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—— Abstract

We study Rational Lawvere logic (RL). This logic is defined over the extended positive reals with an algebraic

structure combining the Lawvere quantale (with the reversed order on the extended reals and a sum as tensor)
and a multiplicative quantale (with the usual order on the extended reals and a multiplication as tensor); together
they provide a semiring structure. The logic is designed for complex quantitative reasoning, including sequents
expressing inequalities between rational functions over the extended positive reals. We give a deduction system
and demonstrate its expressiveness by deriving a classical result from probability theory relating the Kantorovich
and total variation distances. Our deductive system is complete for finitely axiomatizable theories. The proof of
completeness relies on the Krivine-Stengle Positivstellensatz.

We additionally provide complexity results for both RL and its affine fragment AL. We consider two decision
problems: the satisfiability of a set of sequents and whether a sequent follows from a finite set of sequent. We
show that both problems lie in PSPACE for RL, and we give sharper complexity bounds for AL: the first problem
is NP-complete, while the second is co-NP-complete.
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1 Introduction

Recent developments in theoretical computer science have questioned the usefulness of equality in
semantics, advocating more nuanced, quantitative approaches to equivalence. For instance, exact
equality is often too rigid for probabilistic systems where small changes can disrupt equivalence
between processes. To address this, researchers used metrics to measure differences, thus shifting
the focus from strict equivalence to quantitative comparisons. Metric-based reasoning has also been
applied to other areas, such as privacy, security [21, 55], computational resource analysis [39, 40],
and symbolic computation [28].

As aresult, theories of semantic equality have evolved into quantitative frameworks, focusing on
measuring differences rather than asserting equality. Notable examples include theories for program
analysis [4, 17, 18, 41, 38, 40], distances for processes [22, 23, 26, 27, 6, 7, 11], and quantitative
equational logics over algebras of terms [45, 46, 8,47, 9, 50, 51, 1, 2]. The latter, in particular, focuses
on providing foundations for quantitative reasoning. The basic idea is to replace traditional equations
s = t between terms s, ¢ of an algebra with quantitative equations of the form s =, ¢, expressing
that s and ¢ are at most & apart, for a real € > 0. Thus, quantitative algebraic theories are used to
reason about the distances between elements of an algebra. However, equational logic is only one of

© Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon Plotkin;
5v licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:grbacci@cs.aau.dk
https://homes.cs.aau.dk/~grbacci/ 
https://orcid.org/0000-0003-4004-6049
mailto:r.mardare@hw.ac.uk
https://www.macs.hw.ac.uk/~rm4023/ 
mailto:prakash.panangaden@mcgill.ca
https://www.cs.mcgill.ca/~prakash/ 
mailto:gdp@inf.ed.ac.uk
https://homepages.inf.ed.ac.uk/gdp/ 
https://orcid.org/0000-0001-8496-6096
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Rational Lawvere Logic

many forms of logic and the question arises how extensions of classical logic can be used to provide

foundations for quantitative reasoning.

In his seminal work [42], Lawvere views the extended non-negative reals [0, o] as the objects
of a complete monoidal-closed category with > as the sets of morphisms and an extended sum as
tensor. A [0, oo]-enriched category is then a generalised metric space. Further, in the introduction
to [43], he regards the extended non-negative reals as a kind of truth-value, with 0 and oo as “true"”
and “false", and speaks of [0, co]-valued relations. Further, all sups (= [0, co]-limits) are preserved by
tensoring, and so [0, co] is a quantale, which we call the Lawvere quantale. We argue that logical
reasoning on the Lawvere quantale of truth values is a natural choice for studying metric spaces.
Lawvere’s generalized metric spaces are [0, oo]-valued preorders in it. A quantitative equation s = ¢
is expressed as a sequent € + s = t, which corresponds to the inequality &£ > “s = 1.

From a logical point of view, [0, co]-valued propositional logic is then a natural place to start.
Bacci et al. [10] began exploring a class of such quantitative logics, referred to as Lawvere logics'.
Among them, Affine Lawvere propositional logic (AL) was the most expressive. This logic features a
tensor operation, interpreted as addition in the Lawvere quantale, a linear implication, interpreted as
the adjoint residuum of addition, constants for all non-negative real numbers, and scalar multiplication
by non-negative reals. So all affine functions on [0, o] can be expressed in AL. Logical conjunction
and disjunction are derived operators. Sequents in AL are interpreted as affine inequalities on [0, co].

A key innovation of [10] was the use of theorems from linear algebra, specifically Farkas’
Lemma [25] and Motzkin’s transposition theorem [52], to help establish completeness: consequence
relations between finite sets of sequents and sequents were reduced to consequence relations between
finite sets of linear inequalities and linear inequalities. This established a strong link between logic
and classical arithmetic. However, many real-world quantitative phenomena involve non-linear
interactions, making it desirable to express polynomial inequalities.

In this paper, we take on the challenge of developing Rational Lawvere Logic (RL). This logic
extends AL by adding multiplication and division as logical connectives, enabling sequents to
represent rational inequalities. Our approach builds on Lawvere’s idea by giving logical status to both
sum and multiplication, with the key innovation being that the truth values come from a semiring
structure involving two quantales over [0, co]: the additive Lawvere one (with reverse order and sum
as tensor), and the multiplicative one (with the natural order and multiplication as tensor).

Our main contributions are:

1. We give a deduction system for RL (Table 2) and demonstrate its expressiveness by (a) deriving a
classical result from probability theory relating the Kantorovich and the total variation distances
and (b) giving an embedding of quantitative equational logic in it (Section 5).

2. We prove completeness for finitely axiomatizable theories (Theorem 10). (There is no finitary
complete consistent proof system for general theories (Theorem 16) as compactness fails.) The
core of the completeness proof differs significantly from that in [10]. Rather than reducing
to formally proving relations between linear inequalities, when we can use Farkas’ Lemma or
Motzkin’s transposition theorem, we reduce to formally proving relations between polynomials,
when we can use Krivine-Stengle’s Positivstellensatz [37, 60, 14], a real analogue of Hilbert’s
Nullstellensatz. As all such polynomial relations can be directly expressed in the logic, this
indicates a prima facie need for the Positivstellensatz.

3. Unlike AL, RL allows formulas and sequents to be “Booleanized”. We use this to prove a
deduction theorem (Theorem 8) that is not available in AL.

4. The completeness proof employs a linear-time non-deterministic reduction that translates any
RL inference to a set of inferences in polynomial form. Notably, when applied to AL inferences,

! The logics are named in honor of Lawvere.
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it significantly simplifies the normalisation algorithm proposed in [10]. We speculate that this
technique can be helpful to obtain, and/or simplify, other completeness proofs.

5. Relying on the reduction discussed above, we establish complexity results for two fundamental
decision problems (for both RL and AL): the semantical consequence of a sequent from a finite set
of sequents, and the satisfiability of a finite set of sequents. We show that semantical consequence
is in PSPACE for RL and co-NP-complete for AL (Theorem 18), and obtain as a corollary that
satisfiability is in PSPACE for RL and is NP-complete for AL (Corollary 19).

Related Work. Connections between arithmetic and logical reasoning are well known. A complete-
ness interpretation of Farkas’ Lemma appears already in the literature (e.g., in [48]). In algebraic
complexity there is the Nullstellensatz proof system which uses a simple reduction of propositional
satisfaction to polynomial equation solvability (e.g., [12, 54]) and the Positivstellensatz calculus [31]
which considers polynomial inequalities.

Parallel to Lawvere’s real-valued approach we must mention the vast development of fuzzy
logic, for example [53, 13, 33]. Fuzzy logic generally employs (if not explicitly) quantales on the
real interval [0, 1]. The most relevant for us is product logic [34, 32, 58, 24], defined over the
multiplicative quantale on [0, 1]. Through the quantale isomorphism e, AL corresponds to product
logic extended with constants in [0, 1], and RL corresponds to a further extension with an operation
e~nxIny Neither of these extensions seems to be in the literature. Moreover, this interpretation of the
logical connectives seems unnatural for quantitative reasoning over [0, o], and impedes direct access
to results we use, e.g., in linear algebra (such as Khachiyan’s ellipsoid method, used for complexity),
and in real algebraic geometry (such as the Krivine-Stengle Positivstellensatz, used for completeness).

We must also mention the extensive works on graded (or weighted) structures, such as linear

logic’s exponentials, comonads, types, or categories (e.g., [35, 30, 5, 19, 20, 44]). The gradings usually
employ general semirings of some kind. However [0, co] in particular is also discussed, for example
in [30, 5, 35, 20]. Various possibilities for multiplication are considered: two commutative ones (ours
is one) and a non-commutative one. In Section 2, we discuss all the possible monotonic, commutative,
and associative addition and multiplication operations on [0, o] that extend the usual ones on (0, o).
They are all definable in our logic (as are the non-commutative ones, as a straightforward extension
of our discussion shows).
Synopsis. Section 2 gives preliminary definitions and notation. Section 3 gives the syntax and
semantics of RL, and Section 4 presents a deduction system for it. Section 5 presents some nontrivial
applications. Section 6 develops the completeness result. Section 7 gives the complexity results for
RL and its affine fragment AL. Section 8 gives concluding remarks and discusses future work.

2 Preliminaries and Notation

A quantale [57] is a complete lattice with a binary, associative operation ® (fensor) that distributes
over joins in each argument; distributivity and completeness entail that the tensor has both right

adjoints. A quantale is commutative whenever its tensor is; and unital if there is an element u (unit) s.t.

u®a = a = a®u, for all a; when the unit is the top element, the quantale is integral. For commutative
quantales, the right adjoints of — ® a and a ® — coincide.

As mentioned in the introduction, our interest concerns the extended non-negative reals [0, co]. In
the remainder of this section, we compare ways of extending sum and multiplication from the positive
reals (0, ) to [0, co] and analyse the choices of quantales that one obtains from these extensions. To
avoid confusion, in what follows we always use sup and inf on [0, co] with respect to the natural order
<, even when we speak of structures using different orders.

Addition. We would like to extend sum from the positive reals (0, o) to [0, co] so that we still get a
sum that is associative, commutative, and monotonic w.r.t < (equivalently w.r.t. <°”). One can show
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+ 0 K 0o +, | 0 s 00 +3 0 s )
0 0 s 00 010 0 0 0 0 0 00
r r r+s o 0 r+s oo r 0 r+s o
o) o) 00 o) o) 0 o) o) oS [eS)
= ‘ 0 s 00 X; | 0 s oo X, | 0 5 o + 0 s o
0 0 0 0 0]0O0 O 0 0 0 o 0| 00
r r max{r—s,0} 0 r |0 rs o r 0 rs oo r|e £ 0
0 | o [ 0 [ 0 o0 o ) 00 00 00 | 00 00 o0

Table 1 Three variants of sum (+, +5, +3); truncated subtraction (=) ; two variants of multiplication (X, X);
and extended division (<) (the first column lists numerators, the first row denominators). Note that r, s € (0, 00).

there are three choices for defining such a sum, summarized in Table 1, with +; being the addition of
the Lawvere quantale.

» Lemma 1.

1. ([0, o], +1, <P) is a commutative, unital, integral quantale; ([0, 0], +1, <) is not a quantale.
2. ([0, 00], +2, <) is a commutative quantale; ([0, 0], +,, <°P) is not a quantale.

3. Neither ([0, o], +3, <) nor ([0, oo], +3, <°P) are quantales.

Thus, for an additive quantale on [0, co], if we use the natural order <, the correct choice for sum
is +,; if we use the reverse order <°”, the correct choice is +;. The first is not unital, since 0 +, co = 0;
the Lawvere quantale, is both unital and integral. We chose +, as this enables us to directly encode
examples from quantitative equational logic (Section 5). The right adjoint to — +; a, can be explicitly
formulated in terms of truncated substruction -, appropriately extended to [0, co] as shown in Table 1.
Indeed, it holds that b ~ a = inf{c | ¢ +, a > b}.
Multiplication. We consider associative, commutative, and monotonic extensions of multiplication
from [0, o) to [0, co]. One can show there are two possibilities, namely X; and X;, given in Table 1.

» Lemma 2.
1. ([0, 0], X1, <) is a commutative, unital quantale; ([0, co], X1, <°P) is not a quantale.
2. ([0, 00], X2, <°P) is a commutative, unital quantale; ([0, co], X, <) is not a quantale.

Thus, for a multiplicative quantale on [0, o], if we use the natural order <, it is X;; if we use
the reverse order <°7, it is X,. We discuss our choice of multiplication in relation to the Lawvere
quantale. On the one hand, if the choice were dictated by the quantale order, X, would seem the
natural candidate. On the other hand, unlike X, choosing X yields a semiring (both multiplications
distribute over +, but the unit of +; is not the null element for X;, as co X, 0 = co). Ultimately, we
choose x;. While no choice is perfect, having a semiring enables us to directly encode examples
from measure theory (Section 5) and to obtain a deduction theorem (Theorem 8).

Although the logic will use the order of the Lawvere quantale, we will still exploit the quantalic
structure associated with X; by adding as a logical connective the right adjoint to — X; a, which can
be explicitly formulated in terms of division +, appropriately extended to [0, co] as given in Table 1.
Indeed, it holds that b + a = sup{c | ¢ X; a < b}.

We conclude by showing that the other operations, namely +;, +3, and X;, can be expressed in
terms of +1, X, =, and oo (and so, eventually, in RLL). First, binary sups and infs can be:

» Lemma 3. Fora,b € [0, ] we have:
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1.avb=a+(b+=a)

2.anb=(@=(@=b)V(b=(b=a)

Next, we define functions N, Z: [0, co] — [0, 00] by N(a) = o0 = a and Z(a) = a X; co. These are
“Boolean functions” returning either O or co (i.e., T and L in the Lawvere quantale), as:

0 ifa=w 0 ifa=0
N(a) = ) Z(a) = )
co otherwise, co otherwise.

Hence, N is a test for co, while Z is a test for 0. We can next define a conditional using V and A:

b ifa=0

if athen b else c = [N(Z(a)) V b] A [Z(a) V c] = { i
¢ otherwise.

and finally obtain:
» Lemma 4. Fora,b € [0, 0] we have:
1. a+,b=if(Z(a) VvV Z(D)) then 0 else (a +1 b)
2. a+3b=(a+;b)+ [if (N(a) V N(b)) then oo else 0]
3. axa b =if[(Z(a) A N(b)) V (Z(b) A N(a))] then o else (a X| b)
Hereafter, when working on [0, co], we simply write + for the sum instead of +; and X for the

multiplication instead of X;. The other operations, namely ~ and + (written as a fraction), are those
from Table 1. We continue writing < for the natural order on [0, co] and <°7 for Lawvere’s order.

3 Rational Lawvere Logic

In this section, we introduce Rational Lawvere logic (RL), a propositional logic interpreted over
our semiring on [0, co]. It extends Affine Lawvere logic (AL) of [10], enabling one to reason with
inequalities between rational functions over the non-negative extended reals.

Syntax. Let P be a set of propositional letters, ranged over by P, O, R, . ... The formulas of RL are
freely generated by the following grammar, for arbitrary P € P and r € [0, o).

QY= LI|Plri¢@yl¢—oyl|dy|d/y

We define expected logical connectives as derived operators:

Ti=l—ol, =¢pi=¢g—ol, ¢AYy:=¢&(d—Y),
VY= =) 2PN (p—o¥) oY), doo:=(oY)AY —<9).
We assume the following precedence rule: multiplication and division have highest precedence,

followed by —, then @, next A and V, and finally —o and o— have lowest precedence. Thus, 8¢ & ¢ A
-0y —o 8 is interpreted as the formula (((6¢) ® ¥) A (—(6Y))) — 6.

Semantics. Interpretations are maps 7 : P — [0, co] assigning the propositional letters values in our
semiring. They are extended to all formulas as follows

I(1):=00, I(r):=r, I(@0Y)=1@+IW), I(P—oy):=IW)~I1¢)),
I(¢)

I =71 I, I =

(dy) (@)X I(Y) (®/¢) )

Consequently, the derived connectives are interpreted as follows (recall Lemma 3):

I(M)=0, I(~¢)=0c0=1(p), I(¢pAY)=max{I(y),1($)},
L(¢V ) = min{T(¥), I($)}, 1(¢ oo ¢p) = max{I(¢) = I(Y), I(¥) = I($)}.
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Affine Lawvere Logic (AL), introduced in [10], is the sublogic of RL defined for P € P and r € [0, o),
by the following grammar:?

AL: ¢y =L |Plri¢dylo—oy|ry

Boolean formulas. While, in RL, an interpretation evaluates a formula to a value in [0, co], formulas
such as —¢ or ¢_L evaluate either to O (“true”) or to co (“false”). For example:

0 if 7(¢) is infinite

oo otherwise,

0 ifZ(¢)=0

co otherwise.

(=) = { I(pL) = {

We call such formulas Boolean. They yield derived operators, such as:

= - = =7 o0—0 , > =7 —0 5
b= G=yi=ZGeop), pu=Lo=.
Zop:=¢L @FY:=Lpooy), ¢>yi=-LY —9),

These have useful “Boolean” meanings:

46 - {0 if 7(¢) is finite

OtherWISe,

oo otherwise, otherwise,

Using them, we can express useful facts about our interpretations, e.g., |¢| says that “¢ is finite” and
Z¢ that “¢ is strictly positive”. We use ¢ < ¢ and ¢ < ¢ as synonyms for ¢ > ¢ and y > ¢.
Sequents. A sequent in RL is a syntactic construct of the form

Plo s u b, (Sequent)

where the ¢;, and ¢ are logical formulas. The antecedents ¢, ..., ¢, are a finite ordered list of
formulas, possibly with repetitions. As customary, for I' and A lists of formulas, their comma-
separated juxtaposition I', A denotes concatenation; and + ¢ is a sequent with no antecedents.

A sequent ¢y, ...,¢, + Y is satisfied by an interpretation I (alternatively, J is a model for the
sequent), denoted I = (¢4, ..., ¢, F ), whenever

I(p) + -+ 1(p) 2 I(Y). (Semantics of sequents)

In particular, 7 |= (- ) means that 7(¢) = 0. We write 7 = S and say that 7 is a model for S if
7 satisfies all sequents in S. A sequent is satisfiable if it has a model; it is unsatisfiable if it has
no models; it is a tautology if it is satisfied by all interpretations. In particular, + ¢ — ¢, - T, and
F ¢ o—o (L > ¢) are examples of tautologies, while ¢ o— (=—¢) is not.

Note the distinction between ¢ —o i and the Boolean formula ¢ > : while for all interpretations
I,wehave 7 E (r ¢ — ) iff T E (r ¢ > ), it may not hold that 7 (¢ — ) = I(¢ > ¢), as
I (¢ —o ) could be a non-zero finite number.

» Definition 5 (Semantic Consequence). A sequent vy is a semantic consequence of a set S of
sequents, in symbols S = vy, if every model of S is also a model of .

4 Deduction System for RL

An inference rule is a syntactic construct of the form % with S a set of sequents and y a sequent.
The sequents in S are the hypotheses of the inference rule and vy is the conclusion. When S = {y’} is a
singleton, we use double inference lines such as %, to denote both 77 and 77

2 In[10] A and V belong to the syntax, but they can be obtained as derived operators, as in RL.
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I'reg Aory I'ro Lo, 0, A0
Tary Y Fure W T s Are

(Top)

(PERM)

Gr o (D)

rT m (BOT) 0o (zERO) m (ONE)

(WEM) (LiN)

F(=¢) V (7=¢) F(@—y) VY —¢)

I,¢,y 6 dBY O
Toouro ™™ 550

bogryed rigl o Ore vl
Ory Or(p—o0)@¢
dFY F oy

(UNIT) (comp)

F1lgp oo ¢ 0 + O Fo VY

(assoc) ———— (comm)

F (@)0 o~ $(y0) F Y oo Y

(QUANT)

(suB)

0 (NULL) (zm)

F 0¢p o—o

(DISTR)

HO(p YY) oo O¢ ® O

(suM) ———— —  (MurLr)

FF®s) oo (r+s) F (rs) oo (rxs)

P/O+ Y (aD1) H e
¢+ 6y F i o0 6(//0)

(p1v) (NULL)

F1/L1

Table 2 Deduction system for rational Lawvere logic RL. In the above, ¢, ¥, 8 are formulas, I, A are lists of
formulas, and r, s € [0, co0) are nonnegative reals.

Our deduction system for RL is given in Table 2. It contains basic inference rules of logical

deduction: (cur), weakening (WEAK) and permutation (PERM) (note that contraction is not sounds).

The rules (Top) and (Bot) behave as expected. (zEro) guarantees that the additive quantale is integral
and (onE) that one is finite. We also have weak-excluded-middle (wem), stating that any formula is
either finite or infinite, a prelinearity rule (LIN) that ensures the strong connectivity of the quantale
order. (pPREM) is a double inference that allows us to merge premises using ®; and (QUANT) is the
double inference representing the (right) quantale implication rule. The cancellation (canc) and
subtraction (suB) rules encode standard properties of addition and truncated subtraction, adjusted to
allow for infinity. (PREM) and (zErO), together with the basic inference rules and (top), entail that @
forms an ordered commutative monoid with a zero. (comp), (assoc), (unit) and (comm) express that
multiplication is an ordered commutative monoid with a unit. Together with (pisTRIB) and (NULL) we
then see that we have an ordered commutative semiring. Next, (zm) states that if a product is zero,
then one of its factors must also be zero. (sum) and (Murr) ensure that @ and logical multiplication
correspond to + and X respectively when applied to real constants. Finally, (apJ) states the adjunction
in the multiplicative quantale and (p1v) is a cancellation rule for multiplication.

» Definition 6 (Provability). Let S be a set of sequents. We say that a sequent 7y is provable, or
deducible, from S, if there is a proof of y from S, being a sequence vy, .. .,y, of sequents ending iny
whose members are either members of S, or follow from preceding members using the inference rules
of the deduction system.

In what follows, we will (safely) abuse notation and simply write %, if y is provable from S .
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» Theorem 7 (Soundness). If a sequenty is provable from S in RL, then vy is a semantic consequence
of S. In symbols: % implies S E .

InRL, ¢1,...,¢, + ¥ is provably equivalent to ¢| © ... ® ¢, + ; moreover ¢ + Y is provably
equivalent to + ¢ —o . Hence, without loss of generality, we may assume that arbitrary sequents are
of the form + 6.

In [10] it is shown that AL does not enjoy a deduction theorem, not even in the weak form that
holds for fuzzy logics, such as Lukasiewicz, Godel, or product logics [33]. This is because we have
proven that in AL it is not possible to “internalize” provability in the language of the logic. However,
in RL, the expressivity provided by multiplication allows us to “Booleanize” the sequents.

» Theorem 8 (Deduction Theorem). For arbitrary formulas ¢,y in RL, we have

i 020 =0z

We conclude this section by stating a useful lemma that enables inferences by cases.

» Lemma 9 (Disjunction Deduction Lemma). Lety be a sequent, S a finite set of sequents and ¢,

Sformulas in RL. If L then 3 ;‘7) and STW implies % The same holds for PL.

5 Applications: Proving Properties of Distances

In this section, we show how the deductive system of RL can be used to reason about the properties
of distances on probability distributions, namely, the total variation, the Kantorovich and the p-
Wasserstein distances, and we discuss embedding quantitative equational logic in RL.

Let X = {x,...,x,} be a finite (extended) metric space with distances d;; between x; and
x; possibly taking co as value. Denote by u,v,p,... generic discrete probabilities on X and by
Ui, Vi, Pis - . . their probabilities at x; € X.

Total Variation. The total variation distance dry(u, v) = maxacy [u(A) — v(A)), is encoded in RL by
the formula 7., := A AQH..n}(@ie A M 00 GB[E 4 Vi)- A simple example to start with is to demonstrate
that the total variation is a pseudo-metric, i.e., satisfies the axioms of reflexivity, symmetry, and
triangle inequality, which can be expressed in PL:

(REFL) F 1, (sYMM) 1, F by, (TRIANG) Ly, byp & 1yp -

The first two are trivial to derive. The derivation of the third is shown below:

- (D)

Hi ©Vik i oV

(i)

Vi °piFViopi

TR (QUANT,PREM) Vo gV P (QUANT,PREM) similarly. ..
(CUT,PREM)
Hi® U o v)® (v = pi) b p; (QuanT) i ® (Vi o ) ® (o o vi) F (QuaNT)
(i = v)®(vi = p) Fpty = pi (PREM.A,) (vi o) ®(pi o vi) Fpj = 1 EREMA,)
Al Al
(i o= vi) @ (vi o0 p;) F i —o p; (i o= vi) @ (vi o0 p;) F p; —o p;

(A2)

i )@ (v; i) B Ui i
(i oo v;) ® (v; o0 p;) F f1; oo p, (PREM,A,A2)

Aactin)(Bicq i =0 By V) ® Aactiny( @i vi o Bica ) F Aactt (s i o= Dy 00)

Tuystup b lup

(DEF,PREM)

Note that (pErM) is used implicitly and some steps of the derivation use meta-rules which are derivable
from the rules in Table 2, such as (A1) and (A).

The total variation is not just a pseudo-metric, but a proper metric satisfying the Fréchet positivity
axiom, which can be expressed in RL by the sequent

(POSITIVITY) /\(y[ Vi) F(tyy >0).
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The above uses the Boolean formulas of RL, which can be expressed using multiplication by L. In
fact, this is a non-linear property that cannot be captured by AL as it allows only affine formulas.

Kantorovich distance. The Kantorovich distance? between i and v can be defined using the following
two equivalent (dual) formulations

di(,v) = inf Z]] wiyd = sup | Z fipi - Z fiv (K-R duality)

where w ranges over joint probability distributions with y as left-marginal (i.e., 3’ ; w;; = p;, for all i)
and v as right-marginal (i.e., }}; w;; = v;, for all j); and f over non-expanding [0, co)-valued maps on
X, ie., |f, - fj| < d,'j, for all i, J

As its definitions involve inf (infimum) on one hand, and sup (supremum) on the other hand, we
cannot express the Kantorovich distance as a single formula in RL. However, we should not despair
as we can still reason about it if we can find a finite set of sequents that uniquely characterises its
value. The set we propose, hereafter denoted by K, contains the following sequents:

F /\(@ Wijo_oﬂi)/\/\(@ Wij oo v)), @Fi,ui oo @Fﬂ/z‘ FKuy,
i i i i

N\ (i (Fj— F) A N\ IFi. Ky v P Wijds
ij i i,j

where W;;, F;, and K, are propositional atoms. This set is derived by following the steps of the proof
of (strong) duality in linear programs [59], specifically tailored to the K-R duality presented above.
The sequents to the left represent the conjunction of the constraints from both the primal and dual
linear programs (i.e., the marginal conditions on w and the non-expanding condition on f). Those to
the right imply €D, Fiu; o— €D, Fivi @i,j W;;d;;, corresponding to the optimality condition for the
feasible solutions. The atom K, is a convenience.

This encoding is such that all the models of K assign the atom K,,, value dix(u,v), i.e., the

Kantorovich distance between y and v. Indeed, next we show that from K we can deduce
F K,_,’V o0—o (@ F,‘,u,‘ 0—o @ F,‘V,‘) and F Ky,v 0—0 @ Wijdij . @)
i i ij
The above follows by deriving the following two sequents from K

@W,»J-dij@@ﬂyik@ﬂvj, @WijdijGB@Fjle-@Fiu[
ij i J ij j i

as they imply EB,;j Wijdij + @, Fipsi o~ €D, F;v;. Note that this corresponds to the steps of the proof
of weak duality in linear programs. We show only the derivation of the first one as the other is similar.
Below we provide only the schematic steps of the derivation, which would otherwise take too much
space

P wiidi; o @ Fiui v B Wiydij e B F(D Wiy (left-marginal)
ij i ij i J
[ @ FiW;; (DISTR, PREM, PERM, non-expanding)
ij

F @ Fjiv; (DISTR, right-marginal)
J

3 Also known as the Wasserstein distance or Earth mover’s distance.
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In the above a concatenation of the form ¢ +  + © means that both ¢ +  and y + 9 are derivable; the
desired result follows by repeated applications of (cur).

Now that we have established a way to encode the Kantorovich distance, we can prove some of its
properties. A well-known result from [29] relating the Kantorovich distance with the total variation is
dx(t,v) 2 dmin - dry(ut, v), where dpin = ming; d;;. According to our encoding, such a statement is
equivalent to establishing the provability of K, + (\/;,; dij)t,,, from K.

Due to a lack of space, below, we provide only the sketch of the proof. The key steps of it are to
show that the sequents below follow from K for all A C {1,...,n}

@Wz‘j®@#ﬂ'@vi @Wij@@vii'@#i

i+ i€A i€A i#j i€A icA

from which, by using (QUaNT), (V»), one gets EB,- ‘) Wi; + tu,. Thus, by applying the inference rules
of RL, (1), and the fact that d;; = O for all i, we get

Klu’y + @ Wijdij + @ Wijdij + @ W,’j(\/ d,‘j) + (\/ d,'j)l‘/“, .
ij

i#] i#] i#] i#]

The desired inference follows from the above by repeated applications of (cur).

Quantitative Equational Logic (QEL). Already in [10] we have shown how one can embed the
finitary part of QEL in AL (i.e., the axioms and rules of QEL other than its infinitary rule). To do so,
we add, as propositional letters in our logic, all the equalities of the form "s = ¢ for all terms s, ¢ of
a chosen quantitative algebra. A quantitative equation such as + s =, ¢ is then encoded in Lawvere
logic as the sequent € - "s = ¢, or equivalently as - "s = " < &.

Next, a quantitative judgement such as the triangle inequality, which in QA has the form

S=gl, t=sUF S =gslU
can be encoded in Lawvere logic as follows, if we want to emphasize € and 9,
(s=1"<eA(t=u"<O)*+F"s=u"<(e®9)

or if £ and ¢ are generic, we can use an even more compact encoding that emphasize the relation
between triangle inequality and transitivity

Fs=t", Tt=u"+"s=u".

The logic AL studied in [10] lacks a deduction theorem, and for this reason the embedding of QEL
in AL relies on extending the reasoning in AL with inference rules. However, in RL this problem
disappears, as the inferences in [10, Table 2] can be formalized as proper sequents using the deduction
theorem (Theorem 8), exactly as we have done above for the triangle inequality.

Additionally, while AL can handle only affine functions, RL can encode more complex examples,
including polynomials and rational functions and even rational powers.

For instance, interpolative barycentric algebras (IBAs) were introduced in [45] as a quantitative
generalization of Stone’s barycentric algebras [61]. Barycentric algebras, sometimes called convex
algebras, have binary operators +, for e € [0, 1], where the intended interpretation of s +, ¢ on reals or
distributions is the e-convex combination of s and ¢. To characterize the p-Wasserstein metric on the
space of distributions for a strictly positive integer p, IBAs must satisfy the following axiom:

1
Up): s=gt, 8 =5t Fs+e.5 =st+.1, whered = (eg} + (1 —e)&))r
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This can be encoded in RL using a couple of judgements. Let d be a fresh propositional letter; then
(I,) can be represented in RL by:

@) {('—SZI—'SSO/\('_S’=l/—'S82)I-rS+eS/=l+el’—'Sd

p p
FdP oo eg| ®(e — l)g, .

The compact quantitative algebraic theories of [49] have the property (in the case of QEL) that if a
sequent is provable then it is provable without the infinitary rule. So our finitary encodings of theories
in RLL are complete for compact theories in the sense that any QEL consequence of such a theory is
also, via the encoding, an RL conseqgence. As shown in [49], the theories of rational Wasserstein
metrics are compact, as is the theory of quantitative semilattices [10].

6 Completeness and Incompleteness

We first prove that RL is complete for finite theories.

» Theorem 10 (Finite Completeness). Let S be a finite set of sequents in RL. If a sequent y is a
semantic consequence of S, then vy is provable from S. That is, S = y implies %

The proof plan is to reduce the statement above to a restricted form of completeness, which
applies only to sequents in a certain polynomial form and allows us to appeal to Krivine-Stengle’s
Positivstellensatz to obtain the desired result.

» Definition 11. A formula in RL is in polynomial form if it is built up from propositional letters
and constants using addition and multiplication (equivalently if it has no occurrences of L, —o, or [).

Formulas ¢ in polynomial form evidently correspond to polynomials & with positive coefficients over
the propositional letters of ¢, and we have ¢ =y iffr ¢ oo yis provable. Further, every polynomial
with positive coefficients is obtained in this way, and we may identify polynomials with positive
coefficients with corresponding formulas in polynomial form (chosen in some standard manner). Note
that | P|, which by definition is P — (P —o L), is not in polynomial form. We extend the definition of
polynomial form to sequents and sets of sequents in the obvious way: ¢, ... @, + ¢ is in polynomial
form if all ¢; and ¢ are; a set of sequents is in polynomial form if all its elements are. We say that a
sequent is finitising if it is of the form F |P|, and that a set § of finitising sequents restricts a set of
sequents S if it contains F |P| for every propositional letter P occurring in S.

» Theorem 12 (Polynomial Completeness). Lety be a sequent and S a finite set of sequents, all in
polynomial form, and let & be a set of finitising sequents restricting S U {y}. Then, S U & k= y implies
S ¥

="

Note that § U § [ y represents a restricted form of semantical consequence where the models are

assumed to be [0, co)-valued.

Before delving into the proof of Theorem 12 —which constitutes the core of the completeness
result— we describe our non-deterministic linear reduction to it. The reduction is specified by rules,
being finite sets

S,y) — Sy fori=1,...,k

of moves between configurations of the form (S,vy), where S is a finite set of sequents and 7 is a
sequent. To be sound, a rule must satisfy the following two properties:
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Reliability: S | y implies Vi.S; | y; (i.e., if v is a semantical consequence of S, then each v; is
semantical consequence of S ;).
Faithfulness: Vi. % implies % (i.e., if y; is provable from the S ;, then vy is provable from §).

i

We present the reduction by means of rule schemas and divide it into five phases, performed in
the following order: (1) reduction to PCF, (2) elimination of —, (3) elimination of /, (4) choice of
domain; and (5) reduction to polynomial form. For ease of presentation, without loss of generality we
assume that all sequents are of the form F ¢ or ¢ F ¥, i.e., they have at most one antecedent.

Phase 1 (Reduction to PCF). The first reduction comprises the following nine one-move rule schemas.
The intent is to reduce the judgments in both the premises and the conclusions of configurations to a
simplified canonical form, propositional canonical form (PCF), where logical connectives are applied
only to propositional letters.

S.0rY) = SU{PFOYFOLPFQ) ©
SUlpeyrbly) — (S U{POOrb,0r Py Qly) (®-L)
SUlfrooyly) = S UFPO®QO.PF¢,QFYly) (®-R)

(S Uiy r6Ly) — (SU{PQFO,0rF P+ 0ly) (x-L)
S U{0Fdyty) — (SUOFPO. P+, 0FYly) (X-R)
SU{g~yrbly) = S UPoQFrO,PFo Y+ 0Ly) (—-L)
SU{0r¢—oyly) = (S UEFP 0.0+ POFY}y) (—=-R)
(SUig/yr0Ly) — (SUIP/QFO.6- POFY}y) (/-L)
(SULOF@/YLy) — (SULOFP/Q.Pr oY+ OLy) (/-R)

where P, Q € P are fresh propositional letters not occurring in the source configurations of the moves
(chosen in a standard way) and at least one among ¢ or ¢ is not a propositional letter.

The correctness of the rules follows from the monotonicity properties of the connectives: @ and X
are monotone in both arguments; — is antimonotone in its first argument and monotone in its second;
and / is monotone in its first argument and antimonotone its second.

Observe that, since the rules bring subformulas to the top level, their repeated application ensures
that every sequent is eventually brought into PCF. The next phases will keep sequents in this form,
except for finitising ones.

Phase 2 (Elimination of —). The following two rule schemas (the first with three moves) are
designed to eliminate all occurrences of —o:

S U{P—oQFrol,y) — (S U{PFL,+}Ly (—-EL1)
S U{P = QF¢Ly) — (SUIFIPLPF O,k 8)y) (—-EL2)
(SU{P—oQFe¢Ly) — SUFIP,Q+PQFPORR ¢},y) (—-EL3)
SU{prP—=0Ly) — (SUlprRROPFO}y) (—-ER)

where P, O, R € P are propositional letters and R is fresh in the source configurations of the moves
(chosen in a standard way). The rule (—o-EL) eliminates the occurrences of —o on the left-hand side
of a sequent; its correctness relies on the axioms (LIN), (WeM) and Lemma 9. Dually, the rule (—o-R)
removes the occurrences of —o on the right-hand side of a sequent; its correctness follows from
(quanr). The fresh propositional letter R is used to maintain the sequents in PCF.

As for the previous phase, repeated applications of these rules ensure the elimination of — from
all sequents except the finitising ones.
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Phase 3 (Elimination of /). The two rule schemas below (the second one comprising four moves)
remove all occurrences of /:

(S U{P/QF ¢}y) — (SU{RF ¢, P+ OR}LY) (/-EL)
S UlprP/OLy) > (S U{FQ,¢F LLy) (/-ERID)
S uUlprP/O,y) S U{FIQOLRF L, ORF Lo+ T, TQ+ Pl,7y) (/-ER2)
(S UlprP/Qy) — (SU{QF Lr|PlL¢r0}Ly) (/-ER3)
(SU{¢FP/Q},7)—)(SU{QFJ.,P'—J.,(}S'—J_},)/) (/_ER4)

where P, O, R, T € P are propositional letters and R, T are fresh in the source configurations (chosen
in a standard way). The rule (/-EL) eliminates the occurrences of / on the left-hand side of a sequent;
its correctness follows from (ap3). Dually, the rule (/-ER) removes / from the right-hand side of a
sequent; its soundness follows from Lemma 9 and the axiom (LN). The fresh propositional letter R is
used to encode that Q is non-zero using the combinations of the sequents R + L and QR + L. The
propositional letter 7" is used to maintain the sequent in PCF.

Phase 4 (Choice of domain). This is a rule schema comprising two moves:

(S,y) — (S UL 1PILy) (F)
S,y) = (S U{Pr 1}y) (L)

where P is a propositional letter occurring in § such that neither + |P|nor P + L arein S.

The moves (F) and (L) correspond, respectively, to non-deterministically choosing whether P
is finite or infinite. This phase is completed when all propositional letters in S have been “tagged”
in one of the two ways above. Note that the applicability conditions ensure that the rules are never
applied vacuously or repeated twice on the same propositional letter.

Phase 5 (Reduction to Polynomial Form). Recall that a formula is in polynomial form if it has no
occurrences of L, —o, or /. The last two requirements have been taken care of by the previous phases.
This phase concerns the first requirement. We split this phase into two stages.

Stage 1. It removes the occurrences of infinitary propositional letters (P + L) by means of the
following seven rule schemas (the last two comprising two moves each)

(SUPF L}y) — (S,y) when P does not occurrin (S,y)  (L-E)
SU{PrHLLPFO) — S U{PFL1},1L+0) (L-CL)

S U{PrLL,O0+rP)— (SU{PFL1},0Fr1) (L-CR)

S U{PrLProly) —m S U{PFL LK@}y (L-PL)

S UPrHLOFPLY) — (SU{P+LoFLLy) (L-PR)
SUPFLPOOFGLY) —m S U{PFL LFLY) (L-SL)
SU{PFLP-rPBOLy) — (SU(PFL ¢+ 1}y (L-SR)
S UPHLPOFLy) — (SUPF L QLY (L-MLT)
S U{PFLPOF@)y) — (SU{PFLFIR,ORF1,1LF ¢}y (L-ML2)
S U{PrL,eor-POly) — SU{PFLFQ,¢FO0Ly) (L-MR1)
SUPrLoFPOLYy) — (SU{P+LFIR,ORF1,6F L}y) (L-MR2)
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where P, O, R € P are propositional letters and R is fresh.

The rules (L-PL), (L-PR), (L-SL), (L-SR), (L-ML), and (.L.-MR) remove an occurrence of the
infinitary propositional letter P when it appears atomically or in logical connectives —to simplify the
presentation, we assume they apply up to commutativity of @ and X. The rules (L-CL) and (L-CR)
remove the occurrence of P from the conclusion. Once these rules can no longer apply, the rule (L-E)
removes the sequent P + L.

As the rule schemas apply for arbitrary infinitary propositional letters P, their repeated application
will eventually eliminate all the occurrences of such propositional letters.

Stage 2. After the previous phases, the only sequents that are not in polynomial form apart from
the finitising ones are either trivially valid (L + ¢) or finitarily unsatisfiable (¢ + L). The following
two one-move rule schemas eliminate the last occurrences of L:

(S,7) — V(S.,y) (Valid)
(S,y) — UGS, y) (Unsat)

Here, V(S,y) and U(S, y) are obtained from (S, y) by replacing every sequent of the form L + ¢ with
0 + 1 (which is still valid), and sequents of the form ¢ + L with 1 + O (which is still unsatisfiable),
respectively. Note that both O + 1 and 1 + O are in polynomial form.

» Proposition 13.

1. The rules of the reduction are reliable and faithful.

2. The non-deterministic tree of moves is finite and the leaves are configurations of the form (S U, )
where S and 'y are in polynomial form, and § is a finitising set of sequents restricting S U {y}.

3. If the formulas of the initial configuration (S,y) contain only rational constants, then so do all
the configurations of the tree, and the height of the tree is linear in the size of (S,7), as is the
maximum size of the configurations in the tree.

In the above, the size of a formula is intended as the total number of logical connectives and
propositional atoms it contains, plus the number of bits required for the binary representation of the
constants*. The size of a set of judgments is the sum of the sizes of its formulas, and similarly for
configurations.

Now we are ready to prove polynomial completeness:

Proof of Theorem 12. Lety = 6 + 9 be asequentand S = {6, + ¢,...,0, + 9,} be a finite set of
sequents, all in polynomial form, and let & be a set of finitising sequents restricting S U {y}. Assume
that S U § [ 7y (thus, any [0, oo)-valued model of S is also a model for y).

Identifying polynomial formulas ¢ with their corresponding polynomials ¢, the [0, co)-valued
models of § are the solutions of the following system of polynomial inequalities

6;—9; >0 ({ori=1,...,n) P;>0 (forj=1,...,m)

where Py,..., P, are the propositional letters occurring in S U {y}. We recall one form of Krivine-
Stengle’s Positivstellensatz [37, 60] (see also [14, Corollary 4.4.3]).

» Theorem 14 (Positivstellensatz). Let f, fi, ..., f; € R[Xy,..., X, ] n-variate polynomials over the
reals and denote by W = {x € R" | Vi. fi(x) > O} their semialgebraic set and by C the cone generated
by them (i.e., the subsemiring generated by fi, ..., f, and squares of polynomials). Then,

VxeW.f(x) 20 & AseN.Fh,hh e C.hif = f*+hy.

4 For a rational “', we assume the common encoding format bin(m)#bin(n), where bin denotes binary encoding and #
is a separator symbol not in the binary alphabet {0, 1}.
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By the Positivstellensatz, there are polynomials &;, iy € R[P, ..., P,] (obtained using sums and
multiplications from (6; — 1), P}, and squares of arbitrary polynomials) and integer s > 0 such that

ho=ho+O-9"+h

The first step is to find formulas p;, p, such that:

S ¥
Fp1 oo p19 & (I — 0)* ®py

2

To this end, for any polynomial f, write f* and f~ for its positive and negative parts, such that
f=f"—f andboth f* and f~ have positive coeflicients. For any set of judgements S, formula ¢,
and polynomial f, define

S Brot
@[ oo fF
where For =det {F |P| | P € P}. The next lemma allows us to turn equalities between not-necessarily
positive polynomials into provable equalities between RL formulas in polynomial form.

¢=s [ iff

» Lemma 15. Let f, g be polynomials and ¢, be formulas in RL. Then

1. If p =5 fandy =5 f, then+ ¢ o—  is provable from S and .

~Af =5 fandy =g g thenp @Y =5 f + g and pyr =5 fg.

. If f has only positive coefficients, then f =g f.

C(ff oo fT) =5 fA

. If f, g have only positive coefficients and f + g is provable from S and &or, then g — f =5 f — g.

a b ON

Now, using Lemma 15.(2-5) we get formulas p; and p; such that p; =g h; (for i = 1,2).

By Lemma 15.(2-4), we further obtain (¢ — 6)** =g (& — )>*. By combining the above with
Lemma 15.(2) we finally get p16 =g h6 and p1% @ (¢ — 6)%s ®pr =g it + (6 - )2 + hy. Then,
Lemma 15.(1) gives us p;6 o— p;9 @ (% — 6)** @ p,, which sufficies to get our required (2).

We next show that % There are two cases. (Case + p; # 0) From the conclusion of (2) we
obtain + p10 — p ¢ and so p;6 + p1. Then 0 + 9, as required. (Case + p; = 0) From the conclusion
of 2) wegetr 0 oo ( —= 0)® (O — )% @®py. If s =0, thisis - 0 oo 1 @& p,, which is a

contradiction. Otherwise, we get F (1% — 6) @ (§ —o ©9))** with s > 0, and so + (% — 6) ® (6 — ¥).

From this, we derive - 8 —o ¢ and thus 6 + ¥, as required. <

With that we can prove our main completeness theorem, Theorem 10. The root node of the
reduction tree is (S, y) where S |= y. By Proposition 13, the leaf nodes have the form (S’ U §,7")
where S’ and y’ are in polynomial form, and  is a finitising set of sequents restricting S’ U {y’}. As
the rules are reliable we have S’ U § [= ¢ for all leaf nodes. Then, by polynomial completeness, we
have Sy—% for them, and, finally, as the rules are faithful, we have %, as required.

Turning to incompleteness, define consequential compactness to be that if % is valid for a
set of sequents S, then S—y“ is valid for some finite So € S. This fails as the consequence with
S={n+1)PrnQ| neN}andy = P+ Q shows. As this example exists already in the fragment of
RL with just & we have:

» Theorem 16 (Incompleteness). There can be no finitary complete consistent proof system for any
sublogic of RL containing @.

The more usual compactness notion is that if every finite subset of a set S of sequents has a model,
then so does S. The two are equivalent: if compactness fails (say with a set S) then so does
consequential compactness (with the consequence %); and if consequential compactness fails (say
with a consequence ab%lx) then so does compactness (with the set S U {F ¢ < y/}).
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7 Complexity Results

In this section, we give complexity bounds for two fundamental decision problems:

» Definition 17 (Decision problems).
The satisfiability problem asks, given a finite set of sequents S, whether S has a model, i.e.,
whether I = S, for some 1.
The semantical consequence problem asks, given a finite set of sequents S and a sequent v,
whether every model of S is also a model of y, i.e., whether S [ .

We restrict our attention to the case where formulas only have rational constants. The sizes of
formulas, sequents, and sets of sequents are defined as in the discussion after Proposition 13.

» Theorem 18. Semantical consequence is in PSPACE for RL and co-NP complete for AL.

Using faithfulness, reliability, and polynomial completeness, we see that the root node (S,vy) of
the reduction tree is valid, in the sense that S [ v, iff all the leaf nodes are. Membership of RL-
consequence in PSPACE follows by considering a nondeterministic exploration of the tree making
use at the leafs of the fact that satisfiability in the existential theory of the reals [15, 56] is in PSPACE.
For AL, membership in co-NP is proved similarly, but now via reduction to the infeasibility of linear
programs [36]; co-NP hardness follows by a linear-time reduction from Boolean propositional logic.

Observe that S has a model if and only if L is not a semantical consequence of S, in symbols,
S £ L. We therefore obtain the following corollary about the complexity of satisfiability.

» Corollary 19. Satisfiability is in PSPACE for RL and is NP-complete for AL.

Moreover, as AL is a sublanguage of RL, satisfiability in RL is at least NP-hard.

8 Conclusions

We have developed and studied Rational Lawvere logic (RL), a logic based on two quantales on
[0, co]: one additive and one multiplicative, whose operations satisfy the axioms of semirings.

We presented a deduction system for RL and showed the logic is complete for finitely axiomatized
theories (but necessarily incomplete for general theories, as compactness fails). The core of the
completeness proof draws on results from real algebraic geometry, specifically the Krivine-Stengle
Positivstellensatz. The use of such results in the completeness proof provides compelling evidence of
the deep connection between arithmetic and logical reasoning.

We additionally presented new complexity results for both RL and its affine fragment (AL). We
demonstrated that the satisfiability of a finite set of sequents is NP-complete in AL and in PSPACE
for RL; and that deciding the semantical consequence from a finite set of sequents is co-NP-complete
in AL and in PSPACE for RL.

There are several possibilities for further work. Building on the Weierstrass approximation
theorem, which states that continuous real-valued functions on compact subsets can be approximated
arbitrarily well by polynomials, one might consider developing an approximation theory grounded
in PL. One can ask if there are complete infinitary proof systems for general theories. Beyond
propositional logic, natural extensions beckon: predicate logics, modal logics, and u-calculi.
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