
The BisimDist Library: Efficient Computation of
Bisimilarity Distances for Markovian Models?

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare

Department of Computer Science, Aalborg University, Denmark
{grbacci,giovbacci,kgl,mardare}@cs.aau.dk

Abstract. This paper presents a library for exactly computing the bisim-
ilarity Kantorovich-based pseudometrics between Markov chains and be-
tween Markov decision processes. These are distances that measure the
behavioral discrepancies between non-bisimilar systems. They are com-
puted by using an on-the-fly greedy strategy that prevents the exhaustive
state space exploration and does not require a complete storage of the
data structures. Tests performed on a consistent set of (pseudo)randomly
generated instances show that our algorithm improves the efficiency of
the previously proposed iterative algorithms, on average, with orders of
magnitude. The tool is available as a Mathematica package library.

1 Introduction

Probabilistic bisimulation of Larsen and Skou [7] plays a central rôle in the ver-
ification of discrete-time Markov Chains (MCs), and this notion has been later
extended to Markov Decision Processes with rewards (MDPs) [6]. Bisimulation
equivalences may be used for comparing systems to a given model specifica-
tion, or to make feasible the analysis of large systems by reducing their size by
means of bisimilarity quotients. However, when the numerical values of prob-
abilities are based on statistical samplings or subject to error estimates, any
behavioral analysis based on a notion of equivalence is too fragile, as it only re-
lates processes with identical behaviors. These problems motivated the study of
behavioral distances (pseudometrics) for probabilistic systems, firstly developed
for MCs [4,9,8] and later extended to MDPs [5]. The proposed pseudometrics
are parametric in a discount factor λ ∈ (0, 1] that controls the significance of
the future in the measurement. These distances provide a way to measure the
behavioral similarity between states and allow one to analyze models obtained
as approximations of others, more accurate but less manageable, still ensuring
that the obtained solution is close to the real one. These reasons motivate the
development of algorithms for computing bisimilarity distances.

In [2] we proposed an efficient on-the-fly algorithm for computing the be-
havioral pseudometrics of Desharnais et al. [4] on MCs. Our method has been
inspired by an alternative characterization of the pseudometric given in [3], that

? Work supported by the VKR Center of Excellence MT-LAB and the Sino-Danish
Basic Research Center IDEA4CPS.

2 G. Bacci, G. Bacci, K. Larsen, R. Mardare

1

a

2

b1

2
3

1
3 tm = MCtm[{{1,2}->1, {2,2}->1/3, {2,1}->2/3},2];

mc = MC[tm, {"a","b"}]

Fig. 1. Encoding of a Markov Chain as a data term in BisimDist.

relates the pseudometric to the least solutions of a set of equation systems in-
duced by a collection transportation schedules. The pseudometric is computed
by successive refinements of over-approximations of the actual distance using
a greedy strategy that always chooses a transportation schedule that better
improves the current approximation. This strategy avoids the exhaustive explo-
ration of the state space, and has the practical advantage that allows one to focus
only on computing the distances between states that are of particular interest.
Experimental results have shown that this technique performs, on average, or-
ders of magnitude better then the corresponding iterative algorithms proposed
in the literature, e.g., in [3]. The algorithm in [2] has been recently adapted in
order to compute the bisimilarity pseudometric introduced by Ferns et al. in [5]
for MDPs with rewards (see [1] for a detailed account on this extension).

In this paper, we present the BisimDist library, composed of two Mathe-
matica packages which implement our on-the-fly algorithm for computing the
bisimilarity distances for MCs and MDPs, respectively. BisimDist is available
at http://people.cs.aau.dk/~giovbacci/tools.html together with simple
tutorials presenting use case examples that show all the features of the library.

2 The BisimDist Library

The BisimDist library consists of two Mathematica packages: MCDist and
MDPDist providing data structures and primitives for creating, manipulating,
and computing bisimilarity distances for MCs and MDPs respectively. It also
has methods to identify bisimilarity classes and to solve lumpability problems.

The MCDist Package: An MC with n states is represented as a term of the
form MC[<tm>, <lbl>], where <tm> is an n × n probability transition matrix
(<tm> [[i,j]] denotes the probability of going from the state i to the state j) and
<lbl> is a vector of strings of length n (<lbl> [[i]] is the label associated with
the state i). Note that states are implicitly represented as indices 1 ≤ i ≤ n.

The probability transition matrices can be defined explicitly as a matrix,
or implicitly by listing only the transitions which have nonzero probability by
means of the function MCtm (see Fig. 1). Given a list trRules of rules of the
form {i, j} → pi,j , the function MCtm[trRules, n] returns an n × n matrix
where each pair (i, j) is associated with the value pi,j , otherwise 0. An MC mc

is displayed by calling PlotMC[mc]. Given a sequence mc1, . . . , mck of MCs,
JoinMC[mc1,...,mck] yields an MC representing their disjoint union. The in-
dices representing the set of states are obtained shifting the indices of the states

http://people.cs.aau.dk/~giovbacci/tools.html

Title Suppressed Due to Excessive Length 3

of the arguments according to their order in the sequence (e.g. if mc1 has n states,
the index corresponding to the i-th state of mc2 in JoinMC[mc1,mc2] is n+ i).

Given an MC mc with n states, a list Qpairs of pairs of indices 1 ≤ i, j ≤ n,
and a rational discount factor λ ∈ (0, 1], BDistMC[mc, λ, Qpairs] returns the
list of all λ-discounted bisimilarity distances calculated between the pairs of
states in Qpairs as list of rules of the form {i, j} → di,j . The alias All is used
for indicating the list of all pairs of states. BDistMC has the following options:

Verbose: (default False) displays all intermediate approximations steps;
ConsistencyCheck: (default True) checks that the term mc is a proper MC;
Estimates: (default None) takes a list of rules of the form {i, j} → di,j and

computes the least over-approximation of the bisimilarity distance assuming
di,j to be the actual distance between the states i and j.

The package MCDist provides also the functions BisimClassesMC, which cal-
culates the bisimilarity classes of an MC, and BisimQuotientMC that, for a given
an MC, yields its quotient w.r.t. probabilistic bisimilarity.

The MDPDist Package: An MDP with n states and m action labels is rep-
resented as a term of the form MPD[<tm>, <rw>, <act>], where <tm> is an
n × m × n labelled probability transition matrix (<tm> [[i,a,j]] is the proba-
bility of going from the state i to the state j, known that the action a as been
chosen), <rw> is a n × m real-valued matrix representing a reward function,
and <act> is a string-valued list of length m specifying the names of the action
labels. States and action labels are implicitly encoded as indices.

Probability transition matrices of size n × m × n can be defined by giv-
ing the nonzero transition probabilities as a list trRules of rules of the form
{i, a, j} → pi,a,j and calling MDPtm[trRules, n, m]. Analoguosly, n×m reward
matrices can be defined by calling MDPrm[<rwRules>, n, m], where <rwRules>
is a list of rules of the form {i, a} → ri,a.

The MDPDist package is provided with an interface similar to MCDist
with analogous semantics: PlotMDP, JoinMDP, BDistMDP, BisimClassesMDP, and
BisimQuotientMDP.

3 Results and Conclusions

BisimDist is a research tool still undergoing development. While not yet mature
enough to handle industrial case studies, the on-the-fly algorithm for computing
the bisimilarity distance performs, on average, better than the iterative method
proposed in [3]. Table 1 reports the average execution times of the on-the-fly al-
gorithm run with discount factor λ = 1/2 on a collection of randomly generated
MCs. We executed the iterative method on the same input instances, interrupt-
ing it as soon as it exceeded the running time of our method. The on-the-fly
approach leads to a significant improvement in the performances: it yields the
exact solution before the iterative method can under-approximate it with an
error of ≈ 0.1, which is a non-negligible error for a value in the interval [0, 1]. A
more detailed analysis of the performances and scalability can be found in [2].

4 G. Bacci, G. Bacci, K. Larsen, R. Mardare

Table 1. Comparison between the on-the-fly and the iterative methods on MCs.

States
On-the-Fly (exact) Iterative (approximated) Approximation

Time (sec) Time (sec) # Iterations Error

10 1.003 1.272 3.111 0.0946
12 4.642 5.522 4.042 0.0865
14 6.336 7.188 4.914 0.1189
20 34.379 38.205 7.538 0.1428

The BisimDist library provides primitives that aid the analysis on proba-
bilistic systems by reasoning in terms of approximate behaviors. In [1], we further
improved the efficiency of the implemented on-the-fly algorithm on MDPs, also
in relation to the addition of primitives for handling algebraic operations over
probabilistic systems, such as synchronous/asynchronous parallel composition.
We plan to apply similar on-the-fly techniques for computing bisimilarity dis-
tances on continuous-time probabilistic systems and timed automata.

References

1. G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. Computing Behavioral Dis-
tances, Compositionally. In K. Chatterjee and J. Sgall, editors, 38th Symposium
on Mathematical Foundations in Computer Science, volume ?? of Lecture Notes in
Computer Science, page ?? Springer Berlin Heidelberg, 2013. To appear.

2. G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare. On-the-Fly Exact Computation
of Bisimilarity Distances. In N. Piterman and S. A. Smolka, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 7795 of Lecture
Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg, 2013.

3. D. Chen, F. van Breugel, and J. Worrell. On the Complexity of Computing Proba-
bilistic Bisimilarity. In L. Birkedal, editor, FoSSaCS, volume 7213 of Lecture Notes
in Computer Science, pages 437–451. Springer, 2012.

4. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Compututer Science, 318(3):323–354, 2004.

5. N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov Decision Pro-
cesses. In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence,
UAI, pages 162–169. AUAI Press, 2004.

6. R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

7. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

8. F. van Breugel, B. Sharma, and J. Worrell. Approximating a Behavioural Pseudo-
metric without Discount for Probabilistic Systems. Logical Methods in Computer
Science, 4(2):1–23, 2008.

9. F. van Breugel and J. Worrell. Approximating and computing behavioural distances
in probabilistic transition systems. Theoretical Computer Science, 360(1-3):373–385,
2006.

	The BisimDist Library: Efficient Computation of Bisimilarity Distances for Markovian Models

