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Abstract10

We study Rational Lawvere logic (RL). This logic is defined over the extended positive reals with an algebraic11

structure combining the Lawvere quantale (with the reversed order on the extended reals and a sum as tensor)12

and a multiplicative quantale (with the usual order on the extended reals and a multiplication as tensor); together13

they provide a semiring structure. The logic is designed for complex quantitative reasoning, including sequents14

expressing inequalities between rational functions over the extended positive reals. We give a deduction system15

and demonstrate its expressiveness by deriving a classical result from probability theory relating the Kantorovich16

and total variation distances. Our deductive system is complete for finitely axiomatizable theories. The proof of17

completeness relies on the Krivine-Stengle Positivstellensatz.18

We additionally provide complexity results for both RL and its affine fragment AL. We consider two decision19

problems: the satisfiability of a set of sequents and whether a sequent follows from a finite set of sequent. We20

show that both problems lie in PSPACE for RL, and we give sharper complexity bounds for AL: the first problem21

is NP-complete, while the second is co-NP-complete.22
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1 Introduction29

Recent developments in theoretical computer science have questioned the usefulness of equality in30

semantics, advocating more nuanced, quantitative approaches to equivalence. For instance, exact31

equality is often too rigid for probabilistic systems where small changes can disrupt equivalence32

between processes. To address this, researchers used metrics to measure differences, thus shifting33

the focus from strict equivalence to quantitative comparisons. Metric-based reasoning has also been34

applied to other areas, such as privacy, security [21, 55], computational resource analysis [39, 40],35

and symbolic computation [28].36

As a result, theories of semantic equality have evolved into quantitative frameworks, focusing on37

measuring differences rather than asserting equality. Notable examples include theories for program38

analysis [4, 17, 18, 41, 38, 40], distances for processes [22, 23, 26, 27, 6, 7, 11], and quantitative39

equational logics over algebras of terms [45, 46, 8, 47, 9, 50, 51, 1, 2]. The latter, in particular, focuses40

on providing foundations for quantitative reasoning. The basic idea is to replace traditional equations41

s = t between terms s, t of an algebra with quantitative equations of the form s =ε t, expressing42

that s and t are at most ε apart, for a real ε ≥ 0. Thus, quantitative algebraic theories are used to43

reason about the distances between elements of an algebra. However, equational logic is only one of44
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23:2 Rational Lawvere Logic

many forms of logic and the question arises how extensions of classical logic can be used to provide45

foundations for quantitative reasoning.46

In his seminal work [42], Lawvere views the extended non-negative reals [0,∞] as the objects47

of a complete monoidal-closed category with ≥ as the sets of morphisms and an extended sum as48

tensor. A [0,∞]-enriched category is then a generalised metric space. Further, in the introduction49

to [43], he regards the extended non-negative reals as a kind of truth-value, with 0 and∞ as “true"50

and “false", and speaks of [0,∞]-valued relations. Further, all sups (= [0,∞]-limits) are preserved by51

tensoring, and so [0,∞] is a quantale, which we call the Lawvere quantale. We argue that logical52

reasoning on the Lawvere quantale of truth values is a natural choice for studying metric spaces.53

Lawvere’s generalized metric spaces are [0,∞]-valued preorders in it. A quantitative equation s =ε t54

is expressed as a sequent ε ⊢ s = t, which corresponds to the inequality ε ≥ “s = t”.55

From a logical point of view, [0,∞]-valued propositional logic is then a natural place to start.56

Bacci et al. [10] began exploring a class of such quantitative logics, referred to as Lawvere logics1.57

Among them, Affine Lawvere propositional logic (AL) was the most expressive. This logic features a58

tensor operation, interpreted as addition in the Lawvere quantale, a linear implication, interpreted as59

the adjoint residuum of addition, constants for all non-negative real numbers, and scalar multiplication60

by non-negative reals. So all affine functions on [0,∞] can be expressed in AL. Logical conjunction61

and disjunction are derived operators. Sequents in AL are interpreted as affine inequalities on [0,∞].62

A key innovation of [10] was the use of theorems from linear algebra, specifically Farkas’63

Lemma [25] and Motzkin’s transposition theorem [52], to help establish completeness: consequence64

relations between finite sets of sequents and sequents were reduced to consequence relations between65

finite sets of linear inequalities and linear inequalities. This established a strong link between logic66

and classical arithmetic. However, many real-world quantitative phenomena involve non-linear67

interactions, making it desirable to express polynomial inequalities.68

In this paper, we take on the challenge of developing Rational Lawvere Logic (RL). This logic69

extends AL by adding multiplication and division as logical connectives, enabling sequents to70

represent rational inequalities. Our approach builds on Lawvere’s idea by giving logical status to both71

sum and multiplication, with the key innovation being that the truth values come from a semiring72

structure involving two quantales over [0,∞]: the additive Lawvere one (with reverse order and sum73

as tensor), and the multiplicative one (with the natural order and multiplication as tensor).74

Our main contributions are:75

1. We give a deduction system for RL (Table 2) and demonstrate its expressiveness by (a) deriving a76

classical result from probability theory relating the Kantorovich and the total variation distances77

and (b) giving an embedding of quantitative equational logic in it (Section 5).78

2. We prove completeness for finitely axiomatizable theories (Theorem 10). (There is no finitary79

complete consistent proof system for general theories (Theorem 16) as compactness fails.) The80

core of the completeness proof differs significantly from that in [10]. Rather than reducing81

to formally proving relations between linear inequalities, when we can use Farkas’ Lemma or82

Motzkin’s transposition theorem, we reduce to formally proving relations between polynomials,83

when we can use Krivine-Stengle’s Positivstellensatz [37, 60, 14], a real analogue of Hilbert’s84

Nullstellensatz. As all such polynomial relations can be directly expressed in the logic, this85

indicates a prima facie need for the Positivstellensatz.86

3. Unlike AL, RL allows formulas and sequents to be “Booleanized". We use this to prove a87

deduction theorem (Theorem 8) that is not available in AL.88

4. The completeness proof employs a linear-time non-deterministic reduction that translates any89

RL inference to a set of inferences in polynomial form. Notably, when applied to AL inferences,90

1 The logics are named in honor of Lawvere.
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it significantly simplifies the normalisation algorithm proposed in [10]. We speculate that this91

technique can be helpful to obtain, and/or simplify, other completeness proofs.92

5. Relying on the reduction discussed above, we establish complexity results for two fundamental93

decision problems (for both RL andAL): the semantical consequence of a sequent from a finite set94

of sequents, and the satisfiability of a finite set of sequents. We show that semantical consequence95

is in PSPACE for RL and co-NP-complete for AL (Theorem 18), and obtain as a corollary that96

satisfiability is in PSPACE for RL and is NP-complete for AL (Corollary 19).97

Related Work. Connections between arithmetic and logical reasoning are well known. A complete-98

ness interpretation of Farkas’ Lemma appears already in the literature (e.g., in [48]). In algebraic99

complexity there is the Nullstellensatz proof system which uses a simple reduction of propositional100

satisfaction to polynomial equation solvability (e.g., [12, 54]) and the Positivstellensatz calculus [31]101

which considers polynomial inequalities.102

Parallel to Lawvere’s real-valued approach we must mention the vast development of fuzzy103

logic, for example [53, 13, 33]. Fuzzy logic generally employs (if not explicitly) quantales on the104

real interval [0, 1]. The most relevant for us is product logic [34, 32, 58, 24], defined over the105

multiplicative quantale on [0, 1]. Through the quantale isomorphism e−x, AL corresponds to product106

logic extended with constants in [0, 1], and RL corresponds to a further extension with an operation107

e− ln x ln y. Neither of these extensions seems to be in the literature. Moreover, this interpretation of the108

logical connectives seems unnatural for quantitative reasoning over [0,∞], and impedes direct access109

to results we use, e.g., in linear algebra (such as Khachiyan’s ellipsoid method, used for complexity),110

and in real algebraic geometry (such as the Krivine-Stengle Positivstellensatz, used for completeness).111

We must also mention the extensive works on graded (or weighted) structures, such as linear112

logic’s exponentials, comonads, types, or categories (e.g., [35, 30, 5, 19, 20, 44]). The gradings usually113

employ general semirings of some kind. However [0,∞] in particular is also discussed, for example114

in [30, 5, 35, 20]. Various possibilities for multiplication are considered: two commutative ones (ours115

is one) and a non-commutative one. In Section 2, we discuss all the possible monotonic, commutative,116

and associative addition and multiplication operations on [0,∞] that extend the usual ones on (0,∞).117

They are all definable in our logic (as are the non-commutative ones, as a straightforward extension118

of our discussion shows).119

Synopsis. Section 2 gives preliminary definitions and notation. Section 3 gives the syntax and120

semantics of RL, and Section 4 presents a deduction system for it. Section 5 presents some nontrivial121

applications. Section 6 develops the completeness result. Section 7 gives the complexity results for122

RL and its affine fragment AL. Section 8 gives concluding remarks and discusses future work.123

2 Preliminaries and Notation124

A quantale [57] is a complete lattice with a binary, associative operation ⊗ (tensor) that distributes125

over joins in each argument; distributivity and completeness entail that the tensor has both right126

adjoints. A quantale is commutative whenever its tensor is; and unital if there is an element u (unit) s.t.127

u⊗ a = a = a⊗ u, for all a; when the unit is the top element, the quantale is integral. For commutative128

quantales, the right adjoints of − ⊗ a and a ⊗ − coincide.129

As mentioned in the introduction, our interest concerns the extended non-negative reals [0,∞]. In130

the remainder of this section, we compare ways of extending sum and multiplication from the positive131

reals (0,∞) to [0,∞] and analyse the choices of quantales that one obtains from these extensions. To132

avoid confusion, in what follows we always use sup and inf on [0,∞] with respect to the natural order133

≤, even when we speak of structures using different orders.134

Addition. We would like to extend sum from the positive reals (0,∞) to [0,∞] so that we still get a135

sum that is associative, commutative, and monotonic w.r.t ≤ (equivalently w.r.t. ≤op). One can show136

CVIT 2016
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+1 0 s ∞

0 0 s ∞

r r r + s ∞

∞ ∞ ∞ ∞

+2 0 s ∞

0 0 0 0
r 0 r + s ∞

∞ 0 ∞ ∞

+3 0 s ∞

0 0 0 ∞

r 0 r + s ∞

∞ ∞ ∞ ∞

.
− 0 s ∞

0 0 0 0
r r max{r − s, 0} 0
∞ ∞ ∞ 0

×1 0 s ∞
0 0 0 0
r 0 rs ∞
∞ 0 ∞ ∞

×2 0 s ∞
0 0 0 ∞

r 0 rs ∞
∞ ∞ ∞ ∞

÷ 0 s ∞
0 ∞ 0 0
r ∞ r

s 0
∞ ∞ ∞ ∞

Table 1 Three variants of sum (+1, +2, +3); truncated subtraction ( .
−) ; two variants of multiplication (×1, ×2);

and extended division (÷) (the first column lists numerators, the first row denominators). Note that r, s ∈ (0,∞).

there are three choices for defining such a sum, summarized in Table 1, with +1 being the addition of137

the Lawvere quantale.138

▶ Lemma 1.139

1. ([0,∞],+1,≤
op) is a commutative, unital, integral quantale; ([0,∞],+1,≤) is not a quantale.140

2. ([0,∞],+2,≤) is a commutative quantale; ([0,∞],+2,≤
op) is not a quantale.141

3. Neither ([0,∞],+3,≤) nor ([0,∞],+3,≤
op) are quantales.142

Thus, for an additive quantale on [0,∞], if we use the natural order ≤, the correct choice for sum143

is +2; if we use the reverse order ≤op, the correct choice is +1. The first is not unital, since 0+2∞ = 0;144

the Lawvere quantale, is both unital and integral. We chose +1, as this enables us to directly encode145

examples from quantitative equational logic (Section 5). The right adjoint to − +1 a, can be explicitly146

formulated in terms of truncated substruction .
−, appropriately extended to [0,∞] as shown in Table 1.147

Indeed, it holds that b .
− a = inf{c | c +1 a ≥ b}.148

Multiplication. We consider associative, commutative, and monotonic extensions of multiplication149

from [0,∞) to [0,∞]. One can show there are two possibilities, namely ×1 and ×2, given in Table 1.150

▶ Lemma 2.151

1. ([0,∞],×1,≤) is a commutative, unital quantale; ([0,∞],×1,≤
op) is not a quantale.152

2. ([0,∞],×2,≤
op) is a commutative, unital quantale; ([0,∞],×2,≤) is not a quantale.153

Thus, for a multiplicative quantale on [0,∞], if we use the natural order ≤, it is ×1; if we use154

the reverse order ≤op, it is ×2. We discuss our choice of multiplication in relation to the Lawvere155

quantale. On the one hand, if the choice were dictated by the quantale order, ×2 would seem the156

natural candidate. On the other hand, unlike ×2, choosing ×1 yields a semiring (both multiplications157

distribute over +, but the unit of +1 is not the null element for ×2, as∞ ×2 0 = ∞). Ultimately, we158

choose ×1. While no choice is perfect, having a semiring enables us to directly encode examples159

from measure theory (Section 5) and to obtain a deduction theorem (Theorem 8).160

Although the logic will use the order of the Lawvere quantale, we will still exploit the quantalic161

structure associated with ×1 by adding as a logical connective the right adjoint to − ×1 a, which can162

be explicitly formulated in terms of division ÷, appropriately extended to [0,∞] as given in Table 1.163

Indeed, it holds that b ÷ a = sup{c | c ×1 a ≤ b}.164

We conclude by showing that the other operations, namely +2, +3, and ×2, can be expressed in165

terms of +1, ×1, .
−, and∞ (and so, eventually, in RL). First, binary sups and infs can be:166

▶ Lemma 3. For a, b ∈ [0,∞] we have:167
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1. a ∨ b = a + (b .
− a)168

2. a ∧ b = (a .
− (a .
− b)) ∨ (b .

− (b .
− a))169

Next, we define functions N,Z : [0,∞] → [0,∞] by N(a) = ∞ .
− a and Z(a) = a ×1 ∞. These are170

“Boolean functions” returning either 0 or∞ (i.e., ⊤ and ⊥ in the Lawvere quantale), as:171

N(a) =

0 if a = ∞

∞ otherwise ,
Z(a) =

0 if a = 0

∞ otherwise .
172

Hence, N is a test for∞, while Z is a test for 0. We can next define a conditional using ∨ and ∧:173

if a then b else c = [N(Z(a)) ∨ b] ∧ [Z(a) ∨ c] =

b if a = 0

c otherwise .
174

and finally obtain:175

▶ Lemma 4. For a, b ∈ [0,∞] we have:176

1. a +2 b = if (Z(a) ∨ Z(b)) then 0 else (a +1 b)177

2. a +3 b = (a +2 b) +1 [if (N(a) ∨ N(b)) then∞ else 0]178

3. a ×2 b = if [(Z(a) ∧ N(b)) ∨ (Z(b) ∧ N(a))] then∞ else (a ×1 b)179

Hereafter, when working on [0,∞], we simply write + for the sum instead of +1 and × for the180

multiplication instead of ×1. The other operations, namely .
− and ÷ (written as a fraction), are those181

from Table 1. We continue writing ≤ for the natural order on [0,∞] and ≤op for Lawvere’s order.182

3 Rational Lawvere Logic183

In this section, we introduce Rational Lawvere logic (RL), a propositional logic interpreted over184

our semiring on [0,∞]. It extends Affine Lawvere logic (AL) of [10], enabling one to reason with185

inequalities between rational functions over the non-negative extended reals.186

Syntax. Let P be a set of propositional letters, ranged over by P,Q,R, . . . . The formulas of RL are187

freely generated by the following grammar, for arbitrary P ∈ P and r ∈ [0,∞).188

ϕ, ψ ::= ⊥ | P | r | ϕ ⊕ ψ | ϕ⊸ ψ | ϕψ | ϕ/ψ189

We define expected logical connectives as derived operators:190

⊤ := ⊥⊸ ⊥ , ¬ϕ := ϕ⊸ ⊥ , ϕ ∧ ψ := ϕ ⊕ (ϕ⊸ ψ) ,191

ϕ ∨ ψ := ((ψ⊸ ϕ)⊸ ϕ) ∧ ((ϕ⊸ ψ)⊸ ψ) , ϕ� ψ := (ϕ⊸ ψ) ∧ (ψ⊸ ϕ) .192

We assume the following precedence rule: multiplication and division have highest precedence,193

followed by ¬, then ⊕, next ∧ and ∨, and finally⊸ and� have lowest precedence. Thus, θϕ ⊕ ψ ∧194

¬θψ⊸ θ is interpreted as the formula (((θϕ) ⊕ ψ) ∧ (¬(θψ)))⊸ θ.195

Semantics. Interpretations are maps I : P → [0,∞] assigning the propositional letters values in our196

semiring. They are extended to all formulas as follows197

I(⊥) := ∞ , I(r) := r , I(ϕ ⊕ ψ) := I(ϕ) + I(ψ) , I(ϕ⊸ ψ) := I(ψ) .
− I(ϕ) ,198

I(ϕψ) := I(ϕ) × I(ψ) , I(ϕ/ψ) :=
I(ϕ)
I(ψ)

.199

Consequently, the derived connectives are interpreted as follows (recall Lemma 3):200

I(⊤) = 0 , I(¬ϕ) = ∞ .
− I(ϕ) , I(ϕ ∧ ψ) = max{I(ψ),I(ϕ)} ,201

I(ϕ ∨ ψ) = min{I(ψ),I(ϕ)} , I(ϕ� ψ) = max{I(ϕ) .
− I(ψ),I(ψ) .

− I(ϕ)} .202

CVIT 2016
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Affine Lawvere Logic (AL), introduced in [10], is the sublogic of RL defined for P ∈ P and r ∈ [0,∞),203

by the following grammar:2204

AL : ϕ, ψ ::= ⊥ | P | r | ϕ ⊕ ψ | ϕ⊸ ψ | rψ205

Boolean formulas. While, in RL, an interpretation evaluates a formula to a value in [0,∞], formulas206

such as ¬ϕ or ϕ⊥ evaluate either to 0 (“true”) or to∞ (“false”). For example:207

I(¬ϕ) =

0 if I(ϕ) is infinite

∞ otherwise ,
I(ϕ⊥) =

0 if I(ϕ) = 0

∞ otherwise .
208

We call such formulas Boolean. They yield derived operators, such as:209

|ϕ| := ¬¬ϕ

Zϕ := ϕ⊥

ϕ = ψ := Z(ϕ� ψ) ,

ϕ , ψ := ¬Z(ϕ� ψ) ,

ϕ ≥ ψ := Z(ϕ⊸ ψ) ,

ϕ > ψ := ¬Z(ψ⊸ ϕ) ,
|ϕ|+ := |ϕ| ∧ ¬Z(ϕ) .210

These have useful “Boolean” meanings:211

I(|ϕ|) =

0 if I(ϕ) is finite

∞ otherwise ,
I(Zϕ) =

0 if I(ϕ) = 0

∞ otherwise ,
I(|ϕ|+) =

0 if 0 < I(ϕ) < ∞

∞ otherwise ,
212

Using them, we can express useful facts about our interpretations, e.g., |ϕ| says that “ϕ is finite” and213

Zϕ that “ϕ is strictly positive”. We use ϕ ≤ ψ and ϕ < ψ as synonyms for ψ ≥ ϕ and ψ > ϕ.214

Sequents. A sequent in RL is a syntactic construct of the form215

ϕ1, . . . , ϕn ⊢ ψ , (Sequent)216

where the ϕi, and ψ are logical formulas. The antecedents ϕ1, . . . , ϕn are a finite ordered list of217

formulas, possibly with repetitions. As customary, for Γ and ∆ lists of formulas, their comma-218

separated juxtaposition Γ,∆ denotes concatenation; and ⊢ ϕ is a sequent with no antecedents.219

A sequent ϕ1, . . . , ϕn ⊢ ψ is satisfied by an interpretation I (alternatively, I is a model for the220

sequent), denoted I |= (ϕ1, . . . , ϕn ⊢ ψ), whenever221

I(ϕ1) + · · · + I(ϕn) ≥ I(ψ) . (Semantics of sequents)222

In particular, I |= (⊢ ψ) means that I(ψ) = 0. We write I |= S and say that I is a model for S if223

I satisfies all sequents in S . A sequent is satisfiable if it has a model; it is unsatisfiable if it has224

no models; it is a tautology if it is satisfied by all interpretations. In particular, ⊢ ϕ ⊸ ϕ, ⊢ ⊤, and225

⊢ ¬¬ϕ� (⊥ > ϕ) are examples of tautologies, while ⊢ ϕ� (¬¬ϕ) is not.226

Note the distinction between ϕ⊸ ψ and the Boolean formula ϕ ≥ ψ: while for all interpretations227

I, we have I |= (⊢ ϕ ⊸ ψ) iff I |= (⊢ ϕ ≥ ψ), it may not hold that I(ϕ ⊸ ψ) = I(ϕ ≥ ψ), as228

I(ϕ⊸ ψ) could be a non-zero finite number.229

▶ Definition 5 (Semantic Consequence). A sequent γ is a semantic consequence of a set S of230

sequents, in symbols S |= γ, if every model of S is also a model of γ.231

4 Deduction System for RL232

An inference rule is a syntactic construct of the form S
γ

with S a set of sequents and γ a sequent.233

The sequents in S are the hypotheses of the inference rule and γ is the conclusion. When S = {γ′} is a234

singleton, we use double inference lines such as γ′

γ
, to denote both γ′

γ
and γ′

γ
.235

2 In [10] ∧ and ∨ belong to the syntax, but they can be obtained as derived operators, as in RL.
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ϕ ⊢ ϕ
(id)

Γ ⊢ ϕ ∆, ϕ ⊢ ψ

Γ,∆ ⊢ ψ
(cut)

Γ ⊢ ϕ

Γ, ψ ⊢ ϕ
(weak)

Γ, ϕ, ψ,∆ ⊢ θ

Γ, ψ, ϕ,∆ ⊢ θ
(perm)

ϕ ⊢ ⊤
(top)

⊥ ⊢ ϕ
(bot)

⊢ 0
(zero)

⊢ |1|
(one)

⊢ (¬ϕ) ∨ (¬¬ϕ)
(wem)

⊢ (ϕ⊸ ψ) ∨ (ψ⊸ ϕ)
(lin)

Γ, ϕ, ψ ⊢ θ

Γ, ϕ ⊕ ψ ⊢ θ
(prem)

ϕ ⊕ ψ ⊢ θ

ϕ ⊢ ψ⊸ θ
(quant)

θ ⊕ ϕ ⊢ ψ ⊕ ϕ ⊢ |ϕ|

θ ⊢ ψ
(canc)

θ ⊢ ϕ ⊢ |ϕ|

θ ⊢ (ϕ⊸ θ) ⊕ ϕ
(sub)

⊢ 0ϕ� 0
(null)

⊢ 1ϕ� ϕ
(unit)

ϕ ⊢ ψ

θϕ ⊢ θψ
(comp)

⊢ ϕψ

⊢ ϕ ∨ ψ
(zm)

⊢ (ϕψ)θ� ϕ(ψθ)
(assoc)

⊢ ϕψ� ψϕ
(comm)

⊢ θ(ϕ ⊕ ψ)� θϕ ⊕ θψ
(distr)

⊢ (r ⊕ s)� (r + s)
(sum)

⊢ (rs)� (r × s)
(mult)

ϕ/θ ⊢ ψ

ϕ ⊢ θψ
(adj)

⊢ |θ|+

⊢ ψ� θ(ψ/θ)
(div)

⊢ 1/⊥
(null)

Table 2 Deduction system for rational Lawvere logic RL. In the above, ϕ, ψ, θ are formulas, Γ,∆ are lists of
formulas, and r, s ∈ [0,∞) are nonnegative reals.

Our deduction system for RL is given in Table 2. It contains basic inference rules of logical236

deduction: (cut), weakening (weak) and permutation (perm) (note that contraction is not sounds).237

The rules (top) and (bot) behave as expected. (zero) guarantees that the additive quantale is integral238

and (one) that one is finite. We also have weak-excluded-middle (wem), stating that any formula is239

either finite or infinite, a prelinearity rule (lin) that ensures the strong connectivity of the quantale240

order. (prem) is a double inference that allows us to merge premises using ⊕; and (quant) is the241

double inference representing the (right) quantale implication rule. The cancellation (canc) and242

subtraction (sub) rules encode standard properties of addition and truncated subtraction, adjusted to243

allow for infinity. (prem) and (zero), together with the basic inference rules and (top), entail that ⊕244

forms an ordered commutative monoid with a zero. (comp), (assoc), (unit) and (comm) express that245

multiplication is an ordered commutative monoid with a unit. Together with (distrib) and (null) we246

then see that we have an ordered commutative semiring. Next, (zm) states that if a product is zero,247

then one of its factors must also be zero. (sum) and (mult) ensure that ⊕ and logical multiplication248

correspond to + and × respectively when applied to real constants. Finally, (adj) states the adjunction249

in the multiplicative quantale and (div) is a cancellation rule for multiplication.250

▶ Definition 6 (Provability). Let S be a set of sequents. We say that a sequent γ is provable, or251

deducible, from S , if there is a proof of γ from S , being a sequence γ1, . . . , γn of sequents ending in γ252

whose members are either members of S , or follow from preceding members using the inference rules253

of the deduction system.254

In what follows, we will (safely) abuse notation and simply write S
γ

, if γ is provable from S .255
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▶ Theorem 7 (Soundness). If a sequent γ is provable from S inRL, then γ is a semantic consequence256

of S . In symbols: S
γ

implies S |= γ.257

In RL, ϕ1, . . . , ϕn ⊢ ψ is provably equivalent to ϕ1 ⊕ . . . ⊕ ϕn ⊢ ψ; moreover ϕ ⊢ ψ is provably258

equivalent to ⊢ ϕ⊸ ψ. Hence, without loss of generality, we may assume that arbitrary sequents are259

of the form ⊢ θ.260

In [10] it is shown that AL does not enjoy a deduction theorem, not even in the weak form that261

holds for fuzzy logics, such as Łukasiewicz, Gödel, or product logics [33]. This is because we have262

proven that in AL it is not possible to “internalize” provability in the language of the logic. However,263

in RL, the expressivity provided by multiplication allows us to “Booleanize” the sequents.264

▶ Theorem 8 (Deduction Theorem). For arbitrary formulas ϕ, ψ in RL, we have

⊢ ϕ

⊢ ψ
iff ⊢ (0 ≥ ϕ)⊸ (0 ≥ ψ)

We conclude this section by stating a useful lemma that enables inferences by cases.265

▶ Lemma 9 (Disjunction Deduction Lemma). Let γ be a sequent, S a finite set of sequents and ϕ, ψ266

formulas in RL. If
⊢ϕ∨ψ

, then S ⊢ϕ
γ

and S ⊢ψ
γ

implies S
γ

. The same holds for PL.267

5 Applications: Proving Properties of Distances268

In this section, we show how the deductive system of RL can be used to reason about the properties269

of distances on probability distributions, namely, the total variation, the Kantorovich and the p-270

Wasserstein distances, and we discuss embedding quantitative equational logic in RL.271

Let X = {x1, . . . , xn} be a finite (extended) metric space with distances di j between xi and272

x j possibly taking ∞ as value. Denote by µ, ν, ρ, . . . generic discrete probabilities on X and by273

µi, νi, ρi, . . . their probabilities at xi ∈ X.274

Total Variation. The total variation distance dTV (µ, ν) = maxA⊆X |µ(A) − ν(A)|, is encoded in RL by275

the formula tµ,ν :=
∧

A⊆{1..n}(
⊕

i∈A µi �
⊕

i∈A νi). A simple example to start with is to demonstrate276

that the total variation is a pseudo-metric, i.e., satisfies the axioms of reflexivity, symmetry, and277

triangle inequality, which can be expressed in PL:278

(refl) ⊢ tµ,µ (symm) tµ,ν ⊢ tν,µ , (triang) tµ,ν, tν,ρ ⊢ tµ,ρ .279

The first two are trivial to derive. The derivation of the third is shown below:280

µi ⊸ νi ⊢ µi ⊸ νi
(id)

µi, µi ⊸ νi ⊢ νi
(quant,prem)

νi ⊸ ρi ⊢ νi ⊸ ρi
(id)

νi ⊸ ρi, νi ⊢ ρi
(quant,prem)

µi ⊕ (µi ⊸ νi) ⊕ (νi ⊸ ρi) ⊢ ρi
(cut,prem)

(µi ⊸ νi) ⊕ (νi ⊸ ρi) ⊢ µi ⊸ ρi
(quant)

(µi � νi) ⊕ (νi � ρi) ⊢ µi ⊸ ρi
(prem,∧1)

similarly. . .
ρi ⊕ (νi ⊸ µi) ⊕ (ρi ⊸ νi) ⊢ µi

(νi ⊸ µi) ⊕ (ρi ⊸ νi) ⊢ ρi ⊸ µi
(quant)

(µi � νi) ⊕ (νi � ρi) ⊢ ρi ⊸ µi
(prem,∧1)

(µi � νi) ⊕ (νi � ρi) ⊢ µi � ρi
(∧2)∧

A⊆{1..n}(
⊕

i∈A µi �
⊕

i∈A νi) ⊕
∧

A⊆{1..n}(
⊕

i∈A νi �
⊕

i∈A ρi) ⊢
∧

A⊆{1..n}(
⊕

i∈A µi �
⊕

i∈A ρi)
(prem,∧1,∧2)

tµ,ν, tν,ρ ⊢ tµ,ρ
(def,prem)

281

Note that (perm) is used implicitly and some steps of the derivation use meta-rules which are derivable282

from the rules in Table 2, such as (∧1) and (∧2).283

The total variation is not just a pseudo-metric, but a proper metric satisfying the Fréchet positivity284

axiom, which can be expressed in RL by the sequent285

(positivity)
∧

(µi , νi) ⊢ (tµ,ν > 0) .286
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The above uses the Boolean formulas of RL, which can be expressed using multiplication by ⊥. In287

fact, this is a non-linear property that cannot be captured by AL as it allows only affine formulas.288

Kantorovich distance. The Kantorovich distance3 between µ and ν can be defined using the following289

two equivalent (dual) formulations290

dK(µ, ν) = inf
ω

∑
i, j

ωi jdi j = sup
f

∣∣∣∣∑
i

fiµi −
∑

i

fiνi

∣∣∣∣ (K-R duality)291

where ω ranges over joint probability distributions with µ as left-marginal (i.e.,
∑

j ωi j = µi, for all i)292

and ν as right-marginal (i.e.,
∑

i ωi j = ν j, for all j); and f over non-expanding [0,∞)-valued maps on293

X, i.e., | fi − f j| ≤ di j, for all i, j.294

As its definitions involve inf (infimum) on one hand, and sup (supremum) on the other hand, we295

cannot express the Kantorovich distance as a single formula in RL. However, we should not despair296

as we can still reason about it if we can find a finite set of sequents that uniquely characterises its297

value. The set we propose, hereafter denoted by K , contains the following sequents:298

⊢
∧

i

(
⊕

j

Wi j � µi) ∧
∧

j

(
⊕

i

Wi j � ν j) ,

⊢
∧
i, j

(
di j ⊸ (F j ⊸ Fi)

)
∧
∧

i

|Fi| ,

⊕
i

Fiµi �
⊕

i

Fiνi ⊢ Kµ,ν ,

Kµ,ν ⊢
⊕

i, j

Wi jdi j ,
299

where Wi j, Fi, and Kµ,ν are propositional atoms. This set is derived by following the steps of the proof300

of (strong) duality in linear programs [59], specifically tailored to the K-R duality presented above.301

The sequents to the left represent the conjunction of the constraints from both the primal and dual302

linear programs (i.e., the marginal conditions on ω and the non-expanding condition on f ). Those to303

the right imply
⊕

i Fiµi �
⊕

i Fiνi ⊢
⊕

i, j Wi jdi j, corresponding to the optimality condition for the304

feasible solutions. The atom Kµ,ν is a convenience.305

This encoding is such that all the models of K assign the atom Kµ,ν value dK(µ, ν), i.e., the306

Kantorovich distance between µ and ν. Indeed, next we show that from K we can deduce307

⊢ Kµ,ν�
(⊕

i

Fiµi �
⊕

i

Fiνi

)
and ⊢ Kµ,ν�

⊕
i, j

Wi jdi j . (1)308

The above follows by deriving the following two sequents from K309 ⊕
i, j

Wi jdi j ⊕
⊕

i

Fiµi ⊢
⊕

j

F jν j ,
⊕

i, j

Wi jdi j ⊕
⊕

j

F jν j ⊢
⊕

i

Fiµi310

as they imply
⊕

i, j Wi jdi j ⊢
⊕

i Fiµi �
⊕

i Fiνi. Note that this corresponds to the steps of the proof311

of weak duality in linear programs. We show only the derivation of the first one as the other is similar.312

Below we provide only the schematic steps of the derivation, which would otherwise take too much313

space314 ⊕
i, j

Wi jdi j ⊕
⊕

i

Fiµi ⊢
⊕

i, j

Wi jdi j ⊕
⊕

i

Fi(
⊕

j

Wi j)) (left-marginal)315

⊢
⊕

i, j

F jWi j (distr, prem, perm, non-expanding)316

⊢
⊕

j

F jν j (distr, right-marginal)317

3 Also known as the Wasserstein distance or Earth mover’s distance.
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In the above a concatenation of the form ϕ ⊢ ψ ⊢ ϑ means that both ϕ ⊢ ψ and ψ ⊢ ϑ are derivable; the318

desired result follows by repeated applications of (cut).319

Now that we have established a way to encode the Kantorovich distance, we can prove some of its320

properties. A well-known result from [29] relating the Kantorovich distance with the total variation is321

dK(µ, ν) ≥ dmin · dTV (µ, ν), where dmin = mini, j di j. According to our encoding, such a statement is322

equivalent to establishing the provability of Kµ,ν ⊢ (
∨

i, j di j)tµ,ν from K .323

Due to a lack of space, below, we provide only the sketch of the proof. The key steps of it are to324

show that the sequents below follow from K for all A ⊆ {1, . . . , n}325 ⊕
i, j

Wi j ⊕
⊕
i∈A

µi ⊢
⊕
i∈A

νi

⊕
i, j

Wi j ⊕
⊕
i∈A

νi ⊢
⊕
i∈A

µi326

from which, by using (quant), (∨2), one gets
⊕

i, j Wi j ⊢ tµ,ν. Thus, by applying the inference rules327

of RL, (1), and the fact that dii = 0 for all i, we get328

Kµ,ν ⊢
⊕

i, j

Wi jdi j ⊢
⊕

i, j

Wi jdi j ⊢
⊕

i, j

Wi j(
∨
i, j

di j) ⊢ (
∨
i, j

di j)tµ,ν .329

The desired inference follows from the above by repeated applications of (cut).330

331

Quantitative Equational Logic (QEL). Already in [10] we have shown how one can embed the332

finitary part of QEL in AL (i.e., the axioms and rules of QEL other than its infinitary rule). To do so,333

we add, as propositional letters in our logic, all the equalities of the form ⌜s = t⌝ for all terms s, t of334

a chosen quantitative algebra. A quantitative equation such as ⊢ s =ε t is then encoded in Lawvere335

logic as the sequent ε ⊢ ⌜s = t⌝, or equivalently as ⊢ ⌜s = t⌝ ≤ ε.336

Next, a quantitative judgement such as the triangle inequality, which in QA has the form

s =ε t, t =δ u ⊢ s =ε+δ u

can be encoded in Lawvere logic as follows, if we want to emphasize ε and δ,

(⌜s = t⌝ ≤ ε) ∧ (⌜t = u⌝ ≤ δ) ⊢ ⌜s = u⌝ ≤ (ε ⊕ δ)

or if ε and δ are generic, we can use an even more compact encoding that emphasize the relation
between triangle inequality and transitivity

⌜s = t⌝, ⌜t = u⌝ ⊢ ⌜s = u⌝.

The logic AL studied in [10] lacks a deduction theorem, and for this reason the embedding of QEL337

in AL relies on extending the reasoning in AL with inference rules. However, in RL this problem338

disappears, as the inferences in [10, Table 2] can be formalized as proper sequents using the deduction339

theorem (Theorem 8), exactly as we have done above for the triangle inequality.340

Additionally, while AL can handle only affine functions, RL can encode more complex examples,341

including polynomials and rational functions and even rational powers.342

For instance, interpolative barycentric algebras (IBAs) were introduced in [45] as a quantitative
generalization of Stone’s barycentric algebras [61]. Barycentric algebras, sometimes called convex
algebras, have binary operators +e for e ∈ [0, 1], where the intended interpretation of s +e t on reals or
distributions is the e-convex combination of s and t. To characterize the p-Wasserstein metric on the
space of distributions for a strictly positive integer p, IBAs must satisfy the following axiom:

(Ip) : s =ε1 t, s′ =ε2 t′ ⊢ s +e s′ =δ t +e t′, where δ = (eεp
1 + (1 − e)εp

2 )
1
p
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This can be encoded in RL using a couple of judgements. Let d be a fresh propositional letter; then343

(Ip) can be represented in RL by:344

(Ip) :

(⌜s = t⌝ ≤ ε1) ∧ (⌜s′ = t′⌝ ≤ ε2) ⊢ ⌜s +e s′ = t +e t′⌝ ≤ d

⊢ dp � eεp
1 ⊕ (e⊸ 1)εp

2 .
345

The compact quantitative algebraic theories of [49] have the property (in the case of QEL) that if a346

sequent is provable then it is provable without the infinitary rule. So our finitary encodings of theories347

in RL are complete for compact theories in the sense that any QEL consequence of such a theory is348

also, via the encoding, an RL conseqence. As shown in [49], the theories of rational Wasserstein349

metrics are compact, as is the theory of quantitative semilattices [10].350

6 Completeness and Incompleteness351

We first prove that RL is complete for finite theories.352

▶ Theorem 10 (Finite Completeness). Let S be a finite set of sequents in RL. If a sequent γ is a353

semantic consequence of S , then γ is provable from S . That is, S |= γ implies S
γ

.354

The proof plan is to reduce the statement above to a restricted form of completeness, which355

applies only to sequents in a certain polynomial form and allows us to appeal to Krivine-Stengle’s356

Positivstellensatz to obtain the desired result.357

▶ Definition 11. A formula in RL is in polynomial form if it is built up from propositional letters358

and constants using addition and multiplication (equivalently if it has no occurrences of ⊥,⊸, or /).359

Formulas ϕ in polynomial form evidently correspond to polynomials ϕ̃ with positive coefficients over360

the propositional letters of ϕ, and we have ϕ̃ = ψ̃ iff ⊢ ϕ� ψ is provable. Further, every polynomial361

with positive coefficients is obtained in this way, and we may identify polynomials with positive362

coefficients with corresponding formulas in polynomial form (chosen in some standard manner). Note363

that |P|, which by definition is P⊸ (P⊸ ⊥), is not in polynomial form. We extend the definition of364

polynomial form to sequents and sets of sequents in the obvious way: ϕ1, . . . ϕn ⊢ ψ is in polynomial365

form if all ϕi and ψ are; a set of sequents is in polynomial form if all its elements are. We say that a366

sequent is finitising if it is of the form ⊢ |P|, and that a set F of finitising sequents restricts a set of367

sequents S if it contains ⊢ |P| for every propositional letter P occurring in S .368

▶ Theorem 12 (Polynomial Completeness). Let γ be a sequent and S a finite set of sequents, all in369

polynomial form, and let F be a set of finitising sequents restricting S ∪ {γ}. Then, S ∪ F |= γ implies370

S F

γ
.371

Note that S ∪ F |= γ represents a restricted form of semantical consequence where the models are372

assumed to be [0,∞)-valued.373

Before delving into the proof of Theorem 12 —which constitutes the core of the completeness374

result— we describe our non-deterministic linear reduction to it. The reduction is specified by rules,375

being finite sets376

(S , γ) −→ (S i, γi) for i = 1, . . . , k377

of moves between configurations of the form (S , γ), where S is a finite set of sequents and γ is a378

sequent. To be sound, a rule must satisfy the following two properties:379

380
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Reliability: S |= γ implies ∀i. S i |= γi (i.e., if γ is a semantical consequence of S , then each γi is381

semantical consequence of S i).382

Faithfulness: ∀i. S i
γi

implies S
γ

(i.e., if γi is provable from the S i, then γ is provable from S ).383

We present the reduction by means of rule schemas and divide it into five phases, performed in384

the following order: (1) reduction to PCF, (2) elimination of⊸, (3) elimination of /, (4) choice of385

domain; and (5) reduction to polynomial form. For ease of presentation, without loss of generality we386

assume that all sequents are of the form ⊢ ϕ or ϕ ⊢ ψ, i.e., they have at most one antecedent.387

Phase 1 (Reduction to PCF). The first reduction comprises the following nine one-move rule schemas.388

The intent is to reduce the judgments in both the premises and the conclusions of configurations to a389

simplified canonical form, propositional canonical form (PCF), where logical connectives are applied390

only to propositional letters.391

(S , ϕ ⊢ ψ) −→ (S ∪ {P ⊢ ϕ, ψ ⊢ Q}, P ⊢ Q) (C)392

(S ∪ {ϕ ⊕ ψ ⊢ θ}, γ) −→ (S ∪ {P ⊕ Q ⊢ θ, ϕ ⊢ P, ψ ⊢ Q}, γ) (⊕-L)393

(S ∪ {θ ⊢ ϕ ⊕ ψ}, γ) −→ (S ∪ {θ ⊢ P ⊕ Q, P ⊢ ϕ,Q ⊢ ψ}, γ) (⊕-R)394

(S ∪ {ϕψ ⊢ θ}, γ) −→ (S ∪ {PQ ⊢ θ, ϕ ⊢ P, ψ ⊢ Q}, γ) (×-L)395

(S ∪ {θ ⊢ ϕψ}, γ) −→ (S ∪ {θ ⊢ PQ, P ⊢ ϕ,Q ⊢ ψ}, γ) (×-R)396

(S ∪ {ϕ⊸ ψ ⊢ θ}, γ) −→ (S ∪ {P⊸ Q ⊢ θ, P ⊢ ϕ, ψ ⊢ Q}, γ) (⊸-L)397

(S ∪ {θ ⊢ ϕ⊸ ψ}, γ) −→ (S ∪ {θ ⊢ P⊸ Q, ϕ ⊢ P,Q ⊢ ψ}, γ) (⊸-R)398

(S ∪ {ϕ/ψ ⊢ θ}, γ) −→ (S ∪ {P/Q ⊢ θ, ϕ ⊢ P,Q ⊢ ψ}, γ) (/-L)399

(S ∪ {θ ⊢ ϕ/ψ}, γ) −→ (S ∪ {θ ⊢ P/Q, P ⊢ ϕ, ψ ⊢ Q}, γ) (/-R)400

where P,Q ∈ P are fresh propositional letters not occurring in the source configurations of the moves401

(chosen in a standard way) and at least one among ϕ or ψ is not a propositional letter.402

The correctness of the rules follows from the monotonicity properties of the connectives: ⊕ and ×403

are monotone in both arguments;⊸ is antimonotone in its first argument and monotone in its second;404

and / is monotone in its first argument and antimonotone its second.405

Observe that, since the rules bring subformulas to the top level, their repeated application ensures406

that every sequent is eventually brought into PCF. The next phases will keep sequents in this form,407

except for finitising ones.408

Phase 2 (Elimination of ⊸). The following two rule schemas (the first with three moves) are409

designed to eliminate all occurrences of⊸:410

(S ∪ {P⊸ Q ⊢ ϕ}, γ) −→ (S ∪ {P ⊢ ⊥, ⊢ ϕ}, γ) (⊸-EL1)411

(S ∪ {P⊸ Q ⊢ ϕ}, γ) −→ (S ∪ {⊢ |P|, P ⊢ Q, ⊢ ϕ}, γ) (⊸-EL2)412

(S ∪ {P⊸ Q ⊢ ϕ}, γ) −→ (S ∪ {⊢ |P|,Q ⊢ P,Q ⊢ P ⊕ R,R ⊢ ϕ}, γ) (⊸-EL3)413

(S ∪ {ϕ ⊢ P⊸ Q}, γ) −→ (S ∪ {ϕ ⊢ R,R ⊕ P ⊢ Q}, γ) (⊸-ER)414

where P,Q,R ∈ P are propositional letters and R is fresh in the source configurations of the moves415

(chosen in a standard way). The rule (⊸-EL) eliminates the occurrences of⊸ on the left-hand side416

of a sequent; its correctness relies on the axioms (lin), (wem) and Lemma 9. Dually, the rule (⊸-R)417

removes the occurrences of ⊸ on the right-hand side of a sequent; its correctness follows from418

(quant). The fresh propositional letter R is used to maintain the sequents in PCF.419

As for the previous phase, repeated applications of these rules ensure the elimination of⊸ from420

all sequents except the finitising ones.421
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Phase 3 (Elimination of /). The two rule schemas below (the second one comprising four moves)422

remove all occurrences of /:423

(S ∪ {P/Q ⊢ ϕ}, γ) −→ (S ∪ {R ⊢ ϕ, P ⊢ QR}, γ) (/-EL)424

(S ∪ {ϕ ⊢ P/Q}, γ) −→ (S ∪ {⊢ Q, ϕ ⊢ ⊥}, γ) (/-ER1)425

(S ∪ {ϕ ⊢ P/Q}, γ) −→ (S ∪ {⊢ |Q|,R ⊢ ⊥,QR ⊢ ⊥, ϕ ⊢ T,T Q ⊢ P}, γ) (/-ER2)426

(S ∪ {ϕ ⊢ P/Q}, γ) −→ (S ∪ {Q ⊢ ⊥, ⊢ |P|, ϕ ⊢ 0}, γ) (/-ER3)427

(S ∪ {ϕ ⊢ P/Q}, γ) −→ (S ∪ {Q ⊢ ⊥, P ⊢ ⊥, ϕ ⊢ ⊥}, γ) (/-ER4)428

where P,Q,R,T ∈ P are propositional letters and R,T are fresh in the source configurations (chosen429

in a standard way). The rule (/-EL) eliminates the occurrences of / on the left-hand side of a sequent;430

its correctness follows from (adj). Dually, the rule (/-ER) removes / from the right-hand side of a431

sequent; its soundness follows from Lemma 9 and the axiom (lin). The fresh propositional letter R is432

used to encode that Q is non-zero using the combinations of the sequents R ⊢ ⊥ and QR ⊢ ⊥. The433

propositional letter T is used to maintain the sequent in PCF.434

Phase 4 (Choice of domain). This is a rule schema comprising two moves:435

(S , γ) −→ (S ∪ {⊢ |P|}, γ) (F)436

(S , γ) −→ (S ∪ {P ⊢ ⊥}, γ) (⊥)437

where P is a propositional letter occurring in S such that neither ⊢ |P| nor P ⊢ ⊥ are in S .438

The moves (F) and (⊥) correspond, respectively, to non-deterministically choosing whether P439

is finite or infinite. This phase is completed when all propositional letters in S have been “tagged”440

in one of the two ways above. Note that the applicability conditions ensure that the rules are never441

applied vacuously or repeated twice on the same propositional letter.442

Phase 5 (Reduction to Polynomial Form). Recall that a formula is in polynomial form if it has no443

occurrences of ⊥,⊸, or /. The last two requirements have been taken care of by the previous phases.444

This phase concerns the first requirement. We split this phase into two stages.445

Stage 1. It removes the occurrences of infinitary propositional letters (P ⊢ ⊥) by means of the446

following seven rule schemas (the last two comprising two moves each)447

(S ∪ {P ⊢ ⊥}, γ) −→ (S , γ) when P does not occurr in (S , γ) (⊥-E)448

(S ∪ {P ⊢ ⊥}, P ⊢ Q) −→ (S ∪ {P ⊢ ⊥},⊥ ⊢ Q) (⊥-CL)449

(S ∪ {P ⊢ ⊥},Q ⊢ P) −→ (S ∪ {P ⊢ ⊥},Q ⊢ ⊥) (⊥-CR)450

(S ∪ {P ⊢ ⊥, P ⊢ ϕ}, γ) −→ (S ∪ {P ⊢ ⊥,⊥ ⊢ ϕ}, γ) (⊥-PL)451

(S ∪ {P ⊢ ⊥, ϕ ⊢ P}, γ) −→ (S ∪ {P ⊢ ⊥, ϕ ⊢ ⊥}, γ) (⊥-PR)452

(S ∪ {P ⊢ ⊥, P ⊕ Q ⊢ ϕ}, γ) −→ (S ∪ {P ⊢ ⊥,⊥ ⊢ ϕ}, γ) (⊥-SL)453

(S ∪ {P ⊢ ⊥, ϕ ⊢ P ⊕ Q}, γ) −→ (S ∪ {P ⊢ ⊥, ϕ ⊢ ⊥}, γ) (⊥-SR)454

(S ∪ {P ⊢ ⊥, PQ ⊢ ϕ}, γ) −→ (S ∪ {P ⊢ ⊥, ⊢ Q, ⊢ ϕ}, γ) (⊥-ML1)455

(S ∪ {P ⊢ ⊥, PQ ⊢ ϕ}, γ) −→ (S ∪ {P ⊢ ⊥, ⊢ |R|,QR ⊢ 1,⊥ ⊢ ϕ}, γ) (⊥-ML2)456

(S ∪ {P ⊢ ⊥, ϕ ⊢ PQ}, γ) −→ (S ∪ {P ⊢ ⊥, ⊢ Q, ϕ ⊢ 0}, γ) (⊥-MR1)457

(S ∪ {P ⊢ ⊥, ϕ ⊢ PQ}, γ) −→ (S ∪ {P ⊢ ⊥, ⊢ |R|,QR ⊢ 1, ϕ ⊢ ⊥}, γ) (⊥-MR2)458

459
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where P,Q,R ∈ P are propositional letters and R is fresh.460

The rules (⊥-PL), (⊥-PR), (⊥-SL), (⊥-SR), (⊥-ML), and (⊥-MR) remove an occurrence of the461

infinitary propositional letter P when it appears atomically or in logical connectives —to simplify the462

presentation, we assume they apply up to commutativity of ⊕ and ×. The rules (⊥-CL) and (⊥-CR)463

remove the occurrence of P from the conclusion. Once these rules can no longer apply, the rule (⊥-E)464

removes the sequent P ⊢ ⊥.465

As the rule schemas apply for arbitrary infinitary propositional letters P, their repeated application466

will eventually eliminate all the occurrences of such propositional letters.467

Stage 2. After the previous phases, the only sequents that are not in polynomial form apart from468

the finitising ones are either trivially valid (⊥ ⊢ ϕ) or finitarily unsatisfiable (ϕ ⊢ ⊥). The following469

two one-move rule schemas eliminate the last occurrences of ⊥:470

(S , γ) −→ V(S , γ) (Valid)471

(S , γ) −→ U(S , γ) (Unsat)472

Here,V(S , γ) andU(S , γ) are obtained from (S , γ) by replacing every sequent of the form ⊥ ⊢ ϕ with473

0 ⊢ 1 (which is still valid), and sequents of the form ϕ ⊢ ⊥ with 1 ⊢ 0 (which is still unsatisfiable),474

respectively. Note that both 0 ⊢ 1 and 1 ⊢ 0 are in polynomial form.475

▶ Proposition 13.476

1. The rules of the reduction are reliable and faithful.477

2. The non-deterministic tree of moves is finite and the leaves are configurations of the form (S ∪F, γ)478

where S and γ are in polynomial form, and F is a finitising set of sequents restricting S ∪ {γ}.479

3. If the formulas of the initial configuration (S , γ) contain only rational constants, then so do all480

the configurations of the tree, and the height of the tree is linear in the size of (S , γ), as is the481

maximum size of the configurations in the tree.482

In the above, the size of a formula is intended as the total number of logical connectives and483

propositional atoms it contains, plus the number of bits required for the binary representation of the484

constants4. The size of a set of judgments is the sum of the sizes of its formulas, and similarly for485

configurations.486

Now we are ready to prove polynomial completeness:487

Proof of Theorem 12. Let γ = θ ⊢ ϑ be a sequent and S = {θ1 ⊢ ϑ1, . . . , θn ⊢ ϑn} be a finite set of488

sequents, all in polynomial form, and let F be a set of finitising sequents restricting S ∪ {γ}. Assume489

that S ∪ F |= γ (thus, any [0,∞)-valued model of S is also a model for γ).490

Identifying polynomial formulas ϕ with their corresponding polynomials ϕ̃, the [0,∞)-valued491

models of S are the solutions of the following system of polynomial inequalities492

θi − ϑi ≥ 0 (for i = 1, . . . , n) P j ≥ 0 (for j = 1, . . . ,m)493

where P1, . . . , Pm are the propositional letters occurring in S ∪ {γ}. We recall one form of Krivine-494

Stengle’s Positivstellensatz [37, 60] (see also [14, Corollary 4.4.3]).495

▶ Theorem 14 (Positivstellensatz). Let f , f1, . . . , fr ∈ R[X1, . . . , Xn] n-variate polynomials over the496

reals and denote by W = {x ∈ Rn | ∀i. fi(x) ≥ 0} their semialgebraic set and by C the cone generated497

by them (i.e., the subsemiring generated by f1, . . . , fr and squares of polynomials). Then,498

∀x ∈ W. f (x) ≥ 0 ⇐⇒ ∃s ∈ N.∃h1, h2 ∈ C. h1 f = f 2s + h2 .499

4 For a rational m
n , we assume the common encoding format bin(m)#bin(n), where bin denotes binary encoding and #

is a separator symbol not in the binary alphabet {0, 1}.
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By the Positivstellensatz, there are polynomials h1, h2 ∈ R[P1, . . . , Pm] (obtained using sums and500

multiplications from (θi − ϑi), P j, and squares of arbitrary polynomials) and integer s ≥ 0 such that501

h1θ = h1ϑ + (θ − ϑ)2s + h2502

The first step is to find formulas ρ1, ρ2 such that:503

S F

⊢ ρ1θ� ρ1ϑ ⊕ (ϑ⊸ θ)2s ⊕ ρ2
. (2)504

To this end, for any polynomial f , write f + and f − for its positive and negative parts, such that
f = f + − f − and both f + and f − have positive coefficients. For any set of judgements S , formula ϕ,
and polynomial f , define

ϕ =S f iff
S Ftot

⊢ ϕ ⊕ f −� f +

where Ftot =def {⊢ |P| | P ∈ P}. The next lemma allows us to turn equalities between not-necessarily505

positive polynomials into provable equalities between RL formulas in polynomial form.506

▶ Lemma 15. Let f , g be polynomials and ϕ, ψ be formulas in RL. Then507

1. If ϕ =S f and ψ =S f , then ⊢ ϕ� ψ is provable from S and Ftot.508

2. If ϕ =S f and ψ =S g, then ϕ ⊕ ψ =S f + g and ϕψ =S f g.509

3. If f has only positive coefficients, then f =S f .510

4. ( f +� f −)2 =S f 2.511

5. If f , g have only positive coefficients and f ⊢ g is provable from S and Ftot, then g⊸ f =S f − g.512

Now, using Lemma 15.(2–5) we get formulas ρ1 and ρ2 such that ρi =S hi (for i = 1, 2).513

By Lemma 15.(2–4), we further obtain (ϑ ⊸ θ)2s =S (ϑ − θ)2s. By combining the above with514

Lemma 15.(2) we finally get ρ1θ =S h1θ and ρ1ϑ ⊕ (ϑ ⊸ θ)2s ⊕ ρ2 =S h1ϑ + (θ − ϑ)2s + h2. Then,515

Lemma 15.(1) gives us ρ1θ� ρ1ϑ ⊕ (ϑ⊸ θ)2s ⊕ ρ2, which sufficies to get our required (2).516

We next show that S F

γ
. There are two cases. (Case ⊢ ρ1 , 0) From the conclusion of (2) we517

obtain ⊢ ρ1θ ⊸ ρ1ϑ and so ρ1θ ⊢ ρ1ϑ. Then θ ⊢ ϑ, as required. (Case ⊢ ρ1 = 0) From the conclusion518

of (2) we get ⊢ 0 � ((ϑ ⊸ θ) ⊕ (θ ⊸ ϑ))2s ⊕ ρ2. If s = 0, this is ⊢ 0 � 1 ⊕ ρ2, which is a519

contradiction. Otherwise, we get ⊢ ((ϑ ⊸ θ) ⊕ (θ ⊸ ϑ))2s with s > 0, and so ⊢ (ϑ ⊸ θ) ⊕ (θ ⊸ ϑ).520

From this, we derive ⊢ θ ⊸ ϑ and thus θ ⊢ ϑ, as required. ◀521

With that we can prove our main completeness theorem, Theorem 10. The root node of the522

reduction tree is (S , γ) where S |= γ. By Proposition 13, the leaf nodes have the form (S ′ ∪ F, γ′)523

where S ′ and γ′ are in polynomial form, and F is a finitising set of sequents restricting S ′ ∪ {γ′}. As524

the rules are reliable we have S ′ ∪ F |= γ′ for all leaf nodes. Then, by polynomial completeness, we525

have S ′ F
γ′

for them, and, finally, as the rules are faithful, we have S
γ

, as required.526

Turning to incompleteness, define consequential compactness to be that if S
γ

is valid for a527

set of sequents S , then S 0
γ

is valid for some finite S 0 ⊆ S . This fails as the consequence with528

S = {(n + 1)P ⊢ nQ | n ∈ N} and γ = P ⊢ Q shows. As this example exists already in the fragment of529

RL with just ⊕ we have:530

▶ Theorem 16 (Incompleteness). There can be no finitary complete consistent proof system for any531

sublogic of RL containing ⊕.532

The more usual compactness notion is that if every finite subset of a set S of sequents has a model,533

then so does S . The two are equivalent: if compactness fails (say with a set S ) then so does534

consequential compactness (with the consequence S
⊢⊥

); and if consequential compactness fails (say535

with a consequence S
ϕ⊢ψ

) then so does compactness (with the set S ∪ {⊢ ϕ < ψ}).536
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7 Complexity Results537

In this section, we give complexity bounds for two fundamental decision problems:538

▶ Definition 17 (Decision problems).539

The satisfiability problem asks, given a finite set of sequents S , whether S has a model, i.e.,540

whether I |= S , for some I.541

The semantical consequence problem asks, given a finite set of sequents S and a sequent γ,542

whether every model of S is also a model of γ, i.e., whether S |= γ.543

We restrict our attention to the case where formulas only have rational constants. The sizes of544

formulas, sequents, and sets of sequents are defined as in the discussion after Proposition 13.545

▶ Theorem 18. Semantical consequence is in PSPACE for RL and co-NP complete for AL.546

Using faithfulness, reliability, and polynomial completeness, we see that the root node (S , γ) of547

the reduction tree is valid, in the sense that S |= γ, iff all the leaf nodes are. Membership of RL-548

consequence in PSPACE follows by considering a nondeterministic exploration of the tree making549

use at the leafs of the fact that satisfiability in the existential theory of the reals [15, 56] is in PSPACE.550

For AL, membership in co-NP is proved similarly, but now via reduction to the infeasibility of linear551

programs [36]; co-NP hardness follows by a linear-time reduction from Boolean propositional logic.552

Observe that S has a model if and only if ⊥ is not a semantical consequence of S , in symbols,553

S ̸|= ⊥. We therefore obtain the following corollary about the complexity of satisfiability.554
555

▶ Corollary 19. Satisfiability is in PSPACE for RL and is NP-complete for AL.556

Moreover, as AL is a sublanguage of RL, satisfiability in RL is at least NP-hard.557

8 Conclusions558

We have developed and studied Rational Lawvere logic (RL), a logic based on two quantales on559

[0,∞]: one additive and one multiplicative, whose operations satisfy the axioms of semirings.560

We presented a deduction system for RL and showed the logic is complete for finitely axiomatized561

theories (but necessarily incomplete for general theories, as compactness fails). The core of the562

completeness proof draws on results from real algebraic geometry, specifically the Krivine-Stengle563

Positivstellensatz. The use of such results in the completeness proof provides compelling evidence of564

the deep connection between arithmetic and logical reasoning.565

We additionally presented new complexity results for both RL and its affine fragment (AL). We566

demonstrated that the satisfiability of a finite set of sequents is NP-complete in AL and in PSPACE567

for RL; and that deciding the semantical consequence from a finite set of sequents is co-NP-complete568

in AL and in PSPACE for RL.569

There are several possibilities for further work. Building on the Weierstrass approximation570

theorem, which states that continuous real-valued functions on compact subsets can be approximated571

arbitrarily well by polynomials, one might consider developing an approximation theory grounded572

in PL. One can ask if there are complete infinitary proof systems for general theories. Beyond573

propositional logic, natural extensions beckon: predicate logics, modal logics, and µ-calculi.574
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