. if n > 0, then

(a) V = {r, v1, . . . , vn} ∪ V ′, where {r, v1, . . . , vn} ∩ V ′ = ∅;
(b) E =

⋃
i({(r, vi)} ∪ {(vi, w) | w ∈ Ch(root(Ti))}) ∪ E ′;

(c) label : V → Λ+ × {op, cl} is such that, for all v ∈ V

label(v) =


(∗, op) if v = r and k = 0

(∗, cl) if v = r and k > 0

(mi, t) if v = vi and label(root(Ti)) = (m, t)

labeli(v) if v ∈ Vi

where Ti(Vi, Ei, labeli) are the graphical tree representation of Ti (1 ≤ i ≤ n) with
pairwise disjoint node sets, V ′ =

⋃
i(Vi \ {root(Ti)}), and E ′ = (V ′×V ′)∩

⋃
i Ei.

The graphical representation of a tree term is always rooted at a ∗-labeled node
and converts m-labeled edges into m-labeled nodes, discarding variables. Note,
however, that nodes in T are open iff they have a variable as a child in its tree
term representation. In Figure 2 it is shown an example of translation into the
graphical representation.

The following proposition relates the subtree isomorphism to the notion of
tree pattern matching on terms, when the pattern is supposed to be solid.
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T = n[0 ] | m[ y1 | n[0 ] ] | k[n[ y2 ] ] | m[0 ] | y3 S1 = m[x ] | n[0 ] S2 = m[0 ]

Fig. 2. The forest pattern S = S1, S2 has a match in T : for C = z1 | k[n[ y2 ] ] | z2 | y3
and D = y1 | n[0 ], T ≡ (C{S1/z1, S2/z2}){D/x}. Bold-circled nodes are closed.

Proposition 11. For a term T and a solid one T ′, where T (V, E , label) and
T ′(V ′, E ′, label′) are their tree representations, respectively, then |= T � T ′ if
and only if there exists V ′′ ⊆ V, where |V ′| = |V ′′|, and ρ : V ′ → V ′′ a one-to-one
function such that

1. (u, v) ∈ E ′ iff (ρ(u), ρ(v)) ∈ E;

2. if v is m-labeled then ρ(v) is m-labeled, for m ∈ Λ;

3. if v ∈ V ′ \ {root(T ′)} is closed then ρ(v) is closed and |Ch(v)| = |Ch(ρ(v))|.

Conditions (1–2) in Proposition 11 correspond the subtree isomorphism of T ′
in T with respect to Λ+-labeled nodes (note that, ∗ acts as a wildcard label).
Condition (3) is required in situations like the one that follows. Let T = m[n[ 0 ] ]
and T ′ = m[ 0 ], then T ′ has no match in T even though, considering their
graphical tree representations, there exists ρ satisfying conditions (1) and (2).

Proposition 11 induces the definition of the following relation: ρ |= T � T ′
iff there exists ρ satisfying conditions (1–3). Obviously |= T � T ′ iff ρ |= T � T ′
and T , T ′ are graphical representations for T , T ′, respectively.

Now, let us consider the forest pattern matching problem, that is, when the
pattern is a list of arbitrary length h ≥ 0.

Proposition 12. Given a term T and a solid (forest) pattern S = S1, . . . , Sh,
where T and S = S1, . . . ,Sh are their tree representations (with disjoint node
sets), then |= T � S if and only if

1. ρi |= T � Si, for 1 ≤ i ≤ h;

2. R = {ρi(v) | v ∈ Ch(root(Si)), 1 ≤ i ≤ h} is an antichain in T .

Condition (1) is obvious, and follows by Proposition 11. Condition (2) states
that the children of each Si-root must be mapped by ρi to form an antichain in
T . This ensures that the mapping of trees in the pattern are not overlapping in
T . Note that, different roots of the pattern can be mapped to the same target
node, and that the antichain condition must be satisfied by the roots’ children
nodes only (see Figure 2 for an example).



10 G. Bacci, M. Miculan, R. Rizzi

5 A Parameterized Algorithm

In this section, we provide a parameterized algorithm to solve the forest pattern
matching problem. Let T be a term, S = S1, . . . , Sh a solid (forest) pattern, and
T = (V, E , label), Si = (Vi, Ei, labeli) be their respective tree representations,
for 1 ≤ i ≤ h, with pairwise disjoint node sets; according to the alternative
characterization of Proposition 12, our algorithm will solve |= T � S, where the
chosen parameters are h = |S| and k = maxi |Ch(root(Si))|.

The key idea is to find all possible matches of each Si separately, identifying
them by coloring the nodes in T , and finally to search for a rainbow antichain.
The proposed algorithm uses the so called reduction to kernel size technique [10]
and works in three steps:

1. for each Si in the pattern, we identify all possible mappings ρi satisfying
ρi |= T � Si. These mappings correspond to tree matches and we identify
them by coloring the nodes in T : each Si is associated with a color f ∈ F ,
and nodes in Ch(root(Si)) with colors from the palette Pi (a color for each
node). Palettes are supposed to be disjoint.

2. we reduce the size of the colored target tree T , yielding a reduced kernel of
size depending only on the parameters h and k.

3. we perform an exhaustive search for a rainbow antichain on palette
⋃
i Pi.

Coloring the target tree: By Proposition 11 we know that this corresponds to
solving the subtree isomorphism problem for each Si in the pattern and ensuring
that the closedness property holds (i.e., condition (3) in Proposition 11). It is
not hard to see that the Matula’s algorithm [17] for the subtree isomorphism
can be adapted to our aims. Let M be a Boolean matrix of size ns × nt, where
nt and ns are respectively the number of nodes of the target tree and of the
pattern (the summation of each node set of the whole tree list). By dynamic
programming on T and S we can fill M as follows: for each node u in S and
node v in T , M [u, v] = T if there exists an embedding (respecting node labeling
and the closedness property) of S�u in T rooted at v, otherwise M [u, v] = F
(see Matula [17] for details on how the matrix M is obtained).

From the matrix M we define the coloring functions for T . Let F and Pi, for
1 ≤ i ≤ h, be disjoint palettes such that |F| = h and |Pi| = |Ch(root(Si))| ≤ k,
and α : {S1, . . . ,Sh} → F and βi : Ch(root(Si))→ Pi be bijections associating a
color f ∈ F with each Si in the pattern, and a color p ∈ Pi with each children of
root(Si). For each v ∈ V, we define the sets colorR(v) ⊆ F and colori(v) ⊆ Pi,
for 1 ≤ i ≤ h as follows:

α(Si) ∈ colorR(v) ⇐⇒ M [root(Si), v] βi(u) ∈ colori(v) ⇐⇒ M [u, v]

Note that nodes may take color from different palettes, indeed a subtree of the
target may have a match with more than one tree in the pattern.

Proposition 13. If α(Si) ∈ colorR(v) then
⋃
u∈Ch(v) colori(u) = Pi.

The above implies that, if a node v in T is α(Si)-colored, i.e., Si has a match
rooted at v, then there must exist C ⊆ Ch(v) such that |C| = |Ch(root(Si))|
and, for all u ∈ Ch(root(Si)), Si�u has a match rooted at a node in C.
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Reduction to kernel size: The reduction of T to kernel size consists in a decoloring
procedure that aims at leaving as much nodes as possible completely uncolored
in order to remove them from T . Indeed, uncolored nodes have no influence in
the detection of a possible rainbow antichain in T .

Before starting with the description of the reduction, we need some technical
definitions and notations. We say that a node is c-decolored if we remove c from
all its color sets (note that colorR and colori are disjoint, hence the set deletion
of c influences only the corresponding color palette). By T \ v we denote the
tree obtained from T removing the node v and such that the children of u are
adopted by its parent (if u is the root node we just decolor it).

Definition 14. Let T be a tree and u a node. We denote by fout(u) the fan-out
of u, defined as fout(u) =

∑
v∈an(u) |Ch(v)| − 1, where an(v) is the set of all

ancestors of v; and by fout(T ) = maxv∈V fout(v) the maximal fan-out in T .

Intuitively, fout(u) is the out-degree of the whole path from u to the root of T .

Lemma 15. If v is uncolored and T admits a P-rainbow antichain, then also
T \ v has P-rainbow antichain.

Lemma 16. If T has a P-rainbow antichain, then it has one also when u is
c-decolored, for color c ∈ P, if one of the following conditions hold:

(a) u is a (strict) ancestor of v, and both u, v are c-colored;
(b) T has only c-colored leaves and u is a leaf such that fout(u) ≥ |P|.

Proof. (a) Let R be a rainbow antichain for T such that u ∈ R. Since u belongs
to R, for some color cR ∈ P assigned to u, R must be rainbow on the palette
P. If we decolor u by c, there are two cases. If c 6= cR, R continues to be a
rainbow antichain for T , conversely, if c = cR, R is no more colorful on P, since
one of the representative of P lacks (i.e., c). By hypothesis, u has a c-colored
descendant v. It is easy to see that R′ = (R\{u})∪{v} is still an antichain and
moreover it is colorful for P.

(b) Let T be a colored tree on palette P such that, all its leaves are colored
by c ∈ P, and v is a leaf in T for which fout(v) ≥ |P|. We want to prove that
if T has a rainbow antichain, it continues to have one also if we c-decolor v.
Let P be the path from the leaf v to the root of T . To each outer-neighbour
ni (1 ≤ i ≤ fout(v)) of P corresponds a subtree T �ni with all leaves colored
by c, since T has only c-colored leaves. It is worth noting that all T �ni are not
overlapping with each other, since

⋃
i{ni} is an antichain for T .

Suppose R be a rainbow antichain for T such that v ∈ R. Since v ∈ R,
for some color cR ∈ P assigned to v, R must be rainbow on the palette P. If
we c-decolor v, there are two cases. If c 6= cR, R continues to be a rainbow
antichain for T , conversely, if c = cR, R is no more rainbow on P, since one
of the representative of P lacks. Note that R, apart v, must reside in

⋃
i T �ni.

Since fout(v) ≥ |P|, there are more than |P| subtrees T �ni (1 ≤ i ≤ fout(v)),
hence there is no way to choose |P| distinct nodes from

⋃
i T �ni such that each

T �ni as at lest one of these nodes. Therefore, since each T �ni contains at least
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one node colored by c (all leaves are c-colored!), we can substitute the node
v ∈ R with one of the leaf node in the “untouched” T �ni, thus obtaining a new
antichain where v is not choosen (hence v can be safely decolored). ut

Applying (a) we c-decolor all nodes that have a c-colored descendant, and
by Lemma 15 we remove all the nodes that are left uncolored. Note that, this
procedure can be applied both on palette F and on palette Pi, for 1 ≤ i ≤ h. This
reduction returns a tree where all paths do not have color repetitions, hence, by
Proposition 13 its height is at most 2h. Condition (b) induces another decoloring
procedure. In fact, once the previous reduction is applied, nodes with the same
color must form an antichain and, in particular for each f ∈ F we can apply (b)
just ignoring paths from a leaf up to a f -colored node. Note that this time we
do not apply the reduction on palettes Pi’s.

Proposition 17. If fout(T ) ≤ m, then T has at most 2m leaves.

Proof. The proof is by induction on m ≥ 0. If m = 0, then fout(T ) = 0, hence T
must be a single path, hence it has exactly one leaf. Let m > 0, and T be a tree
with t > 0 children under its root (the case when t = 0 is trivial). By inductive
hypothesis, each subtree rooted at a child of the root have at most 2k−t+1 leaves,
since their fan-out is at most k− (t− 1). Since there are t of those subtrees, the
number of the leaves in T is at most t·2k−t+1. We have t·2k−t+1 = 2· t2t ·2k ≤ 2k,
since, for all t > 0, t

2t ≤ 1
2 . ut

By Proposition 17, the reduced target tree have at most 2|F| (hence, 2h)
f -colored nodes, for each f ∈ F . Note, however, that we do not have a bound
on the total number of nodes in the reduced tree, indeed the reduction induced
by Lemma 16 (b) is not applied on c-colored nodes, for c ∈

⋃
i Pi. This problem

is overcome just checking that for each color f ∈ F , all f -colored nodes have
no more than |

⋃
i Pi| c-colored children, for c ∈

⋃
i Pi. Since |

⋃
i Pi| ≤ h · k, we

obtain a reduced tree Tred with at most h (k + 1) · 2h nodes.

Looking for rainbow antichains: What we actually need is the following for each
node v in the reduced target tree: for each X ⊆ F , determine whether the pattern
trees corresponding to color in X can be mapped simultaneously in the subtree
Tred�v. To compute this, we determine all the possible tuples t = (c1, . . . , c|Ch(v)|)
of colors associated to each child of v, then we check that for each α(Si) ∈ X,
the tuple t contains Pi. Since both Ch(v) and

⋃
i Pi have at most h ·k elements,

for each node v and subset X we need to check at most (h · k)2 tuples at a cost
of h · k per tuple. We denote this by the predicate N(v,X).

In order to determine whether there exists a rainbow antichain in the re-
duced target tree T, we need to check that A(Tred,F) hold, where the predicate
A(T , X), for T , subtree of Tred, and X ⊆ F , is defined as follows:

A(T , X) = N(v,X) ∨
∨
Y⊆X

(
A(T ′, Y ) ∧A(T ′′, Y \X)

)
,

where, v = root(T ), T ′ = T �u1 and T ′′ is the tree obtained by collecting all
T �uj under a fresh copy of the node v, for Ch(v) = {u1, . . . , um} and 2 ≤ j ≤ m.
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Now, A(T , X) holds if and only if T admits a rainbow antichain R for the
palette

⋃
α(Si)∈X Pi. Indeed, the antichain is either a subset of the immediate

children of root (in this case N(root(T ), X) holds), or it is split in the subtrees
of T (in this case the right part of the formula holds). A formal argument for
this fact can be provided by a straightforward induction on the height of T .

In order to calculate A(T , X) we must solve a subset convolution problem for
each node in the reduced target tree. Each subset convolution can be calculated
in time O(h2 ·2h), by means of the fast subset convolution algorithm of [3], hence
we can check A(Tred,F) in time O(h · k)3 +O(h3(k + 1) · 22h) using a dynamic
programming algorithm working bottom-up on the structure of Tred.

Complexity analysis of the algorithm: The coloring phase costs O(ns ·n3/2
t ) where

nt and ns are the number of nodes in the target and pattern, respectively, [17].
Note that while coloring the nodes from leaves up to the root, it can be easily
performed the first decoloring step, just do not coloring nodes by colors already
assigned to some descendant.

The second decoloring phase must be performed after the previous decoloring.
This is both necessary for the correctness of the reduction, and useful to increase
the node fan-outs. The decoloring, for each f ∈ F , first calculates the fan-out of
each f -colored node just performing a simple depth-first visit of the tree, then
it decolors the nodes by other h depth-first visits, one for each color in F . The
overall cost of the reduction is linear in nt.

The cost for checking the existence of rainbow antichains in Tred has been
already shown to be in O(h · k)3 +O(h3(k + 1) · 22h).

Concluding, the overall cost of the algorithm is O(h3(k+1)·22h)+O(ns ·n3/2
t ).

Notice that the proposed algorithm proves also that the forest pattern match-
ing problem is fixed-parameter tractable even if we choose as parameter simply
K = |

⋃
i Ch(Si)|; indeed, in this case the upper bound would be O(K3 · 22K) +

O(ns · n3/2
t ). We have preferred to consider the two parameters h, k, instead of

the single K, because this yields a lower and more precise upper-bound.

6 Conclusions

In this paper we have considered the problem of matching a forest within an
unordered tree, with no overlaps. This problem arises in many situations deal-
ing with hierarchical structures; in particular, it covers the problem of matching
the redex of wide reaction rules within processes. This case is particularly inter-
esting in the definition and the implementation of the semantics of calculi for
distributed and global computation.

We have shown that, although the problem is NP-complete in general, the
combinatorial explosion depends only on the forest width. This parameter is
usually fixed once we have chosen the reduction system (i.e., reaction rules do not
change) and it is small (≤ 3), thus the exponential explosion is actually bounded
and the problem is feasible. In fact, we have provided an algorithm that solves
this problem, respecting these complexity bounds. Therefore, our results prove
that wide reaction rules are feasible for many calculi for global computation.
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As a side result of our proof techniques, we have singled out the new rain-
bow antichain problem, which is NP-complete but fixed-parameter tractable; we
think that this problem can be useful also for the analysis and reductions of
other problems about trees and forests.

Related work. Wide reaction systems can be seen as a particular case of graph
rewriting systems. It is well-known that in general graph rewriting is NP-complete
[9], as each step requires to solve a subgraph isomorphism problem. In this pa-
per we have improved this situation in the case of wide reaction systems, by
showing that subgraph isomorphism can be avoided in favour of the rainbow
antichain problem—thus yielding a polynomial algorithm where the exponential
part becomes a constant factor once we have fixed the set of reaction rules.

The problem of forest matching arises also in the case of Bigraphical Reactive
Systems, i.e. wide reaction systems whose states are bigraphs [14,19]. This case
is quite interesting because BRSs are intended to be a general meta-model for
global computations. Several algorithms for bigraph matching have been pro-
posed [8,21,18], but these solutions do not take advantage from the fact that
combinatorial explosion depends only on redex widths, as we have shown here.

Future work. First, we plan to apply the results and algorithm presented in this
paper to real calculi and frameworks. The cases of Bigraphical Reactive Systems,
BioBigraphs [1] and Synchronized Hyperedge Replacement [11] are of particu-
lar interest. In these cases, we have to integrate forest pattern matching with
sub(hyper)graph isomorphisms (needed to match e.g. the link part of bigraphs).
We hope that the tractability results given in this paper will help to tame the
complexity of subgraph isomorphism.

In [20], equational rewriting logics have been proposed as a framework for
operational semantics. Comparing our algorithm with tools implementing rewrit-
ing logic (e.g., Maude) is not immediate, since rewriting logics do not directly
support wide rewritings. A possible workaround is to encode wide reaction rules
into standard ones by extending the syntax with a suitable “tensor product”;
however, we expect our direct approach to outperform this indirect one. On the
other hand, our results about wide reaction rules could be incorporated into
tools like Maude, leading to a new and more expressive wide rewriting logics.

An interesting question is whether there are other possible reductions to be
applied in the target tree in order to yield a smaller kernel instance. A positive
result in this direction would provide a significant improvement of both time
and space complexity upper bounds. At the moment, we know only that our
problem does not fulfill the criteria in [4] that would imply the nonexistence of
a polynomial-bounded kernel, so there is still hope.

Another interesting situation is that of wide reaction systems with reaction
rates, like Stochastic Bigraphs [15]. These cases are of great interest in quan-
titative models of networks, biological systems, etc. Here, we are interested to
pick out a single match among many possible matches of different rules, but still
respecting rates and stochastic distributions. We think that it should be possible
to derive a suitable counting algorithm from the one presented in this paper.
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A Proofs of Technical Results

Proof (of Proposition 5). We prove each point separately.

(a, =⇒) Since |= T � 0,S, there exist a context C and parameters D such
that T ≡ (C{0/z,S/z}){D/x} for some z = (z1, . . . , zn) and z in vars(C). It
is simple to prove that C{0/z,S/z} ≡ C{0/z}{S/z}, hence, by associativity of
substitution composition, T ≡ ((C{0/z}){S/z}){D/x}, that is, |= T � S.
(a, ⇐=) Since |= T � S, there exist a context C and parameters D such that
T ≡ (C{S/z}){D/x} for some z = (z1, . . . , zn) in vars(C). Observe that C ≡
C | 0 ≡ (C | z){0/z} for some z /∈ {z1, . . . , zn}. From this we have that T ≡
((C | z){z/0,S/z}){D/x}, that is, |= T � 0,S.
(b, =⇒) Since |= T � x | y, there exist a context C and parameters D such
that T ≡ (C{x | y/z}){D/x} for some z ∈ vars(C). Since C{x | y/z} ≡ C{y |
w/z}{w/x} (for w fresh), by associativity of substitution composition, we get
T ≡ ((C{y | w/z}){x/w}){D/x}, that is, |= T � x.
(b, ⇐=) Since |= T � x, there exist a context C and parameters D such that
T ≡ (C{x/z}){D/x} for some z ∈ vars(C). It is easy to prove that C{x/z} ≡
C{x | 0/z} ≡ C{x | y/z}{0/y} for y fresh. Now by associativity and from the
freshness of y, we obtain T ≡ (C{x | y/z}){0/y,D/x}, that is, |= T � x | y.
(c) has the same proof of (b), just replace x in (b) with S. ut

Proof (of Theorem 9). Given a match (C,D) for T � S, checking that T ≡
(C{S/z}){D/x} corresponds to a tree isomorphism test, which is in P [12,13].

Let a colored tree T and a palette P = {c1, . . . , cn} be and instance of
RainbowAntichain. Let us transform T into a tree term T as follows. If T
is a single node v (a leaf) T is m[ 0 ], where m = c if v has color c, otherwise
m = ∗, a fresh name not in P denoting an uncolored node. If T has root r and
T1, . . . , Tk are the (children) subtrees of r, T is m[T1 | · · · | Tk ], where m is as
above for r, and T1, . . . , Tk are transformed trees of T1, . . . , Tk.

Suppose (C,D) be a match for T � (c1[x1 ], . . . , ck[xn ]). In C, each ci[xi ]
is grafted into a variable zi ∈ vars(C). Since variables can appear in terms only
as leaves, in the transformation T of T , we have found a rainbow antichain for
P, since the matching pattern has all the colors in P exacty once.

Assume that T has a rainbow antichain R. In order to recover context C
and parameters D, which are a match for T � (c1[x1 ], . . . , ck[xn ]), it suffices
to apply the construction explained above with some adjustments: we obtain C
applying the transformation from the root of T , but if a node in R is reached
it is transformed by a fresh variable zi (1 ≤ i ≤ n) one for each element in
R; Dj ’s are recovered applying the original transformation starting from the
subtrees rooted at the children of nodes in R. It is straightforward to prove that
T ≡ (C{c1[x1 ]/z1, . . . , ck[xn ]/zn}){D/x}, for x = x1, . . . , xn. ut
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