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Abstract. We introduce backward dissimilarity (BD) for discrete-time
linear dynamical systems (LDS), which relaxes existing notions of bisim-
ulations by allowing for approximate comparisons. BD is an invariant
property stating that the difference along the evolution of the dynamics
governing two state variables is bounded by a constant, which we call
dissimilarity. We demonstrate the applicability of BD in a simple case
study and showcase its use concerning: (i) robust model comparison; (ii)
approximate model reduction; and (iii) approximate data recovery. Our
main technical contribution is a policy-iteration algorithm to compute
BDs. Using a prototype implementation, we apply it to benchmarks from
network science and discrete-time Markov chains and compare it against
a related notion of bisimulation for linear control systems.
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1 Introduction

Discrete-time linear dynamical systems (LDS) are a simple yet powerful mathe-
matical tool in many disciplines: the equations of motion of discrete-time Markov
chains are given by an LDS where each equation represents the probability of
the process being in a given state at any time; the numerical solution of linear
system of equations and systems of ordinary differential equations can be seen
as an LDS whose dynamics provides an approximating sequence; in engineer-
ing sciences, LDS are a fundamental model for estimating and controlling the
behavior of physical systems.

As with all dynamical models, notions that can establish whether state vari-
ables of an LDS can be formally related to each other can be used to answer
questions about comparison and reduction. In the former, one wishes to identify
certain relations between variables of two models; when these two models are two
copies of the same one, establishing such a relation, e.g., a formal equivalence,
can lead to a reduction in the number of variables. This approach is very well
understood when reasoning about such relations using bisimulation and related



notions, which have been developed for a variety of models, e.g., in discrete [38]
time, in continuous time [53] and in the deterministic [15], stochastic [40] and
spatial [58] setting.

One of the major criticisms when dealing with models of real-world systems
is that exact relations are too fragile [31,34,37,12]. This is due to the fact that
imprecisions and uncertainties in model parameters and initial conditions likely
violate the criteria underlying those relations. It is therefore a natural question
to ask whether such criteria can be relaxed to allow for more robust notions
that can relate systems approximately. Ideally, one would like to establish such
relations with some guarantees about the dynamics of related variables.

In this paper, we present a novel notion of dissimilarity for LDS. We borrow
the term from statistics, where a dissimilarity matrix between n objects is an
n×n matrix that prescribes pairwise distances (not necessarily metric) between
them. Here, we define the dissimilarity D between two state variables of an LDS
in terms of an invariant stating that the absolute difference between the solutions
is always less than or equal toD. Such invariant can be regarded as a relaxation of
a strict notion of equivalence that can be traced back to exact lumpability [10]
(also termed backward bisimulation) for Markov chains [46], which has been
later generalized for various classes of ordinary differential equations [15,17,14].
Our notion of dissimilarity, which we call backward dissimilarity (BD), aims at
capturing variables that have nearby solutions at all time points.

The main technical contributions are:

1. We show that backward dissimilarity is a proper relaxation of backward
equivalence [15], as variables exhibit dissimilarity zero precisely when they
are backward equivalent. To establish this result we needed to reduce the
problem of finding backward dissimilarities to that of solving a number of
(possibly inhomogeneous) transportation problems [22,26], ultimately result-
ing in a fixpoint characterization of backward dissimilarity.

2. We provide an effective algorithm to compute (tight) backward dissimilar-
ities. Our solution, which is inspired by the policy-iteration algorithm for
Markov decision processes [50], iteratively computes better strategies on how
to compare the dynamics of each variable by performing only local updates.

Applications. Similarly to bisimulation metrics [23,3,5], BD can be used
for robust model comparison and approximate transfer of behavioural properties
(e.g., liveness and safety) from one variable to another, with the error bounded
by the dissimilarity of variables. Thus, it is a valuable tool for model verification
in general. Moreover, BD can be further applied for implementing approximate
model reduction (via clustering) and used for approximate data recovery. In Sec-
tion 6, we showcase these applications on a simple thermostat model from [24].
More specifically, we show (i) how to use BD for approximate model comparison;
and (ii) how to recover missing readings of the temperature of one room from
the temperature readings of adjacent rooms, compensating for malfunctioning
sensors; and (iii) how to integrate BD and clustering techniques to perform ap-
proximate model reduction with certified error bounds.



2 Preliminaries and Notation

Let N and R denote the set of natural and real numbers, respectively. For n ∈ N
we write [n] for the set {1, . . . , n} ⊆ N. Let x = (x1, . . . , xn) ∈ Rn be an n-
dimensional real-valued vector. We denote by ‖x‖1 =

∑
i |xi| the 1-norm of x,

and by ‖x‖∞ = maxi |xi| the infinite norm. For an m×n-matrix A ∈ Rm×n
and vectors x, y ∈ Rn, Ax ∈ Rm denotes the usual (row by column) matrix
multiplication, AT the transpose of A, Ai ∈ Rn the i-th row of A, and xy the
dot product of two vectors (equivalently written as xT y).

In this paper we are interested in discrete-time linear dynamical systems
(LDS) of the form x(t + 1) = Ax(t) + b, for some matrix A ∈ Rn×n, vector
b ∈ Rn, and t ∈ N. We call x = (x1, . . . , xn)T the vector of state variables and
x(0) ∈ Rn the initial condition.

Example 1. The following is an example of LDS, described in matrix form.

x(t+ 1) = Ax(t) + b , where A =

(
6
10 −

2
10

2
10

2
10

8
10 0

2
10 0 8

10

)
, and b =

(
0
1
5
1
5

)
Of these systems we want to study how the dynamics of the state variables

vary in the presence of different forms of perturbations.
In this respect, it is relevant to understand what it means for two state

variables to have equivalent dynamics. This concept is formally captured by the
notion of backward equivalence (BE) [15] here cast to LDSs.

Definition 1 (Backward Equivalence). Let x(t+ 1) = Ax(t) + b be an LDS
with n variables. An equivalence relation R ⊆ [n]× [n] is a backward equivalence
if, for all x ∈ Rn,∧

(i,j)∈R

(xi = xj) =⇒
∧

(i,j)∈R

(
Aix+ bi = Ajx+ bj

)
. (1)

Example 2. Let x(t+ 1) = Ax(t) + b be as in Example 1. Then, the equivalence
relation R = id ∪ {(2, 3), (3, 2)}, where id = {(i, i) | 1 ≤ i ≤ 3} denotes the
identity relation, is a BE.

A BE relates state variables with identical solutions whenever these are ini-
tialized equally [15, Theorem 3]. Specifically, if R is a BE and xi(0) = xj(0) for
all (i, j) ∈ R, then xi(t) = xj(t) for all (i, j) ∈ R and t > 0. Typically, one is
interested in finding the largest BE to reduce the size of the dynamical system
by equating state variables with equivalent dynamics. The largest BE always
exists and efficient algorithms are available to compute it [15,17].

Example 3. Consider the following perturbation of the LDS from Example 1,
where one of the entries of A has been modified by subtracting an 0 < ε < 2

10 :

x(t+ 1) = Aεx(t) + b , where Aε =

(
6
10 − 2

10
2
10

2
10−ε

8
10 0

2
10 0 8

10

)
, and b =

(
0
1
5
1
5

)
With this, the relation R from Example 2 is not a BE for x(t+ 1) = Aεx(t) + b.
This shows that BE is not robust w.r.t. perturbations on a dynamical system.



3 Backward Dissimilarity

In this section we introduce backward dissimilarity (BD) as a robust alternative
to BE. Intuitively, a BD estimates the difference of the dynamics governing two
state variables xi, xj of an LDS by establishing an invariant condition. If this
condition is met in the initial state, it remains preserved throughout the entire
temporal evolution of the LDS.

Definition 2 (Backward dissimilarity). Let x(t+1) = Ax(t)+b be an LDS.
A symmetric matrix D ∈ Rn×n≥0 is a backward dissimilarity for a non-empty set
I ⊆ Rn of initial conditions if for all x(0) ∈ I and t ∈ N∧

1≤i,j≤n

(
|xi(t)−xj(t)| ≤ Dij

)
=⇒

∧
1≤i,j≤n

(
|xi(t+ 1)−xj(t+ 1)| ≤ Dij

)
. (2)

The definition of BD depends on a set I of initial conditions, which can be
interpreted as the degree of variability that one allows on the choice of the initial
conditions x(0). In this respect, BD can also be used to estimate the difference
between dynamics in the presence of perturbations of the initial conditions.
Obviously, a BD represents a meaningful invariant of the dynamics only for
initial conditions satisfying the premise in (2).

The next example showcases that not all LDSs admit meaningful BDs.

Example 4. Consider the system {x1(t+1) = 2x1(t)+1, x2(t+1) = x2(t)}. Pick
any symmetric D ≥ 0 and assume that initial condition x(0) satisfies the premise
in (2), i.e., |x1(0) − x2(0)| ≤ D1,2. Then, the conclusion |x1(t) − x2(t)| ≤ D1,2

cannot hold for all t ≥ 1 because |x1(t)− x2(t)| → ∞ as t→∞.

Then, it is reasonable to work under the following assumption of bounded-
ness, which provides sufficient conditions for the existence of meaningful BDs.

Working assumption: for the set I ⊆ Rn of initial conditions, there
exists λ > 0 such that, for any x(0) ∈ I, ‖x(t)‖∞ ≤ λ for all t ≥ 0.

(wa)

Note that our assumption is not requiring that all trajectories are bounded
within the interval [−λ, λ], but only when the initial conditions are in the set I.
In this case the matrix with all entries Dij = 2λ is a meaningful BD.

Observe that (wa) is weaker than the notion of stability known from control
theory [2] because it only requires that the reachable set is bounded with respect
to the given set I of initial conditions. In practice, (wa) is satisfied by many
models of physical systems from several domains due to properties related to
the preservation of mass or energy [17,14]. Examples include:

– closed chemical systems [25,54], where each state variable represents the
concentration of a chemical species, and closedness implies that the overall
concentration across all species is constant (hence bounded) over time;

– electrical circuits (e.g., linear RLC networks), where Kirchoff current and
voltage laws prescribe preservation of energy such that the currents or volt-
ages cannot exceed those of the external sources;



– models of closed economy, represented as a linear dynamical system owing to
the fundamental work of Leontief [41], which postulates that all goods that
are produced are consumed and that expenditure matches income overall.

To benefit the presentation, below we show a direct but loose estimation of λ.

Example 5. Consider the LDS x(t + 1) = Aεx(t) + b from Example 3 and fix
ε = 1

10 . By assuming the set of initial conditions I = [−1, 1]3, a value for λ that
satisfies (wa) is λ = 2. Indeed, as Aεb = 4

5b (i.e., b is an eigenvector of Aε) and
‖Aε‖∞ = 1, the following inequality holds for all t ∈ N and x(0) ∈ I:

‖x(t)‖∞ = ‖(Aε)tx(0) +
∑t−1
i=0(Aε)ib‖∞ ≤ ‖Aε‖t∞‖x(0)‖∞ + ‖

∑t−1
i=0( 4

5 )ib‖∞
≤ 1 + 1

5

∑∞
i=0( 4

5 )i = 2 .

Example 6. Consider the LDS from Example 5 with same set of initial condi-

tions. Then, the corresponding BD is D =

(
0 2 5

3
2 0 1
5
3 1 0

)
. The coefficients of D have

been found by a suitable estimation of the differences in the dynamics. For ex-
ample, the dissimilarity D2,3 = 1 between the dynamics of x2 and x3 can be
understood by looking at the following inequalities, with λ = 2 (cf. Example 5):

|A2x(t)−A3x(t)| = | 1
10 (x1(t)− x1(t)) + 8

10 (x2(t)− x3(t)) + 1
10 x1(t)|

≤ 8
10 |x2(t)− x3(t)|+ 1

10 |x1(t)|
≤ 8

10 |x2(t)− x3(t)|+ 1
10λ .

which show that |x2(t)− x3(t)| ≤ 1 implies |x2(t+ 1)− x3(t+ 1)| ≤ 1.

Our method to find BDs follows the technique outlined in Example 6: fac-
torizing the difference of the solutions at time t+ 1 in terms of the differences at
time t. Such a factorization is always possible and can be found as the solution of
a linear program, namely, the (inhomogeneous) transportation problem [22,26].

Definition 3 (Transportation problem). For two vectors c, d ∈ Rn and cost
matrix D ∈ Rn×n we define Tλ(D)(c, d) as the optimal value of the following
linear program

Tλ(D)(c, d) = min
s∈Rn,s̄∈Rn,ω∈Rn×n

[
λ
∑
i(si + s̄i) +

∑
i,j Dijωij

]
subject to

∑
j ωij + si = c+i + d−i i = 1 . . . n∑
i ωij + s̄j = c−j + d+

j j = 1 . . . n

ωij ≥ 0, si ≥ 0, s̄j ≥ 0 i, j = 1 . . . n

where c = c+ − c− and d = d+ − d− are decomposed in their positive and nega-
tive parts. Intuitively, the decision variables wi,j represent the amount of goods
transported from each supplier (c+i + d−i ) to each destination (c−j + d+

j ), subject
to the standard supply and demand constraints, and non-negativity constraints
on the decision variables. The (slack) variables si and s̄j account for possible
mismatch between supply and demand. A feasible assignment of the variables
(s, s̄, ω) is called transportation schedule, and we call it perfect when s, s̄ = 0.



We denote by Γ (c, d) the polytope containing all transportation schedules for
(c, d), and by ΓV (c, d) the (finite) subset of its vertices.

Example 7. We can reinterpret the factorization in Example 6 as an instance
of a transportation schedule. Below, we show the (nonzero) assignments of the
variables s, s̄, ω, corresponding to a transportation schedule as in Definition 3:

A2x(t) =

c1︷︸︸︷
1
10 x1(t) +

c2︷︸︸︷
8
10 x2(t) A3x(t) =

d1︷︸︸︷
2
10 x1(t) +

d3︷︸︸︷
8
10 x3(t)

= 1
10︸︷︷︸
ω1,1

x1(t) + 8
10︸︷︷︸
ω2,3

x2(t) = ( 1
10︸︷︷︸
ω1,1

+ 1
10︸︷︷︸
s̄1

)x1(t) + 8
10︸︷︷︸
ω2,3

x3(t)

Then, the factorization from Example 6 matches the expression used as objective
function in the transportation problem as shown below for Dij = |xi(t)− xj(t)|

λ
∑
i(si + s̄i) +

∑
i,j Dijωij = λ 1

10 + 8
10 |x2(t)− x3(t)| .

BDs are clearly not unique and different factorizations might give better
estimations on the difference of the dynamics. The transportation problem finds
the tightest one for any two given state variables. By applying this idea to each
pair of state variables of the LDS x(t+1) = Ax(t)+b, we can define the operator:

∆λ(D)ij = Tλ(D)(Ai, Aj) + |bi − bj | ,

that, given an estimation D ∈ Rn×n≥0 of the pair-wise differences of the dynam-

ics at time t, provides an updated estimate ∆λ(D) ∈ Rn×n≥0 for time t + 1. In
the following, we just write ∆ when λ is clear from the context (or when the
discussion is generic on the value of λ > 0).

Lemma 1. The operator ∆ is well-defined on the complete lattice ([0,∞]n×n,v)
and monotone w.r.t. v, where D v D′ iff Dij ≤ D′ij for all 1 ≤ i, j ≤ n.

Our first major result ensures that the pre-fixpoints of ∆ are BDs for the
given set of initial conditions satisfying our working assumptions.

Theorem 1. Let x(t+ 1) = Ax(t) + b be an LDS, I ⊆ Rn, and λ > 0 satisfying
assumption (wa). Then, any D ∈ Rn×n≥0 such that ∆λ(D) v D is a BD for I.

Remark 1 (Finite time horizon). Using (wa) makes sense only when one is in-
terested in establishing dissimilarities among trajectories over an infinite time
horizon. However, if one is just interested in trajectories over a finite time hori-
zon [0, T ], (wa) can be dropped by choosing a λ that bounds the dynamics of the
LDS up to time T . In this case, pre-fixpoints of ∆λ are dissimilarities satisfying
equation (2) only for t ∈ [0, T − 1].

As ∆λ is monotonic, by Knaster-Tarski’s fixpoint theorem, it has a least
fixpoint, hereafter denoted by δλ (or simply δ). The next result, in combination
with Theorem 1, tells us that BD is indeed a robust extension of BE.

Theorem 2. Let R be the greatest BE. Then, δi,j = 0 iff (i, j) ∈ R.



4 Computation of Backward Dissimilarity

In this section we discuss how to compute pre-fixpoints of ∆λ. To this end we
provide a procedure which is inspired by the simple policy iteration algorithm
for Markov decision processes [50, Chapter 6.4].

We will use two key concepts, namely that of transport policy and policy
dissimilarity. A transport policy, similarly to a policy for MDPs, is a map that
assigns a factorization strategy (i.e., a transportation schedule) with each pair
of state variables. A policy dissimilarity is the smallest dissimilarity that can be
proved by using the given factorization strategy.

Definition 4. A transport policy π for x(t + 1) = Ax(t) + b is a map that
assigns to each pair of indices (i, j) a transportation schedule π(i, j) ∈ Γ (Ai, Aj).
If π(i, j) ∈ ΓV (Ai, Aj) for all (i, j), π is referred to as vertex transport policy.

We denote by Π(A, b) (resp. ΠV (A, b)) the set of transport policies (resp. vertex
transport policies) for x(t+ 1) = Ax(t) + b. Note that ΠV (A, b) is finite.

Given a transport policy π ∈ Π(A, b), we define the operator

∆π
λ(D)ij =

(
λ
∑
h(sh + s̄h) +

∑
h,kDhkωh,k

)
+ |bi − bj | (3)

where π(i, j) = (s, s̄, ω). In contrast to ∆λ from Theorem 1, given an estimate
D ∈ Rn×n≥0 of the pair-wise differences of the dynamics at time t,∆π

λ(D) computes
an updated estimate for time t+ 1 via the factorization strategy described by π.

As in Lemma 1, one can show that ∆π
λ is monotone in ([0,∞]n×n,v). Thus,

by Knaster-Tarski’s fixpoint theorem ∆π
λ has least fixed point.

Definition 5. Let π ∈ Π(A, b) and λ > 0. The policy dissimilarity for π, de-
noted δπλ , is the least fixed point of ∆π

λ.

The following result states that for any transport policy π ∈ Π(A, b), the
pre-fixpoints of ∆π

λ are also pre-fixpoints of ∆λ. Thus, by Theorem 1, δπλ is a BD
for a set of initial conditions I ⊆ Rn and λ > 0 satisfying assumption (wa).

Proposition 1. Let π ∈ Π(A, b). Then ∆π
λ(D) v D implies ∆λ(D) v D.

With this in hand, we show that the least fixed point of ∆λ is the minimum
policy dissimilarity ranging over all vertex transport policies.

Theorem 3. δλ = min{δπλ | π ∈ ΠV (A, b)}.
As in the classical policy iteration algorithm, our procedure starts from some

suitable transport policy. At each iteration, the current policy is replaced by one
having a smaller policy dissimilarity. The algorithm terminates when such an
update no longer yields a better dissimilarity (cf. lines 6–8 in Figure 1).

To update the policy we use a map kλ that, given D ∈ Rn×n≥0 and c, d ∈ Rn,
returns an optimal vertex transportation schedule in the sense of Definition 3:

kλ(D)(c, d) ∈ arg min
(s,s̄,ω)∈ΓV (c,d)

λ
∑
i(si + s̄i) +

∑
i,j Dijωij . (4)

The following lemma shows how kλ can be used to update the current policy
at one selected pair of indices (i, j) to obtain a smaller dissimilarity.



SimplePolicyIteration(A, b, λ,R)

1 let Dij = 0 if (i, j) ∈ R and Dij = 1 if (i, j) /∈ R.
2 for each (i, j) ∈ [n]× [n]
3 if (i, j) ∈ R
4 π[i, j] = kλ(D)(Ai, Aj)
5 else π[i, j] = (A+

i +A−j , A
−
i +A+

j ,0)

6 while ∃(i, j).∆λ(δπλ)ij < (δπλ)ij
7 π[i, j] = kλ(δπ)(Ai, Aj) // update the policy as in Lemma 2
8 return δπλ // δπλ is a fixed point of ∆λ

Fig. 1. Algorithm for computation of dissimilarity invariants.

Lemma 2. Let π ∈ Π(A, b). If ∆λ(δπλ)ij < (δπλ)ij for some i, j, then δπ̄λ @ δπλ
where π̄ = π[(i, j)/kλ(δπ)(Ai, Aj)].

Now we are only left to explain how our algorithm constructs the initial
transport policy (cf. lines 2–5 in Figure 1). The easiest transport policy π one
can think of is the one that assigns to each pair of indices (i, j) the transportation
schedule π(i, j) = (A+

i + A−j , A
−
i + A+

j ,0). However, the smaller is the initial
policy dissimilarity, the faster the algorithm will converge. Thus we provided
the algorithm with the option to pass a BE R as input, and construct the initial
policy π in such a way that (δπλ)ij = 0 for each (i, j) ∈ R. Since computing BEs
can be done efficiently by using ad hoc techniques [17,4], allowing for this option
might improve the overall execution time of the algorithm. By default, in our
implementation we pass the largest BE for the considered LDS.

Theorem 4 (Computation of BD). Let R be a BE for x(t+ 1) = Ax(t) + b
and λ > 0. The procedure SimplePolicyIteration(A, b, λ,R) terminates and
its return value D satisfies ∆λ(D) = D and R ⊆ {(i, j) | Dij = 0}.

Complexity Analysis. Let n be the number of state variables of the LDS.
The transportation problem of Definition 3 is an instance of the uncapacitated
min-cost network flow problem, which can be solved by employing Orlin’s algo-
rithm in O(n3 log n) time [47]. Thus, the construction of the initial policy takes
O(|R|n3 log n) time to solve |R| transportation problems. Each iteration requires
one to compute the policy dissimilarity δπλ , solve at most n2 transportation prob-
lems to find the pair (i, j) to update, and solve one last transportation problem
to perform the policy update.

δπλ can be computed by solving the following linear program in n2 variables:

min
D

∑n
i=1

∑n
j=1Dij

subject to ∆π
λ(D)ij = Dij (i = 1 . . n, j = 1 . . n)

Dij ≥ 0 (i = 1 . . n, j = 1 . . n)



The above LP can be solved by using the interior point method inO(n4.5 log(n/α))
time [59] , where α is the relative accuracy (in our implementation α = 10−6).
As a consequence, the worst-case runtime of a single iteration of the algorithm is
O(n4.5 log(n/α) + n5 log n) = O(n5 log n). Similarly to the policy iteration algo-
rithm for MDPs [21], the number of iterations is, in the worst case, exponential
in the number of state variables. However, in Section 7 our experiments show
that, in practice, the algorithm converges after few iterations.

5 Related Work

For Markov chains, bisimilarity distances [23] and near-lumpability [27,11] gener-
alize probabilistic bisimulation [40], a.k.a. ordinary lumpability [10]. BD, instead,
generalizes exact lumpability, which is complementary to ordinary lumpabil-
ity [10,45]. Moreover, BD applies to arbitrary LDS and not just Markov chains.
In the field of nonlinear dynamical systems [52,36], algorithms for establishing
algebraic invariants are available for polynomial dynamical systems [30,17,8,7].
However, the aforementioned invariants describe Lebesgue null sets, thus they
belong to the class of exact relations as opposed to the robust relations sought
by BD. Approximate extensions of [17,8] have been considered [57,19,9] but re-
quire an initial condition and/or finite-time horizons, while the computation
of expressive semi-algebraic invariants [43,52] is challenging. Instead, common
over-approximation approaches where the reachable set is over-approximated by
geometrically convenient objects such as zonotopes [29,1] or Taylor models [20]
are complementary to the our approach because they provide absolute estimates
of the reachtube. BD, instead, provides estimates of the form |x− y| ≤ D which
are not concerned with x or y per se but with their relative difference x− y. By
extending the LDS with auxiliary variables zij = xi − xj , we remark that [1,20]
can be used to over-approximate differences of variables. However, the under-
lying over-approximations would still depend on the size of the set of initial
conditions, e.g., the diameter, rather than differences xi − xj only. In light of
the fact that BDs are expressible as pre-fixpoints of a monotone operator, the
lattice-theoretic PDR-inspired algorithms proposed in [39] may provide an al-
ternative solution to the policy-iteration algorithm considered in this paper and
are subject of future work.

A comparable, but different approach is bisimulation of linear control systems
(LCS) [32,34]. LCS bisimulation can be seen as a general case of BD because
it allows bounding the dynamics of LCS with respect to an arbitrary output
map. Tailored to the case of estimating a BD, it leads to the computation of a
Lyapunov function [51] that bounds, from below and from above, the set of points
satisfying the BD constraints |xi − xj | ≤ Dij , with Dij being the dissimilarity
computed by BD for variables i and j. In the rest of the section we formalise
how BD compares to LCS bisimulation.

Bisimulation of LCSs. In its more general form, bisimulation for linear
control systems (LCSs) considers the problem of comparing two linear control
systems in the form xi = Aixi+Biui, yi = Cixi, with i = 1, 2 where xi are state



variables, yi are output variables, and ui are controls (with matrices Ai, Bi and
Ci of appropriate sizes [32]). Here we review a definition of LCS bisimulation
tailored to the purpose of computing dissimilarities between two variables of an
LDS. In particular, we do not consider controls; this implies that we assume LDS
with no affine term, i.e., b = 0 from now on.

Definition 6 (LCS Bisimulation). Given an LDS x(t + 1) = Ax(t) with
A ∈ Rn×n, we call Bij ⊆ Rn an LCS bisimulation for threshold δ > 0 and pair
i 6= j if whenever x ∈ Bij, then |xi − xj | ≤ δ for all Ax ∈ Bij.

Bisimulations can be constructed by means of bisimulation functions.

Definition 7 (Bisimulation function). Given an LDS x(t+ 1) = Ax(t) with
A ∈ Rn×n and a pair i 6= j, a function V ij : Rn → R≥0 is called bisimulation
function if for every x ∈ Rn we have

a) V ij(x) ≥ V ij(Ax) and b) V ij(x) ≥ |xi − xj |.

It can be easily seen that {x ∈ Rn | V ij(x) ≤ δ} is an LCS bisimulation
with respect to any threshold δ > 0 [32]. Indeed, the first condition essentially
requires that V ij is decreasing along the solutions of the LDS, while the second
one demands that V ij(x) bounds |xi − xj |.

While the computation of bisimulation functions V ij is in general challeng-
ing [33], the case where V ij is quadratic can be addressed by solving a system of
linear matrix inequalities [32,6]. Building on this, the following can be proven.

Theorem 5. Let D be a symmetric non-negative matrix and x(t + 1) = Ax(t)
asymptotically stable at x = 0. There is an r > 0 such that for any x(0) ∈ Rn
satisfying ‖x(0)‖2 = r and

∧
k 6=l |xk(0) − xl(0)| ≤ Dkl, for any pair i 6= j

one can compute in polynomial time lower and upper estimates of the quadratic
bisimulation at x(0), that is, Lij ≤ V ij(x(0)) ≤ Lij.

The above result ensures in particular that a BD D provides tighter estimates
than the quadratic bisimulation V ij if Dij ≤ Lij .

6 Applications: The Thermostat Case Study

We showcase possible applications of BDs on a simple thermostat model from [24]
but applications in performance modelling [60,55,56], engineering [13] and biol-
ogy [18,28] are also possible. The room temperature depends on neighboring
rooms, outdoor temperature, and room-specific air conditioning settings, con-
trolled by a linear feedback control [2]. Formally, we consider the LDS x(t+1) =
Ax(t) + b + u(t) where xi(t) is the temperature in room i = 1, 2, 3 at time t, b
accounts for the outside temperate, while ui(t) is the control input applied in



x̄1 x̄2 x̄3
x̄1 0 0.71 0.56
x̄2 0.71 0 0.9
x̄3 0.56 0.9 0

x̄1 x̄2 x̄3 ȳ1 ȳ2
x̄1 0 0.71 0.56 0.15 0.7
x̄2 0.71 0 0.9 0.84 0.27
x̄3 0.56 0.9 0 0.71 1.2
ȳ1 0.15 0.84 0.71 0 0.57
ȳ2 0.7 0.27 1.2 0.57 0

Fig. 2. (Left) BD for the thermostat example. (Right) BD for the union thermostat.

room i at time t. The matrix A and vector b are as shown below5

A =

0.9910 0.0050 0
0.0050 0.9830 0.0055

0 0.0055 0.9915

 , b =

1.6
1.2
1.6

 . (5)

The rest of the section demonstrates how to compute a BD for the above
LDS and showcase how it can be used to perform approximate model reduction.

Computing Backward Dissimilarities. In the case when u(t) = 0 for all
t ≥ 0 (i.e., all thermostats are kept off) the temperature converges to 4◦C in
all rooms. The constant control input u∗, that ensures all three room attain a
temperature of 20◦C, can be obtained by solving x∗ = f(x∗, u∗), where f(x, u) =
Ax+ b+ u and x∗ = (20, 20, 20)T .

An estimation of λ can be achieved as in Example 5 by noting that ‖A‖∞ < 1.
However, we point out that a sharper estimation of λ is often possible when a
reference point x∗ is given. Indeed, we can perform a simple change of variable
x̄ = x − x∗ and ū = u − u∗ corresponding to a shifting of the graph. Since
x̄(t + 1) + x∗ = f(x̄(t) + x∗, ū(t) + u∗) the dynamics x̄(t + 1) = g(x̄(t), ū(t)) of
the shifted system can be obtained via

g(x̄(t), ū(t)) = x̄(t+ 1) = f(x̄(t) + x∗, ū(t) + u∗)− x∗ = Ax̄(t) + ū(t), (6)

where the last identity uses u∗ = (I−A)x∗−b. Observing that g has no additive
constant and ‖A‖∞ < 1, we can set ū(t) = 0 and λ = 5, provided that ‖x̄(0)‖∞ =
‖x(0) − x∗‖∞ ≤ 5. With this in place, for x∗ = (20, 20, 20)T we obtain the BD
D depicted in Figure 2 (left), where we see that the variables x1 and x3 are the
least dissimilar (D13 = 0.56).

Approximate Data Recovery. Assume that the thermometer in room 1
is malfunctioning. We can exploit the BD D in Figure 2 (left) to recover good
estimates for the missing readings x1(t) from those of the other rooms, because

max(x2(t)−D12, x3(t)−D13) ≤ x1(t) ≤ min(x2(t) +D12, x3(t) +D13) ,

ensuring that x1(t) is at most 0.56◦C far from x3(t), for all t ∈ N.

5 The matrix A was obtained by discretizing the original model [24, Eq. 8] with time
step 10−2 and by additionally perturbing the matrix entries in the order of 10−3, to
replicate a typical real-case scenario where fragile model symmetries do not occur.



Approximate Model Reduction. The thermostat LDS defined in (5) has
no model symmetries, thus exact model reduction technique based on BE [15]
does not apply in this scenario. In what follows, we show how to exploit the BD
D in Figure 2 (left) to perform approximate reduction of the thermostat LDS.
Specifically, we proceed in two steps: (1) we perform hierarchical clustering using
D as underlying distance to obtain a partitioning of the rooms which is then used
to construct a reduced LDS that approximates the dynamics of the thermostat
LDS; (2) finally, we employ BD to compare the approximated system against the
original one —the smaller the measured dissimilarities between corresponding
variables the higher the quality of the approximated model.

By performing hierarchical clustering using the BD D as underlying distance,
we obtain the partitioning H = {{1, 3}, {2}}. Using the reduction algorithm
from [15] for H, we obtain the LDS ȳ(t + 1) = Bȳ(t) where B = ( 0.9910 0.0050

0.0105 0.9830 )
Informally, this LDS approximates the original dynamics by lumping x̄1 and x̄3.

The quality of the reduced model is evaluated by providing a backward dis-
similarity for the “union” LDS (x̄(t + 1), ȳ(t + 1)) = (Ax̄(t), Bȳ(t)) and λ = 56

provided that ‖(x(0), y(0))−(x∗, y∗)‖∞ ≤ 5 for y∗ = (20, 20)T . The resulting BD
is depicted in Figure 2 (right). We can see that ȳ2 is a good approximation of x̄2

scoring a dissimilarity of 0.27◦C. Likewise, ȳ1, which represents the aggregation
of x̄1 and x̄3, scores a dissimilarity of 0.15◦C with x̄1 and 0.71◦C with x̄3.

The approximated LDS ȳ(t + 1) = Bȳ(t) models the intended variables ag-
gregation. Notably, by performing hierarchical clustering of the variables in the
union LDS using the BD in Figure 2 (right) as underlying distance, we retrieve
the proposed variable lumping.

7 Experimental Comparison with LCS Bisimulation

This section numerically compares the quality of the dissimilarity estimations
against those obtained by LCS bisimulation showing that BD provides tighter
bounds on a number of case studies taken from network science, for the control
of network dynamics [44], and on a selection of discrete-time Markov chains from
the QComp repository [35].

Set-up. We consider two classes: discrete-time Markov chains (DTMCs)
from the QComp repository [35] and controlled dynamical networks from the
Netzschleuder network catalogue [48]. For a DTMC with transition probability
matrix AT , we simply considered the LDS x(t + 1) = Ax(t), which gives the
equation of motion of the transient probability distribution. Because AT is a
row stochastic matrix, we can pick λ = 1 for any measure x(0).

With regard to controlled dynamical networks, we use a standard set-up from
network science [44]. Specifically, given an adjacency matrix A, we consider the
LDS x(t+ 1) = (A−K)x(t) where K implements a control strategy that steers
the dynamics toward a desired target state (chosen to be x = 0 without loss
of generality), computed by the celebrated LQR formula by solving a so-called

6 The choice of λ is justified by max(‖A‖∞, ‖B‖∞) < 1.



Model LCS bisim. BD Ratios LCS bisim. / BD

Name n Time Iter. Time Iter. 0 Min Avg low Avg up Max

DTMCs https://qcomp.org/benchmarks/

haddad 11 11.8 12 3.0 3 2 4.60E – 2 4.79E – 1 4.99E+0 7.37E+1
brp 25 866.9 10 13.8 3 2 7.71E – 2 2.71E+2 3.51E+3 3.07E+5

herman 32 4095.6 8 61.3 2 136 2.41E – 1 5.50E – 1 2.85E+0 5.47E+0

MOVIEGALAXIES https://networks.skewed.de/net/moviegalaxies

328 9 2.3 9 4.2 4 0 1.58E+0 6.37E+0 8.57E+0 8.19E+1
293 13 17.2 9 15.8 4 0 1.73E+0 4.29E+0 5.81E+0 2.54E+1
347 15 23.6 9 24.4 4 9 2.64E+0 1.48E+1 2.02E+1 2.85E+2
17 22 252.0 9 146.4 5 16 1.41E+0 6.00E+0 8.09E+0 6.23E+1
33 25 407.1 9 904.8 6 3 1.06E+0 3.41E+0 4.66E+0 1.91E+1
804 29 761.6 9 804.6 5 15 8.13E – 1 4.38E+0 5.93E+0 6.08E+1

DOM https://networks.skewed.de/net/dom

Cor 6 0.8 8 2.5 4 0 2.86E+0 2.17E+1 3.31E+1 1.89E+2
DMas 13 16.1 10 6.9 4 3 1.92E – 1 5.26E – 1 1.49E+0 5.46E+0
Mwa 19 108.5 12 18.3 4 0 2.27E – 1 2.45E – 1 6.06E – 1 1.41E+0

AMBASSADOR https://networks.skewed.de/net/ambassador

2000 16 26.3 9 34.7 5 2 3.41E+0 9.33E+0 1.27E+1 3.10E+1
2005 16 28.9 10 3.1 2 92 2.57E+0 2.57E+0 3.49E+0 3.49E+0

1990 1994 16 25.8 9 27.6 5 2 2.13E+0 5.49E+0 7.49E+0 1.45E+1

Table 1. Comparison BD - LCS bisimulation. Column n provides the number of
variables in the model, while Time and Iter. are the runtime in seconds and the
number of iterations performed by the two techniques. For BD, we also provide (col-
umn 0 ) the number (nontrivial) BE-equivalent variables. The actual DOM models are
Correa2013d, DMasure1934a, and Mwamende2009a. Parameters for the (parametric)
DTMC models are: haddad, n=5, p=0.6; brp, n=1, max=3; herman, n=5.

Riccati matrix equation [6,42]. For each network, we computed K numerically by
using the MATLAB command idare. By using this setting we can consistently
ensure asymptotic stability of the resulting LDS.

Results. The results of our comparison of BD and LCS bisimulation are
shown in Table 1. To ensure a representative evaluation of the bounds, bench-
marks were drawn from four different classes of networks. For each model we
report the number of variables; the runtimes and the number of iterations for
the computation of the LCS bisimulation and for our BD policy-iteration algo-
rithm, implemented on a prototype which uses ERODE [16] to compute BEs,
and Google’s OR-Tools library [49] to solve the linear programs involved in Al-
gorithm 1. All experiments were run on a common laptop.

We compare the dissimilarity estimations of BD and LCS bisimulation as
follows. For each pair of variable indices (i, j), we build the ratios involving the
interval estimation [Lij ; L̄ij ] of the LCS bisimulation (cf. Lemma 5) and the BD
Dij , and report the following statistics:

minimum ratio: min
{
Lij/Dij | (i, j) s.t. Dij 6= 0

}
;

average lower bound ratio: avg
{
Lij/Dij | (i, j) s.t. Dij 6= 0

}
;

https://qcomp.org/benchmarks/
https://networks.skewed.de/net/moviegalaxies
https://networks.skewed.de/net/dom
https://networks.skewed.de/net/ambassador


average upper bound ratio: avg
{
L̄ij/Dij | (i, j) s.t. Dij 6= 0

}
;

maximum ratio: max
{
L̄ij/Dij | (i, j) s.t. Dij 6= 0

}
;

where all the above sets do not include elements such that Dij = 0, which are
related by BE (cf. Theorem 2). The number of distinct BE pairs is reported in
the table. These statistics summarize the variability of the relative tightness of
the two dissimilarity estimations for each pair of variables—ratios larger than
one indicate tighter BD estimations. We observe:

1. In 9 of out the 15 models, the minimum ratio was larger than one: this
indicates that across all entries the BD estimation was consistently tighter
than the LCS bisimulation.

2. In the models where the minimum ratio was smaller than one, LCS bisimu-
lation is not consistently tighter than BD. This is because the corresponding
maximum ratio is larger than one, even considerably so (e.g., up to five
orders of magnitude for the model brp).

3. The average ratios tend to favor BD. Interestingly, in one model where the
average ratios do favor LCS bisimulation (Mwa), Algorithm 1 was one order
of magnitude faster.

4. The relative runtime behavior seems to be model-dependent. In the case
where the BD runtime is most significantly larger (model 33), the resulting
BD is consistently tighter across all pairs. The largest runtime (≥ 30 min)
is reported for the model herman.

5. LCS bisimulation was not able to detect BE (i.e., no model returned Lij = 0
for i 6= j).

6. Across all the considered models, the BD-policy iteration algorithm termi-
nated after at most 6 iterations. This suggests that, despite the exponential
worst-case runtime upper bound, the method performs well in practice.

8 Conclusion

We presented backward dissimilarity (BD), a robust relation between variables
of a linear dynamical system which bounds the differences between their solu-
tions at all time points. A fixed-point characterization of backward dissimilarity
allowed for the development of a policy-iteration algorithm to compute BDs.
Although each iteration of the algorithm has polynomial time complexity, in
the worst-case the computation may require exponentially many iterations as a
function of the number of variables. Nevertheless, experimental results showed
that the actual number of iterations is typically limited to a few. Compared to an
alternative method based on bisimulation for linear control systems, BD offers
tighter estimates and similar runtimes in most cases.
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