
Convex Lattice Equation Systems

Giorgio Bacci, Giovanni Bacci, Mathias C. Jensen, and Kim G. Larsen

Department of Computer Science, Aalborg University

Abstract. In this paper we revisit the paradigm shift “From Boolean
to Quantitative Notions of Correctness” proposed by Henzinger more
than 10 years ago. In particular, we present the notion of Convex Lattice
Equation Systems as a universal framework for encoding and inferring
behavioural metrics between quantitative system behaviours. We demon-
strate how the framework may be applied to infer bounds on values of
stochastic games and distances between timed systems.

1 Introduction

In the seminal talk “From Boolean to Quantitative Notions of Correctness”
[Hen10] at POPL10, Henzinger challenged the classical Boolean treatment of
systems and properties: e.g. a property is either true or false of a system. In
particular, within the well-established research field of concurrent and reactive
systems, so-called implementation verification involves checking the behavioural
equivalence (or preorder) between implementations and specifications. This ap-
proach requires a suitable model of the system and specification, as well as
procedure for checking whether the two are related with respect to the given
equivalence or preorder. And again the verdict is either true or false.

The “Embedded Design Challenge” [HS06] presented by Henzinger and Sifakis
in 2006, emphasizes the importance of quantitative models in order to capture in
an adequate manner physical constraints, timing requirements and probabilistic
uncertainties, etc. Even in this quantitative setting, the Boolean view has been
prevalent: two timed automata are either (timed) bisimilar [Yi90] or not, two
Markov chains are either (probabilistic) bisimilar [LS89] or not. There has been
some research into better describing inconsistent models of systems by extending
the true-false dichotomy to being part of some larger lattice structure. E.g.
Easterbrook and Chechik develop a general framework for reasoning about such
inconsistent viewpoints using multi-valued logics [EC01] and Kupferman and
Lustig give a notion of latticed simulation for multi-valued Kripke structures
[KL10].

The paradigm shift to quantitative notions of correctness, as advocated by
Henzinger [Hen10], was motivated by the need of a more refined view, where
a system if not fully correct may still be correct up to a certain degree, and
where two systems if not fully equivalent may still be close according to a be-
havioural distance. The proposed paradigm shift to quantitative verdicts has
been pursued by several researchers, leading – among others – to notions of timed
bisimulation distances [HMP05,TFL10,Ros19], weighted bisimulation distances

x1 = x1 ∧ x1
x2 = x1 ∨ x3
x3 = ff

(a) BES E

A1
x ∈ Γ
Γ `E x

A2
Γ `E tt

A3
Γ, x `E φ
Γ `E x

x =E φ, x /∈ Γ

A4
Γ `E x Γ `E y
Γ `E x ∧ y

A5
Γ `E x

Γ `E x ∨ y
A6

Γ `E y
Γ `E x ∨ y

(b) Proof System A

x1 ∈ {x1}
{x1} ` x1

A1

x1 ∈ {x1}
{x1} ` x1

A1

{x1} `E x1 ∧ x1
A4

∅ `E x1
A3

(c) Proof of `E x

Fig. 1. A BES, the proof system A and proof of `E x from [Lar92]

[FTL11,LFT11], and probabilistic bisimulation metrics [DLT08,DGJP04]. Here
a key question has been the design of complete proof systems respectively effec-
tive procedures for inferring respectively computing the distance between (timed,
weighted or probabilistic) models, e.g. [CvBW12,BBLM13a,BBLM13b,BBLM16]
[BBLM18,BBL+21]. However, in this effort one is facing the very same challenge
as for the corresponding Boolean equivalence checking problems: the state-space
explosion problem. That is, in many cases enumeration of the full state-space
may be infeasible. To deal with this problem, the development of on-the-fly
algorithms have been made in the hope that answers about the degree of equiv-
alence between systems behaviour can be made by exploring only a fraction of
the state-space.

The idea of local or on-the-fly model checking was discovered simultaneously
and independently by various people in the end of the 1980s all engaged in mak-
ing (Boolean) model-checking and equivalence-checking tools for various process
algebras and tools (Concurrency Workbench CWB [CPS89], CADP [GLMS11],
VESAR [ACD+93], TAV-EPSILON [CGL93]). In this process, it was realized
that a very simple formalism, Boolean Equation Systems (BES), can provide a
universal framework for efficiently encoding and solving (essentially) all model-
checking and equivalence problems in a local manner. In a BES, a finite number
of Boolean variables are defined recursively (maximally or minimally) by Boolean
expressions over the variables. Whereas [Lar92] provides a complete proof sys-
tem and the first local algorithms, the work in [And92,LS98] provides the first
optimal (linear-time) local algorithms. See Fig. 1 for a BES, the proof system
and its application from [Lar92]. Later extensions and adaptations of BES have
been implemented in the tools CADP, muCRL [Man08] and the educational tool
CAAL [AAE+15].

Aiming at providing the foundation for a similar universal framework for
computing behavioural metrics in a local manner, we introduce in this paper
the notion of Convex Lattice Equation Systems (CLES). Here, variables X =
{x1, . . . , xn} range over values from a convex (complete) lattice (generalizing
Boolean as well as a range of numeric domains) and are defined recursively by

expressions {E1, . . . , En} over X involving lattice constructs (join and meet) and
convex combinations. We present a sound and complete proof system for checking
consistency of statements of the form E ≤ ε, where E is an expression over X
and ε is an element from the complete lattice expressing a bound. As for BES,
this proof system will provide the basis of a generic on-the-fly algorithm. Finally,
we show how values of stochastic games and distances between timed systems
may be encoded using CLES over the complete lattices ([0, 1],≤) respectively
([0,∞],≤).

2 Convex Lattice Equation Systems

A convex (complete) lattice is a structure 〈D,v, {+α | α ∈ [0, 1]}〉 consisting
of a complete partial order (D,v) (hence, with joins

⊔
D and meets

d
D for

arbitrary subsets D ⊆ D) and a convex space 〈D, {+α | α ∈ [0, 1]}〉, where
w +α w

′ denotes the binary convex combination of two elements w,w′ ∈ D,
subject to the following distributive laws⊔

D +α w =
⊔
{w′ +α w | w′ ∈ D}

l
D +α w =

l
{w′ +α w | w′ ∈ D}

When the partial order and convex structure of 〈D,v, {+α | α ∈ [0, 1]}〉 are clear
from the context, we will refer to the convex lattice simply as D.

Simple examples of convex lattices are the unit interval [0, 1] and the ex-
tended non-negative reals [0,∞], with order ≤ and convex combination in-
terpreted as a +α b = αa + (1 − α)b. A less trivial example of convex lat-
tice is the space of convex sets of probability distributions which have been
used in the literature to combine non-determinism and probabilistic choice (see
e.g. [Mis00,Gou08,TKP09,VW06]).

Note that, if D is a convex lattice, also the set DX of functions from X to
D can be turned into a convex lattice 〈DX , v̇, {+̇α | α ∈ [0, 1]}〉 by point-wise
extension of the order and convex combinator:

v̇ = {(f, g) | ∀x ∈ X.f(x) v g(x)} , (f +̇α g)(x) = f(x) +α g(x) .

Remark 1. Any complete partial order (D,v) can be also seen as a (trivial)
convex lattice by simply interpreting the convex combination as

w +α w
′ = w t w′ (for α ∈ (0, 1)) , w +1 w

′ = w , w +0 w
′ = w′ .

This means that the theory we shall develop in the following sections can be
applied also on complete partial orders with no (nontrivial) convex structure.

Hereafter, we fix a convex lattice 〈D,v, {+α | α ∈ [0, 1]}〉 and denote by
> =

⊔
D and ⊥ =

d
D its top and bottom elements, respectively.

Convex lattice expressions. Let X be a set of variables. The set LX of convex
lattice expressions over X is given by the following grammar:

φ ::= x | w | φ1 t φ2 | φ1 u φ2 | φ1 +α φ2 .

where x ∈ X , w ∈ D, and α ∈ [0, 1]. We say that an expression is simple if it is
of the form, w, x1 t x2, x1 u x2, or x1 +α x2, where x1 and x2 are variables.

Semantically, we interpret convex lattice expressions with respect to an en-
vironment ρ : X → D mapping variables to elements in D. Formally, for ρ and
environment and φ a convex lattice expression we define the value [[φ]]ρ ∈ D
inductively on φ as follows:

[[x]]ρ = ρ(x)

[[w]]ρ = w

[[φ1 t φ2]]ρ = [[φ1]]ρ t [[φ2]]ρ

[[φ1 u φ2]]ρ = [[φ1]]ρ u [[φ2]]ρ

[[φ1 +α φ2]]ρ = [[φ1]]ρ+α [[φ2]]ρ

Example 1. Consider the convex lattice 〈[0, 1],≤, {+α | α ∈ [0, 1]}, where convex
combinations are interpreted as a+α b = αa+ (1− α)b. Under the environment
ρ = [x 7→ 0.2, y 7→ 0.5], the expression x u y, and (x t y) +0.2 y are interpreted
as follows

[[x u y]]ρ = min(0.2, 0.5) = 0.2 ,

[[(x t y) +0.1 y]]ρ = 0.1 ·max(0.2, 0.5) + 0.9 · 0.5 = 0.5 .

The desired semantics of variables is specified recursively through the use of
an equation system, which assigns with each variable x ∈ X a defining expression.

Definition 1. A convex lattice equation system (CLES) is a pair E = (X , E)
where X is a finite set of variables and E : X → LX is a mapping from variables
to expressions over X . We will write x =E φ to indicate that E(x) = φ.

An equation system specifies a semantic requirement to an environment ρ.
We say that ρ is a model of the equation system E = (X , E) if and only if for all
x ∈ X , [[x]]ρ = [[E(x)]]ρ.

Example 2. Consider the convex lattice from Example 1. Let E = ({x, y}, E) be
the CLES where E(x) = 0.2 t (x u y) and E(y) = (x t y) +0.1 y. One can verify
that, an interpretation ρ is a model of E whenever 0.2 ≤ ρ(x) ≤ ρ(y).

Given an equation system E , we are interested in checking statements of the
form φ ≤ ε, for for φ ∈ L and ε ∈ D.

Definition 2 (Consistency). Let E = (X , E) be a CLES. A statement φ ≤ ε
is consistent for E, written |=E φ ≤ ε, if [[φ]]ρ v ε for some model ρ of E.

Example 3. Consider the CLES E from Example 2. The statement x u y ≤ 0.5
is consistent for E , and the model ρ = [x 7→ 0.2, y 7→ 0.2] is a witnesses for that.
In contrast, the statement x u y ≤ 0.1 is not consistent for E because no model
ρ of E satisfies [[x u y]]ρ ≤ 0.1.

The models of E are exactly the fixed points of functional FE : DX → DX

defined as follows, for ρ : X → D an environment and x ∈ X a variable:

FE(ρ)(x) = [[E(x)]]ρ .

It can be shown that FE is monotone —this is an immediate consequence of
the fact that, for all φ ∈ LX , ρ v̇ ρ′ implies [[φ]]ρ v [[φ]]ρ′— therefore, since DX

is a complete lattice, by Knaster-Tarski’s fixed point theorem, the set of fixed
points of FE is also a complete lattice. In particular, there are least and greatest
fixed points, denoted µFE and νFE , respectively, and a model of E always exists.
It is therefore clear that |=E φ ≤ ε if and only if [[φ]]µFE v ε.

Example 4. BESs as introduced in [Lar92] may be recast as CLESs over the
complete lattice B = ({tt, ff},≤), with tt ≤ ff. With this ordering, t will be
represented by conjunction and u by disjunction. Given a Boolean expression φ
(resp. equation system E), we denote by φ∗ (resp. E∗) the corresponding complete
lattice expression (resp. equation system)1. Moreover given a BES E the notion
of consistency of a Boolean expression φ in [Lar92] is captured precisely by
|=E∗ φ∗ ≤ tt.

3 Complete Proof System for Consistency Checking

In Figure 2, we present the proof system CL for checking the (relative) consis-
tency of a statement φ ≤ ε by exploring the equation system E = (X , E) in
a minimal fashion. This is done by allowing one to make assumptions on the
values of variables along the derivation proof when needed.

The statements of the proof system are of the form

{x1 ≤ ε1, . . . , xn ≤ εn} `E φ ≤ ε . (1)

where x1, . . . , xn ∈ X are variables, ε1, . . . , εn ∈ D, and φ ∈ LX .
The statement (1) may informally be interpreted as: φ ≤ ε is consistent under

the assumption of consistency of xi ≤ εi, for all i = 1, . . . , n.
Most of the rules in Figure 2 are obvious. The only non-obvious one is (A4)

that allows one to infer the consistency of a variable x from the consistency of
its definition E(x), under an assumption set updated with a new assumption on
the variable itself. The way we interpret a set of assumptions Γ is essential to
understand how the rule (A4) operates. Augmenting an assumption set Γ with
a new assumption x ≤ ε should be interpreted as updating our belief on what
the tightest bound should be for the value of x. In this respect, we see a set

1 Note that convex combinations are treated as described in Remark 1.

(A1)
Γ `E φ ≤ >

(A2)
Γ `E φ ≤ ε′

Γ `E φ ≤ ε
if ε′ v ε

(A3)
Γ `E x ≤ Γ (x)

(A4)
Γ ∪ {x ≤ ε} `E Γ (x) u E(x) ≤ ε

Γ `E x ≤ ε

(A5)
Γ `E w ≤ w

(A6)
Γ `E φ1 ≤ ε Γ `E φ2 ≤ ε

Γ `E φ1 t φ2 ≤ ε

(A7)
Γ `E φ1 ≤ ε1 Γ `E φ2 ≤ ε2
Γ `E φ1 u φ2 ≤ ε1 u ε2

(A8)
Γ `E φ1 ≤ ε1 Γ `E φ2 ≤ ε2
Γ `E φ1 +α φ2 ≤ ε1 +α ε2

Fig. 2. The proof system CL for inferring the (relative) consistency of statements of
the form φ ≤ ε w.r.t. a CLES E = (X , E).

of assumption as a function Γ : X → D mapping each x ∈ X to the tightest
upper-bound Γ (x) =

d
{ε | (x ≤ ε) ∈ Γ} that can be inferred from Γ . In the

following, we will use these two equivalent interpretations of Γ (as a function or
a set of statements) interchangeably, as convenient.

Example 5. Returning to BES and the proof system A from [Lar92]. Here judge-
ments are of the form Γ `E φ, where φ is a Boolean formula, E is a BES and Γ is
a set of Boolean variables (assumptions). Now let Γ ∗ = {x ≤ tt | x ∈ Γ}∪{x ≤
ff | x 6∈ Γ}, we may consider Γ ∗ `E∗ φ∗ ≤ tt as the corresponding judgment
in CL. With this correspondence it can be seen that the inference rules of A are
captured by the rules of CL in the following way:

A1 ≡ (A3),

A2 ≡ (A5) with ω = tt,

A3 ≡ (A4),

A4 ≡ (A6),

A5 ≡ (A7) with ε2 = ff,

A6 ≡ (A7) with ε1 = ff.

It follows that Γ `E φ are provable in A if and only if Γ ∗ `E∗ φ∗ ≤ tt is provable
in CL.

To interpret semantically the conditional statements used in the proof system,
we are looking for a notion of consistency that is relative to a set of assumptions.
To this end we need to define what it means for an environment to be a model
relative to some assumptions. We say that an environment ρ is a model of an
equation system E = (X , E) relative to a set of assumptions Γ , if for all x ∈ X ,
[[x]]ρ = Γ (x) u [[E(x)]]ρ.

Definition 3 (Relative Consistency). Let E = (X , E) be a convex lattice
equation system. A statement φ ≤ ε is consistent for E relative to Γ , written
Γ |=E φ ≤ ε, if there exists a model ρ of E relative to Γ such that [[φ]]ρ v ε.

Note that when the set of assumptions Γ is empty, relative consistency cor-
responds to standard consistency (i.e., ∅ |=E φ ≤ ε iff |=E φ ≤ ε).

The models of E relative to Γ are exactly the fixed points of the functional
FE,Γ : DX → DX defined as follows, for ρ an environment and x ∈ X a variable:

FE,Γ (ρ)(x) = Γ (x) u [[E(x)]]ρ .

Also FE,Γ is monotone, thus, by Knaster-Tarski’s fixed point theorem, FE,Γ
has least fixed point, denoted as µFE,Γ . In particular, Γ |=E φ ≤ ε is equivalent
to [[φ]]µFE,Γ v ε.

The next two theorems prove the soundness and completeness of the proof
system w.r.t. relative consistency.

Theorem 1 (Soundness). If Γ `E φ ≤ ε, then Γ |=E φ ≤ ε.

Proof. By structural induction on the derivation tree for Γ `E φ ≤ ε.
Case (A1): if Γ `E φ ≤ ε has been established using the axiom (A1), then
ε = >. Clearly, [[φ]]µFE,Γ v >. Thus, Γ |=E φ ≤ >.

Case (A2): if Γ `E φ ≤ ε has been established using the axiom (A2), then
Γ `E φ ≤ ε′ for some ε′ v ε. By inductive hypothesis, Γ |=E φ ≤ ε′. As this is
equivalent to [[φ]]µFE,Γ v ε′, by transitivity of v we have [[φ]]µFE,Γ v ε. Thus,
Γ |=E φ ≤ ε.
Case (A3): if Γ `E φ ≤ ε has been established using the axiom (A3), then
φ = x and ε = Γ (x). Since µFE,Γ (x) is a fixed point of FE,Γ , we have µFE,Γ (x) v
Γ (x). By definition, [[x]]µFE,Γ (x) = µFE,Γ (x) and, by transitivity of v, we get
[[x]]µFE,Γ (x) v Γ (x). Thus, Γ |=E x ≤ Γ (x).

Case (A4): if Γ `E φ ≤ ε has been established using the axiom (A4), then
φ = x and Γ ∪ {x ≤ ε} `E Γ (x) u E(x) ≤ ε. By inductive hypothesis, we
have that Γ ∪ {x ≤ ε} |=E Γ (x) u E(x) ≤ ε, which, in turn, it is equivalent to
Γ (x)u[[E(x)]]µFE,Γ∪{x≤ε} v ε. As µFE,Γ∪{x≤ε} is a fixed point of FE,Γ∪{x≤ε}, we
have µFE,Γ∪{x≤ε}(x) = Γ (x)uεu[[E(x)]]µFE,Γ∪{x≤ε}. Thus, µFE,Γ∪{x≤ε}(x) v ε.
We prove that [[x]]µFE,Γ = µFE,Γ (x) v ε, by showing that µFE,Γ∪{x≤ε} is a
prefix point of FE,Γ , i.e., FE,Γ (µFE,Γ∪{x≤ε})(y) v µFE,Γ∪{x≤ε}(y) for all y ∈ X .
We consider only the case y = x, since the others are trivial.

FE,Γ (µFE,Γ∪{x≤ε})(x) = Γ (x) u [[E(x)]]µFE,Γ∪{x≤ε} (def. FE,Γ)

= Γ (x) u ε u [[E(x)]]µFE,Γ∪{x≤ε} (ind. hp.)

= µFE,Γ∪{x≤ε}(x) . (fixed point of FE,Γ∪{x≤ε})

From the above, we conclude that Γ |=E x ≤ ε′.
Case (A5): if Γ `E φ ≤ ε has been established using the axiom (A5), then
φ = w and ε = w. By definition, [[w]]µFE,Γ = w, thus Γ |=E w ≤ w.

Case (A6): if Γ `E φ ≤ ε has been established using the axiom (A6), then
φ = φ1tφ2 and Γ `E φi ≤ ε, for i = 1, 2. By inductive hypothesis, Γ |=E φi ≤ ε,
for i = 1, 2. This is equivalent to [[φ1]]µFE,Γ t [[φ2]]µFE,Γ v ε. By definition,
[[φ1 t φ1]]µFE,Γ = [[φ1]]µFE,Γ t [[φ2]]µFE,Γ . Thus, Γ |=E φ1 t φ2 ≤ ε.
Case (A7): if Γ `E φ ≤ ε has been established using the axiom (A7), then
φ = φ1 u φ2, ε = ε1 u ε2, and Γ `E φi ≤ ε, for i = 1, 2. By inductive hypothesis,
Γ |=E φi ≤ εi, for i = 1, 2. This is equivalent to [[φi]]µFE,Γ v εi, for i = 1, 2.
Therefore [[φ1]]µFE,Γ u [[φ2]]µFE,Γ v ε1 u ε2. By definition and transitivity of v,
[[φ1uφ1]]µFE,Γ = [[φ1]]µFE,Γ u [[φ2]]µFE,Γ v ε1uε2. Thus, Γ |=E φ1uφ2 ≤ ε1uε2.

Case (A8): if Γ `E φ ≤ ε has been established using the axiom (A8), then
φ = φ1 +p φ2, ε = ε1 +p ε2 and Γ `E φi ≤ εi, for i = 1, 2. By inductive
hypothesis, Γ |=E φi ≤ εi, which is equivalent to [[φi]]µFE,Γ v εi for i = 1, 2. We
show that [[φ1 +p φ2]]µFE,Γ v ε1 +p ε2 in two steps.

[[φ1]]µFE,Γ +p [[φ2]]µFE,Γ

= ([[φ1]]µFE,Γ u ε1) +p [[φ2]]µFE,Γ ([[φ1]]µFE,Γ v ε1)

= ([[φ1]]µFE,Γ +p [[φ2]]µFE,Γ) u (ε1 +p [[φ2]]µFE,Γ) (distributive law)

Hence, [[φ1]]µFE,Γ +p [[φ1]]µFE,Γ v ε1 +p [[φ2]]µFE,Γ . Moreover,

ε1 +p ε2 = ε1 +p (ε2 t [[φ2]]µFE,Γ) ([[φ2]]µFE,Γ v ε2)

= (ε1 +p ε2) t (ε1 +p [[φ2]]µFE,Γ) (distributive law)

Hence, ε1 +p [[φ2]]µFE,Γ v ε1 +p ε2. Thus, by transitivity of v we have

[[φ1 +p φ2]]µFE,Γ = [[φ1]]µFE,Γ +p [[φ1]]µFE,Γ v ε1 +p ε2 .

Therefore, Γ |=E φ1 +p φ2 ≤ ε1 +p ε2.

Theorem 2 (Completeness). If Γ |=E φ ≤ ε, then Γ `E φ ≤ ε.

Proof. In the following we will prove that Γ `E φ ≤ [[φ]]µFE,Γ . To simplify the
exposition, we will make use of a semantically equivalent variant of the proof
system in Figure 2 where we add the following rule derivable from (A4)

(A∗4)
Γ ′ ∪ {x̄ ≤ [[x]]µFE,Γ } `E Γ ′(x) u E(x) ≤ [[x]]µFE,Γ

Γ ′ `E x ≤ [[x]]µFE,Γ

Note that in the premise of (A∗4), the variable x in the assumption set is “marked”.
The markings have no additional semantic meaning (i.e., x = x̄). We will use
them in our proof to keep track of the assumptions that have been introduced
by applying (A∗4).

We prove the following stronger statement: Γ ∪ Γ̄ `E φ ≤ [[φ]]µFE,Γ for all Γ̄
containing only marked assumptions of the form x̄ ≤ [[x]]µFE,Γ . We proceed by
induction on n = |X \

{
x | (x̄ ≤ ε) ∈ Γ̄

}
|.

Base Case (n = 0). By hypothesis (x̄ ≤ [[x]]µFE,Γ) ∈ Γ̄ for all x ∈ X . We
proceed by induction on the structure of φ.

(φ = w) Recall that [[w]]µFE,Γ = w. By axiom (A5), Γ ∪ Γ̄ `E w ≤ [[w]]µFE,Γ .
(φ = x) Recall that (x̄ ≤ [[x]]µFE,Γ) ∈ Γ̄ , hence (Γ ∪ Γ̄)(x) v [[x]]µFE,Γ . Thus,

using (A3) and (A2) we prove Γ ∪ Γ̄ `E x ≤ [[x]]µFE,Γ .
(φ = φ1 u φ2) By inductive hypothesis we have Γ ∪ Γ̄ `E φi ≤ [[φi]]µFE,Γ for i =

1, 2. Thus, by def. of [[·]], via (A7) we get Γ ∪ Γ̄ `E φ1 uφ2 ≤ [[φ1 uφ2]]µFE,Γ .
(φ = φ1 t φ2) By inductive hypothesis we have Γ ∪ Γ̄ `E φi ≤ [[φi]]µFE,Γ for

i = 1, 2. Thus, by def. of [[·]], via (A2) we get Γ ∪ Γ̄ `E φi ≤ [[φ1 t φ2]]µFE,Γ .
Then, via (A6) we get Γ ∪ Γ̄ `E φ1 t φ2 ≤ [[φ1 t φ2]]µFE,Γ .

(φ = φ1 +α φ2) By inductive hypothesis we have Γ ∪ Γ̄ `E φi ≤ [[φi]]µFE,Γ
for i = 1, 2. Thus, by def. of [[·]], via (A8) we get Γ ∪ Γ̄ `E φ1 +α φ2 ≤
[[φ1 +α φ2]]µFE,Γ .

Inductive Case. Again, we proceed by induction on the structure of φ. We
only show the case φ = x. All other cases carry over exactly as in the base case.

We distinguish two cases: some marked assumption on x is present in Γ̄ , or
not. In the former of the two cases we proceed exactly as done in the base case.

For the latter case, by inductive hypothesis on n we have that

Γ ∪ Γ̄ ∪ {x̄ ≤ [[x]]µFE,Γ } `E Γ (x) u E(x) ≤ [[Γ (x) u E(x)]]µFE,Γ . (2)

By def. of [[·]] and the fact that µFE,Γ is a fixed point of FE,Γ we have

[[Γ (x) u E(x)]]µFE,Γ = Γ (x) u [[E(x)]]µFE,Γ = [[x]]µFE,Γ . (3)

Therefore, by (2) and (3) via (A∗4) we get Γ ∪ Γ̄ `E x ≤ [[x]]µFE,Γ .

4 Simple Stochastic Games

In this section we show how convex lattice equation systems encompass the
powerful formalism of simple stochastic games [Con90,Con92].

A simple stochastic game (SSG) is a directed graph G = (V,E) with the
following properties. Vertices are partitioned into sets of 0-sinks, 1-sinks, max
vertices, min vertices, and average vertices. Except the sink vertices, each vertex
v of V , has two successors nodes that for convenience we call the left and the
right successor of v, respectively denoted by left(v) and right(v).

The game is played by two players, the max player and the min player, with
a single token. At each step of the game, the token is moved from a vertex to
one of its two successors. At a min vertex the min player chooses the successor,
at a max vertex the max player chooses the successor, and at an average vertex
the successor is chosen at random by tossing a fair coin. The max player wins a
play of the game if the token reaches a 1-sink and the min player wins if the play
reaches a 0-sink or continues forever without reaching a sink. Since the game is
stochastic, the max player tries to maximize the probability of reaching a 1-sink
whereas the min player tries to minimize that probability.

A strategy, a.k.a. policy, for the min player is a function σ : Vmin → V that as-
signs the target of an outgoing edge to each min vertex, that is, for all v ∈ Vmin,

vav8

��

// v0sk9

vmax
1

��

// vav5

UU

// vmax
6

OO

**
vav7kk

��
vav2

UU

// vmax
3

++��
vmin
4kk // v1sk10

Fig. 3. A simple stochastic game (from [Con92]).

(v, σ(v)) ∈ E. Likewise, a strategy for the max player is a function τ : Vmax → V
that assigns the target of an outgoing edge to each max vertex. These strate-
gies are known as pure stationary strategies. We can restrict ourselves to these
strategies since both players of a simple stochastic game have optimal strategies
of this type (see, for example, [LL69]).

Such strategies determine a sub-game in which each max vertex and each
min vertex has out-degree one. We write νσ,τ : V → [0, 1] for the function that
gives the probability of a vertex in this sub-game to reach a 1-sink (see [Con92,
Section 2] for details). The value function ν∗ : V → [0, 1] of a SSG is defined as

ν∗ = min
σ

max
τ

νσ,τ .

It is folklore that the value function of a simple stochastic game can be char-
acterised as the least fixed point of the following function ΨG : [0, 1]V → [0, 1]V

(see, for example, [Jub05, Section 2.2 and 2.3]) defined by

ΨG(ν)(v) =

0 if v is a 0-sink

1 if v is a 1-sink

max {ν(left(v)), ν(right(v))} if v is a max vertex

min {ν(left(v)), ν(right(v))} if v is a min vertex

1/2(ν(left(v)) + ν(right(v))) if v is an average vertex

4.1 Value function of an SSGs as a consistency checking

Let G = (V,E) be a SSG. Consider the convex lattice ([0, 1],≤, {+α | α ∈ [0, 1]})
where a+α b = αa+ (1− α)b. We define the equation system EG = (V,EG) by

EG(v) =

0 if v is a 0-sink

1 if v is a 1-sink

left(v) t right(v) if v is a max vertex

left(v) u right(v) if v is a min vertex

left(v) +1/2 right(v) if v is an average vertex

The following result relates the value of a SSG to consistency checking w.r.t.
its corresponding corresponding equation system.

Theorem 3. Let G = (V,E) be a SSG and EG = (V,EG) the corresponding
equation system. Then ν∗(v) ≤ ε iff `EG v ≤ ε.

Proof. It is immediate to show that FEG = ΨG, thus ν∗ = µFEG . From this it
follows that ν∗(v) ≤ ε if and only if |=EG v ≤ ε, as |=EG v ≤ ε is equivalent to
[[v]]µFEG = µFEG(v) ≤ ε. The thesis follows by soundness and completeness of
the proof system (Theorems 1 and 2).

We can now provide a first concrete application of the proof system in Fig. 2.
Example 6 showcases a proof for a (tight) upper bound of the value of a vertex
in a SSG made through consistency checking.

Example 6. Consider the SSG in Figure 3. In [Con92] it is shown that the value
of the vertex v3 under the strategies τ = (v1 7→ v5, v3 7→ v4, v6 7→ v7) and
σ = (v4 7→ v3) is νσ,τ (v3) = 0. As these are optimal strategies for the players,
we also have ν∗(v3) = 0. Next we show the inference tree for `EG v3 ≤ 0.

{v3 ≤ 0} `EG v3 ≤ 0
(A3)

{v3, v4 ≤ 0} `EG v3 ≤ 0
(A3) {v3, v4 ≤ 0} `EG v10 ≤ 1

(A1)

{v3, v4 ≤ 0} `EG v3 u v10 ≤ 0
(A7)

{v3 ≤ 0} `EG v4 ≤ 0
(A4)

{v3 ≤ 0} `EG v3 t v4 ≤ 0
(A6)

`EG v3 ≤ 0
(A4)

Remarkably, the consistency of v3 ≤ 0 could be proven without exploring the
entire equation system (only the equations for v3, v4 are used).

Remark 2. Many interesting optimization problems can be encoded as simple
stochastic games. In particular, Tang and van Breugel [TvB16] showed that the
probabilistic bisimilarity distance for Markov chains proposed by Desharnais et
al. [DGJP04] can be characterized as the value of a simple stochastic game (with-
out max vertices). Later, this result was generalised to the case of probabilistic
automata [BBL+21] which combine non-determinism with probabilistic choice.

Thus, thanks to Theorem 3, one can prove upper bounds for the above men-
tioned probabilistic bisimilarity distances using the proof system of Fig. 2.

5 Timed Bisimulation Distance

In this section we introduce the novel notion of timed bisimulation distance,
the natural extension of Wang Yi’s timed bisimulation equivalence [Yi90] to a
metric setting. We provide rudimentary results for this distance and we provide
an encoding in terms of equation systems that allow us to check for upper-bounds
of this distance for regular timed systems.

Towards this let us recall the basic notions of time domains and timed tran-
sition systems along with some properties regarding them.

Definition 4 (Time Domain). A time domain is a monoid 〈T,+, 0〉 satisfying
the following axioms

∀t, r, v ∈ T : t = t+ r + v =⇒ t = t+ r (irreversibility)

∀t, r, v ∈ T : t+ r = t+ v =⇒ r = v (left-cancellation)

Time domains yield a canonical preorder ≤ given for t, r ∈ T by t ≤ r iff
there exists v ∈ T such that t + v = r. Note that due to left-cancellation this v
is unique and we can therefore derive substraction as r − t = v whenever t ≤ r.
We can further generalize this substraction by truncating at 0 whenever t > r,
i.e. r .− t = 0. A distance d : T × T → [0,∞] over T is said to respect the time
domain 〈T,+, 0〉 if it makes + non-expansive:

∀t, r, v ∈ T : d(t, r) ≥ d(t+ v, r + v) (non-expansiveness)

The usual example of a time domain would be the non-negative reals, i.e.
〈[0,∞],+, 0〉, along with the distance given by the absolute difference, i.e. |t−r|.

For the remainder of this section we fix a time domain 〈T,+, 0〉 and a distance
dT : T× T→ [0,∞] respecting it.

Definition 5 (TTS). A timed transition system is a tuple M = (M,A,→)
where, M is a set of states, A is a countable set of action labels disjoint from T,
→ ⊆ (M ×T×M)∪ (M ×A×M) is a transition relation describing timed and
labelled behaviour, satisfying the following, for all m,m′,m′′ ∈M and t, t′ ∈ T

m
0−−→ m (zero delay)

m
t−→ m′ ∧ t′ ≤ t =⇒ ∃n.m t′−→ n

t−t′−−−→ m′ (time additivity)

m
t−→ m′ ∧m t−→ m′′ =⇒ m′ = m′′ (time determinism)

We will use →∗ to denote the transitive and reflexive closure of → and we write
m 6→ whenever there are no labelled transitions from the state m ∈M .

Now, for a given m ∈M , we define the set of possible timed behaviour of m,
denoted δM(m), by

δM(m) =
{
〈t, †,m′〉 ∈ T× {†} ×M

∣∣∣ m t−→ m′ 6→
}

∪
{
〈t, a,m′〉 ∈ T×A×M

∣∣∣ m t−→ a−→ m′
}

where we use the special symbol † /∈ A to denote deadlocks. With this we can
now define a preliminary distance between timed behaviour.

Definition 6. Let d : M ×M → [0,∞] be a distance over the states of M , then
the behavioural distance ofM wrt. to d is the distance ΛM(d) : (T×A†×M)2 →
[0,∞] defined for arbitrary 〈t, a,m〉, 〈r, b, n〉 ∈ T×A† ×M by

ΛM(d)(〈t, a,m〉, 〈r, b, n〉) = max {dT(t, r), ι(a, b), d(m,n)}

where ι(a, b) = 0 if a = b and ι(a, b) =∞ otherwise.

We can now define the iterator of which we take the least fixed point to be
our timed bisimilarity distance.

Definition 7 (Iterator). ΨM : [M×M → [0,∞]]→ [M×M → [0,∞]] defined
for arbitrary d : M ×M → [0,∞] by

ΨM(d)(m,n) = H(ΛM(d))(δM(m), δM(n))

where H(ΛM(d)) is the Hausdorff lifting of ΛM(d).

Lemma 1 (Monotonicity). If d, d′ : M ×M → [0,∞] such that d ≤ d′, then
ΨM(d) ≤ ΨM(d′).

As the space of distances over M forms a complete lattice wrt. to pairwise
comparison and as ΨM is monotonic over this space, we have by the Knaster-
Tarski fixed point theorem [Tar55] that ΨM yields a unique least fixed point,
denoted µΨM.

To justify our timed bisimilarity distance, we state the following two rudi-
mentary results. Firstly, that µΨM indeed behaves like a distance, in this case an
(extended) pseudo-metric. Secondly, that µΨM agrees with timed bisimilarity,
that is whenever two states are bisimilar then µΨM puts those states at distance
zero.

Theorem 4. If dT is a pseudo-metric, then µΨM is a pseudo-metric.

Theorem 5. If m and n are timed bisimilar then µΨM(m,n) = 0.

5.1 Encoding for Regular Timed Processes

For the encoding we will only consider TTS induced by the regular fragment of
TCCS (e.g. no use of parallel composition). We will not formally define TCCS
here but instead refer to [Yi91]. The restriction to regular TCCS permits an
easy characterisation of the timed bisimulation distance on a finite set of timed
behaviour and thereby allowing us to encode it using convex lattice equation
systems.

For any m ∈M , let us define the minimal timed behaviour as

δmin
M (m) =

{
〈t, a,m′〉 ∈ δM

∣∣∣∣ t = min
〈r,a,m′〉∈δM(m)

r

}
For TTS induced by TCCS expressions, the above set is finite regardless of choice
of state. Furthermore, we have the following lemma stating that we only need
to consider these finite subsets of timed behaviour for the timed bisimulation
distance.

Lemma 2. For arbitrary d : M ×M → [0,∞] and m,n ∈M ,

ΨM(d)(m,n) = H(Λ)(δmin
M (m), δmin

M (n))

Consider now the complete partial order ([0,∞],≤). For a given TTS M
induced by a TTS expression we define the equation system 〈XM, EM〉 where
XM is given by xm,n ∈ XM whenever m,n ∈M and EM is given for xm,n ∈ XM
by

xm,n =EM

⊔
〈t,a,m′〉∈δ−(m)

l

〈r,b,n′〉∈δ−(n)

(dT(t, r) t ι(a, b) t xm′,n′)

t
⊔

〈r,b,n′〉∈δ−(n)

l

〈t,a,m′〉∈δ−(m)

(dT(t, r) t ι(a, b) t xm′,n′)

where
d
∅ =∞ and

⊔
∅ = 0 .

Here XM may be infinite, but the formulae given by EM are finite and
depend only on finite subsets of XM. This is because you can only describe
finite branching using TCCS and that the target states of labelled transitions
remain the same regardless of further delays due to the TTS induced by TCCS
expressions satisfying persistency. Hence, one need only consider a finite sub-
equation system of EM when checking for consistency.

Example 7. As an example, consider the two TCCS expressions

P = ε(4).a.P + b.Nil and Q = ε(3).(a.Q+ b.Nil)

over the time domain T = R≥0. Let dT be given by the absolute difference, then
P and Q have distance µΨM(P,Q) = max(dT(4, 3), dT(0, 3)) = 3. For the given
TCCS expressions we have that their minimal time behaviour is

δmin
M (P) = {〈4, a,Nil〉, 〈0, b,Nil〉}

δmin
M (Q) = {〈3, a,Nil〉, 〈3, b,Nil〉}

and hence the formula associated with them is

xP,Q = ((dT(4, 3) t ι(a, a) t xP,Q) u (dT(4, 3) t ι(a, b) t xP,Nil))

t ((dT(0, 3) t ι(b, a) t xNil,Q) u (dT(0, 3) t ι(b, b) t xNil,Nil))

t ((dT(4, 3) t ι(a, a) t xP,Q) u (dT(0, 3) t ι(b, a) t xNil,Q))

t ((dT(4, 3) t ι(a, b) t xP,Nil) u (dT(0, 3) t ι(b, b) t xNil,Nil))

As ι(a, b) = ι(b, a) =∞, ι(a, a) = ι(b, b) = 0, and dT(4, 3) ≤ dT(0, 3) = 3 we can
even reduce the above formulae to the semantically equivalent formulae

3 t xNil,Nil t xP,Q

Of course it is no coincidence that we arrive at more less the exact distance
between P and Q, as the equations of EM exactly encode the definition of ΨM.
Hence, we can even state the following lemma

Lemma 3. If d(m,n) = ρ(xm,n) for arbitrary m,n ∈ M , then [[E(xm,n)]]ρ =
Ψ(d)(m,n)

Using this, one quickly arrives at the main result of this section, namely that
we can encode our timed bisimilarity distance using Convex Lattice Equation
Systems.

Theorem 6. µΨM(m,n) ≤ ε iff |=EM xm,n ≤ ε.

Corollary 1. µΨM(m,n) ≤ ε iff `EM xm,n ≤ ε.

Example 8. Let us finally reconsider the TCCS processes P and Q from Example
7. Here we give the proof tree for `EM xP,Q ≤ 3 under the reduced defining
Convex Lattice Equation System:

xP,Q = 3 t xNil,Nil t xP,Q
xNil,Nil = 0

xP,Q ≤ 3 `EM 3 ≤ 3
(A5)

xNil,Nil, xP,Q ≤ 3 `EM 0 ≤ 0
(A5)

xNil,Nil, xP,Q ≤ 3 `EM 0 ≤ 3
(A2)

xP,Q ≤ 3 `EM xNil,Nil ≤ 3
(A4)

xP,Q ≤ 3 `EM 3 t xNil,Nil ≤ 3
(A6)

xP,Q ≤ 3 `EM xP,Q ≤ 3
(A3)

xP,Q ≤ 3 `EM (3 t xNil,Nil) t xP,Q ≤ 3
(A6)

`EM xP,Q ≤ 3
(A4)

6 Conclusion

More than 10 years ago, Henzinger advocated the use of quantitative notions
of correctness, as opposed to Boolean, for a more refined view of a quantitative
system which, if not fully correct, can still be correct up to a certain degree.
Taking to hear Henzinger’s suggestion, in this paper we proposed a quantitative
extension of [Lar92]. The result of this effort is Convex Lattice Equation Sys-
tems (CLES), a universal framework for encoding abstract quantitative notions
of correctness, such as behavioral metrics for probabilistic and timed systems.
We presented a sound and complete proof system for checking consistency of
statements of the form E ≤ ε over a CLES, where E is an convex lattice expres-
sion expressing some property of the CLES and ε is an element from the complete
lattice expressing a bound. To demonstrate the generality of this framework, we
showed how value functions of Simple Stochastic Games and behavioural dis-
tances between timed systems may be encoded using CLES. We also showed
examples of proof derivations which exploits the local exploration of the equa-
tions of a CLES to check consistency statements. As in [Lar92], this proof system
paves the way for an on-the-fly algorithm for checking consistency statements
over a CLES.

References

[AAE+15] Jesper Rank Andersen, Nicklas Andersen, Søren Enevoldsen, Mathias M.
Hansen, Kim G. Larsen, Simon R. Olesen, Jiŕı Srba, and Jacob K. Wort-
mann. CAAL: concurrency workbench, aalborg edition. In Martin Leucker,
Camilo Rueda, and Frank D. Valencia, editors, Theoretical Aspects of Com-
puting - ICTAC 2015 - 12th International Colloquium Cali, Colombia, Oc-
tober 29-31, 2015, Proceedings, volume 9399 of Lecture Notes in Computer
Science, pages 573–582. Springer, 2015.

[ACD+93] Bernard Algayres, Veronigue Coelho, Laurent Doldi, Hubert Garavel, Yves
Lejeune, and Carlos Rodŕıguez. VESAR: A pragmatic approach to formal
specification and verification. Comput. Networks ISDN Syst., 25(7):779–
790, 1993.

[And92] Henrik Reif Andersen. Model checking and boolean graphs. In Bernd
Krieg-Brückner, editor, ESOP ’92, 4th European Symposium on Program-
ming, Rennes, France, February 26-28, 1992, Proceedings, volume 582 of
Lecture Notes in Computer Science, pages 1–19. Springer, 1992.

[BBL+21] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang,
and Franck van Breugel. Computing Probabilistic Bisimilarity Distances
for Probabilistic Automata. Log. Methods Comput. Sci., 17(1), 2021.

[BBLM13a] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Com-
puting behavioral distances, compositionally. In Krishnendu Chatterjee
and Jiŕı Sgall, editors, Mathematical Foundations of Computer Science
2013 - 38th International Symposium, MFCS 2013, Klosterneuburg, Aus-
tria, August 26-30, 2013. Proceedings, volume 8087 of Lecture Notes in
Computer Science, pages 74–85. Springer, 2013.

[BBLM13b] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-
the-fly exact computation of bisimilarity distances. In Nir Piterman and
Scott A. Smolka, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume
7795 of Lecture Notes in Computer Science, pages 1–15. Springer, 2013.

[BBLM16] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Com-
plete axiomatization for the bisimilarity distance on markov chains. In
Josée Desharnais and Radha Jagadeesan, editors, 27th International Con-
ference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, pages 21:1–21:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[BBLM18] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Com-
plete axiomatization for the total variation distance of markov chains. In
Sam Staton, editor, Proceedings of the Thirty-Fourth Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2018, Dal-
housie University, Halifax, Canada, June 6-9, 2018, volume 341 of Elec-
tronic Notes in Theoretical Computer Science, pages 27–39. Elsevier, 2018.

[CGL93] Karlis Cerans, Jens Chr. Godskesen, and Kim G Larsen. Timed modal
specification – theory and tools. In Proceedings of Computer Aided Veri-
fication, CAV 1993, 1993.

[Con90] Anne Condon. On Algorithms for Simple Stochastic Games. In Advances
In Computational Complexity Theory, volume 13 of DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, pages 51–72. DI-
MACS/AMS, 1990.

[Con92] Anne Condon. The Complexity of Stochastic Games. Inf. Comput.,
96(2):203–224, 1992.

[CPS89] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concur-
rency workbench. In Joseph Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems, International Workshop, Grenoble, France,
June 12-14, 1989, Proceedings, volume 407 of Lecture Notes in Computer
Science, pages 24–37. Springer, 1989.

[CvBW12] Di Chen, Franck van Breugel, and James Worrell. On the complexity
of computing probabilistic bisimilarity. In Lars Birkedal, editor, Founda-
tions of Software Science and Computational Structures - 15th Interna-
tional Conference, FOSSACS 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 - April 1, 2012. Proceedings, volume 7213 of Lecture
Notes in Computer Science, pages 437–451. Springer, 2012.

[DGJP04] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-
gaden. Metrics for labelled markov processes. Theor. Comput. Sci.,
318(3):323–354, 2004.

[DLT08] Josée Desharnais, François Laviolette, and Mathieu Tracol. Approxi-
mate analysis of probabilistic processes: Logic, simulation and games. In
Fifth International Conference on the Quantitative Evaluaiton of Systems
(QEST 2008), 14-17 September 2008, Saint-Malo, France, pages 264–273.
IEEE Computer Society, 2008.

[EC01] Steve M. Easterbrook and Marsha Chechik. A framework for multi-valued
reasoning over inconsistent viewpoints. In Hausi A. Müller, Mary Jean
Harrold, and Wilhelm Schäfer, editors, Proceedings of the 23rd Interna-
tional Conference on Software Engineering, ICSE 2001, 12-19 May 2001,
Toronto, Ontario, Canada, pages 411–420. IEEE Computer Society, 2001.

[FTL11] Uli Fahrenberg, Claus R. Thrane, and Kim G. Larsen. Distances for
weighted transition systems: Games and properties. In Mieke Massink
and Gethin Norman, editors, Proceedings Ninth Workshop on Quantitative
Aspects of Programming Languages, QAPL 2011, Saarbrücken, Germany,
April 1-3, 2011, volume 57 of EPTCS, pages 134–147, 2011.

[GLMS11] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2010: A toolbox for the construction and analysis of distributed pro-
cesses. In Parosh Aziz Abdulla and K. Rustan M. Leino, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 17th Interna-
tional Conference, TACAS 2011, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings, volume 6605 of Lecture
Notes in Computer Science, pages 372–387. Springer, 2011.

[Gou08] Jean Goubault-Larrecq. Prevision domains and convex powercones. In
FoSSaCS, volume 4962 of Lecture Notes in Computer Science, pages 318–
333. Springer, 2008.

[Hen10] Thomas A. Henzinger. From boolean to quantitative notions of correctness.
In Manuel V. Hermenegildo and Jens Palsberg, editors, Proceedings of the
37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 157–
158. ACM, 2010.

[HMP05] Thomas A. Henzinger, Rupak Majumdar, and Vinayak S. Prabhu. Quanti-
fying similarities between timed systems. In Paul Pettersson and Wang Yi,
editors, Formal Modeling and Analysis of Timed Systems, Third Interna-
tional Conference, FORMATS 2005, Uppsala, Sweden, September 26-28,
2005, Proceedings, volume 3829 of Lecture Notes in Computer Science,
pages 226–241. Springer, 2005.

[HS06] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design
challenge. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, ed-
itors, FM 2006: Formal Methods, 14th International Symposium on For-
mal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings, volume
4085 of Lecture Notes in Computer Science, pages 1–15. Springer, 2006.

[Jub05] Brendan Juba. On the Hardness of Simple Stochastic Games. Master’s
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, May 2005.

[KL10] Orna Kupferman and Yoad Lustig. Latticed simulation relations and
games. Int. J. Found. Comput. Sci., 21(2):167–189, 2010.

[Lar92] Kim Guldstrand Larsen. Efficient local correctness checking. In CAV,
volume 663 of Lecture Notes in Computer Science, pages 30–43. Springer,
1992.

[LFT11] Kim G. Larsen, Uli Fahrenberg, and Claus R. Thrane. Metrics for weighted
transition systems: Axiomatization and complexity. Theor. Comput. Sci.,
412(28):3358–3369, 2011.

[LL69] Thomas Liggett and Steven A. Lippman. Stochastic Games with Perfect
Information and Time Average Payoff. SIAM Review, 11(4):604–607, 1969.

[LS89] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic
testing. In Conference Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages, Austin, Texas, USA, January
11-13, 1989, pages 344–352. ACM Press, 1989.

[LS98] Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal
fixed points (extended abstract). In Kim Guldstrand Larsen, Sven Skyum,
and Glynn Winskel, editors, Automata, Languages and Programming, 25th
International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998,
Proceedings, volume 1443 of Lecture Notes in Computer Science, pages 53–
66. Springer, 1998.

[Man08] K.L. Man. mucrl: A computer science based approach for specification and
verification of hardware circuits. 01:I–387–I–390, 2008.

[Mis00] Michael W. Mislove. Nondeterminism and probabilistic choice: Obeying
the laws. In CONCUR, volume 1877 of Lecture Notes in Computer Science,
pages 350–364. Springer, 2000.

[Ros19] Amnon Rosenmann. On the distance between timed automata. In Étienne
André and Mariëlle Stoelinga, editors, Formal Modeling and Analysis of
Timed Systems - 17th International Conference, FORMATS 2019, Ams-
terdam, The Netherlands, August 27-29, 2019, Proceedings, volume 11750
of Lecture Notes in Computer Science, pages 199–215. Springer, 2019.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific journal of Mathematics, 5(2):285–309, 1955.

[TFL10] Claus R. Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative anal-
ysis of weighted transition systems. J. Log. Algebraic Methods Program.,
79(7):689–703, 2010.

[TKP09] Regina Tix, Klaus Keimel, and Gordon D. Plotkin. Semantic domains
for combining probability and non-determinism. Electron. Notes Theor.
Comput. Sci., 222:3–99, 2009.

[TvB16] Qiyi Tang and Franck van Breugel. Computing probabilistic bisimilarity
distances via policy iteration. In CONCUR, volume 59 of LIPIcs, pages
22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[VW06] Daniele Varacca and Glynn Winskel. Distributing probability over non-
determinism. Math. Struct. Comput. Sci., 16(1):87–113, 2006.

[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. In Jos C. M. Baeten
and Jan Willem Klop, editors, CONCUR ’90, Theories of Concurrency:
Unification and Extension, Amsterdam, The Netherlands, August 27-30,
1990, Proceedings, volume 458 of Lecture Notes in Computer Science, pages
502–520. Springer, 1990.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems.
In Javier Leach Albert, Burkhard Monien, and Mario Rodŕıguez-Artalejo,
editors, Automata, Languages and Programming, 18th International Col-
loquium, ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, volume
510 of Lecture Notes in Computer Science, pages 217–228. Springer, 1991.

