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We study two well known linear-time metrics on Markov chains (MCs), namely, the

strong and strutter trace distances. Our interest in these metrics is motivated by their

relation to the probabilistic LTL-model checking problem: we prove that they

correspond to the maximal differences in the probability of satisfying the same LTL and

LTL-x (LTL without next operator) formulas, respectively.

The threshold problem for these distances (whether their value exceeds a given

threshold) is NP-hard and not known to be decidable. Nevertheless, we provide an

approximation schema where each lower and upper-approximant is computable in

polynomial time in the size of the MC.

The upper-approximants are bisimilarity-like pseudometrics (hence, branching-time

distances) that converge point-wise to the linear-time metrics. This convergence is

interesting in itself, because it reveals a nontrivial relation between branching and

linear-time metric-based semantics that does not hold in equivalence-based semantics.

1. Introduction

The growing interest in quantitative systems, e.g. probabilistic and real-time systems,

motivated the introduction of new techniques for studying their operational semantics.

For the comparison of the behavior of quantitative systems, metrics are preferred to

equivalences since the latter are not robust with respect to small variations of the numer-

ical values. Such metrics are said behavioral if they generalize the concept of behavioral

equivalence (e.g., bisimilarity or trace equivalence) by measuring the dissimilarities of

two states in terms of their operational behavior.

Several of the behavioral distances that have been proposed in the literature, e.g.
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(DGJP99; DJGP02; dAFS04; Mio14; FPK14), come with logical characterizations ac-

cording to the general schema d(u, v) = supϕ∈Φ |〈ϕ〉(u) − 〈ϕ〉(v)|, where Φ is a suitable

set of logical properties of interest over which the states u, v are compared, and 〈ϕ〉(u) ∈ R
denotes the value of the formula ϕ at state u. The interest in such logical descriptions

is two fold. The first reason is purely theoretical, as it accounts for the expressiveness

of the metric in terms of a set Φ of logical properties. The second one is that such

characterization relates the metric to the verification problem over logical specifications.

In this paper we focus our attention on probabilistic systems, namely, Markov chains

(MCs), and we consider two behavioral metrics on them: the strong and stutter trace

metrics, respectively lifting the strong and stutter probabilistic trace equivalences to

distances. As a first main result we show, via a logical characterization, how these metrics

are related to the problem of model checking LTL formulas against MCs, a.k.a. the

probabilistic LTL-model checking problem (Var85; CY90; Var99).

The model checking problem against non-probabilistic systems checks whether a logical

formula ϕ is satisfied by all the execution runs from a certain state u. For probabilistic

systems the same problem amounts to asking what is the probability that an execution run

from u satisfies ϕ. By denoting this probability by P(u)(JϕK) ∈ [0, 1], we show that the

strong trace distance, denoted by δt, is related to the LTL-probabilistic model checking

problem as follows:

δt(u, v) = supϕ∈LTL |P(u)(JϕK)− P(v)(JϕK)| .

An immediate application of this result is that one may turn any probabilistic verification

problem at u into one at a state v, ensuring that (i) the difference in the results obtained

by doing probabilistic verification on v rather than u is always bounded by δt(u, v) for

any LTL-formula; and (ii) that δt(u, v) is the least upper-bound for this difference.

A similar logical characterization is shown to hold for the stutter trace distance too

with the key difference that now logical formulas are from sub-fragment of LTL with-

out next operator. As observed by Lamport (Lam83), program specifications using the

next operator are too specific to the actual implementation of programs, rendering them

unusable for any practical verification purpose. This is particularly evident for systems

that cannot be internally accessed, as it is typical e.g. in systems biology and machine

learning. This motivates our interest in a stutter-variant for the trace distance.

The above logical characterizations encourage for the study of efficient methods for

computing trace distances. Unfortunately, in (LP02; CK14) the threshold problem for

the trace distance is proven to be NP-hard and, to the best of our knowledge, its decid-

ability is still an open problem. Nevertheless, in (CK14) it is shown that the problem of

approximating this distance with arbitrary precision is decidable. This is done by provid-

ing two effective methods to converge from below and above to the trace distance. In this

paper we provide an alternative approximation schema that, differently from (CK14), is

formed by sequences of lower and upper-approximants that are shown to be computable

in polynomial time in the size of the MC. With respect to (CK14), our approach is more

general with the nice consequence that one obtains a similar approximating schema also

for the stutter trace distance.

Notably, in our construction the upper-approximants are bisimilarity-like pseudomet-
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rics, i.e., branching-time distances. We show that these metrics form a net —the topolog-

ical generalization of infinite sequences that use directed poset as set of indices instead of

the usual increasing chain of natural numbers— that converges point-wise to the linear-

time metrics. The result is interesting in itself, since it relates branching- and linear-time

metric-based semantics by means of a topological limit argument. It is worth noticing

that such a limit argument does occur between equivalence-based semantics (see Re-

mark 5). This opens new perspectives in the study of quantitative systems, and suggests

that relating linear- and branching-time distances by means of converging nets may lead

to new ways to cope with the decision problem of computing linear-time metrics.

The technical contributions of the paper can be summarized as follows.

(i) We provide a logical characterization of the trace distance in terms of LTL. This

result, differently from previous proposals (e.g. (dAFS04; DGJP99)), explicitly relates the

trace distance to the probabilistic model checking problem of LTL formulas. We show

that a similar characterization holds also for the stutter trace distance on the fragment

of LTL without next operator.

(ii) We construct two nets of bisimilarity-like distances that converge to the strong and

stutter trace distance. This construction leverages a classical duality result that charac-

terizes the total variation distance between two measures as the minimal discrepancy

associated with their couplings. To do so we generalize and improve the applicability of

two results in (CvBW12), namely Theorem 8 and Corollary 11.

(iii) We demonstrate that each element of the proposed converging nets is computable

in polynomial time in the size of the MC. Moreover, we provide an other pair of sequences

of lower approximant pseudometrics that converge from below to the strong and stutter

trace distances, respectively. Also these lower approximants are proven to be polynomially

computable. The pairs of converging sequences of upper and lower approximants form

the approximation schemata for the problem of computing the strong and stutter trace

distances. This approximation technique for the trace distance improves the one proposed

in (CK14).

2. Preliminaries and Notation

The set of functions from X to Y is denoted by Y X . Any preorder v on Y is extended to

Y X as f v g iff f(x) v g(x), for all x ∈ X. For f ∈ Y X , let ≡f = {(x, x′) | f(x) = f(x′)}.
For an equivalence relation R ⊆ X×X, let X/R denote the quotient set, [x]R denote the

R-equivalence class of x, and for A ⊆ X, let [A]R =
⋃
x∈A[x]R.

Measure theory. A field over a set X is a nonempty family Σ ⊆ 2X closed under comple-

ment and finite union. Σ is a σ-algebra if, in addition, it is closed under countable union;

in this case (X,Σ) is called a measurable space and the elements of Σ measurable sets. For

F ⊆ 2X , σ(F) denotes the smallest σ-algebra containing F . For (X,Σ),(Y,Θ) measurable

spaces, f : X → Y is measurable if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. The

product space, (X,Σ)⊗(Y,Θ), is the measurable space (X×Y,Σ⊗Θ), where Σ⊗Θ is the

σ-algebra generated by the rectangles E×F , for E ∈ Σ and F ∈ Θ. A measure on (X,Σ)

is a σ-additive function µ : Σ→ R+, i.e., such that µ(
⋃
i∈NEi) =

∑
i∈N µ(Ei) for all of
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pairwise disjoint Ei ∈ Σ; it is a probability measure if, in addition, µ(X) = 1. Hereafter

∆(X,Σ) denotes the set of probability measures on (X,Σ); and ∆(X) the set of (discrete)

probability measures on (X, 2X). Given a measurable function f : (X,Σ) → (Y,Θ) and

measure µ ∈ ∆(X,Σ), define push forward of µ under f as the measure µ[f ] ∈ ∆(Y,Θ)

given by µ[f ](E) = µ(f−1(E)), for all E ∈ Θ.

Given µ and ν measures on (X,Σ) and (Y,Θ), respectively, the product measure µ×ν on

(X,Σ)⊗(Y,Θ) is uniquely defined by (µ×ν)(E×F ) = µ(E)·ν(E), for all (E,F ) ∈ Σ×Θ.

A measure ω on (X,Σ) ⊗ (Y,Θ) is a coupling for the pair (µ, ν) if for all E ∈ Σ and

F ∈ Θ, ω(E × Y ) = µ(E) and ω(X × F ) = ν(F ) (i.e., when µ and ν are, respectively,

is the left and right marginal of the measure ω). The set of couplings for a pair (µ, ν) is

denoted by Ω(µ, ν). Note that the product measure µ× ν is a coupling for (µ, ν).

Metric spaces. For a set X, d : X×X → R+ is a pseudometric on X if for any x, y, z ∈ X,

d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z); d is a metric if, in addition,

d(x, y) = 0 implies x = y. If d is a (pseudo)metric on X, (X, d) is called a (pseudo)metric

space. A (pseudo)metric space is complete if all Cauchy sequences converge; and is sepa-

rable if it has countable dense subset. Define ker(d) = {(u, v) | d(u, v) = 0}; this set will

be called the kernel of d.

For (X,Σ) a measurable space, the set of probability measures ∆(X,Σ) can be equipped

with the total variation distance ‖µ−ν‖ = supE∈Σ |µ(E)−ν(E)|. If (X, d) is a separable

and complete (pseudo)metric space one can turn ∆(X,Σd) into a (pseudo)metric space by

using the Kantorovich (pseudo-)metric K(d)(µ, ν) = min
{∫
d dω | ω ∈ Ω(µ, ν)

}
, where

Σd is the Borel σ-algebra induced by the (pseudo)metric d.

The space of words. Let Xn be the set of words on X of length n ∈ N, X∗ =
⋃
n∈NX

n,

AB = {ab ∈ X∗ | a ∈ A, b ∈ B} (A,B ⊆ X∗) and X+ = XX∗.

An infinite word π = x0x1 . . . over X is an element in Xω. For i ∈ N, define π[i] = xi,

π|i = x0 . . . xi−1 ∈ Xi, and π|i = xixi+1 . . . ∈ Xω. For A ⊆ Xn, the cylinder set for

A (of rank n) is defined as C(A) = {π ∈ Xω | π|n ∈ A} ⊆ Xω. For an arbitrary family

F ⊆ 2X , let Cn(F) = {C(X1 · · ·Xn) | Xi ∈ F}, for n ≥ 1, and C(F) =
⋃
n≥1 C

n(F).

If (X,Σ) is a measurable space, (X,Σ)
n

denotes the product space over Xn, and

(X,Σ)
ω

the measurable space over Xω with σ-algebra generated by C(Σ) (i.e., the small-

est such that, for all n ∈ N, the prefix (·)|n and tail (·)|n functions are measurable). Note

that, the stepwise extension fω : Xω → Y ω of the function f : X → Y is measurable if f

is so. Often, Xn and Xω will also denote (X, 2X)
n

and (X, 2X)
ω

, respectively.

3. Markov Chains and Linear-time Equivalences

In this section we recall the definition discrete-time Markov chains and the notions of

strong and stutter probabilistic trace equivalences on them.

In the rest of the paper we fix a finite set A of atomic propositions.

Definition. A Markov chain is a tuple M = (S, τ, `) consisting of a countable set S of

states, a transition probability function τ : S → ∆(S) and a labeling function ` : S → 2A.
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Intuitively, ifM is in the state u, it moves to a state v ∈ S with probability τ(u)(v). We

say that p ∈ A holds in u if p ∈ `(u). We will useM = (S, τ, `) to range over the class of

MCs and we will often refer to it and its constituents implicitly.

An MC can be thought of as a stochastic process that, from an initial state u, emits

execution runs distributed according to the probability P(u) given below.

Definition 1. Let P : S → ∆(Sω) be such that, for all u ∈ S, P(u) is the unique

probability measure† on Sω such that, for all n ≥ 1 and Ui ⊆ S (i = 0..n)

P(u)(C(U0 · · ·Un)) = 1U0(u) ·
∫

P(·)(C(U1 · · ·Un)) dτ(u) ,

where 1A denotes the indicator function for a set A.

Intuitively, P(u)(E) is the probability that, starting from u, the MC executes a run in E ⊆
Sω. Given ui ∈ S (i ∈ {0, . . . n}), hereafter the cylinder set C({u0} · · · {un}) will be simply

denoted by C(u0..un). For example, P(u)(C(u0..un)) = 1{u0}(u) ·
∏n−1
i=0 τ(ui)(ui+1).

Remark 1. In Definition 1, since C(U0) = C(U0S), the case P(u)(C(U0)) is covered

implicitly. Indeed,

P(u)(C(U0S)) = 1U0
(u) ·

∫
P(·)(C(S)) dτ(u) = 1U0

(u) ·
∫

1 dτ(u) = 1U0
(u)

since C(S) = Sω and, for all v ∈ S, P(v) is a probability measure.

Two states of an MC are considered equivalent if they exhibit the same observable

behavior. Since in this work we are particularly interested to linear-time properties, we

recall the most used linear-time equivalences on MCs: strong and stutter probabilistic

trace equivalences.

Definition 2. Two states u, v ∈ S are probabilistic trace equivalent, written u ∼t v, if

for all T ∈ C(S/≡`
), P(u)(T ) = P(v)(T ).

Probabilistic trace equivalence tests two states w.r.t. all linear-time events, considered

up to label equivalence. This is in accordance to the fact that the only things that we

observe in a state are the atomic properties (labels). Hereafter, T denotes C(S/≡`
) and

its elements are called trace cylinders.

The stutter (or weak) variant of the probabilistic trace equivalence considers a tran-

sition step as “visible” only when a change of the current behavior occurs. The guiding

idea to define stutter events is to replace the notion of “step” with that of “stutter step”.

Formally, this corresponds to change the definitions of the tail (i.e., the “next step”)

and prefix functions over infinite words. Let X be a set and R ⊆ X × X equivalence.

For n ≥ 1, define the n-th R-stutter tail function tlnR : Xω → Xω, by induction on n, as

† Existence follows by the Hahn-Kolmogorov extension theorem; uniqueness by τ(u) being σ-finite.
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Fig. 1. The states u and v are stutter trace equivalent but neither bisimilar nor trace

equivalent. States are labeled by different node shapes.

follows

tl1R(π) =

{
π|j if ∃j s.t. (π[0], π[j]) /∈ R and ∀i < j, (π[0], π[i]) ∈ R
π otherwise (i.e., π is R-constant) ,

tln+1
R (π) = tl1R(tlnR(π)) .

Intuitively, applying tl1R to a sequence π it leaves the sequence the same if all its elements

are R-equivalent to its head π[0], otherwise it removes the longest prefix of elements

that are R-equivalent to its head; tlnR(π) is the n-th composition of it. For example, let

π = aaabbbcω, then tl1=(π) = bbbcω and, for all n > 1, tln=(π) = cω. The n-th R-stutter

prefix function pfnR : Xω → Xn is defined, by induction on n ≥ 1, as pf1R(π) = π[0] and

pfn+1
R (π) = π[0]pfnR(tl1R(π)).

Now, the standard definition of cylinder set for A ⊆ Xn can be turned to that of

R-stutter cylinder set for A (of rank n) as CR(A) = {π ∈ Xω | pfnR(π) ∈ A}. For a family

F ⊆ 2X , denote by CnR(F) = {CR(E1 · · ·En) | Ei ∈ F} the set of all R-stutter cylinders

of rank n over F and CR(F) =
⋃
n≥1 C

n
R(F). If (X,Σ) a measurable space, we denote

by (X,Σ)
ω
R the measurable space of infinite words over X with σ-algebra generated by

σ(CR(Σ)) (i.e., the smallest σ-algebra such that, for all n ≥ 1, the n-th R-stutter prefix

and tail functions are measurable).

Definition 3. Two states u, v ∈ S are probabilistic stutter trace equivalent, written

u ∼st v, if for all T ∈ C≡`
(S/≡`

), P(u)(T ) = P(v)(T ).

Intuitively, ∼st equates the states that have the same probability on all the ≡`-stutter

linear-time events, considered up to label equivalence. Hereafter, ST denotes C≡`
(S/≡`

)

and its elements will be called stutter trace cylinders.

By σ-additivity of the measures P(u), for all u ∈ S, it is easy to show that ∼t ⊆ ∼st.
Note that, ∼st 6⊆ ∼t (see Fig. 1 for a counterexample).

4. Trace Distances and Probabilistic Model Checking

We give the definitions of strong and stutter trace distances and provide logical char-

acterizations to both of them in terms of suitable fragments of LTL, relating the two

behavioral distances to the probabilistic LTL-model checking problem (Var85).
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Linear Distances. The strong and stutter probabilistic trace equivalences on MCs are

naturally lifted to pseudometrics δt, δst : S × S → [0, 1] as follows

δt(u, v) = supE∈σ(T ) |P(u)(E)− P(v)(E)| , (strong trace distance)

δst(u, v) = supE∈σ(ST ) |P(u)(E)− P(v)(E)| . (stutter trace distance)

Observe that two states u, v ∈ S are strong (resp. stutter) trace equivalent if and only

if δt(u, v) = 0 (resp. δst(u, v) = 0). Moreover, by σ(ST ) ⊆ σ(T ), it holds δst ≤ δt.
Note that, the above distances are total variation distances between two measures,

namely the restriction of P(u) and P(v), on σ(T ) and σ(ST ), respectively.

Linear Temporal Logic (LTL) is a formalism for reasoning about sequences of events (Pnu77).

The LTL formulas are generated by the following grammar

ϕ ::= p | ⊥ | ϕ→ ϕ | Xϕ | ϕ U ϕ , where p ∈ A .

Where ⊥ is constant false formula, φ→ ψ is implication, Xϕ is the next modal operator,

and ϕU ψ is the until temporal modality. Let LTL-u and LTL-x be the fragments of LTL

without until (U) and next (X) operators, respectively.

As usual, negation, disjunction, conjunction, and double implication are derived as:

¬ϕ = ϕ→ ⊥; ϕ∨ψ = ¬ϕ→ ψ; ϕ∧ψ = ¬(¬ϕ∨¬ψ); and ϕ↔ ψ = (ϕ→ ψ)∧ (ψ → ϕ).

The semantics of the formulas is given by means of a satisfiability relation defined, for

an MC M and π ∈ Sω, as follows

M, π |= p if p ∈ `(π[0]) ,

M, π |= ⊥ never ,

M, π |= ϕ→ ψ if M, π |= ψ whenever M, π |= ϕ ,

M, π |= Xϕ if M, π|1 |= ϕ ,

M, π |= ϕ U ψ if ∃i ≥ 0 s.t. M, π|i |= ψ, and ∀ 0 ≤ j < i, M, π|j |= ϕ .

Define JϕK = {π | M, π |= ϕ} and JLK = {JϕK | ϕ ∈ L}, for any L ⊆ LTL. The proba-

bilistic model checking problem against MCs over LTL formulas consists in determining

the probability P(u)(JϕK) for an initial state u and ϕ ∈ LTL. For any L ⊆ LTL, the

pseudometric

δL(u, v) = supϕ∈L |P(u)(JϕK)− P(v)(JϕK)|
measures the maximal difference that can be observed between the states u and v by

model checking them over a subset L of linear temporal logic formulas of interest.

In the rest of the section we show that δt and δst can be logically characterized as

δLTL (or δLTL-u) and δLTL-x , respectively. For the proof of this result we will exploiting

the following technical result from (BBLM15).

Lemma 1. Let µ and ν be two finite measures on a measurable space (X,Σ). If Σ is

generated by a field F , then ‖µ− ν‖ = supE∈F |µ(E)− ν(E)|.

Indeed, as we already noted after its definition, the distance δt(u, v) can be seen as

a total variation distance between measures P(u) and P(v) suitably restricted to the
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σ-algebra σ(T ) generated from the trace cylinders. So that, by Lemma 1, to provide a

logical characterization for δt in terms of LTL (or LTL-u) formulas it suffices to show

that the σ-algebra σ(T ) is generated by JLTLK (or JLTL-uK).

Theorem 1. (i) σ(T ) = σ(JLTLK) = σ(JLTL-uK), (ii) δt = δLTL = δLTL-u .

Proof. (ii) is a direct consequence of (i) and Lemma 1, since both JLTLK and JLTL-uK
are fields. To prove (i) it suffices to show (a) JLTLK ⊆ σ(T ) and (b) T ⊆ σ(JLTL-uK).

(a) By structural induction on the formula ϕ ∈ LTL we show that JϕK ∈ σ(T ).

(Case ϕ = p ∈ A). JpK =
⋃{

C([u]≡`
) | u ∈ S , p ∈ `(u)

}
. Since S is assumed to be

countable and, for all u ∈ S, C([u]≡`
) ∈ T , then we have that JpK ∈ σ(T ).

(Case ϕ = ⊥). J⊥K = ∅ ∈ σ(T ).

(Case ϕ = φ→ ψ). Jφ→ ψK = J¬φ∨ψK = JφKc ∪ JψK. By inductive hypothesis we know

that JφK, JψK ∈ σ(T ), therefore Jφ→ ψK ∈ σ(T ).

(Case ϕ = Xφ). The following holds:

JXφK = {π | M, π|1 |= φ} (by def. of X)

= {π | π|1 ∈ JφK} (by def. of J·K)

= (·)|−1
1 (JφK) (by def. of (·)|1)

By inductive hypothesis and (·)|1 being measurable, it follows that JXφK ∈ σ(T ).

(Case ϕ = φ U ψ). The following holds:

Jφ U ψK = {π | ∃i ≥ 0.M, π|i |= ψ and ∀0 ≤ j < i.M, π|j |= φ} (by def. U)

= {π | ∃i ≥ 0. π|i ∈ JψK and ∀0 ≤ j < i. π|j ∈ JφK} (by def. J·K)

=
⋃
i≥0

⋂
0≤j<i

((·)|−1
i (JψK) ∩ (·)|−1

j (JφK)) . (by def. (·)|k)

By inductive hypothesis on φ, ψ and measurability of (·)|k for arbitrary k ∈ N, it follows

Jφ U ψK ∈ σ(T ).

(b) To prove σ(T ) ⊆ σ(JLTL-uK) it suffices to show T ⊆ σ(JLTL-uK). Define the functions

A : A× 2S → LTL-u and B : T → LTL-u as follows

A(p, C) =

{
p if ∃u ∈ C s.t. p ∈ `(u)

¬p otherwise

B(C(C0)) =
∧
p∈AA(p, C0)

B(C(C0 · · ·Cn+1)) = B(C(C0)) ∧ XB(C(C1 · · ·Cn+1)) .

For T = C(C0 · · ·Cn) ∈ T , by induction on n ∈ N, it is easy to prove that JB(T )K = T .

This implies that T ⊆ JLTL-uK ⊆ σ(JLTL-uK).

Remark 2. We would like to remark that the equality δt = δLTL is not trivial. In (CK14)

it is proven that for the MC in Fig. 2, the value δt(u, x) is obtained as a supremum over

σ(T ) only on a maximizing measurable set that is not ω-regular. Since the properties
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Fig. 2. The trace distance between u and x is irrational: δt(u, x) =
√

2/4 (cf. (CK14)).

definable by LTL formulas are restricted to the star-free regular languages and the star-

free languages are a strict subset of the ω-regular languages, this means that such a

supremum cannot be achieved by a single LTL formula or trivial unions of families of

LTL formulas.

In the reminder of the section we provide a logical characterization for the stutter

trace distance δst similar to the one proven above, in terms of LTL formulas without

next operator. The key for proving this result will still be Lemma 1. However, for the

proof of σ(T ) ⊆ σ(JLTLK) in Theorem 1, we needed to use the measurability of the n-th

tail function (·)|n w.r.t. σ(T ). Unfortunately, (·)|n is not measurable w.r.t. σ(ST ), so the

logical characterization does not carry over easily to the stutter case.

We solve this problem by giving a coinductive characterization to Lamport’s stutter

equivalence (Lam83) (for a standard definition see e.g. (BK08, §7.7.1)).

Definition 4. For a relation R ⊆ Sω × Sω, π ∈ Sω is said R-constant if, for all i ∈ N,

π R π|i. A relation R ⊆ Sω × Sω is a stutter relation if whenever π R ρ

(i) π[0] ≡` ρ[0];

(ii) π is R-constant iff ρ is R-constant;

(iii) π|1 R ρ or π R ρ|1 or π|1 R ρ|1.

Two traces π, ρ ∈ Sω are stutter equivalent, written π ' ρ, if they are related by some

stutter relation.

It is immediate to see that stutter relations are closed under union and reflexive/symme-

tric/transitive closure, therefore ' is an equivalence and a stutter relation.

Proposition 1. π ' ρ iff ∀ϕ ∈ LTL-x. (M, π |= ϕ⇔M, ρ |= ϕ).

Proof. (⇒) Let R be a stutter relation such that π R ρ. Without loss of generality

assume R to be an equivalence relation (indeed if R is a stutter relation so is the smallest

equivalence containing it). It suffices to prove that, for any ϕ ∈ LTL-x,M, π |= ϕ implies

M, ρ |= ϕ. We proceed by induction on the structure of the formula ϕ.

(Case ϕ = p ∈ A). Assume M, π |= p. By π[0] ≡` ρ[0], then M, ρ |= p.

(Case ϕ = ⊥). Immediate, by the semantics of ⊥.

(Case ϕ = φ→ ψ). AssumeM, ρ |= φ. By symmetry of R, ρ R π. By inductive hypothe-

sis,M, π |= φ. By hypothesisM, π |= φ→ ψ, henceM, π |= ψ. By inductive hypothesis,

M, ρ |= ψ, hence M, ρ |= φ→ ψ.

(Case ϕ = φ U ψ). For π′ ∈ Jφ U ψK, define i∗(π′) = min {i | M, π′|i |= ψ}. We proceed

by induction on i∗(π). [Base case: i∗(π) = 0] By definition of i∗,M, π |= ψ. By inductive

hypothesis on the formula,M, ρ |= ψ. Therefore,M, ρ |= φUψ. [Inductive step: i∗(π) > 0]
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By definition of i∗, M, π|1 |= φ U ψ. Since i∗(π|1) = i∗(π) − 1, by inductive hypothesis

on π|1, for every ρ′ such that π|1 R ρ′, it holds M, ρ′ |= φ U ψ. By π R ρ, one of the

following cases holds:

(i) Case π|1 R ρ. Then, by the above, M, ρ |= φ U ψ.

(ii) Case π|1 R ρ|1. Then M, ρ|1 |= φ U ψ. By i∗(π) > 0 and M, π |= φ U ψ we have

M, π |= φ. By inductive hypothesis on the formula, M, ρ |= φ. From this and

M, ρ|1 |= φ U ψ we conclude that M, ρ |= φ U ψ.

(iii) Case π R ρ|1. First we prove that π is not R-constant. By contradiction assume π is

R-constant. Then, π[0] ≡` π[i], for all i ≥ 0, and, in particular π|0 ≡`ω π|i∗(π). By

M, π|i∗(π) |= ψ and π|0 ≡`ω π|i∗(π), we have M, π|0 |= ψ. But this contradicts the

assumption that i∗(π) > 0, hence π is not R-constant. By π R ρ and the fact that

π is not R-constant, then also ρ is not R-constant. This means that there exists

j ≥ 0 such that π 6R ρ|j ; and let j∗ be the minimal one. Clearly j∗ > 1, because

we assumed π R ρ|1. Thus we have that for all j < j∗ π R ρ|j , and by inductive

hypothesis on the formulaM, ρ|j |= φ. In particular from π R ρ|j∗−1 we have have

two possible cases: either π|1 R ρ|j−1 or π|1 R ρ|j (note that by definition of j∗

the case π R ρ|j does not hold). Similarly to (i) and (ii) above, in both cases we

can prove M, ρ |= φ U ψ.

(⇐) We show that ≡LTL-x = {(π, ρ) | ∀ϕ ∈ LTL-x,M, π |= ϕ iff M, ρ |= ϕ} is a stutter

relation. Assume π ≡LTL-x ρ. We check that the three conditions of Definition 4 hold.

(i) p ∈ `(π[0]) iff M, π |= p iff M, ρ |= p iff p ∈ `(ρ[0]). Hence π[0] ≡` ρ[0].

(ii) Assume π is not ≡LTL-x-constant. Then, there exists i > 0 such that π 6≡LTL-x π|i.
Let k be the least of such indices. Then, there exists ϕ such that M, π |= ϕ,

M, π|k |= ¬ϕ and, for all j < k,M, π|j |= ϕ. From this we get thatM, π |= ϕU¬ϕ.

By π ≡LTL-x ρ, we have M, ρ |= φ U ¬ϕ and M, ρ |= ϕ. This implies that there

exists j > 0 such that ρ|j |= ¬ϕ. Therefore ρ is not ≡LTL-x-constant.

(iii) Let π 6≡LTL-x ρ|1 and π|1 6≡LTL-x ρ. We prove π|1 ≡LTL-x ρ|1. By π ≡LTL-x ρ, we

have π 6≡LTL-x π|1 and ρ 6≡LTL-x ρ|1. Hence there exist α, β ∈ LTL-x such that

M, π |= α and M, π|1 |= ¬α , (1)

M, ρ |= β and M, ρ|1 |= ¬β . (2)

Let ϕ ∈ LTL-x be such that M, π|1 |= ϕ. We show M, ρ|1 |= ϕ.

(Case M, π |= ϕ) Assume by contradiction that M, ρ|1 |= ¬ϕ. By π ≡LTL-x ρ

and (1), M, ρ |= α. Similarly, M, ρ |= ϕ. By M, ρ |= α and M, ρ|1 |= ¬ϕ it

holds M, ρ |= α U ¬ϕ, hence, by π ≡LTL-x ρ, we have M, π |= α U ¬ϕ. By (1)

M, π|1 |= ¬α, hence the only possibility is that M, π|1 |= ¬ϕ, so that we get a

contradiction.

(Case M, π |= ¬ϕ) By (2) and π ≡LTL-x ρ, M, π |= β. By this and hypothesis on

π|1, we have M, π |= β U ϕ. Then, by π ≡LTL-x ρ, we have M, ρ |= β U ϕ and

similarly, by the hypothesis made on π, we also haveM, ρ |= ¬ϕ. This means that

M, ρ|1 |= ϕ.

The above states that ' characterizes the logical equivalence w.r.t. LTL-x.
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Proposition 2. Define q : Sω → Sω as follows, for π ∈ Sω,

q(π) =

{
π[0]q(π|k) if ∃k s.t. π[0] 6≡` π[k] and ∀j < k, π[0] ≡` π[j]

π otherwise (i.e., π is ≡`ω -constant)

Then q is σ(ST )-σ(T ) measurable and R = {(π, ρ) | q(π) ≡`ω q(ρ)} is a stutter relation.

Now we are ready to prove the logical characterization of the stutter trace distance.

Note that Definition 4 and Propositions 1, 2 are essential in the proof of this result.

Theorem 2. (i) σ(ST ) = σ(JLTL-xK), (ii) δst = δLTL-x .

Proof. (ii) is a direct consequence of (i) and Lemma 1, since JLTL-xK is a field. To

prove (i) it suffices to show (a) JLTL-xK ⊆ σ(ST ) and (b) ST ⊆ σ(JLTL-xK).

(a) By induction on the structure of ϕ ∈ LTL-x we prove JϕK ∈ σ(ST ). We show only

the case ϕ = φ U ψ. Consider the function q : Sω → Sω defined in Proposition 2. By

Proposition 2, the relation R = {(π, ρ) | q(π) ≡`ω q(ρ)} is a stutter relation. One can

easily prove that q(π) ≡`ω q(q(π)) for all π ∈ Sω, hence π ' q(π). Then,

Jφ U ψK = {π | ∃i ≥ 0.M, π|i |= ψ and ∀0 ≤ j < i.M, π|j |= φ} (by def. U)

= {π | ∃i ≥ 0.M, q(π)|i |= ψ and ∀0 ≤ j < i.M, q(π)|j |= φ} (Prop.1)

= {π | ∃i ≥ 0. q(π)|i ∈ JψK, ∀0 ≤ j < i. q(π)|j ∈ JφK} (by def. J·K)

=
⋃
i≥0

⋂
0≤j<i

(((·)|i ◦ q)−1(JψK) ∩ ((·)|j ◦ q)−1(JφK)) . (preimage)

By Proposition 2 the function q is σ(ST )-σ(T ) measurable, hence, for any k ∈ N, the

composite (·)|k ◦ q is σ(ST )-measurable. By inductive hypothesis on φ, ψ and σ(ST )-

measurability of (·)|k ◦ q, it follows that Jφ U ψK ∈ σ(ST ).

(b) To prove σ(ST ) ⊆ σ(JLTL-xK) it suffices to show ST ⊆ σ(JLTL-xK). To this end,

define A : A × 2S → LTL-x and B : ST → LTL-x as follows, for i = 1..n and Ci ∈ S/≡`

s.t. Ci 6= Ci+1,

A(p, C) =

{
p if ∃u ∈ C s.t. p ∈ `(u)

¬p otherwise

B(C≡`
(C1)) =

∧
p∈AA(p, C0)

B(C≡`
(C1 · · ·Cn+1)) =

(
B(C≡`

(C1)) ∧ ¬B(C≡`
(C2)

)
U B(C≡`

(C2 · · ·Cn+1)) ,

Note that, by definition of pfn≡`
and tl1≡`

(π), every stutter cylinder in ST can always be

represented as a set of the form C≡`
(C1 · · ·Cn), where, for all i = 1..n, Ci ∈ S/≡`

and

Ci 6= Ci+1. Now, for a stutter cylinder T ∈ ST of this form, it is easy to prove that

JB(T )K = T . This implies that ST ⊆ JLTL-xK ⊆ σ(JLTL-xK).
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5. Convergence from Branching to Linear Distances

We provide two nets of pseudometrics that converge, respectively, to the strong and stut-

ter trace distances. The pseudometrics are shown to be liftings of multi-step extensions

of probabilistic bisimilarity and a suitable stutter variant of it.

Our construction is inspired by (CvBW12, Cor. 11), where the bisimilarity pseudomet-

ric δb of Desharnais et al. (DGJP04) is shown to be an upper bound for the trace distance

δt. Their result is based on an alternative characterization of δb by means of the notion

of “coupling structure” (CvBW12, Th. 8). The proof of δt ≤ δb uses a classic duality re-

sult (Lemma 2 below) asserting that the total variation of two measures coincides to the

minimal discrepancy measured among all their couplings. Formally, given µ, ν ∈ ∆(X,Σ),

the discrepancy of ω ∈ Ω(µ, ν) is the value ω(6∼=Σ), where 6∼=Σ =
⋃
{E × Ec | E ∈ Σ} is

the separability relation w.r.t. Σ. Note that x 6∼=Σ y if and only if, there exists E ∈ Σ

such that x ∈ E and y /∈ E. Conversely, the inseparability relation w.r.t. Σ, denoted ∼=Σ,

has the property that x ∼=Σ y if and only if, for all E ∈ Σ, x ∈ E iff y ∈ E.

Lemma 2 ((Lin92, Th.5.2)). Let µ, ν be probability measures on (X,Σ). Then, pro-

vided that 6∼=Σ is measurable in Σ⊗ Σ, ‖µ− ν‖ = min {ω( 6∼=Σ) | ω ∈ Ω(µ, ν)}.

For a proof of the above result see the Appendix.

Along the way to obtain our construction, we nontrivially extend (and improve the

proofs of) both Corollary 11 and Theorem 8 in (CvBW12). Moreover, this construction

reveals a nontrivial relation between branching and linear-time metric-based semantics

(by means of a convergence of the observable behaviors) that does not hold by using the

standard equivalence-based semantics.

5.1. The Strong Case

We start by introducing a multi-step variant of probabilistic bisimulation.

Definition 5. Let k ≥ 1. An equivalence relation R ⊆ S × S is a k-probabilistic bisimu-

lation on M if whenever u R v, then, for all Ei ∈ S/≡`
and C ∈ S/R,

P(u)(C(E0 · · ·Ek−1C)) = P(v)(C(E0 · · ·Ek−1C)) .

Two states u, v ∈ S are k-probabilistic bisimilar, written u ∼kb v, if they are related by

some k-probabilistic bisimulation.

The notion of k-bisimulation weakens that of probabilistic bisimulation of Larsen and

Skou (LS91) by equating states that have the same probability to move to the same k-

bisimilarity class after having observed the same labels within the first k-steps. Note that

∼1
b coincides with Larsen and Skou probabilistic bisimilarity. Moreover, for all k ≥ 1, ∼kb

is a k-bisimulation and, by σ-additivity of measures, ∼1
b ⊆ ∼kb ⊆ ∼t.

Remark 3. Clearly,
⋃
k≥1∼kb ⊆ ∼t. However, the converse inclusion does not hold. A

counterexample is shown in Fig. 3(left), where the states u and v are probabilistic trace

equivalent, but they are not probabilistic k-bisimilar for any k ≥ 1.
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Fig. 3. (Left) the states u and v are trace equivalent but they are not k-bisimilar, for any

k ≥ 1; (Right) u ∼3
b v but u 6∼4

b v. States are labeled by different node shapes.

Remark 4. Differently from what one may expect, the k-bisimilarities do not necessarily

get weaker by increasing k, i.e., for an arbitrary k ≥ 1, it does not hold ∼kb ⊆ ∼
k+1
b . An

example is shown in Fig. 3(right), where u ∼3
b v but u 6∼4

b v, hence ∼3
b 6⊆ ∼4

b .

Next we show how to “lift” the above equivalences to behavioral pseudometrics. A

pseudometric that lifts bisimilarity is δb (DGJP04), defined as the least fixed point of

the following operator on 1-bounded pseudometrics d : S × S → [0, 1]

Θ(d)(u, v) =

{
1 if u 6≡` v
K(d)(τ(u), τ(v)) otherwise .

(Kantorovich Operator)

Intuitively, two states at maximal distance if they have different labels, otherwise the

difference is given by Kantorovich distance of their transition probabilities.

Analogously, for k ≥ 1, define the k-steps transition probability function τk : S → ∆(Sk)

as the function such that τk(u) is the unique probability measure on Sk that, for all

Ui ⊆ S (i = 1..k), τk(u)(U1 · · ·Uk) = P(u)(C(uU1 · · ·Uk)) (i.e., τk(u) = P(u)[(·)|k◦(·)|1]).

Note that, τ = τ1. Then Θ is generalized by

Θk(d)(u, v)

{
1 if u 6≡` v
K(Λk(d))(τk(u), τk(v)) otherwise .

where Λk(d)(u1..uk, v1..vk) = 1 if ui 6≡` vi for some i = 1..k, otherwise d(uk, vk). We call

the above k-Kantorovich operator. It is easy to see that Θk is monotonic, so that, by

Tarski’s fixed point theorem, it has least fixed point, hereafter denoted by δkb . Note that

δ1
b = δb, moreover due to the following result, we call δkb the k-bisimilarity pseudometric.

Lemma 3 (k-Bisimilarity Distance). u ∼kb v iff δkb (u, v) = 0.

Proof. (⇒) Define the pseudometric d as d(u, v) = 0 if u ∼kb v, d(u, v) = 1, otherwise.

By Tarski’s fixed point theorem, it suffices to show that Θk(d) ≤ d. The case when u 6∼kb v
holds trivially. Let u ∼kb v, we prove that Θk(d)(u, v) = 0. By definition of k-probabilistic

bisimulation we have that u ≡` v, therefore Θk(d)(u, v) = K(Λk(d))(τk(u), τk(v)). By

(FPP04, Lemma 3.1) we have that if for all E ∈ Sk/ker(Λk(d)), τ
k(u)(E) = τk(v)(E)

then K(Λk(δkb ))(τk(u), τk(v)) = 0. It remains to show that τk(u)(E) = τk(v)(E) for all
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E ∈ Sk/ker(Λk(d)). By definition of Λk,

Sk/ker(Λk(d)) =
{
E1 · · ·Ek−1C | Ei ∈ S/≡`

, C ∈ S/∼k
b

}
.

Since u ∼kb v, P(u)(C(E0 · · ·Ek−1C)) = P(v)(C(E0 · · ·Ek−1C)), for all Ei ∈ S/≡`
(i < k)

and C ∈ S/∼k
b
. Then the following hold:

τk(u)(E1 · · ·Ek−1C) = P(u)(C(uE1 · · ·Ek−1C)) (def. τk)

= P(u)(C([u]≡`
, E1 · · ·Ek−1C)) (def. P)

= P(v)(C([v]≡`
, E1 · · ·Ek−1C)) (u ∼kb v)

= τk(v)(E1 · · ·Ek−1C) . (def. τk and P)

(⇐) Let R = ker(Λk(δkb )) and R′ = ker(δkb ). We show that R′ is a k-probabilistic bisim-

ulation. Clearly, R and R′ are equivalence relations, since δkb is a pseudometric and Λk

preserves pseudometrics (i.e., Λk(δkb ) is a pseudometric). By definition of Λk,

Sk/R =
{
E1 · · ·Ek−1C | Ei ∈ S/≡`

, C ∈ S/R′
}
.

Let u, v ∈ S be such that u R′ v. By definition of Θk, we have that u ≡` v and

K(Λk(δkb ))(τk(u), τk(v)) = 0. By (FPP04, Lemma 3.1), K(Λk(δkb ))(τk(u), τk(v)) = 0

implies that τk(u)(E) = τk(v)(E), for all E ∈ Sk/R. Consider Ei ∈ S/≡`
(0 ≤ i < k)

and C ∈ S/R′ . We consider two cases. If u /∈ E0 we have

P(u)(C(E0 · · ·Ek−1C)) = 0 (def. P)

= P(v)(C(E0 · · ·Ek−1C)) . (u ≡` v and def. P)

If u ∈ E0, the following hold:

P(u)(C(E0 · · ·Ek−1C)) = P(u)(C(uE1 · · ·Ek−1C)) (def. P)

= τk(u)(E1 · · ·Ek−1C) (def. τk)

= τk(v)(E1 · · ·Ek−1C) (as shown before)

= P(v)(C(E0 · · ·Ek−1C)) . (u ≡` v, def. τk and P)

This proves that R′ is a k-probabilistic bisimulation.

In the reminder of the section we show that the k-bisimilarity pseudometrics δkb form

a net that converges point-wise to the trace distance δt. Such a convergence will be

obtained by means of two key results, namely, Theorem 3 and Lemma 4.

Recall that a poset is directed if all its finite subsets have an upper bound. A net over

a topological space X is a function from a directed poset (D,�) to X. We denote a net

as (xi)i∈D, meaning that i ∈ D is mapped to xi. A net (xi)i∈D over X converges to

x ∈ X, written (xi)i∈D → x, if for every open subset A ⊆ X such that x ∈ A, there exits

h ∈ D such that, for all j � h, xj ∈ A.

Theorem 3. Let (X,Σ) be a measurable space s.t. 6∼=Σ ∈ Σ ⊗ Σ, µ, ν be probability

measures on it, (D,�) be a directed poset and Ω: D → 2Ω(µ,ν) be a monotone map

such that
⋃
i∈D Ω(i) is dense in Ω(µ, ν) w.r.t. the total variation distance. Then, the net

(ui)i∈D over R+ defined by ui = inf {ω(6∼=Σ) | ω ∈ Ω(i)}, converges to ‖µ− ν‖.
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Proof. By Lemma 2, for all i ∈ D, ui ≥ ‖µ − ν‖. Moreover, by monotonicity of Ω,

i � j implies ui ≥ uj . Hence, to prove (ui)i∈D → ‖µ− ν‖, it suffices to show infi∈D ui =

‖µ − ν‖. Recall that for Y 6= ∅ and f : Y → R bounded and continuous, if D ⊆ Y is

dense then inf f(D) = inf f(Y ). By hypothesis
⋃
i∈D Ω(i) ⊆ Ω(µ, ν) is dense; moreover,

µ × ν ∈ Ω(µ, ν) 6= ∅. We show that ev 6∼= : Ω(µ, ν) → R, defined by ev 6∼=(ω) = ω(6∼=) is

bounded and continuous. It is bounded since all ω ∈ Ω(µ, ν) are probability measures.

It is continuous because ‖ω − ω′‖ ≥ |ω(6∼=) − ω′(6∼=)| = |ev 6∼=(ω) − ev 6∼=(ω′)| (1-Lipschitz

continuity). Now, applying Lemma 2, we derive our result.

Recall that, δt(u, v) is the total variation distance between P(u) and P(v) restricted to

σ(T ). Observe that the separability relation w.r.t. σ(T ) is 6≡`ω , moreover it is measurable

in σ(T )⊗ σ(T ) (see Proposition 5 in Appendix). Therefore, by Lemma 2,

δt(u, v) = min {ω(6≡`ω ) | ω ∈ Ω(P(u),P(v))} . (3)

To show that the k-bisimilarity distances converge to δt, it suffices to provide a net

of the form (δkb )k∈K complying with the requirements of Theorem 3. To this end we will

characterize δkb by means of the notion of coupling structure of rank k.

A coupling structure may be thought of as a stochastic process generating infinite

traces of pairs of states starting from a distinguished initial pair (u, v) and distributed

according to a coupling in Ω(P(u),P(v)). The traces of pairs of states are generated by

multi-steps of length k.

Definition 6 (Coupling Structure). A function C : S×S → ∆(Sk⊗Sk) is a coupling

structure of rank k ≥ 1 if for all u, v ∈ S, C(u, v) ∈ Ω(τk(u), τk(v)).

The set of coupling structures of rank k is denoted by Ck.

Definition 7. For k ≥ 1 and C ∈ Ck, let PC : S × S → ∆(Sω ⊗ Sω) be such that, for all

u, v ∈ S, PC(u, v) is the unique probability measure on Sω ⊗ Sω such that, for all, n ≥ 1

and Ui, Vi ⊆ S (i = 0..nk)

PC(u, v)(C(U0,nk)× C(V0,nk)) = 1U0×V0(u, v) ·
∫

PC(·)(C(Uk,nk)× C(Vk,nk)) dω ,

where, Ui,j = Ui · · ·Uj (similarly for V )‡ and ω is the unique (subprobability) measure

on S ⊗ S s.t., for all A,B ⊆ S , ω(A×B) = C(u, v)(U1,k−1A× V1,k−1B).

The following lemma extends (CvBW12, Th. 8) to k-bisimilarity pseudometrics and

provides the alternative characterization of δkb in terms of coupling structures.

Lemma 4 (Coupling Lemma). δkb (u, v) = inf {PC(u, v)( 6≡`ω ) | C ∈ Ck}.

Proof. For C ∈ Ck, define ΓC : [0, 1]S×S → [0, 1]S×S as

ΓC(d)(u, v) =

{
1 if u 6≡` v∫

Λk(d) dC(u, v) otherwise

‡ We assume that Ui,j = {ε} whenever i > j.
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ΓC is readily seen to be monotonic, thus, by Tarski’s fixed point theorem, it has least

fixed point, denoted by dC .

We split the proof in two parts. First we show that the following equality holds

δkb = inf {dC | C ∈ Ck} . (4)

Then we prove that for any C ∈ Ck and u, v ∈ S

dC(u, v) = PC(u, v)(6≡`ω ) (5)

(Part 1) For an arbitrary C ∈ Ck, and u ≡` v the following hold

dC(u, v) =
∫

Λk(dC) dC(u, v) (def. dC and ΓC)

≥ K(Λk(dC))(τ
k(u), τk(v)) (C(u, v) ∈ Ω(τk(u), τk(v)))

= Θk(dC)(u, v) (def. Θk)

≥ δkb (u, v) (Tarski’s fixed point theorem)

Therefore δkb ≤ inf {dC | C ∈ Ck}. For the other inequality, note that for any d ∈ [0, 1]S×S

there exists C ∈ Ck such that ΓC(d) = Θk(d). Indeed one can take C such that, for

all u, v ∈ S, C(u, v) = argmin
{∫

Λk(d) dω | ω ∈ Ω(τk(u), τk(v))
}

. Let D be a coupling

structure such that ΓD(δkb ) = Θk(δkb ). By definition of δkb , Θk(δkb ) = δkb , thus also have

that ΓD(δkb ) = δkb (i.e., δkb is a fixed point of ΓD). Since dD is the least fixed point of ΓD
we obtain that dD ≤ δkb , from which we conclude δkb ≥ inf {dC | C ∈ Ck}. This proves (4).

(Part 2) For the sake of readability, we will write d to refer to PC(.)(6≡`ω ). Let us define

the following functions

tl : Sω × Sω → Sω × Sω tl(π, ρ) = (π|k, ρ|k)

lst : Sk × Sk → S × S lst(u1..uk, v1..vk) = (uk, vk)

and let us define the following relations

A =
{

(u1..uk, v1..vk) ∈ Sk × Sk | ∃1 ≤ i ≤ k .ui 6≡` vi
}

≡k` = {(π, ρ) ∈ Sω × Sω | ∀0 ≤ i ≤ k .π[i] ≡` ρ[i]}

Let u, v ∈ S, we consider two possible cases. If u 6≡` v, then the following holds

d(u, v) = 1− PC(u, v)(≡`ω ) (additivity)

= 1− 0 (u 6≡` v and def. PC)
= ΓC(d)(u, v) . (def. ΓC)

If u ≡` v, then the following hold

ΓC(d)(u, v) =
∫

Λk(d) dC(u, v) (def. ΓC)

= C(u, v)(A) +
∫
Ac (d ◦ lst) dC(u, v) (def. Λk)

= PC(u, v)( 6≡k` ) +
∫
Ac (d ◦ lst) dC(u, v) (def. C(u, v))

= PC(u, v)( 6≡k` ) + PC(u, v)(≡k` ∩ tl−1
k ( 6≡`ω )) (def. PC)

= PC(u, v)( 6≡`ω ) = d(u, v) ( 6≡`ω = 6≡k` ] (≡k` ∩ tl
−1
k (6≡`ω )))

This proves that d is a fixed point of ΓC . To prove that d is actually the least one, we
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proceed by contradiction. Assume that d′ is the least fixed point of ΓC and d′ < d. Let

define the relation M ⊆ S × S as

u M v iff d(u, v)− d′(u, v) = ‖d− d′‖∞ ,

where we recall that ‖d−d′‖∞ = maxu,v∈S |d′(u, v)−d(u, v)|. Take u M v, then we have

‖d− d′‖∞ = d(u, v)− d′(u, v)

=
∫

Λk(d) dC(u, v)−
∫

Λk(d′) dC(u, v) (def. ΓC)

=
∫

(Λk(d)− Λk(d′)) dC(u, v) (linearity)

=
∫
Ac (d− d′) ◦ lst dC(u, v) (def. Λk)

define the sub-probability ω over S ×S as ω(X × Y ) = C(u, v)(Ac ∩ lst−1(X × Y )), then

=
∫
S×S (d− d′) dω (def. ω)

≤ ‖d− d′‖∞ .

Since ‖d − d′‖∞ > 0, the inequality ‖d − d′‖∞ =
∫
S×S (d− d′) dω ≤ ‖d − d′‖∞ proved

above implies that the support of ω has to be included in M (i.e., ω(u′, v′) > 0 implies

u′ M v′). Thus, whenever u M v the following holds

C(u, v)(A) = 0 and, C(u, v)(Ac ∩ lst−1(M)) = 1 . (6)

Equation (6) shall be read as follows. Given that the coupling structure C in a pair in M ,

it has probability 0 of preforming a multi-step of length k in A. Moreover, after having

preformed a multi-step it moves with probability 1 to another pair in M . Thus, from (6)

and def. of PC one can prove that for all (u, v) ∈M , PC(u, v)( 6≡`ω ) = 0. But this implies

that ‖d− d′‖∞ = 0, contradicting the assumption that d′ < d.

The next lemma shows that (i) any coupling structure C induces a probability measure

PC(u, v) which is a proper coupling for the pair (P(u),P(v)); (ii) the set of couplings

constructed via the coupling structures grows by multiples of the rank k; and (iii) their

union is dense in Ω(P(u),P(v)).

Lemma 5. Let u, v ∈ S be a pair of states of an MC M. Then,

(i) for k ≥ 1 and C ∈ Ck, PC(u, v) ∈ Ω(P(u),P(v));

(ii) for k, h ≥ 1, {PC(u, v) | C ∈ Ck} ⊆ {PC(u, v) | C ∈ Chk};
(iii)

⋃
k≥1 {PC(u, v) | C ∈ Ck} is dense in Ω(P(u),P(v)) w.r.t. the total variation.

Proof. (i) Let k ≥ 1 and C ∈ Ck. For proving PC(u, v) ∈ Ω(P(u),P(v)), it suffices to

show the following equalities, for arbitrary n ≥ 1 and E ⊆ Snk+1:

PC(u, v)(C(E)× Sω) = P(u)(C(E)) , (left marginal)

PC(u, v)(Sω × C(E)) = P(v)(C(E)) . (right marginal)

The above follow immediately by definition of PC and definitional conditions of coupling

structures, via a routine induction on n ≥ 1.

(ii) Let k, h ≥ 1 and C ∈ Ck. Define D(u, v) as the unique measure on Shk ⊗ Shk such



G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 18

that, for all E,F ⊆ Shk,

D(u, v)(E × F ) = PC(u, v)(C(uE)× C(vF )) ,

i.e., D(u, v) = PC(u, v)[(·)|hk◦(·)|1×(·)|hk◦(·)|1]. Then, D ∈ Chk. Indeed, for any E ⊆ Shk

D(u, v)(E × Shk) = PC(u, v)[(·)|hk ◦ (·)|1 × (·)|hk ◦ (·)|1](E × Shk) (def. D(u, v))

= PC(u, v)(((·)|hk ◦ (·)|1)−1(E)× Sω) (push forward)

= P(u)[(·)|hk ◦ (·)|1](E) (by (i))

= τhk(u)(E) . (def. τk(u))

Similarly, D(u, v)(Shk × E) = τhk(v)(E). Next we prove that PC(u, v) = PD(u, v). Since

any cylinder of rank n can be equivalently expressed as a cylinder of rank m ≥ n, the

equality between the two measures follows by the fact that, for any U, V ⊆ Shk+1

PC(u, v)(C(U)× C(V )) = PD(u, v)(C(U)× C(V )) ,

which follows by definition of D(u, v).

(iii) We prove the following preliminary result from which we will obtain (iii).

Let (X,Σ) be a measurable space such that F is a field generating Σ and let D ⊆ ∆(X)

be such that, for all µ ∈ ∆(X) and F ∈ F , there exists ν ∈ D such that ν(F ) = µ(F ).

Then D is dense in ∆(X) w.r.t. the total variation distance.

Let E ∈ Σ be an arbitrary measurable set and dE : ∆(X) × ∆(X) → R+ be the

pseudometric defined as dE(µ, ν) = |µ(E) − ν(E)|, for µ, ν ∈ ∆(X). Since ‖µ − ν‖ =

supE∈Σ dE(µ, ν), to prove that D is dense w.r.t. the total variation distance it suffices

to show that D is dense w.r.t. dE , for any E ∈ Σ (see Proposition 9). Let E ∈ Σ

and ε > 0. For any µ ∈ ∆(X) we have to provide ν ∈ D such that dE(µ, ν) < ε.

Define the measure µ̃ as the least upper bound of D ∪ {µ} w.r.t. the point-wise partial

order between measures (ν v ν′ iff ν(A) ≤ ν′(A), for all A ∈ Σ). The existence of µ̃ is

guaranteed by (DS88, Corr.6 pp.163) (note that µ̃ is not necessarily finite). By (BBLM15,

Lemma 5), F ⊆ Σ is dense in (Σ, dµ̃), where for E,F ∈ Σ, dµ̃(E,F ) = µ(E 4 F ) is the

Fréchet-Nikodym pseudometric§, where E4 F denotes the symmetric difference of sets.

So there exists F ∈ F such that dµ̃(E,F ) < ε
2 . By hypothesis, there exists ν ∈ D, such

that ν(F ) = µ(F ). Let ω ∈ {µ, ν} then

ω(E) = ω(E \ F ) + ω(E ∩ F ) (ω additive)

≤ ω((E \ F ) ∪ (F \ E)) + ω(F ) (ω monotone)

= ω(E 4 F ) + ω(E) (by def)

≤ µ̃(E 4 F ) + ω(F ) (ω v µ̃)

= dµ̃(E,F ) + ω(F ) . (by def)

This implies |ω(E) − ω(F )| ≤ dµ̃(E,F ), and in particular that |µ(E) − µ(F )| < ε
2 and

§ Notice that (BBLM15, Lemma 5) does not assume the measure to be finite, hence it can be safely

applied to µ̃.
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|ν(E)− ν(F )| < ε
2 . Then, the density of D follows by

dE(µ, ν) = |µ(E)− ν(E)| (def. dE)

≤ |µ(E)− µ(F )|+ |µ(F )− ν(E)| (triangular ineq.)

= |µ(E)− µ(F )|+ |ν(F )− ν(E)| (ν(F ) = µ(F ))

<
ε

2
+
ε

2
= ε .

This concludes the proof of the preliminary result.

Let u, v ∈ S, Ω =
⋃
k≥1 {PC(u, v) | C ∈ Ck}. Given the result above, to prove (iii) it is

sufficient to provide a field F generating the σ-algebra of Sω ⊗ Sω and show that, for

every µ ∈ Ω(P(s),P(s′)) and F ∈ F , there exists ω ∈ Ω such that ω(F ) = µ(F ).

Define F =
⋃
k≥1 Fk, where Fk denotes the collection of all finite union of measurable

sets of the form C(E)× C(F ), for some E,F ⊆ Sk. It holds that Fk ⊆ Fk+1 and Fk is a

field, for all k ≥ 1. Therefore F is a field that generates the σ-algebra of Sω ⊗ Sω.

Let µ ∈ Ω(P(u),P(v)), k ≥ 1 and D ∈ Ck. We define the measure ωk = PCk(u, v),

where Ck : S × S → ∆(Sk ⊗ Sk) is defined by

Ck(u′, v′) =

{
µ[(·)|k ◦ (·)|1 × (·)|k ◦ (·)|1] if (u, v) = (u′, v′)

D(u′, v′) otherwise

Note that, since Ck is nonempty, Ck is well defined. We show Ck ∈ Ck. To this end, since

D ∈ Ck, we just need to check that µ[(·)|k ◦ (·)|1 × (·)|k ◦ (·)|1](E × Sk) = τk(u)(E) and

µ[(·)|k ◦ (·)|1 × (·)|k ◦ (·)|1](Sk × E) = τk(v)(E), for arbitrary E ⊆ Sk (we check one

equality, the other is analogous):

µ[(·)|k ◦ (·)|1 × (·)|k ◦ (·)|1](E × Sk) = µ(C(SE)× Sω) (preimage)

= P(u)(C(SE)) (µ ∈ Ω(P(u),P(v)))

= τk(u)(E) . (def. τk)

Next we prove that for all A ∈ Fk, ωk(A) = µ(A). Note that since Fk ⊆ Fk+1,

this suffices to show that ωk(B) = µ(B) holds for all B ∈ Fj such that j ≤ k. Let

A =
⋃n
i=1 C(Ei) × C(Fi) ∈ Fk, for some n ∈ N and Ei, Fi ⊆ Sk (i = 1..n). Without

loss of generality we can assume that the C(Ei)×C(Fi)’s forming A are pairwise disjoint

(indeed, Fk is a field, hence we can simply replace any two “overlapping” sets by taking

the intersection and their symmetric difference).

ωk(A) = PCk(u, v)(A) (def. ωk)

=
∑n
i=1 PCk(u, v)(C(Ei)× C(Fi)) (additivity)

=
∑n
i=1 Ck(u, v)(Ei × Fi) (def. PCk)

=
∑n
i=1 µ(C(Ei)× C(Fi)) (def. Ck)

= µ(A) . (additivity)

To conclude the proof, observe that, given µ ∈ Ω(P(u),P(v)) and F ∈ F , there exists

k ≥ 1 such that F ∈ Fk, and for ωk given as above, ωk(F ) = µ(F ) and ωk ∈ Ω.

Note that Equation (3) and Lemmas 4 and 5(i) imply that, for all k ≥ 1, δkb ≥ δt. This
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generalizes (CvBW12, Cor. 11) to arbitrary k-bisimilarity distances. Moreover, multi-

steps bisimilarity distances are ordered by divisibility. Indeed, by Lemma 5(ii), it holds

that, for all k, h ≥ 1, δkb ≥ δhkb (hence, by Lemma 3, ∼hkb ⊆ ∼kb ).

Denote by K the directed poset of positive integers ordered by divisibility, that is

K = (N \ {0} ,�) where n � m iff there exists k ∈ N such that m = nk.

Then, Theorem 3, Lemmas 4 and 5 suffice to prove the following net-convergence.

Theorem 4 (Convergence). The net (δkb )k∈K converges point-wise to δt.

We already noticed in Remark 3 that there are examples of pairs of states that are trace

equivalent but not k-bisimilar, for any k ≥ 1. The above convergence theorem implies

that in these cases, even though the k-bisimilar distance between the are non-zero, for

all k ≥ 1 (Lemma 3), they have to converge towards 0 for k tending to ∞.

Example 1. Consider the Markov chains in Fig. 3 (left). One can easily show that, for

arbitrary k ≥ 1, δt(x, a) = δkb (x, a) = 1
2 and, analogously, δt(x, b) = δkb (x, b) = 1

2 . Now, it

is not hard to see that δkb (u, v) satisfies the following equalities

δkb (u, v) =
1

2k
δkb (u, v) +

1

2k+1
δkb (x, a) +

1

2k+1
δkb (x, b) =

1

2k
δkb (u, v) +

1

2k+1
.

From the above we obtain that δkb (u, v) = 1
2k+1−2

, thus the net (δkb (u, v))k∈K converges

to 0, in accordance with the fact that δt(u, v) = 0.

Remark 5 (Equivalence vs Metric-based semantics). Although
⋃
k≥1∼kb 6= ∼t

(see Remark 3), by Theorem 4, we have that infk≥1 δ
k
b = δt. Note that this is not in con-

tradiction with Lemma 3. Actually it shows how much an equivalence and a metric-based

semantics may differ. The explanation is topological, and it is due to the fact that equiv-

alences (interpreted as functions) differ from 1-bounded pseudometrics by mapping pairs

of states to the two-point space {0, 1} (with the discrete topology) which is disconnected,

whereas [0, 1] is connected.

5.2. The Stutter Case

We show how the construction that led to Theorem 4 can be easily adapted to obtain

a net that converges to the strutter trace distance δst. This proves that the method is

general enough to accommodate nontrivial convergence results.

Definition 8. Let k ≥ 1. An equivalence relation R ⊆ S×S is a ≡`-stutter k-probabilistic

bisimulation on M if whenever u R v, then, for all Ei ∈ S/≡`
and C ∈ S/R,

P(u)(C≡`
(E0 · · ·Ek−1C)) = P(v)(C≡`

(E0 · · ·Ek−1C)) .

Two states u, v ∈ S are ≡`-stutter k-probabilistic bisimilar, written u ∼ksb v, if they are

related by some ≡`-stutter k-probabilistic bisimulation.

The above definition weakens that of k-probabilistic bisimulation by testing the equality

between the probabilities on u and v only on ≡`-stutter cylinders.

It is easy to show that, for all k ≥ 1, ∼kb ⊆ ∼ksb. Note that, ∼ksb 6⊆ ∼kb (in Fig. 1,
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u ∼1
sb v but u 6∼1

b v). In analogy with the strong case, for all k ≥ 1, ∼ksb is a ≡`-stutter

k-bisimulation, ∼1
sb ⊆ ∼ksb ⊆ ∼st.

Now we lift these equivalences to pseudometrics by means of a Kantorivich-like oper-

ator. For k ≥ 1, define the ≡`-stuttered k-steps transition probability function τks : S →
∆(Sk) as the function s.t., τks (u) is the unique probability measure on Sk that, for all

Ui ⊆ S , τks (u)(U1 · · ·Uk) = P(u)(C≡`
(uU1 · · ·Uk)) (i.e., τks (u) = P(u)[pfk≡`

◦tl1≡`
]). Define,

for d : S × S → [0, 1] pseudometric,

Ψk(d)(u, v) =

{
1 if u 6≡` v
K(Λk(d))(τks (u), τks (v)) otherwise .

The above extends to the stutter case the k-Kantorovich operator. Clearly, Ψk is mono-

tonic, so that, by Tarski fixed point theorem, it has a least fixed point, denoted by δksb.

Due to the following result we call δksb the ≡`-stutter k-bisimilarity distance.

Lemma 6 (Stutter k-Bisimilarity Distance). u ∼ksb v iff δksb(u, v) = 0.

Proof. Similar to Lemma 3.

Next we provide a characterization of δksb by means of the notion of coupling structure,

now modified to accommodate the notion of ≡`-stutter step.

Definition 9. A function C : S×S → ∆(Sk⊗Sk) is a stutter coupling structure of rank

k ≥ 1 if, for all u, v ∈ S, C(u, v) ∈ Ω(τks (u), τks (v)).

Hereafter, Csk denotes the set of stutter coupling structures of rank k.

Denote by st(Sω) the measurable space over Sω with σ-algebra σ(C≡`
(2S)). The stutter

coupling structures are used to define measures in the product space st(Sω)⊗ st(Sω).

Definition 10. For k ≥ 1 and C ∈ Csk, let PC : S × S → ∆(st(Sω) ⊗ st(Sω)) be such

that, for all u, v ∈ S, PC(u, v) is the unique probability measure on st(Sω)⊗ st(Sω) such

that, for all, n ≥ 1 and Ui, Vi ⊆ S (i = 0..nk)

PC(u, v)(C≡`
(U0,nk)×C≡`

(V0,nk)) = 1U0×V0
(u, v) ·

∫
PC(·)(C≡`

(Uk,nk)×C≡`
(Vk,nk)) dω ,

where, Ui,j = Ui · · ·Uj (similarly for V ) and ω is the unique (subprobability) measure on

S ⊗ S s.t., for all A,B ⊆ S , ω(A×B) = C(u, v)(U1,k−1A× V1,k−1B).

The following gives a characterization of the k-stutter bisimilarity pseudometric δksb in

terms of stutter coupling structures. Note that, by Proposition 1, ' is the inseparability

relation w.r.t. σ(ST ) and, since LTL-x is countable, it holds ' ∈ σ(ST )⊗ σ(ST ).

Lemma 7 (Coupling Lemma). δksb(u, v) = inf {PC(u, v)( 6') | C ∈ Csk}.

Proof. Similar to Lemma 4.

According to Theorem 3 what follows suffices to prove the convergence.

Lemma 8. Let u, v ∈ S be a pair of states of an MC M. Then,

(i) for k ≥ 1 and C ∈ Csk, PC(u, v) ∈ Ω(P̃(u), P̃(v));
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(ii) for k, h ≥ 1, {PC(u, v) | C ∈ Csk} ⊆ {PC(u, v) | C ∈ Cshk};
(iii)

⋃
k≥1 {PC(u, v) | C ∈ Csk} is dense in Ω(P̃(u), P̃(v)) w.r.t. the total variation,

where P̃(u) is the restriction of P(u) on the sub-σ-algebra σ(C≡`
(2S)).

Proof. Similar to Lemma 5

The next result is a direct consequence of Theorem 3, Lemmas 7, and 8.

Theorem 5 (Convergence). The net (δksb)k∈K converges point-wise to δst.

6. Approximation Schema for the Linear Distances

In this section we provide each of the two trace distances (strong and stutter) with

an approximation schema, that is, a pair of sequences of pseudometrics that converge

from below and above to them. We show that each lower- and upper- approximant is

computable in polynomial time in the size of the MC.

In the following, we assume that M has a finite set of states and a rational transition

probability function, that is, τ(u)(v) ∈ Q ∩ [0, 1] for all u, v ∈ S. The size of M is

determined by the sum of the size of the binary representation of its components. Under

this restrictions the pseudometrics proposed in this section have finite domain and image

in Q. They are computable if they can be computed on all their domain.

6.1. The Strong Case

6.1.1. Lower-Approximants. The sequence of lower-approximants will be defined by re-

stricting the set of measurable sets over which δt evaluates the differences in the proba-

bilities. Formally, for k ≥ 1, let Ek be the set of all finite unions of cylinders in Ck(S/≡`
).

We define the pseudometrics lk : S × S → [0, 1] as follows

lk(u, v) = maxE∈Ek |P(u)(E)− P(v)(E)|

The following lemma states that the sequence (lk)k≥1 is increasing and that it converges

point-wise to the trace distance δt.

Lemma 9. For all k ≥ 1, lk ≤ lk+1 and δt = supk≥1 l
k.

Proof. lk ≤ lk+1 follows by Ek ⊆ Ek+1. The equality δt = supk≥1 l
k is a consequence of

(BBLM15, Theorem 6) and the fact that
⋃
k≥1 Ek is a field generating σ(T ).

By looking at its definition, it is not clear whether lk can be computed in polynomial

time in the size of M. Indeed, the maximum ranges over a set whose cardinality may

be exponential in |Sk| in the worst case. The following characterization shows that to

compute lk we do not need to evaluate the probabilities on all the elements of Ek but

only on the cylinders of rank k up to label equivalence, namely, Ck(S/≡`
).

Proposition 3. lk(u, v) = 1
2

∑
C∈Ck(S/≡`

) |P(u)(C)− P(v)(C))|.
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Proof. Note that Ek is finite and closed under complement. Let F be the family of

cylinders C ∈ Ck(S/≡`
) s.t. P(u)(C) ≥ P(v)(C). By Hahn’s decomposition theorem, for

F =
⋃
F we have P(u)(F )− P(v)(F ) = maxE∈Ek |P(u)(E)− P(v)(E)|. Then

2 · lk(u, v) = P(u)(F )− P(v)(F )

= 2 ·
∑
C∈F P(u)(C)− P(v)(C) (σ-additive)

=
∑
C∈F (P(u)(C)− P(v)(C)) + (P(v)(Cc)− P(u)(Cc)) (compl.)

=
∑
C∈Ck(S/≡`

) |P(u)(C)− P(v)(C))| , (F ∪ Fc = Ck(S/≡`
))

where the second equality holds since P(s)(Cc) = 1 − P(s)(C) for all s ∈ S and C ∈
Ck(S/≡`

).

The cylinders in Ck(S/≡`
) are all those of the form C(U0..Uk), for some Ui ∈ S/≡`

(i = 0..k), therefore the number such cylinders is bounded by |S|k+1. Hence, if we show

that given s ∈ S, we can to compute P(s)(C(U0..Uk)) in polynomial time, Proposition 3

tells us that also lk(u, v) can be computed in polynomial time.

To compute P(s)(C(U0..Uk)) we employ a variant of the forward algorithm, by defining

the function f : S × {0, . . . , k} → [0, 1] as

f(u, i) = P(s)(C(U0..Ui) ∩ (·[i])−1(u))

that is, the probability of having emitted a trace in C(U0..Ui) such that the i-th state

is u by starting from the state s. The function f can be calculated using the following

dynamic programming recurrence:

f(u, i) =

{
P(s)(C(U0) ∩ C(u)) if i = 0

1Ui(u) ·
∑
v∈S f(v, i− 1) · τ(v)(u) otherwhise

Finally, we can compute P(s)(C(U0..Uk)) as
∑
u∈S f(u, k).

Theorem 6. lk can be computed in polynomial time in the size of M.

6.1.2. Upper-Approximants. The decreasing sequence (uk)k≥1 of upper-approximants con-

verging to δt simply derives from the net of k-bisimilarity pseudometrics presented in

Section 5. and is defined by uk = δ2k−1

b (actually, any infinite subsequence of (δk)k∈K
is fine). The actual contribution of this section is to show that, for all k ≥ 1, the k-

bisimilarity distance δkb can be characterized as the optimal solution of a linear program

that can be constructed and solved in polynomial time in the size of the MC.

Our linear program characterization leverages on a dual linear program characteriza-
tion of the Kantorovich distance. For X finite, d : X × X → [0, 1] a pseudometric and
µ, ν ∈ ∆(X), the value of K(d)(µ, ν) coincides with the optimal value of the following
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argmax
d,α

∑
u,v∈S du,v

du,v = 0 ∀u, v ∈ S. u ∼kb v
du,v = 1 ∀u, v ∈ S. u 6≡` v

du,v =
∑
x∈Sk

(
τk(u)(x)− τk(v)(x)

)
αu,vx ∀u, v ∈ S. u ≡` v and u 6∼kb v

αu,vx − αu,vy ≤ dxk,yk ∀u, v ∈ S ∀x, y ∈ Sk. ∀i. xi ≡` yi
αu,vx − αu,vy ≤ 1 ∀u, v ∈ S ∀x, y ∈ Sk.∃i. xi 6≡` yi

Fig. 4. Linear program characterization of the k-bisimilarity distance δkb .

linear programs.

Primal Dual

min
ω

∑
x,y∈X d(x, y) · ωx,y∑
y ωx,y = µ(x) ∀x ∈ X∑
x ωx,y = ν(y) ∀y ∈ X

ωx,y ≥ 0 ∀x, y ∈ X

max
α

∑
x∈X(µ(x)− ν(x)) · αx

αx − αy ≤ d(x, y) ∀x, y ∈ X

Consider the linear program in Figure 4, hereafter denoted by D. Note that for an

optimal solution of D the value of the unknown d ∈ RS×S is maximized at each com-

ponent. Therefore, for an optimal solution of D it holds that, if u ≡` v and u 6∼kb v, the

maximal value of du,v is achieved at K(Λk(d))(τk(u), τk(v)). Otherwise, du,v = 1 when

u 6≡` v, and du,v = 0 when u ∼kb v. Thus, any optimal solution of D induces a fixed point

for Θk whose kernel coincides with ∼kb . In fact, an optimal solution of D characterizes

the greatest fixed point of the operator Υk : [0, 1]S×S → [0, 1]S×S defined as

Υk(d)(u, v) =

{
0 if u ∼kb v
Θk(d)(u, v) otherwise .

Lemma 10. Υk has a unique fixed point that coincides with δkb .

Proof. We fist prove that Υk has a unique fixed point. Assume that d and d′ are two

fixed points for Υk such that d′ > d. Consider the relation R ⊆ S × S defined as

u R v iff d′(u, v)− d(u, v) = ‖d− d′‖∞ .

Note that R ∩ ∼kb = ∅, otherwise we would have the following contradiction

‖d− d′‖∞ = d′(u, v)− d(u, v) (def. R)

= Υk(d′)(u, v)−Υk(d)(u, v) (by d′ = Υk(d′) and d = Υk(d))

= 0− 0 (def. Υk)

< ‖d− d′‖∞ . (d′ > d)
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With a similar argument one can also show that R ∩ 6≡` = ∅.
Consider u, v ∈ S such that u R v, then the following inequality hold

‖d− d′‖∞
= d′(u, v)− d(u, v) (def. R)

= Υk(d′)(u, v)−Υk(d)(u, v) (d′ = Υk(d′) and d = Υk(d))

= Θk(d′)(u, v)−Θk(d)(u, v) (def. Υk and R ∩ ∼kb = ∅)
= K(Λk(d′))(τk(u), τk(v))−K(Λk(d))(τk(u), τk(v)) (def. Θk and R ∩ 6≡` = ∅)

Let ω ∈ Ω(τk(u), τk(v)) be s.t. K(Λk(d))(τk(u), τk(v)) =
∫

Λk(d) dω, thus we have

= K(Λk(d′))(τk(u), τk(v))−
∫

Λk(d) dω

≤
∫

Λk(d′) dω −
∫

Λk(d) dω (def. K)

≤
∫

(Λk(d′)− Λk(d)) dω (linearity)

let E =
{

(u1..uk, v1..vk) ∈ Sk × Sk | ∀i ≤ n .ui ≡` vi
}

, then

=
∫
E

(Λk(d′)− Λk(d)) dω (def. Λk)

≤
∫
E
‖d− d′‖∞ dω (def. Λk)

≤ ‖d− d′‖∞
Summarizing, we have that

‖d− d′‖∞ ≤
∫
E
‖d− d′‖∞ dω ≤ ‖d− d′‖∞

Since ‖d− d′‖∞ > 0, the above inequality implies that

support(ω) ⊆ E and {(uk, vk) | (u1..uk, v1..vk) ∈ E} ⊆ R . (7)

Let R∗ ⊆ S × S be the smallest equivalence relation s.t. R ⊆ R∗. By the fact ω ∈
Ω(τk(u), τk(v)) and that support(ω) ⊆ E we have that, for all Ei ∈ S/≡`

(i = 0 . . . k−1)

and C ∈ S/R∗ the following holds

P(u)(C(E0 · · ·Ek−1C)) = P(v)(C(E0 · · ·Ek−1C)) . (8)

Before proving Equation (8), note that R ⊆ ≡` (otherwise ‖d− d′‖∞ > 0), thus we have

that either {u, v} ∈ E0 or {u, v} /∈ E0. On the one hand, if {u, v} /∈ E0, by definition of

P, we have P(u)(C(E0 · · ·Ek−1C)) = P(v)(C(E0 · · ·Ek−1C)) = 0.

On the other hand, if {u, v} ∈ E0 we have

P(u)(C(E0 · · ·Ek−1C)) (def. P)

= τk(u)(E1..Ek−1C) (def. τk)

= ω(E1..Ek−1C, S
k) (left marginal)

= ω(E1..Ek−1C,E1..Ek−1C) (by (7))

= ω(Sk, E1..Ek−1C) (by (7))

= τk(v)(E1..Ek−1C) (right marginal)

= P(v)(C(E0 · · ·Ek−1C)) (def. P and τk)
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Therefore R∗ is a k-probabilistic bisimulation. This means that u ∼kb v, which is in

contradiction with the fact that R ∩ ∼kb = ∅.
It remains to prove that δk is a fixed point for Υk, namely Υk(δk)(u, v) = δk(u, v) for

all u, v ∈ S. Take u, v ∈ S. On the one hand, if u ∼kb v the following equalities hold

Υk(δk)(u, v) = 0 (def. Υk)

= δk(u, v) . (Lemma 3)

On the other hand, if u 6∼kb v the following equalities hold

Υk(δk)(u, v) = Θk(δk)(u, v) (def. Υk)

= δk(u, v) . (def. δk)

This completes the proof.

Lemma 10 implies that for any optimal solution of D, du,v = δkb (u, v), for all u, v ∈ S.

Note that D has a number of constraints bounded by O(|S|2+|S|2k+2) and a number of

unknowns bounded by O(|S|2 + |S|k+2). Moreover, the following lemma ensures that the

linear program D can be constructed in polynomial time, provided that k is a constant.

Lemma 11. ∼kb can be computed in polynomial time in the size of M.

Proof. Let χ : {0, 1}S×S → {0, 1}S×S be defined as

χ(d)(u, v) =

{
1 if Θk(d)(u, v) > 0

0 otherwise

The domain {0, 1}S×S endowed with the usual point-wise preorder is a finite lattice where

any (strictly) increasing chain has at most |S|2 elements. The operator χ is monotonic

since Θk is so, thus it has least fixed point, say d.

We show that ker(d) = ∼kb . By Lemma 3 it suffices to prove ker(d) = ker(δkb ).

(⊆) By def. of χ, Θk(d) ≤ d thus, by Knaster-Tarski’s fixed point theorem, δkb ≤ d,

hence ker(d) ⊆ ker(δkb ).

(⊇) Let d′ : S × S → {0, 1} be defined as d′(u, v) = 0 if δkb (u, v) = 0, and 1 otherwise.

From the definition of χ we easily obtain χ(d′) ≤ d′, which implies d ≤ d′. Therefore

ker(δkb ) = ker(d′) ⊆ ker(d).

Having established that ker(d) = ∼kb , we notice that by Kleene fixed-point theorem

d can be computed by iterating the application of χ at most |S|2 times starting from

the bottom element, ⊥(u, v) = 0, for all u, v ∈ S, that is to say d = χ|S|
2

(⊥). We show

that each application of χ can be performed in polynomial time in the size of M. Given

d′ : S × S → [0, 1] and u, v ∈ S, Θk(d′)(u, v) is computed in constant time if u 6≡` v,

whereas, for u ≡` v it coincides with the optimal value of the following linear program:

K(Λk(d′))(τk(u), τk(v)) = max
α

∑
x∈Sk(τk(u)(x)− τk(v)(x)) · αx

αx − αy ≤ Λk(d′)(x, y) ∀x, y ∈ Sk .
(9)

Note that the above linear program has |S|k unknowns and |S|2k constraints. Since k

is constant, (9) can be computed in polynomial time in the size of M using e.g., the
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ellipsoid method. Finally, χ(d′) can be computed within the time it takes to compute

Θk(d)(u, v) for each u, v ∈ S, and checking whether its value is greater than zero.

Remark 6. Providing an efficient algorithm for computing for computing ∼kb is out

of the scope of the present paper. The interested reader may consider to look at more

efficient techniques such as partition refinement (BEM00; PT87).

The following result states that the k-bisimilarity distance can be computed in poly-

nomial time, provided that k is a constant.

Theorem 7. δkb can be computed in polynomial time in the size of M.

Proof. By Lemma 11, D can be constructed in polynomial time. The number of con-

straints and unknowns in D is bounded by a polynomial in the size of M. Hence, the

linear program D can be solved in polynomial time using the ellipsoid method.

6.2. The Stutter Case

As one may expect, the sequences (lkst)k≥1 and (ukst)k≥1 of lower- and upper-approximants

for the stutter trace distance δsb can be defined similarly to those we have shown in the

previous section for the strong case. Specifically, for k ≥ 1

lkst(u, v) = maxE∈Sk |P(u)(E)− P(v)(E)| and ukst(u, v) = δ2k−1

st ,

where Sk is the set of all finite unions of stutter trace cylinders in Ck≡`
(S/≡`

).

Convergence and (anti)monotonicity of the sequences follow exactly as before. However,

what is not immediate is the proof that, for all k ≥ 1, lkst and ukst can actually be computed

in polynomial time. The first difficulty arises, when for computing lkst, we try to apply

the characterization provided by Lemma 9:

lk(u, v) = 1
2

∑
C∈Ck

≡
`
(S) |P(u)(C)− P(v)(C))| .

The thin cylinders in Ck≡`
(S) are of the form C(w), for some w ∈ A∗1 · · ·A∗k and Ai ∈ S/≡`

(i = 1..k), hence Ck≡`
(S) is not finite (the word w can be arbitrarily long). Similarly, as

for computing ukst, if we tried to apply directly the LP characterization in Figure 4 we

would have an infinite number of constraints.

To cope with this problem, we propose a reduction from the stutter to the strong

case. Formally, we show that, for k ≥ 1, the problem of computing P(u)(C≡`
(u1..uk))

and the k-stutter bisimilarity distance δksb for an MC M can be reduced to computing

P(u)(C(u1..uk)) and δkb for an MC N derived from M.

The following lemma states that N is obtained by replacing the probability transition

function τ in M with the (1-)stutter probability transition function τ1
s .

Lemma 12. Let M = (S, τ, `) and N = (S, τ1
s , `). Then, for all k ≥ 1,

(i) Ui ⊆ S, PM(u)(C≡`
(uU1 · · ·Uk)) = PN (u)(C(uU1 · · ·Uk));

(ii) Ψk
M = Θk

N .

Proof. We prove the two point separately.
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(i) Let Ui ⊆ S (1 ≤ i ≤ k). We proceed by induction on k.

Base Case (k = 1):

PM(u)(C≡`
(uU1)) = τ1

s (u)(U1) (def. τ1
s )

=
∫
1U1

dτ1
s (u)

=
∫

PN (·)(C(U1)) dτ1
s (u) (by def. P(), PN (·)(C(U1)) = 1U1

)

= PN (u)(C(uU1)) . (def. P)

Inductive Step:

PN (u)(C(uU1 · · ·Uk))

=
∫

PN (·)(C(U1 · · ·Uk)) dτ1
s (u) (def. P)

=
∫

PM(·)(C≡`
(U1 · · ·Uk)) dτ1

s (u) (ind. hp.)

= PM(u)(C≡`
(uU1 · · ·Uk)) (def. τks and P)

(ii) Given k ≥ 1, by (i) we have that (τ(u)1
s)
k = τ(u)ks , for all u ∈ S. Therefore, the

equality Ψk
M = Θk

N follows by definition of Ψk and Θk.

Remark 7. Lemma 12 may be used to provide an alternative proof for the convergence of

the stutter k-bisimilarity distances to the stutter trace distance (Theorem 5) by reducing

it to the convergence obtained in the strong case (Theorem 4). In this way Section 5.2

may be simplified significantly, avoiding the need of proving some preliminary lemmas

that lead us to the proof of Theorem 5. However, we present the results for the stutter

case as in Section 5.2 to demonstrate the generality of the proof technique that lead to

Theorem 4 in a seemingly more complex case.

Next we show that N can be constructed in polynomial time and its size is polynomial

in the size of M. Consider the problem of computing τ1
s (u)(v).

We consider two possible cases:

Case u 6≡` v. By definition τ1
s (u)(v) = PM(u)(C([u]+≡`

v)). This is the probability of

reaching the state v starting from u visiting only states in [u]≡`
prior to reaching

v. Using LTL-like notations, this can be written as PM(u)([u]≡`
U {v}). This is a

well studied probabilistic model checking problem that can be solved in polynomial

time in the size ofM as the solution of a linear system of equations (see e.g. (BK08,

§10.1.1 p.762)).

Case u ≡` v. By definition τ1
s (u)(v) = PM(u)(uv[v]ω≡`

). This corresponds to the proba-

bility of making a transition from u to v and, from v, generating an infinite run that

never escapes from the ≡`-equivalence class of v, i.e., τ(u)(v) ·P(v)([v]ω≡`
). The prob-

ability PM(v)([v]ω≡`
) can be conveniently computed as 1 −

∑
x 6≡`u

τ1
s (v)(x), reusing

the probabilities computed in the previous case.

Therefore N can be constructed in polynomial time in the size of M.

Lemma 13. N = (S, τ1
s , `) has size polynomial in the size of M.

Proof. It suffices to show that τ1
s is rational of size polynomial in the size of M. Let

u, v ∈ S. If u 6≡` v then τ1
s (u)(v) = PM(u)([u]≡`

U {v}). Its value is the solution of a
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system of linear equations where the coefficients are some transition probabilities taken

from M (or a sum of them). Therefore, τ1
s (u)(v) is an intersection of hyperplanes given

by some equalities with rational coefficients whose size is bounded in the size ofM. Thus,

we conclude that τ1
s (u)(v) is rational of size polynomial in size of M. The case u 6≡` v

follows by the previous one, since τ1
s (u)(v) = τ(u)(v) · (1−

∑
x 6≡`u

τ1
s (v)(x)).

By Lemmas 12 and 13, and Theorems 6 and 7, the following holds.

Theorem 8. lksb and δksb can be computed in polynomial time in the size of M.

Remark 8. Theorems 7 and 8 do not contradict the fact that the problem of approxi-

mating the trace distances up to a given precision ε > 0 is NP-hard (CMR07). Indeed,

this requires one to compute the lower and upper approximants lk∗ and δk∗ (∗ ∈ {b, sb}), for

increasing values of k, until δk∗ − lk∗ < ε. Note that the time-complexity of this procedure

increases exponentially in the value of k.

7. Conclusions and Future Work

In this paper we provide the strong and stutter trace distances with a logical charac-

terization in terms of LTL and LTL-x formulas, respectively. These characterizations,

differently from other proposals, relate these behavioral distances to the probabilistic

model checking problem over MCs.

Then, we proposed a family of behavioral equivalences, namely probabilistic k-bisimila-

rities, that weaken probabilistic bisimilarity of Larsen and Skou on MCs. These equiv-

alences are in turn generalized to pseudometrics by means of a fixed point definition

that uses a generalized Kantorovich operator. These pseudometrics are shown to form

a net that converges point-wise to the trace distance. Remarkably, to prove this con-

vergence we extended and improved two important results in (CvBW12), namely, The-

orem 8 and Corollary 11. The proposed construction is shown to be general enough to

accommodate a second nontrivial convergence result between a net of suitable stutter

variants of k-bisimilarities pseudometrics and the stutter trace distance. These conver-

gences are interesting, because they reveal a nontrivial relation between branching and

linear-time metric-based semantics that in Remark 3 is shown not to hold when the

standard equivalence-based semantics on MCs are used instead.

The above distances are then used to provide the strong and stutter trace distances

with an approximation schema, that is, two sequences of pseudometrics that converge

from above and below to the two respective linear distances. Each of these lower and

under-approximants are shown to be computable in polynomial time in the size of the

MC. Notably, for this proof the under-approximants of the trace distance (i.e., the k-

bisimilarity pseudometrics) are given a characterization in terms of optimal solutions of

a linear program that have size polynomial in the MC. The one we propose generalizes

and improves the linear program characterization presented in (CvBW12, Eq. 8) for the

(undiscounted) bisimilarity pseudometric of Desharnais et al. that, in contrast, has a

number of constraints exponential in the size of the MC. Moreover, our approximation
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schema improves that in (CK14), both for the generality of its applicability and in terms

of computational complexity.

Some natural questions now are: (i) to see if the on-the-fly algorithm for the compu-

tation of bisimilarity distance in (BBLM13) can be used to compute the k-bisimilarity

distances and their stutter variants; (ii) whether this approximation technique carries

over to models with non-determinism, such as MDPs (where a result by Fu (Fu12) gives

new insight on how to obtain minimal information in case the distance is not a bisim-

ilarity metric, and where the PSPACE-complexity result is sharpened to NP ∩ coNP);

(iii) whether a similar construction can be applied to stochastic models with continuous

time, such as CTMCs.
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Appendix A. Technical proofs

This section contains all the technical proofs that have been omitted in the paper.

Let recall the definition of the function q : Sω → Sω given in Proposition 2. For π ∈ Sω,

q(π) =

{
π[0]q(π|k) if ∃k s.t. π[0] 6≡` π[k] and ∀j < k, π[0] ≡` π[j]

π otherwise (i.e., π is ≡`ω -constant)

Proof of Proposition 2. To prove the σ(ST )-σ(T ) measurability of q it suffices to show

that for all cylinders C(C1 · · ·Cn) ∈ T , q−1(C(C1 · · ·Cn)) ∈ σ(ST ). By definition of q we

have that

q−1(C(C1 · · ·Cn)) = {π | q(π) ∈ C(C1 · · ·Cn)} (preimage)

= {π | ∃j1 ≤ · · · ≤ jn, such that ∀k ≤ n .π[jk] ∈ Cjk} (def. q)

= C≡`
(C1 · · ·Cn) . (stutter cylinder)

Now we show that R = {(π, ρ) | q(π) ≡`ω q(ρ)} ⊆ Sω×Sω is a stutter relation. Assume

that q(π) ≡`ω q(ρ). We check that the three conditions of Definition 4 hold.

(i) By definition of q, q(π)[0] = π[0] and q(ρ)[0] = ρ[0], and by ≡`ω , we get π[0] ≡` ρ[0].

(ii) It suffices to prove that, for arbitrary π, ρ ∈ Sω, the following hold:

(a)π is ≡`ω -constant iff π is R-constant;

(b) if π R ρ and π is ≡`ω -constant, then ρ is ≡`ω -constant.

((a) : ⇐) Assume by contradiction that π is R-constant but not ≡`ω -constant. Then,

there exists k > 0 such that π[0] 6≡` π[k]. By definition of q, q(π)[0] = π[0] and

q(π|k)[0] = π[k], therefore q(π) ≡`ω q(π|k). In particular, this means that π R π|k,

so that π is not R-constant. This contradicts the hypothesis on π. ((a) : ⇒) Assume

that π is ≡`ω -constant. This implies also that, for all i ∈ N, π|i is ≡`ω -constant. By

definition of q, we have q(π) = π and, for all i ∈ N, q(π|i) = π|i. Hence, q(π) is

R-constant.

(b) By π R ρ, we have q(π) ≡`ω q(ρ). Since π is ≡`ω -constant, by definition of q,

q(π) = π, so that π`ωq(ρ). In particular, q(ρ) is ≡`ω -constant and, by definition of q,

this is the case only when ρ is ≡`ω -constant.

(iii) We show that q(π|1) 6≡`ω q(ρ) and π 6≡`ω q(ρ|1) implies q(π|1) ≡`ω q(ρ|1). By

q(π|1) 6≡`ω q(ρ), we have that π[0] 6≡` π[1]. Indeed, if π[0] ≡` π[1], by definition

of q, q(π) = q(π|1), and this contradicts the hypothesis q(π) ≡`ω q(ρ). Similarly,

π 6≡`ω q(ρ|1) implies ρ[0] 6≡` ρ[1]. By definition of q, π[0] 6≡` π[1] and ρ[0] 6≡` ρ[1], we

have q(π) = π[0]q(π|1) and q(ρ) = ρ[0]q(ρ|1). By q(π) ≡`ω q(ρ) and definition of ≡`ω ,

we obtain q(π|1) ≡`ω q(ρ|1).

Proof of Lemma 2 —restated from (Lin92, Th.5.2) We prove that ‖µ − ν‖ is a lower
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bound for {ω(6∼=) | ω ∈ Ω(µ, ν)}. Let ω ∈ Ω(µ, ν) and E ∈ Σ, then

µ(E) = ω(E ×X) (ω ∈ Ω(µ, ν))

≥ ω((X × E) ∩ ∼=) (def. ∼=)

= 1− ω((X × E)c ∪ 6∼=) (complement)

≥ 1− ω((X × E)c)− ω(6∼=) (sub additivity)

= ω(X × E)− ω(6∼=) (complement)

= ν(E)− ω(6∼=) . (ω ∈ Ω(µ, ν))

Thus, by the generality of ω ∈ Ω(µ, ν) and E ∈ Σ, it immediately follows that ‖µ− ν‖ =

supE∈Σ |µ(E)− ν(E)| ≤ min {ω(6∼=) | ω ∈ Ω(µ, ν)}.
Now we prove that there exists a coupling ω∗ ∈ Ω(µ, ν) such that ω∗( 6∼=) = ‖µ − ν‖.

Define ψ : X → X×X by ψ(x) = (x, x) (it is measurable because ψ−1(E×E′) = E∩E′,
for all E,E′ ∈ Σ). Note that ψ−1(∼=) = X, since ψ(x) = (x, x) ∈ ∼=.

If µ = ν, just define ω∗ = µ[ψ] (to check that this is a coupling and that it is such that

ω∗(6∼=) = ‖µ− ν‖ is trivial). Let µ 6= ν. Define µ ∧ ν : Σ→ R+ as follows, for E ∈ Σ

(µ ∧ ν)(E) = inf {µ(F ) + ν(E \ F ) | F ∈ Σ and F ⊆ E} .

The above is a well defined measure (a.k.a. the meet of µ and ν, see (DS88, Corr.6

pp.163)). Now define the following derived measures

η = µ− (µ ∧ ν) , η′ = ν − (µ ∧ ν) , ω∗ =
η × η′

1− γ
+ (µ ∧ ν)[ψ] .

where γ = (µ∧ ν)[ψ](∼=). Note that, since ψ−1(∼=) = X, (µ∧ ν)[ψ] puts all its mass in ∼=.

Moreover, since µ 6= ν, we get γ < 1, so ω∗ is well defined and, in particular, ω∗(∼=) = γ.

Now we show that ω∗ ∈ Ω(µ, ν). Let E ∈ Σ,

ω∗(E ×X) =
η(E) · η′(X)

1− γ
+ (µ ∧ ν)[ψ](E × Sω) (def. ω∗)

=
η(E) · (ν(X)− (µ ∧ ν)(X))

1− γ
+ (µ ∧ ν)[ψ](E ×X) (def. η′)

=
η(E) · (1− γ)

1− γ
+ (µ ∧ ν)[ψ](E ×X) (def. µ ∧ ν)

= µ(E)− (µ ∧ ν)(E) + (µ ∧ ν)[ψ](E ×X) (def. η)

= µ(E)− (µ ∧ ν)(E) + (µ ∧ ν)(E) (def. (µ ∧ ν)[ψ])

= µ(E) .

Similarly ω∗(X × E) = ν(E). The following shows that ω∗ is optimal

‖µ− ν‖ = 1− (µ ∧ ν)(X) (def. µ ∧ ν and compl.)

= 1− (µ ∧ ν)[ψ](∼=) (def. ψ)

= 1− γ (def. γ)

= 1− ω∗(∼=) (def. ω∗)

= ω∗(6∼=) (compl.)
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Proposition 4. Let Σ be a σ-algebra on X generated by F ⊆ 2X . Then the separability

relations w.r.t. Σ and F coincide:

6∼=Σ :=
⋃
{E × Ec | E ∈ Σ} =

⋃
{F × F c | F ∈ F} =: 6∼=F .

Proof. (⊇) It immediately follows by F ⊆ Σ. (⊆) Let U be the smallest family of

subsets of X that contains F and is closed under complement and (generic) union. Define

6∼=U :=
⋃
{E × Ec | E ∈ U}. Clearly Σ ⊆ U , hence 6∼=Σ ⊆ 6∼=U . This means that to prove

the inclusion it suffices to prove 6∼=F ⊇ 6∼=U , which is equivalent to ∼=F ⊆ ∼=U . We proceed

by contradiction. Assume that (x, y) ∈ ∼=F but (x, y) /∈ ∼=U . By definition of ∼=U , there

exists a set E ∈ U such that x ∈ E and y ∈ Ec. By definition of U , there exist P,N ⊆ F
such that E =

⋃
P ∪

⋂
N . This means that, either x ∈ P for some P ∈ P or x ∈

⋂
N .

If x ∈ P , by x ∼=F y and P ∈ F we have y ∈ P ⊆ E, hence a contradiction. If, x ∈
⋂
N ,

then by x ∼=F y and N ⊆ F , we have that x ∈
⋂
N ⊆ E, hence another contradiction.

Proposition 5. 6≡`ω is the separability relation w.r.t. σ(T ) and it is a measurable set

in σ(T )⊗ σ(T ), i.e., 6≡`ω = 6∼=σ(T ) ∈ σ(T )⊗ σ(T ).

Proof. We first show 6≡`ω = 6∼=σ(T ) =
⋃
{E × Ec | E ∈ σ(T )}. (⊇) By , it suffices to

prove separability w.r.t trace cylinders. Let π 6∼=σ(T ) ρ, then, by Proposition 4, there

must be a trace cylinder C ∈ T such that π ∈ C and ρ /∈ C. Let C = C(C1 · · ·Cn), for

some Ci ∈ S/≡`
(i = 1..n). By π ∈ C and ρ /∈ C, there must be an index 1 ≤ j ≤ n such

that π[j] 6≡` ρ[j], so that π 6≡`ω ρ. (⊆) Let π 6≡`ω ρ, then there exist k ∈ N such that

π[k] 6≡` ρ[k]. Let E = (·)|−1
k (C([π[k]]≡`

)). Clearly π ∈ E but ρ /∈ E. The function (·)|k is

measurable, hence E ∈ σ(T ).

Since T is a countable family, the measurability of 6≡`ω follows by Proposition 4 and

6≡`ω = 6∼=σ(T ), since 6≡`ω =
⋃
{E × Ec | E ∈ T }.

Appendix B. Folklore Results about Metric Spaces

Proposition 6. Let A ⊆ R be a bounded nonempty set. Then,

(i) supA ∈ A;

(ii) supA = supA.

Proof. First, notice that since A 6= ∅ and is bounded, by Dedekind axiom, the supre-

mum of A (and A) in R exists. Moreover, recall that, for any B ⊆ R,

B = ad(B) := {x ∈ R | ∀ε > 0. (x− ε, x+ ε) ∩B 6= ∅} ,

where ad(B) denotes the set of points adherent to B.

Let α = supA. (i) We prove that α ∈ A. Let ε > 0, then α− ε is not an upper bound

for A. This means that there exists x ∈ A such that α − ε < x ≤ α and, in particular,

that x ∈ (α − ε, α + ε) ∩ A. Therefore α ∈ A. (ii) Let β = supA. By A ⊆ A = A and

(i), we have α ≤ β ∈ A. We prove that α = β. Assume by contradiction that α 6= β and

let ε := β − α. Clearly ε > 0, so that, by β ∈ A, we have that (β − ε, β + ε) ∩ A 6= ∅.
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This means that there exists x ∈ A such that α = β − ε < x, in contradiction with the

hypothesis that α = supA.

Proposition 7. Let f : X → Y be continuous and A ⊆ X, then f(A) = f(A).

Proof. (⊇) A function f : X → Y is continuous iff for all B ⊆ X, f(B) ⊆ f(B).

Therefore f(A) ⊆ f(A). Since f(A) is closed, we have f(A) ⊆ f(A). (⊆) The result

follows by A ⊆ A and monotonicity of f(·) and (·).

Proposition 8. Let X be nonempty, f : X → R be a bounded continuous real-valued

function, and D ⊆ X be dense in X. Then sup f(D) = sup f(X).

Proof. Notice that, since X 6= ∅ and f is bounded, by Dedekind axiom, both sup f(D)

and sup f(X) exist. By Propositions 6, 7, and D = X, we have

sup f(D)
(Prop.6)

= sup f(D)
(Prop.7)

= sup f(D) = sup f(X)
(Prop.6)

= sup f(X) ,

which proves the thesis.

Proposition 9.

(i) The set of 1-bounded pseudometrics over a set X is a complete lattice w.r.t. the

point-wise order d v d′ iff for all x, y ∈ X, d(x, y) ≤ d′(x, y);

(ii) D ⊆ X is dense in all 1-bounded pseudometric spaces {(X, di) | i ∈ I} iff is dense

in (X,
⊔
i∈I di).

Proof. (i) Bottom and top elements are respectively given by the constant function 0

and the indiscrete metric 1(x, y) = 0 if x = y and 1(x, y) = 1 otherwise. To complete

the proof it suffices to show that the set of 1-bounded pseudometrics is closed under

supremum. Let P be a set of 1-bounded pseudometrics over X. We define (
⊔
P )(x, y) =

supd∈P d(x, y). It is easy to see that
⊔
P is the least upper bound of P w.r.t. v and

that is 1-bounded. We only have to check that
⊔
P is a pseudometric. Reflexivity and

symmetry are trivial. The only nontrivial part is to prove the triangular inequality:

(
⊔
P )(x, y) + (

⊔
P )(y, z) ≤ sup

d∈P
d(x, y) + sup

d∈P
d(y, z) (def. and upper bound)

≤ sup
d∈P

d(x, y) + d(y, z) . (triang. ineq. d ∈ P )

(ii) Recall that a subset K ⊆ Y is dense in a pseudometric space (Y, d) iff K =

{y ∈ Y | d(y,K) = 0} = X, where d(y,K) = infy′∈K d(y, y′). Then, both directions im-

mediately follow by the equality below{
x ∈ X | (

⊔
i∈I di)(x,D) = 0

}
=
⋂
{x ∈ X | di(x,D) = 0} ,

which holds since all the pseudometrics di are positive.


