
On the Verification of Weighted Kripke
Structures Under Uncertainty?

Giovanni Bacci, Mikkel Hansen, and Kim G. Larsen

Department of Computer Science, Aalborg University, Denmark
{giovbacci,mhan,kgl}@cs.aau.dk

Abstract. We study the problem of checking weighted CTL properties
for weighted Kripke structures in presence of imprecise weights. We con-
sider two extensions of the notion of weighted Kripke structures, namely
(i) parametric weighted Kripke structures, having transitions weights
modelled as affine maps over a set of parameters and, (ii) weight-uncer-
tain Kripke structures, having transition labelled by real-valued random
variables as opposed to precise real valued weights.
We address this problem by using extended parametric dependency graphs,
a symbolic extension of dependency graphs by Liu and Smolka. Exper-
iments performed with a prototype tool implementation show that our
approach outperforms by orders of magnitude an adaptation of a state-
of-the-art tool for WKSs.

1 Introduction

The rapid diffusion of cyber-physical systems (CPSs) poses the challenge of
handling their growing complexity, while meeting requirements on correctness,
predictability, performance without compromising time- and cost-to-market. In
this respect model-driven development is a promising approach that allows for
early design and verification and may be used as the basis for systematic testing
of a final product. The verification of cyber-physical systems should not only
address functional properties but also a number of non-functional properties
related to the quantitative aspects that are typical of such systems.

In the area of model checking a number modelling formalisms has emerged,
allowing for quantitative aspects to be expressed. Among these, Weighted Kripke
structures (WKSs) were proposed as a natural extension of the usual notion of
Kripke structures with a (real-valued) weighted transition relation [8].

Interesting properties of WKSs may be expressed by means of quantitative
extensions of CTL. There are different ways of extending CTL with quantitative
information. Fahrenberg et al. [8] proposed to generalise the classical Boolean
interpretation of CTL to a map that assigns to states and temporal formulas a
real-valued distance describing the degree of satisfaction. This paper considers
weighted CTL (WCTL), an extension of CTL with weight-constrained modali-
ties, because it is an expressive logic with efficient tool support for WKSs [9].

? Work supported by. . .

2 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

s0

{mow}

s1

{mow}

s2 {mow}

s3

{mow}

s4

{mow}

s5

{mow}

s6

{dump}

2

2

2

1

2

1

0

2

2

0

s0

{mow}

s1

{mow}

s2 {mow}

s3

{mow}

s4

{mow}

s5

{mow}

s6

{dump}

p

p

p

q

2q

q

r

2q

p

0

Fig. 1: (Left) A lawn mower example from [9]; (Right) the lawn mower model
with weights parametric in p, q and, r.

Consider the WKS in Fig. 1(left) representing a grass field with different
routes a lawn mower can take from the starting state s0 to s6 where the grass
can be dumped. The weights on the transitions represent the amount of grass
that is accumulated in the container when selecting a particular route. Assume
that the lawn mower breaks when it is forced to store more than 6.5 units of grass,
then the property “the grass is always dumped before the lawn mower breaks,
irrelevant of the selected route” is expressed in WCTL as ∀(mow U≤6.5 dump).

The above example models the accumulated grass by means of precise weight
values. This is an unrealistic simplification, since the amount of mowed grass may
vary depending on different factors (e.g., distribution of the grass in the field,
meteorologic conditions, etc.) that cannot be modelled with precise values. The
same argument applies to CPSs, that typically rely on sensor measurements
which are inherently imprecise.

Typically, there are two ways for dealing with uncertain sensor measurements:
(i) determine the precision of the instrument and associate an error ε with each
measurement, or (ii) perform estimation statistics (e.g., by recursive Bayesian
estimation [14]) and associate a probability distribution with each measurement.

In this paper we aim at providing adequate formal basis and tool-support
for the verification of WKSs in presence of imprecise weights. We consider two
extensions of the notion of WKS: (i) parametric weighted Kripke structures
(pWKSs), having weights depending on a set of parameters (cf. Fig. 1(right))
and, (ii) weight-uncertain Kripke structures (WUKSs), having as weights re-
al-valued random variables as opposed to precise real values. On the one hand,
verification of pWKSs is done by inferring constraints over its parameters charac-
terising the valuations that ensure correctness then, verify the robustness of the
model within the given precision. On the other hand, verifying WUKSs consists
in measuring the degree of satisfaction of the model w.r.t. the given specification.

Our contribution is twofold. First, we extend and improve the model checking
algorithm of [5] for pWKSs. In contrast with [5] our method supports negation
and implements an efficient termination condition. In line with [5,9,6], our algo-
rithm uses an extension of dependency graphs by Liu and Smolka [11] to model-
check pWKSs. Specifically, we integrate cover-edges from [9] and negation-edges
from [6] and, lift the computation of fixed points from the boolean domain to

On the Verification of Weighted Kripke Structures Under Uncertainty 3

that of non-negative real-valued maps to cope with parametric weights and the
non-monotonic reasoning necessary to deal with negation.

As for our second contribution, we introduce the notion of weight-uncertain
Kripke structures and address two natural problems related to their analysis:
(i) checking whether the expected behaviour of the model satisfies a given spec-
ification and, (ii) measuring the probability that a concrete realisation of the
model satisfies a given WCTL formula.

The proposed model checking framework has been implemented on a proto-
type tool. Experiments show that our approach considerably improves w.r.t. the
PVTool from [5] and outperforms an adaptation of the WKTool from [9].

We refer to the full version of this paper [2] for the omitted proofs.

Related Work. Our paper fits within the area of weighted automata [7] where
weights come as elements of a semi-ring. By combining the tropical and the
probability semi-rings, one obtains probabilistic weighted automata (PWA) [4,1].
There, transitions are labelled with a cost and a probability and the weight that
the PWA assigns to a word is the expected accumulated costs of the runs pro-
ducing the word. A similar approach is seen with Markov reward models whose
analysis consider the computation of the expected reward for reachability prop-
erties or their verification against probabilistic reward CTL [3]. In contrast to
PWAs and Markov reward models, were transitions are executed probabilisti-
cally and the weights are fixed, WUKSs choose transitions non-deterministically
and generate weights according to the given probability distributions.

Fahrenberg et al. [8] consider the verification of WKSs with respect to two
interpretations of WCTL where the satisfaction of a formula by a model is no
longer interpreted in the Boolean domain, but rather assigns to a state a truth
value in the domain of extended non-negative reals where a smaller value means
a better match of the specified weights in the formula. Differently from [8], we
keep the classical boolean interpretation of WCTL and measure how likely is the
model to be correct. In this respect, our approach resembles that of probabilistic
LTL model checking for Markov chain [15,3].

2 Weighted Kripke Structures and Weighted CTL

In this section we present weighted Kripke structures (WKSs) as an expressive
modelling formalism for quantitative systems, and weighted CTL (WCTL), an
extension of computation tree logic (CTL) with weight-constrained modalities,
interpreted with respect to WKSs.

We denote by R, Q, and N respectively the sets of real numbers, rational
numbers, and natural numbers. We write R≥0 (resp. Q≥0) to denote the set of
non negative real (resp. rational) numbers.

Definition 1 (WKS). A weighted Kripke structure is a tuple K = (S,R, `),
where S is a finite nonempty set of states, R ⊆ S ×R≥0 × S is a finite weighted
transition relation and `:S → 2AP is a function labelling the states with atomic
propositions.

4 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

Let K = (S,R, `) be a WKS. We write s
w−→ s′ to indicate that (s, w, s′) ∈ R

and, we denote with ω(K) ∈ Rm
≥0 the vector of weighs of K, where m = |R|. A

run in K from s0 ∈ S is a (finite or infinite) sequence π = (wi, qi)i∈I , such that
q0 = s0, w0 = 0 and I is an interval of N containing 0 where, for all i ∈ I \ {0},
qi−1

wi−→ qi. The accumulated weight of a run π = (wi, qi)i∈I at position j ∈ I is

defined as W(π, j) =
∑j

i=0 wi.
We write |π| for the length of π (the cardinal of I); and, for i ∈ I, we write

π[i] for the i-th state in π, i.e., π[i] = qi. A run is maximal if it has infinite
length (|π|= ω) or its last state has no outgoing transitions. Run(K, s0) denotes
the set of all maximal runs from s0 in K.

We can now define WCTL with weights upper-bounds. WCTL allows for
state formulas describing properties about states in the system and path formu-
las describing properties about runs in a WKS. State formulas Φ,Ψ and path
formluae ϕ are constructed over the following abstract syntax

Φ,Ψ ::= tt | p | ¬Φ | Φ ∧Ψ | ∃ϕ | ∀ϕ . ϕ ::= X≤qΦ | Φ U≤q Ψ

where a ∈ AP and q ∈ Q≥0.
Given a WKS K = (S,R, `), a state s ∈ S, and a run π ∈ Run(K, s), we

denote by K, s |= Φ (resp. K, π |= ϕ) the fact that the state s satisfies the
state formula Φ (resp. the path π satisfies the path formula ϕ). Formally, the
satisfiability relation |= is inductively defined as:

K, s |= tt always holds

K, s |= p if p ∈ `(s)
K, s |= ¬Φ if K, s 6|= Φ

K, s |= Φ ∧Ψ if K, s |= Φ and K, s |= Ψ

K, s |= ∃ϕ if there exists π ∈ Run(K, s) such that K, π |= ϕ

K, s |= ∀ϕ if for all π ∈ Run(K, s) it holds that K, π |= ϕ

K, π |= X≤qΦ if |π|> 0, W(π, 1) ≤ q, and K, π[1] |= Φ

K, π |= Φ U≤q Ψ if there exists j ≤ |π| such that K, π[j] |= Ψ,

W(π, j) ≤ q, and K, π[j′] |= Φ for all j′ < j

As usual, we can derive the logical operators ff , ∨ and → as follows: ff
def
= ¬tt,

Φ ∨Ψ
def
= ¬(¬Φ ∧ ¬Ψ) and, Φ→ Ψ

def
= ¬Φ ∨Ψ.

Example 2. Consider the WKS K in Fig. 1(left) described before. The WCTL
state formulas Φ = ∀(mow U≤6 dump) and Φ′ = ∃(mow U≤4 dump) express
respectively the properties “the grass is always dumped before the lawn accu-
mulates more that 6 grass units, irrelevant of the selected route” and “there
exists a mowing route that accumulates at most 4 grass units before dumping”.
Clearly K, s0 |= Φ holds true because all paths from s0 to s6 accumulate at most
6 grass units, whereas K, s0 |= Φ′ doesn’t hold true, because each path from s0

to s6 accumulates at least 5 grass units. ut

On the Verification of Weighted Kripke Structures Under Uncertainty 5

3 Parametric weighted Kripke structures

In this section we introduce the notion of parametric weighted Kripke structures
and demonstrate how they can be employed for verifying the robustness of WKSs
in presence of imprecise weights.

Parametric weighted Kripke structures (pWKSs) model families of WKSs
that rely on the same graph structure, but differ in the concrete transition
weights, which are specified as expressions built over a set of parameters.

Let x = (x1, . . . , xk) be a vector of real-valued parameters. We denote by
E the set of affine maps f :Rk → R of the form f(x) = a · x + b, with a =

(a1, . . . , ak) ∈ Qk
≥0 and b ∈ Q≥0, i.e., f(x1, . . . , xk) = (

∑k
i=1 aixi) + b. Hereafter

we may denote the map f by means of the augmented vector1 (a, b) ∈ Nk+1.
Accordingly, for f, g ∈ E the map addition (f + g)(x) = f(x) + g(x) is encoded
as the vector addition.

Definition 3. A parametric weighted Kripke structure is a tuple P = (S,R, `),
where S is a finite nonempty set of states, R ⊆ S × E × S is a finite parametric
weighted transition relation and `:S → 2AP is a labelling function.

Intuitively, a pWKS P = (S,R, `) defines a family of WKSs arising by plug-
ging in concrete values for the parameters. A parameter valuation v ∈ Rk is said
to be admissible for P if for each transition (s, f, s′) ∈ R we have f(v) ≥ 0. Let
VP , or just V when P is clear from the context, denote the set of admissible val-
uations for P. Given v ∈ V, we denote P(v) the WKS associated with v. In this
respect, it will be convenient to think at P as a partial function P:Rk ⇀ WKS
with domain VP . The semantics of K, written [P], is defined as the image of P,
i.e., [P] = {P(v) | v ∈ V}.

A task typically addressed in the analysis of parametric Kripke structures is
that of finding symbolic representations of the set of parameter valuations for
which a given WCTL formula holds [5].

Formally, given a pWKS P = (S,R, `), a state s ∈ S and a state formula Φ,
the set of admissible valuations for which Φ holds at s is

JP, s |= ΦK def
= {v ∈ V | P(v), s |= Φ} . (1)

Example 4. Consider the pWKS P depicted in Fig. 1(right) representing a fam-
ily of lawn mower models parametric in p, q and, r. Its parameters represent
the amount of grass measured in different parts of the field. The admissible
valuations for P, i.e., VP , are represented by the constraint

α(p, q, r) = p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0 . (2)

Let Φ = ∀(mow U≤6.5 dump) be our specification. The set of valuations satisfying
Φ, i.e., JP, s |= ΦK, is represented by the following constraint

β(p, q, r) = α(p, q, r) ∧ p+ 4q ≤ 6.5 ∧ 2p+ 2q + r ≤ 6.5 . (3)

1 Our is a special case of the so called affine transformation matrix (or projective
transformation matrix) representation for generic affine tranformations.

6 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

Assume that we have measured p ∼= 2 ± ε, q ∼= 1 ± ε and, r ∼= 0 ± ε where
ε > 0 is the measurement error. One can determine if P is robust w.r.t. Φ by
checking that all possible measurement values lay in JP, s |= ΦK, formally

VP ∩ {(p, q, r) | |p− 2|≤ ε, |q − 1|≤ ε, |r|≤ ε} ⊆ JP, s |= ΦK .

The above can be expressed as first-order formula in theory of linear real arith-
metic

∀p ∈ [0, 2 + ε].∀q ∈ [0, 1 + ε].∀r ∈ [0, ε]. β(p, q, r) . (4)

By performing quantifier elimination (e.g., using mjollnir [12]) we can reduce
(4) to ε ≤ 0.1, indicating robustness for P is ensured if and only if ε does not
exceed 0.1.

In Example 4 we showed how to exploit pWKSs to verify a simple WKSs
against a given specification up-to some error.

Clearly, with an increasing complexity of the model (or the formula) it be-
comes necessary to have an automatic procedure to resolve (1). The following two
sections are devoted to present a generalization of the model checking algorithm
presented in [5] that can also accept WCTL formulas with negation.

4 Extended Parametric Dependency Graphs

Dependency graphs as originally introduced by Liu and Smolka [11] can be
applied to model-checking of the alternation-free modal µ-calculus, including
its sub-logics like CTL. Jensen et al. [9] proposed to extend the dependency
graphs framework using cover-edges and weighted hyper-edges for the verification
of WKSs against negation-free WCTL formulas. Later, Christoffersen et al. [5]
further generalised their approach to pWKSs by using parametric hyper-edges
and cover-edges.

In this section we present an extension of the parametric dependency graph
framework by incorporating a new type of edges, called negation-edges. Negation-
edges were originally used in [6] for dealing with negation.

Definition 5. An Extended Parametric Dependency Graph (EPDG) is a tuple
G = (V,H,N,C) where V is a nonempty set of configurations and

– H ⊆ V × 2E×V is a set of hyper-edges,
– N ⊆ V × V is a set of negation-edges, and
– C ⊆ V ×Q≥0 × V is a set of cover-edges.

For v, u ∈ V , we write v
f−→ u if (v, T) ∈ H and (f, u) ∈ T ; v ⇒ u if (v, u) ∈ N ;

v
q
99K u if (v, q, u) ∈ C and v and u are said resp. the source and the target

configurations of the edge. We write v u if v and u are respectively the source
and target configurations of some edge in G.

We identify a class of EPDGs having some convenient structural properties.

Definition 6. Let G = (V,H,N,C) be an EPDG. G is safe if

On the Verification of Weighted Kripke Structures Under Uncertainty 7

(i) its components are finite and for all (v, T) ∈ H, T is finite.
(ii) for all v ∈ V |{(v, u) ∈ N} ∪ {(v, q, u) ∈ C}|≤ 1 and if |{(v, u) ∈ N} ∪
{(v, q, u) ∈ C}|= 1 then {(v, T) ∈ H} = ∅.

(iii) there are no u, v ∈ V such that v
q
99K u and u ∗ v, or v ⇒ u and u ∗ v.

Intuitively, to be safe an EPDG G needs to have (i) finitely many configurations
and edges, and each hyper-edge needs to be finitely branching; (ii) each of its
configurations admits at most one type of outgoing edges and no cover edges
or negation edges share the same source configuration; (iii) finally, no loop in G
shall have any cover- or negation-edges.

In the rest of the section we fix G = (V,H,N,C) to be a safe EPDG.
We assign to each configuration v ∈ V a distance d(v) ∈ N counting the

maximum number of negation- and cover-edges in the paths starting from v

d(v)
def
= sup {d(v′′) + 1 | v′ ⇒ v′′ or v′

q
99K v′′ for v′, v′′ ∈ V s.t. v ∗ v′}.

Notice that the distance is bounded because G is assumed to be safe.
We define d(G) = maxv∈V d(v). The distance value is used to identify some

components C0, . . . , Cd(G), where Ci = (Vi, Hi, Ni, Ci) is the sub-EPDG of G in-
duced by the configurations Vi = {v ∈ V | d(v) ≤ i}. Note that by construction
N0 = C0 = ∅.

A valuation v ∈ Rk is said admissible for G if whenever v
f−→ u we have

f(v) ≥ 0. We denote by VG the set of admissible valuations for G.

Definition 7. An assignment A of G is a function A : V → (VG → R≥0) where
R≥0 = R≥0 ∪ {∞}. The set of all assignments of G is denoted AG.

We equip AG with the partial order v ⊆ AG ×AG defined as

A1 v A2 iff ∀v ∈ V. ∀v ∈ VG . A1(v)(v) ≥ A2(v)(v) .

(AG ,v) forms a complete lattice, with bottom element A⊥ and top element A>
respectively defined as A⊥(v)(v) = ∞ and A>(v)(v) = 0 for all v ∈ V and
v ∈ VG . Given E ⊆ AG the greatest lower boud

d
E and least upper bound

⊔
E

are defined, for arbitrary v ∈ V and v ∈ VG , as

(
d
E)(v)(v) = supA∈E A(v)(v) , (

⊔
E)(v)(v) = infA∈E A(v)(v) .

We are now ready to define the least fixed-point assignment of an EPDG G.

Definition 8. The least fixed-point assignment for G, denoted AGmin, is defined

inductively on its components C0, . . . , Cd(G). For 0 ≤ i ≤ d(G), ACimin is the least
fixed-point of the function Fi : ACi → ACi , defined as

Fi(A)(v)(v) =


χ(A

Ci−1

min (u)(v) > 0) if v ⇒ u

χ(A
Ci−1

min (u)(v) ≤ q) if v
q
99K u

min
(v,T)∈Hi

max
(f,u)∈T

A(u)(v) + f(v) otherwise

where χ(p) = 0 if the predicate p holds, ∞ otherwise.

8 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

Lemma 9. Let i ∈ {0, . . . , d(G)} and {Aj}j∈N ⊆ ACi be an ascending chain.
Then, Fi(

⊔
j∈NAj) =

⊔
j∈N Fi(Aj), i.e., Fi is ω-continuous.

Corollary 10. Fi is monotonic for all i ∈ {0, . . . , d(G)}.

By Knaster-Tarski’s fixed-point theorem, ACimin exists for all i ≤ d(G), moreover,
by Kleene’s fixed-point theorem, it is the limit of the ascending chain A⊥ v
Fi(A⊥) v Fi(Fi(A⊥)) v · · · v Fn

i (A⊥) v · · ·, i.e.,
⊔

n∈N F
n
i (A⊥).

The following result states that the limit of the above chain is reached within
|Vi| steps. This result is essential for our algorithm.

Lemma 11. Let i ∈ {0, . . . , d(G)} and k = |Vi|. Then, F k
i (ACi⊥) = ACimin.

By Lemma 11, we can compute AGmin symbolically by repeated application of
F until we are sure that the fixed-point has been reached. It is worth noting that
our termination condition only depends on the number of configurations of the
EPDG. Therefore, in contrast with [5], we don’t need to perform any symbolic
comparison of the assignments to check whether a fixed-point has been reached.
Not only does it simplifies the algorithm, but it also reduces the overhead caused
by symbolic comparison.

Lemma 12. For any safe EPDG G = (V,H,N,C) and component Ci of G,
the symbolic computation of the least fixed-point assignment, ACimin, by repeated

application of the function Fi on ACi⊥ runs in time O(|Vi| · (|Hi|+ |Ni|+ |Ci|)).

5 Model checking Parametric WKSs using EPDGs

In this section we present a reduction from the model checking problem of WCTL
on pWKSs to the computation of least fixed-point assignments for EPDGs. Then,
we show how to obtain from those assignments a symbolic representation of (1)
as a (quantifier-free) first-order formula in the linear theory of the reals.

Given a pWKS P = (S,R, `), a state s ∈ S and a WCTL formula Φ, we
construct an EPDG G where every configuration is a pair consisting of a state
and a formula. Starting from the initial pair 〈s,Φ〉, G is constructed according
to the rules given in Figure 2.

It is worth noting that the size of G does not depend on the actual weight
values of Φ or P but only on the size of P and the number of sub-formulas of Φ.

The following result ensures that the EPDG framework described in Section 4
can be applied to the EPDGs constructed according to the rules in Figure 2.

Lemma 13. The EPDG G rooted at 〈s,Φ〉 is safe.

In G we distinguish two types of configurations: concrete configurations have
concrete WCTL formulas, while symbolic configurations have symbolic formulas
of the form QX≤? Φ or QΦ U≤? Ψ where Q ∈ {∃,∀} and Φ,Ψ are concrete
WCTL formulas. Given a symbolic formula Φ and q ∈ Q≥0, we denote by Φq

the corresponding concrete formula with bound q.

On the Verification of Weighted Kripke Structures Under Uncertainty 9

〈s, tt〉

∅
(a) True

〈s, p〉

∅
if p ∈ `(s)

(b) Proposition

〈s,¬Φ〉

〈s,Φ〉

(c) Negation

〈s,Φ ∧ Ψ〉

〈s,Φ〉 〈s,Ψ〉

(d) Conjunction

〈s,Φ ∨ Ψ〉

〈s,Φ〉 〈s,Ψ〉

(e) Disjunction

〈s,QX≤q Φ〉

〈s,QX≤? Φ〉

q

(f) Bounded next

〈s,QΦ U≤qΨ〉

〈s,QΦ U≤?Ψ〉

q

(g) Bounded until

〈s,∃X≤? Φ〉

〈s1,Φ〉 〈sn,Φ〉

f1 fn

for (s, fi, si) ∈ R

(h) Existential next

〈s,∀X≤? Φ〉

〈s1,Φ〉 〈sn,Φ〉

f1 fn

for (s, fi, si) ∈ R

(i) Universal next

〈s, ∃Φ U≤? Ψ〉

〈s,Ψ〉

〈s,Φ〉

〈s1, ∃Φ U≤? Ψ〉

〈sn, ∃Φ U≤? Ψ〉

f1

fn

fo
r

(s
,f

i
,s

i
)
∈
R

(j) Existential until

〈s,∀Φ U≤? Ψ〉

〈s,Ψ〉

〈s,Φ〉

〈s1, ∀Φ U≤? Ψ〉

〈sn, ∀Φ U≤? Ψ〉

f1

fn fo
r

(s
,f

i
,s

i
)
∈
R

(k) Universal until

Fig. 2: EPDG construction rules. Here Q ∈ {∃,∀} and hyper-edges without labels
shall be assumed to be labelled with the constant weight map 0.

Lemma 14. Let v = 〈s,Φ〉 be a concrete configuration of G and v ∈ VG an
admissible valuation. Then, AGmin(v)(v) ∈ {0,∞}.

The next theorem states that the set of correct valuations JP, s |= ΦK corresponds
to the set {v ∈ VG | AGmin(〈s,Φ〉)(v) ≤ 0}. This reduces the model checking
problem to the computation of least fixed-point assignments for EPDGs.

Theorem 15. Let v = 〈s,Φ〉 be a configuration of G and v ∈ VG an admissible
valuation. Then, the following hold

1) if v is concrete, then AGmin(v)(v) = 0 iff P(v), s |= Φ and,
2) if v is symbolic, then for all q ∈ Q, AGmin(v)(v) ≤ q iff P(v), s |= Φq.

We showed that AGmin(〈s,Φ〉) can be computed symbolically as a partially
evaluated expression. During the computation one can perform some simplifica-

10 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

C1

<s0, A(mow)U[6.5](dump)>

C0

<s3, A(mow)U(dump)>

<s3, mow>

∅

<s2, mow>

∅

<s1, A(mow)U(dump)>

<s0, dump>

<s1, dump>

<s0, A(mow)U(dump)>

<s1, mow>

∅

<s5, dump>

<s4, A(mow)U(dump)>

<s2, dump>

<s4, dump>

<s4, mow>

∅

<s0, mow>

∅

<s5, A(mow)U(dump)>

<s5, mow>

∅ <s6, dump> ∅

<s6, A(mow)U(dump)>

<s3, dump>

<s2, A(mow)U(dump)>

6.5

0

0

q

0

0

q

0

0
pp

p

0

0

r
2q

0

0 p

0

0

0
2q

Fig. 3: EPDG rooted at 〈s0,∀(mow U≤6.5 dump)〉 (cf. Example 16).

tions (e.g., min ∅ = ∞ or max ∅ = 0), nevertheless, the parts of the expression
that depend on the actual value of the parameters are left unevaluated.

By Theorem 15 we are interested in a symbolic representation of the valu-
ations v such that AGmin(〈s,Φ〉)(v) ≤ 0. As anticipated in Example 4, this can
be done by means of a (quantifier-free) first-order formula in the linear theory
of the reals. In practice, such formula is obtained as Γ(AGmin(〈s,Φ〉) ≤ 0) where
Γ is defined by cases as follows2, for ./ ∈ {≤, >}, m ∈ {min,max} and, q ∈ Q≥0

Γ(max{e1, . . . , en} ./ q) = Γ(e1 ./ q) ∧ . . . ∧ Γ(e1 ./ q)

Γ(min{e1, . . . , en} ./ q) = Γ(e1 ./ q) ∨ . . . ∨ Γ(e1 ./ q)

Γ(χ(b) ≤ q) = Γ(b) Γ(χ(b) > q) = ¬Γ(b)

Γ(e+ m{e1, . . . , en} ./ q) = Γ(m{e+ e1, . . . , e+ en} ./ q)
Γ(e ./ q) = e ./ q . (if e has no occurrence of min, max or χ)

Example 16. Consider the pWKS P and the formula Φ = ∀(mow U≤6.5 dump)
from Example 4. In Fig. 3 is depicted the EPDG G rooted at 〈s0,Φ〉. By running
our symbolic algorithm we obtain the following expression

AGmin(〈s0,Φ〉) = χ(max{p+q+max{p+r, 2q}, p+2q+max{p+r, 2q}, 2p+q} ≤ 6.5) .

2 To simplify the exposition, here unevaluated expressions are assumed to be modulo
commutativity and associativity of +.

On the Verification of Weighted Kripke Structures Under Uncertainty 11

The above expression can be then turned into the following formula

2p+ q+ r ≤ 6.5∧ p+ 3q ≤ 6.5∧ 2p+ 2q+ r ≤ 6.5∧ p+ 4q ≤ 6.5∧ 2p+ q ≤ 6.5 ,

that, in conjunction with p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0 (cf. (2)) simplifies to (3). ut

6 Weight-Uncertain Kripke Structures

In Section 3 we have seen how to use pWKSs for modelling and verifying the
robustness of WKSs when the imprecision of the weights is quantified by means
of an absolute accuracy error ε. However, for an experimental weight value w,
not all values in the interval w ± ε are equally likely to occur in practice.

It’s common practice to model experimental measurements by means of real-
valued random variables distributed according to well studied family of distri-
bution (e.g., normal or student’s T). In this section we introduce the notion
of weight-uncertain Kripke structures (WUKSs), where weights are modelled as
random variables and present a WCTL model checking framework for them.

Before to start we need to recall some notions from measure theory.

Measure Theory. Let Ω be a set. A family Σ ⊆ 2Ω is called σ-algebra if it
contains the empty set ∅ and is closed under complement and countable unions,
in this case (Ω,Σ) is said measurable space and elements of Σ measurable sets.
If Ω is given a topology then B(Ω) denotes the Borel σ-algebra of Ω, i.e., the
smallest σ-algebra having all open subsets of Ω. We say that Ω is a Borel space to
indicate the measurable space (Ω,B(Ω)), and elements of B(Ω) are called Borel
sets. As an example, R is assumed to have the usual Euclidean topology and
B(R) denotes the induced Borel σ-algebra which makes R a Borel space.

A measure on (Ω,Σ) is a σ-additive function µ: Σ→ R, i.e, a map satisfying
µ(
⋃

i∈I Ei) =
∑

i∈I µ(Ei) for any countable family of pairwise disjoint measur-
able sets (Ei)i∈I , in this case (Ω,Σ, µ) is said measure space. If µ additionally
satisfies µ(Ω) = 1, it is called probability measure and (Ω,Σ, µ) probability space.

For (Ω,Σ) and (Y,Θ) measurable spaces, the map f : Ω → Y is measurable
if for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. Given a measurable map
f : Ω → Y and a measure µ on (Ω,Σ) we define the measure µ[f] on (Y,Θ) as
µ[f](E) = µ(f−1(E)), for E ∈ Θ, a.k.a. the push forward of µ under f .

A real-valued random variable X: Ω → R is a measurable function from a
probability space (Ω,Σ, P) to the Borel space R. Intuitively,X can be understood
as the outcome value of an experiment (e.g., measuring some sensor value). Given
a “test” A ∈ B(R), we write P [X ∈ A] for the probability that X has value in A,
i.e., P [X ∈ A] = P [X](A). A random variable X is associated with its cumulative
distribution function (CDF) FX :R → [0, 1] defined as FX(x) = P [X ∈ (∞, x]];
and a probability density function (PDF) fX , a non-negative Lebesgue-integrable

function satisfying P [X ∈ [a, b]] =
∫ b

a
fX(x)dx. The expected value of X, written

E[X] is intuitively understood as the long-run average value of repetitions of the
experiment X, formalised by the Lebesgue integral

∫
Ω
X dP (corresponding to∫

R fX(x)dx when X admits density function fX).

12 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

In the rest of the section we fix the probability space (Ω,Σ, P) representing
the environment where the experiments are performed, and we use Y to denote
the set of real-valued random variables of the form Y : Ω→ R.

We are now ready to define the concept of weight-uncertain Kripke structure.

Definition 17. A weight-uncertain Kripke structure is a tuple J = (S,R, `),
where S is a finite nonempty set of states, R ⊆ S × Y × S is a finite random
weighted transition relation and `:S → 2AP is a labelling function.

Consider the WUKS J = (S,R, `). We denote by WKSJ the set of all WKSs
having the same underlying graph than J . We construct the σ-algebra ΣJ as the
family of sets A ⊆WKSJ whose corresponding set of weights is Borel measurable
in Rm (m = |R|). Formally,

A ∈ ΣJ iff A ⊆WKSJ and {ω(K) | K ∈ A} ∈ B(Rm) .

J can be seen as a measurable function J : Ω → WKSJ , where J (ω) is
the WKS associated with ω ∈ Ω, justifying the intuition the it represents an
experiment whose outcomes are WKSs. Accordingly, the semantics of J is the
probability space (WKSJ ,ΣJ , P [J]).

Given a WUKS J , a state s ∈ S, and a WCLT property Φ, two natural
model checking questions are (i) whether the expected behaviour of J satisfies
Φ at s, informally “E[J], s |= Φ”, (ii) and how likely is that a concrete instance
of J satisfies Φ at s, denoted by P [J , s |= Φ]

We address the above problems for a subclass of WUKSs having random
variables (Y : Ω → R) ∈ EX of the form Y (ω) = a · X(ω) + b, with a ∈ Qk

≥0,
b ∈ Q≥0 and, where X = (X1, . . . , Xk) is vector of pairwise independent non-
negative real-valued random variables3. Observe that, elements in EX may not
be independent from each other.

From here on we consider the WUKS J = (S, E , R, `) with R ⊆ S ×EX × S,
and we use P to refer to the pWKS obtained by replacing the random variables
Xi in J with the parameters xi (for i = 1..k).

Let’s consider the first question, namely “E[J], s |= Φ”. There, E[J] was
informally denoting the WKS obtained by replacing each transition weight in J
with the corresponding expected value. Formally, E[J] is defined as the unique
K ∈ WKSJ such that ωi(K) =

∫
WKSJ

ωi dP [J] for all i ∈ {1, . . . ,m} where
ωi: WKSJ → R≥0 is the function that returns the i-th weight from a given WKS.

The assumption made on the weights in J allows us to rephrase E[J], s |= Φ
as a model checking problem for P.

Lemma 18. E[J], s |= Φ if and only if E[X] ∈ JP, s |= ΦK.

We are now ready to address the second question, that is formalised as follows

P [J , s |= Φ]
def
= P [J]({K ∈WKSJ | K, s |= Φ}) . (5)

3 In fact, the vector X is a multivariate random variable X: Ω → Rn with marginals
Xi: Ω → R≥0 (i = 1..n).

On the Verification of Weighted Kripke Structures Under Uncertainty 13

For the above definition to be well-defined the set {K ∈ WKSJ | K, s |= Φ}
needs to be a measurable event in ΣJ . The following result ensures that.

Lemma 19. {K ∈WKSJ | K, s |= Φ} ∈ ΣJ

The following theorem characterizes the model checking problem for the
WUKS J in terms of the model checking problem of its associated pWKS P.

Theorem 20. P [J , s |= Φ] = P [X ∈ JP, s |= ΦK].

Remark 21. For the sake of clarity, so far we have assumed that X is non-negative
real-valued random vector. However, provided that P [X ∈ VP] > 0, the non-
negativity assumption can be dropped by replacing the probability distribution
P [X] with the conditional probability P [X|X ∈ VP].

By Theorem 20 we can estimate the value p of (5) by applying Monte Carlo
simulation techniques. For this, we sample n independent repetitions of X, as-
sociating with each repetition a Bernoulli random variable Bi. A realisation bi
of Bi is 1 if the corresponding sampled value of X lays in JP, s |= ΦK, and 0
otherwise. Finally, we estimate p by means of the observed relative success rate
p̃ = (

∑n
i=1 bi)/n. The absolute error ε of the estimation can be bound with a

certain degree of confidence δ ∈ (0, 1] by tuning the the number of required sim-

ulations based on the inequality P (|p̃−p|≥ ε) ≤ δ where δ = e−2nε2 (cf. [13,10]).
Therefore the required number n of samples is obtained as

n =

⌈
− ln(δ)

2ε2

⌉
. (6)

Example 22. Consider the WUKS J depicted in Fig. 1(right), where p, q and,
r shall now be interpreted as real-valued random variables distributed as p ∼
N (2, ε), q ∼ unif(1 − ε, 1 + ε), and r ∼ N (0, ε) for ε = 0.1. We can estimate
P [J , s0 |= Φ] = 0.959 with an error ε = 0.003 and confidence of 99, 9% (i.e.,
δ = 0.001) by generating n = 383765 samples.

7 Experimental Results

To evaluate the performance of the algorithms discussed in this paper, we devel-
oped a prototype tool suite for WCTL model checking of WKSs under uncertain
weights. The tool suite consists of two parts: a back-end, called PVTool24 and
a front-end, called UVTool5. UVTool supports the verification of pWKSs and
WUKSs as described in Sections 5 and 6 making use of the PVTool2 which
implements the EPDG construction and the symbolic fixed-point computation.

We have evaluated the PVTool2 and the UVTool separately.

4 The PVTool2 is available at https://github.com/AcId9381/PVTool.
5 The UVTool is implemented using Mathematica[16] and is available at http://

people.cs.aau.dk/~giovbacci/tools.html.

https://github.com/AcId9381/PVTool
http://people.cs.aau.dk/~giovbacci/tools.html
http://people.cs.aau.dk/~giovbacci/tools.html

14 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

Evaluation of the PVTool2. We compared the performance of the PVTool2
with the PVTool from [5]. For a fair comparison we used as benchmarks the
vacuum cleaner models from [5] checking them against the WCTL formula
∃(∀dirty U≤10clean)U≤1000 done. The table depicted in Fig. 4a reports the re-
sults obtained by increasing the number of rooms in the vacuum cleaning model.
The first and the second columns respectively present the number of states of
the model and the number of configurations of the resulting EPDG, while the
last two columns present respectively the computation time and the memory
consumption of the two tools. The results of the experiments show that the PV-
Tool2 performs slightly worse than the PVTool on small models but it scales
way better than the PVTool both in terms of computation time and memory
consumption. We believe that this is due to the fact that our algorithm does
not need to perform any comparison of the symbolic assignments during the
fixed-point computation.

Fig 4b shows how the computation time and memory consumption of the
PVTool2 grows linearly in the number of configurations of the EPGD.

Model EPGD Time (s) Memory (KB)
states # conf. v1 v2 v1 v2

7 41 0.0015 0.200 1,004 43,540
13 77 0.017 0.174 1,504 48,548
19 113 0.190 0.193 3,808 53,104
25 149 0.250 0.170 14,264 59,520
31 185 35 0.175 60,548 65,256
34 203 781 0.199 263,832 68,560
40 239 N/A 0.178 N/A 75,536
46 275 N/A 0.191 N/A 82,972
52 311 N/A 0.209 N/A 91,020
58 347 N/A 0.235 N/A 99,872
64 383 N/A 0.275 N/A 108,976

(a) Comparison with the PVtool from [5] (b) Performance of the PVTool2

Fig. 4: Experiments on an Intel i7 (5th gen.) 2.6GHz processor with 12GB RAM

Evaluation of the UVTool. For the verification of WUKS, our algorithm first
samples valuations from X, then estimates the relative number of valuation-
samples that are correct in the sense of (1). Alternatively, one could first sample
WKSs from the given WUKS and then estimate the relative number of mod-
els that satisfy the specification. In the second approach one could employ the
WKTool6 and exploit the efficient local algorithm from [9].

We compared the two approaches on the WUKS of Example 22 and per-
formed the evaluation with increasing precision and accuracy of the estimation.
The results are presented in Table 1. The first three columns report the error, the
confidence and the number of generated samples (cf. Eq. (6)), and the last two
columns present the computation time respectively for the UVTool and the

6 The WKTool is available at https://github.com/jonasfj/WKTool.

https://github.com/jonasfj/WKTool

On the Verification of Weighted Kripke Structures Under Uncertainty 15

adaptation of the WKTool. It is worth mentioning that the values reported
in the last column do not consider the time required to sample and generate
the models, but only the total time used for the model checking. The results

Error ε Confidence δ # samples UVTool (s) WKTool (s)

0.02 0.01 5,757 0.137 181.009
0.01 0.01 23,026 0.533 724.206
0.01 0.001 34,539 0.828 1086.88
0.005 0.001 138,156 3.231 4,347.96
0.003 0.001 383,756 8.876 5,886.670

Table 1: Experiments on an Intel Core i5 3.1 GHz with 8GB RAM.

clearly show that our approach outperforms the second one by several orders of
magnitude, showing that computing the symbolic representation of the correct
valuations in advance gives a huge speed-up in the overall computation time.

8 Conclusion and Future Work

We addressed the model checking problem of weighted Kripke structures un-
der uncertainty. We proposed to employ parametric weighted Kripke structures
and weight-uncertain Kripke structures for modelling WKSs with imprecise real-
valued weights. For the verification of pWKSs against WCTL formulas we de-
veloped a model checking algorithm that, compared with [5], implements an
improved termination condition and accepts formulas with negation. The al-
gorithm, given a pWKS and a WCTL formula, and produces a quantifier free
first-order formula in the linear theory of the reals representing the set of param-
eter valuations satisfying the specification. The outcome formula is then used as
underlying ingredient for verifying the robustness of WKSs. If the imprecision of
the weights by means of an absolute accuracy error the verification can be per-
formed via quantifier elimination (cf. Example 4). Otherwise, if the imprecision
is quantified by mean of random variables, the probability of satifiying the spec-
ification in estimated via Monte Carlo simulation techniques (cf. Example 22).

In the future we plan to consider an alternative semantic interpretation for
WUKSs where the random weights are dynamically sampled while unfolding the
model, thus modelling WKSs with an infinite state space. This alternative se-
mantics would fit well in the contexts of reactive systems that respond to external
stimuli whose values are uncertain. Another direction for future work would be
to consider the model checking of weighted LTL properties under uncertainty.

References

1. Guy Avni and Orna Kupferman. Stochastization of Weighted Automata. In
Giuseppe F. Italiano, Giovanni Pighizzini, and Donald T. Sannella, editors, Math-

16 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

ematical Foundations of Computer Science 2015, pages 89–102, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

2. Giovanni Bacci, Mikkel Hansen, and Kim G. Larsen. On the verification of weighted
kripke structures under uncertainty. Full version, Aalborg University, 2018. http:
//people.cs.aau.dk/~giovbacci/papers/uncertwks-full.pdf.

3. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

4. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Probabilistic
Weighted Automata. In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR
2009 - Concurrency Theory, pages 244–258, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

5. Peter Christoffersen, Mikkel Hansen, Anders Mariegaard, Julian Trier Ringsmose,
Kim Guldstrand Larsen, and Radu Mardare. Parametric verification of weighted
systems. In 2nd International Workshop on Synthesis of Complex Parameters,
SynCoP 2015, April 11, 2015, London, United Kingdom, pages 77–90, 2015.

6. Andreas Engelbredt Dalsgaard, Søren Enevoldsen, Peter Fogh, Lasse S. Jensen,
Tobias S. Jepsen, Isabella Kaufmann, Kim G. Larsen, Søren M. Nielsen, Mads Chr.
Olesen, Samuel Pastva, and Jiŕı Srba. Extended dependency graphs and efficient
distributed fixed-point computation. In Application and Theory of Petri Nets
and Concurrency - 38th International Conference, PETRI NETS 2017, Zaragoza,
Spain, June 25-30, 2017, Proceedings, pages 139–158, 2017.

7. Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Au-
tomata. Springer Publishing Company, Incorporated, 1st edition, 2009.

8. Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A Quantitative Characteriza-
tion of Weighted Kripke Structures in Temporal Logic. Computing and Informatics,
29:1311–1324, 2010.

9. Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiŕı Srba, and Lars Kaerlund
Oestergaard. Efficient model-checking of weighted CTL with upper-bound con-
straints. STTT, 18(4):409–426, 2016.

10. N. Singh Kambo and Samuel Kotz. On exponential bounds for binomial probabil-
ities. Annals of the Institute of Statistical Mathematics, 18(1):277, Dec 1966.

11. Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed
points (extended abstract). In Automata, Languages and Programming, 25th Inter-
national Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings,
pages 53–66, 1998.

12. David Monniaux. Quantifier elimination by lazy model enumeration. In Tayssir
Touili, Byron Cook, and Paul B. Jackson, editors, Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, volume 6174 of Lecture Notes in Computer Science, pages 585–599.
Springer, 2010.

13. Masashi Okamoto. Some inequalities relating to the partial sum of binomial prob-
abilities. Annals of the Institute of Statistical Mathematics, 10(1):29–35, Mar 1959.

14. Simo Srkk. Bayesian Filtering and Smoothing. Cambridge University Press, New
York, NY, USA, 2013.

15. Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21-23 October 1985, pages 327–338. IEEE Computer Society, 1985.

16. Wolfram Research, Inc. Mathematica, Version 11.2. Champaign, IL, 2017.

http://people.cs.aau.dk/~giovbacci/papers/uncertwks-full.pdf
http://people.cs.aau.dk/~giovbacci/papers/uncertwks-full.pdf

On the Verification of Weighted Kripke Structures Under Uncertainty 17

A Technical Proofs

Proof of Section 4

Lemma 23. Let X be a finite set and {Bi:X → R}i∈N a sequence of point-
wise decreasing functions that has limit B(x) = infi∈NBi(x) for x ∈ X. Then,
maxx∈X infi∈NBi(x) ≥ infi∈N maxx∈X Bi(x).

Proof. We prove that for Y ⊆ X, maxx∈Y infi∈NBi(x) ≥ infi∈N maxx∈Y Bi(x).
We proceed by induction on n = |Y |. For n ≤ 1 the thesis holds trivially.

Let n > 1. Let y ∈ Y and let Z = Y \ {y}. There are two possible cases.

If ∀i ∈ N.∃j ≥ i.∀z ∈ Z.Bj(y) ≥ Bj(z). In particular Bj(y) ≥ maxx∈Y Bj(x).
Therefore, infi∈N maxx∈Y Bi(x) ≤ infi∈NBi(y) ≤ maxx∈Y infi∈NBi(x).
If ∃i ∈ N.∀j ≥ i.∃z ∈ Z.Bj(y) < Bj(z). Thus, maxz∈Z Bj(z) ≥ maxx∈Y Bj(x).
Therefore,

inf
i∈N

max
x∈Y

Bi(x) ≤ inf
i∈N

max
z∈Z

Bi(z)

≤ max
z∈Z

inf
i∈N

Bi(z) (inductive hypothesis)

≤ max
z∈Y

inf
i∈N

Bi(z) . (Z ⊆ Y)

ut

Proof (of Lemma 9). We proceed by induction on i.
Base case (i = 0): By construction N0 = C0 = ∅. Let v ∈ VG and

h(A, (f, u)) = A(u)(v) + f(v) and v ∈ V0. Then, we have

F0(
⊔
j∈N

Aj)(v)(v) = min
(v,T)∈H0

max
(f,u)∈T

inf
j∈N

h(Aj , (f, u)) (def. F0 and
⊔

)

= min
(v,T)∈H0

inf
A∈E

max
(f,u)∈T

h(Aj , (f, u)) (7)

= inf
A∈E

min
(v,T)∈H0

max
(f,u)∈T

h(Aj , (f, u)) (8)

= (
⊔

A∈E F0(A))(v)(v) . (def. F0 and
⊔

)

Below we prove (7) and (8) separately. As for (7) it suffices to prove that

max
(f,u)∈T

inf
j∈N

h(Aj , (f, u)) = inf
j∈N

max
(f,u)∈T

h(Aj , (f, u)) . (9)

((9)-≤) Let (f̄ , ū) ∈ T and Ā ∈ {Aj}j∈N, then infj∈N h(Aj , (f̄ , ū)) ≤ h(Ā, (f̄ , ū)),
hence max(f,u)∈T infj∈N h(Aj , (f, u)) ≤ max(f,u)∈T h(Ā, (f, u)). By def. of infi-
mum we have max(f,u)∈T infj∈N h(Aj , (f, u)) ≤ infj∈N max(f,u)∈T h(Aj , (f, u)).

((9)-≥) Follows by Lemma 23 where, for j ∈ N, Bj :T → R is defined as
Bj(t) = h(Aj , t) for t ∈ T . Note that {Bj :T → R}j∈N is a sequence of point-wise
decreasing functions because by hypothesis {Aj}j∈N is an ascending chain.

Let g(A, T) = max(f,u)∈T h(A, (f, u)). We rewrite (8) as follows

min
(v,T)∈H0

inf
j∈N

g(Aj , T) = inf
j∈N

min
(v,T)∈H0

g(Aj , T) (10)

18 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

((10)-≤) Let (v, T̄) ∈ H0 and Ā ∈ {Aj}j∈N, then infj∈N g(Aj , T̄) ≤ g(Ā, T̄),
hence min(v,T)∈H0

infj∈N g(Aj , T) ≤ min(v,T)∈H0
g(Ā, T). By definition of infi-

mum we have min(v,T)∈H0
infj∈N g(Aj , T) ≤ infj∈N min(v,T)∈H0

g(Aj , T).
((10)-≥) Let (v, T̄) ∈ H0 and Ā ∈ {Aj}j∈N, then g(Ā, T̄) ≥ min(v,T)∈H0

g(Ā, T),
hence infj∈N g(Aj , T̄) ≥ infj∈N min(v,T)∈H0

g(Aj , T). By definition of infimum we
have min(v,T)∈H0

infj∈N g(Aj , T) ≥ infj∈N min(v,T)∈H0
g(Aj , T).

Inductive step (i > 0): Let v ∈ Vi and v ∈ VG . We consider two cases. If

v ⇒ u or v
q
99K u for some u ∈ Vi, by construction u ∈ Vi−1. By inductive hy-

pothesis Fi−1 is monotonic, thus by Knaster-Tarski’s fixed-point theorem, ACkmin

exists. By def. of Fi, Fi(A)(v)(v) = Fi(A
′)(v)(v) for any A,A′ ∈ Ci. Hence, for

Ā ∈ {Aj}j∈N, we have Fi(
⊔

j∈NAj)(v)(v) = Fi(Ā)(v)(v) =
⊔

j∈N Fi(Aj)(v)(v).
One can prove the last case of def. Fi as done for the base case. ut

Proof (of Lemma 11).
Let v ∈ V, and Gi : (Vi → R≥0) → (Vi → R≥0) be the specialisation of Fi

on the valuation v. As done for Fi, the least fixed point of Gi, denoted BCimin is
defined inductively on the components C0, . . . , Cd(G) as follows

Gi(B)(v) =


χ(B

Ci−1

min (u) =∞) if v ⇒ u

χ(B
Ci−1

min (u) ≤ q) if v
q
99K u

min
(v,T)∈Hi

max
(f,u)∈T

B(u) + f(v) otherwise

Clearly, for B:Vi → R≥0 and A ∈ ACi , if B(v) = A(v)(v) for all v ∈ Vi, then
Gi(B)(v) = Fi(A)(v)(v) for all v ∈ Vi.

We shall write v 7→ u, for u, v ∈ Vi, whenever there is (v, T) ∈ Hi and
(f, u) ∈ T such that BCimin(v) = BCimin(u) + f(v), i.e. when exists h ∈ N such that

Gh
i (BCi⊥)(u) = BCimin(u) which guarantees that Gh+1

i (B)(v) = BCimin(v).

We show by induction on i and j such that 0 ≤ i ≤ d(G), that Gk
i (BCi⊥)(v) =

BCimin(v) for all v ∈ Vi for k = |Vi|
Base case (i = 0): By hypothesis N0 = C0 = ∅, so we only have to consider

hyper-edges. For v ∈ V0 such that (v, ∅) ∈ H0 we have Gi(B
C0
⊥)(v) = BC0min(v).

We call such configurations terminal. Now, for any v ∈ V0 such that BC0min(v) 6=
∞, the value BC0min(v) will be achieved in a number of iterations corresponding
to the length of the shortest path from v to some terminal configurations in the
graph (V0, 7→). Such a path has length at most |V0|. Therefore Gk

i (BC0⊥)(v) =

BC0min(v) where k = |V0|. Any other configuration in V0 achieves its fixed point

value, namely ∞, after 0 iterations. Therefore Gk
0(BC0⊥)(v) = BC0min(v) for all

v ∈ V0 for k = |V0|.
Inductive step (i > 0): By inductive hypothesis configurations v belonging

to the sub-component Ci−1 satisfy Gk′

i (BCi⊥)(v) = BCimin(v) where k′ = |Vi−1|.
Regarding those configurations v not belonging to the sub-component Ci−1, we

have that those such that v ⇒ u or v
q
99K u satisfy Gi(B

Ci
⊥)(v) = BCimin(v). We

call the configurations mentioned above, terminal. Now, for any non-terminal

On the Verification of Weighted Kripke Structures Under Uncertainty 19

configuration v such that BCimin(v) 6= ∞, the value BCimin(v) will be achieved

from Gk′

i (BCi⊥)(v) in a number of iterations corresponding to the length of the
shortest path from v to some terminal configurations in the graph (Vi \Vi−1, 7→).
Such a path has length at most k′′ = |Vi \ Vi−1|. Therefore,

G
|Vi|
i (BCi⊥)(v) = Gk′′

i (Gk′

i (BCi⊥))(v) = BCimin(v) .

This proves the claim. ut

Proof (of Lemma 12). We notice that a single application of Fi takes O(|Hi|+
|Ni|+ |Ci|) time, as we go through all the edges and, for each edge, update the
source configuration. Therefore, the claim holds by Lemma 11. ut

Proofs of Section 5

Proof (of Lemma 13). Let G = (V,H,C,N) and K = (S, E , R, `) We check each
condition of Definition 6 separately.

(i) G has finitely many configurations, since V ⊆ {〈s, φ〉 | s ∈ S, φ � Φ} and
both S and {φ | φ � Φ} are finite. Now, we check that for any v ∈ V , if
(v, T) ∈ H then T is finite. If v = 〈s,∀ X≤? φ〉, according to the rules in
Fig. 2, there is only one hyper-edge (v, T) ∈ H with T = {(f ′, 〈s′,∀X≤? φ〉) |
(s, f ′, s′) ∈ R}. Clearly, T is finite since R is finite. The case v = 〈s,∀φU≤qψ〉
can be proved using similar arguments. All other cases hold trivially.

(ii) According to the rules in Fig. 2, for any configuration 〈s, φ〉 ∈ V only one rule
can apply, and each rule involves only a single type of edges. Furthermore,
when the edge is either a cover edge or a negation edge, the edge is unique.

(iii) Let � be the partial over symbolic WCTL formulas defined as φ � ψ if φ is a
sub-formula of ψ or φ = QX≤?φ

′ and ψ = QX≤qφ′ (resp. φ = Qφ′U≤?ψ
′ and

ψ = Qφ′U≤qψ′) for some Q ∈ {∃,∀} and q ∈ Q. Note that if 〈s, φ〉 〈s′, φ′〉
then φ′ � φ and, in particular, if 〈s, φ〉

q
99K 〈s′, φ′〉 or 〈s, φ〉 ⇒ 〈s′, φ′〉 then

φ′ ≺ φ. Therefore there are no 〈s, φ〉, 〈s′, φ′〉 ∈ V such that 〈s, φ〉
q
99K 〈s′, φ′〉

and 〈s′, φ′〉 ∗ 〈s, φ〉, or 〈s, φ〉 ⇒ 〈s′, φ′〉 and 〈s′, φ′〉 ∗ 〈s, φ〉 because
φ 6≺ φ.

ut

Proof (of Lemma 14). By structural induction on Φ.

Φ = tt: The configuration v = 〈s, tt〉 will have a single outgoing hyper-edge with
an empty target set. Therefore, AGmin(v)(v) = inf{sup ∅} = 0.

Φ = p: If p ∈ `(s) the configuration v = 〈s, p〉 will have a single outgoing hyper-
edge with an empty target set. Therefore, AGmax(v)(v) = inf{sup ∅} = 0. If
p 6∈ `(s) the configuration v will not have any outgoing edges. Therefore,
AGmax(v)(v) = inf ∅ =∞.

20 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

Φ = ¬Ψ: The configuration v = 〈s,¬Ψ〉 will have a single outgoing negation-
edge with the concrete configuration u = 〈s,Ψ〉 as its target. Therefore,

AGmin(v)(v) =

{
0 if A

Cdist(G)−1
max (u)(v) =∞

∞ if A
Cdist(G)−1
max (u)(v) 6=∞

implying AGmin(v)(v) ∈ {0,∞}.
Φ = Ψ ∧Ψ′: The configuration v = 〈s,Ψ∧Ψ′〉 will have a single outgoing hyper-

edge with the concrete nodes u = 〈s,Ψ〉 and u′ = 〈s,Ψ′〉 as its targets.
Therefore

AGmax(v)(v) = inf{sup{AGmax(u)(v) + f0(v), AGmax(u′)(v) + f0(v)}}
= sup{AGmax(u)(v), AGmax(u′)(v)} .

By the inductive hypothesis, AGmax(u)(v) ∈ {0,∞} and AGmax(u′)(v) ∈
{0,∞}, and therefore AGmax(v)(v) ∈ {0,∞}.

Φ = Ψ ∨Ψ′: The configuration v = 〈s,Ψ ∨ Ψ′〉 will have two outgoing hyper-
edges with the concrete nodes u = 〈s,Ψ〉 respectively u′ = 〈s,Ψ′〉 as targets.
Therefore

AGmax(v)(v) = inf{sup{AGmax(u)(v) + f0(v)}, sup{AGmax(u′)(v) + f0(v)}}
= inf{sup{AGmax(u)(v)}, sup{AGmax(u′)(v)}} .

By the inductive hypothesis, AGmax(u)(v) ∈ {0,∞} and AGmax(u′)(v) ∈
{0,∞}, and therefore AGmax(v)(v) ∈ {0,∞}.

Φ = ∃ X≤q Ψ: The configuration v = 〈s,∃ X≤q Ψ〉 will have a single outgoing
cover-edge with the symbolic configuration u = 〈s,∃XΨ〉 as its target and q
as the edge label. Therefore,

AGmax(v)(v)

{
0 if A

Cdist(G)−1
max (u)(v) ≤ q

∞ if A
Cdist(G)−1
max (u)(v) > q

implying AGmax(v)(v) ∈ {0,∞}.
Φ = ∀ X≤q Ψ: The configuration v = 〈s,∀ X≤q Ψ〉 will have a single outgoing

cover-edge with the symbolic configuration u = 〈s,∀XΨ〉 as its target and q
as the edge label. Therefore,

AGmax(v)(v)

{
0 if A

Cdist(G)−1
max (u)(v) ≤ q

∞ if A
Cdist(G)−1
max (u)(v) > q

implying AGmax(v)(v) ∈ {0,∞}.
Φ = ∃Ψ U≤q Ψ′: The configuration v = 〈s,∃ΨU≤qΨ′〉 will have a single outgoing

cover-edge with the symbolic configuration u = 〈s,∃ΨUΨ′〉 as its target and
q as the edge label. Therefore,

AGmax(v)(v)

{
0 if A

Cdist(G)−1
max (u)(v) ≤ q

∞ if A
Cdist(G)−1
max (u)(v) > q

implying AGmax(v)(v) ∈ {0,∞}.

On the Verification of Weighted Kripke Structures Under Uncertainty 21

Φ = ∀Ψ U≤q Ψ′: The configuration v = 〈s,∀ΨU≤qΨ′〉 will have a single outgoing
cover-edge with the symbolic configuration u = 〈s,∀ΨUΨ′〉 as its target and
q as the edge label. Therefore,

AGmax(v)(v)

{
0 if A

Cdist(G)−1
max (u)(v) ≤ q

∞ if A
Cdist(G)−1
max (u)(v) > q

implying AGmax(v)(v) ∈ {0,∞}.
ut

Proof (of 15). Let v = 〈s,Φ〉 be a configuration and v ∈ VG a valuation. We
proceed by structural induction on Φ.

Φ = tt: The concrete configuration v = 〈s, tt〉 will have a single outgoing hyper-
edge with an empty target set, and therefore AGmax(v)(v) = inf{sup ∅} = 0,
i.e. AGmax(v)(v) = 0 always holds. By the semantics of |= it always holds
that K(v) |= tt. Therefore AGmax(v)(v) = 0 iff K(v), s |= tt.

Φ = p: The concrete configuration v = 〈s, p〉 will either have no outgoing edges,
or a single outgoing hyper-edge with an empty target set. Suppose that
AGmax(v)(v) = 0. If v have no outgoing edges then AGmax(v)(v) = inf ∅ =∞,
contradicting AGmax(v)(v) = 0. Therefore v must have a single outgoing
hyper-edge with an empty target set implying that p ∈ `(s), and thus
K(v), s |= p. For the reverse implication suppose K(v), s |= p implying
p ∈ `(s). Therefore, v must have a single outgoing hyper-edge with an empty
target set implying AGmax(v)(v) = inf{sup ∅} = 0.

Φ = ¬Ψ: The concrete configuration v = 〈s,¬Ψ〉 will have a single outgoing
negation-edge, with the concrete configuration u = 〈s,Ψ〉 as its target. Sup-
pose AGmax(v)(v) = 0 implying that AGmax(u)(v) = ∞ implying, by the
inductive hypothesis, that K(v), s 6|= Ψ, and therefore K(v), s |= ¬Ψ. For
the reverse implication suppose K(v), s |= ¬Ψ implying K(v), s 6|= Ψ im-
plying by the inductive hypothesis that AGmax(u)(v) = ∞, and therefore
AGmax(v)(v) = 0.

Φ = Ψ ∧Ψ′: The concrete configuration v = 〈s,Ψ ∧ Ψ′〉 will have a single out-
going hyper-edge with the two concrete configurations u = 〈s,Ψ〉 and u′ =
〈s,Ψ′〉 as its targets. Suppose AGmax(v)(v) = 0 implying that AGmax(u)(v) = 0
and AGmax(u′)(v) = 0 implying, by the inductive hypothesis, that K(v), s |=
Ψ and K(v), s |= Ψ′, and therefore K(v), s |= Ψ ∧ Ψ′. For the reverse
implication, suppose that K(v), s |= Ψ ∧ Ψ′ implying K(v), s |= Ψ and
K(v), s |= Ψ′ implying, by the inductive hypothesis, that AGmax(u)(v) = 0
and AGmax(u′)(v) = 0 implying further that AGmax(v)(v) = 0.

Φ = Ψ ∨Ψ′: The concrete configuration v = 〈s,Ψ ∨ Ψ′〉 will have two out-
going hyper-edges with the concrete configurations u = 〈s,Ψ〉 and u′ =
〈s,Ψ′〉 as their respective targets. Suppose AGmax(v)(v) = 0 implying that
AGmax(u)(v) = 0 or AGmax(u′)(v) = 0 implying, by the inductive hypothe-
sis, that K(v), s |= Ψ or K(v), s |= Ψ′, and therefore K(v), s |= Ψ ∨ Ψ′.
For the reverse implications suppose that K(v), s |= Ψ ∨ Ψ′ implying that

22 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

K(v), s |= Ψ or K(v), s |= Ψ′ implying, by the inductive hypothesis, that
AGmax(u)(v) = 0 or AGmax(u′)(v) = 0, and therefore AGmax(v)(v) = 0.

Φ = ∃ X≤q Ψ: The concrete configuration v = 〈s,∃ X≤q Ψ〉 will have a sin-
gle outgoing cover-edge with q as edge label and the symbolic configura-
tion u = 〈s,∃XΨ〉 as its target. Suppose AGmax(v)(v) = 0 implying that
AGmax(u)(v) ≤ q implying, by the inductive hypothesis, that K(v), s |=
∃X≤qΨ. For the reverse implication suppose thatK(v), s |= ∃X≤qΨ implying,
by the inductive hypothesis, that AGmax(u)(v) ≤ q implying AGmax(v)(v) = 0.

Φ = ∀ X≤q Ψ: The concrete configuration v = 〈s,∀ X≤q Ψ〉 will have a sin-
gle outgoing cover-edge with q as edge label and the symbolic configura-
tion u = 〈s,∀XΨ〉 as its target. Suppose AGmax(v)(v) = 0 implying that
AGmax(u)(v) ≤ q implying, by the inductive hypothesis, that K(v), s |=
∀X≤qΨ. For the reverse implication suppose thatK(v), s |= ∀X≤qΨ implying,
by the inductive hypothesis, that AGmax(u)(v) ≤ q implying AGmax(v)(v) = 0.

Φ = ∃Ψ U≤q Ψ′: The concrete configuration v = 〈s,∃Ψ U≤q Ψ′〉 will have a sin-
gle outgoing cover-edge with q as edge label and the symbolic configura-
tion u = 〈s,∃ΨUΨ′〉 as its target. Suppose AGmax(v)(v) = 0 implying that
AGmax(u)(v) ≤ q implying, by the inductive hypothesis, that K(v), s |=
∃Ψ U≤q Ψ′. For the reverse implication suppose that K(v), s |= ∃Ψ U≤q
Ψ′ implying, by the inductive hypothesis, that AGmax(u)(v) ≤ q implying
AGmax(v)(v) = 0.

Φ = ∀Ψ U≤q Ψ′: The concrete configuration v = 〈s,∀Ψ U≤q Ψ′〉 will have a sin-
gle outgoing cover-edge with q as edge label and the symbolic configura-
tion u = 〈s,∀ΨUΨ′〉 as its target. Suppose AGmax(v)(v) = 0 implying that
AGmax(u)(v) ≤ q implying, by the inductive hypothesis, that K(v), s |=
∀Ψ U≤q Ψ′. For the reverse implication suppose that K(v), s |= ∀Ψ U≤q
Ψ′ implying, by the inductive hypothesis, that AGmax(u)(v) ≤ q implying
AGmax(v)(v) = 0.

Φ = ∃ X≤? Ψ: The symbolic configuration v = 〈s,∃X≤? Ψ〉 will have an outgoing
hyper-edge for each (s, fi, si) ∈ R with fi as the edge label and the concrete
configuration ui = 〈si,Ψ〉 as its target.

Suppose AGmin(v)(v) ≤ q ∈ Q≥0 implying that v
fi−→ ui and AGmin(ui)(v) ≤

q−fi(v) implying, by Lem. 14, that AGmin(ui)(v) = 0, and thus AGmin(v)(v) =

fi(v). By ??, K(v), si |= Ψ. v
fi−→ ui implies (s, fi, si) ∈ R implying the

existence of a run π ∈ Run(K(v), s) such that π[1] = si and W(π, 1) =
fi(v) ≤ q, further implying K(v), π[1] |= Ψ, and thus K(v), s |= ∃ X≤q Ψ.
Suppose K(v), s |= ∃X≤qΨ implying the existence of a run π ∈ Run(K(v), s)
such that |π| > 0, W(π, 1) ≤ q and K(v), π[1] |= Ψ, further implying

(s, fi, si) ∈ R such that fi(v) ≤ q and K(v), si |= Ψ, and thus v
fi−→ ui

implying AGmin(v)(v) ≤ AGmin(ui)(v) + fi(v). By ??, AGmin(ui)(v) = 0 im-
plying AGmin(v)(v) ≤ fi(v) ≤ q.

Φ = ∀ X≤? Ψ: The symbolic configuration v = 〈s,∀ X≤? Ψ〉 will, if there exist
(s, f, s′) ∈ R, have a single outgoing hyper-edge with the concrete configu-
rations 〈si,Ψ〉 for (s, fi, si) ∈ R as its targets using fi as the respective edge
label, and otherwise v will not have any outgoing edges.

On the Verification of Weighted Kripke Structures Under Uncertainty 23

Suppose AGmin(v)(v) ≤ q ∈ Q≥0 implying that v
fi−→ ui and, for all ui, that

AGmin(ui)(v) ≤ q − fi(v) implying, by Lem. 14, that AGmin(ui)(v) = 0, and

thus AGmin(v)(v) = max
v

fi−→ui

{fi(v)}. By ??, K(v), si |= Ψ. v
fi−→ ui implies

(s, fi, si) ∈ R implying, for all runs π ∈ Run(K(v), s) that W(π, 1) = fi(v)
and π[1] = si for some (s, fi, si) ∈ R implying further that |π| > 0,W(π, 1) ≤
q and K(v), π[1] |= Ψ, and thus K(v), s |= ∀ X≤q Ψ.
Suppose K(v), s |= ∀ X≤q Ψ implying, for all runs π ∈ Run(K(v), s), that
|π| > 0,W(π, 1) ≤ q andK(v), π[1] |= Ψ. Therefore there exists (s, f, s′) ∈ R,
and for all (s, fi, si) ∈ R we have fi ≤ q and K(v), si |= Ψ implying, by ??,
that AGmin(ui)(v) = 0, and thus AGmin(v)(v) = max

v
fi−→ui

{fi} ≤ q.
Φ = ∃ΨUΨ′: The symbolic configuration v = 〈s,∃ΨUΨ′〉 will have an outgo-

ing hyper-edge to the concrete configuration v′ = 〈s,Ψ′〉, and, if there
exists (s, f, s′) ∈ R, an outgoing hyper-edge for each (s, fi, si) ∈ R with
the concrete configuration u = 〈s,Φ〉, and the symbolic configuration ui =
〈si,∃ΨUΨ′〉 with fi as the edge label, as its targets.
Suppose

Φ = ∀ΨUΨ′: The symbolic configuration v = 〈s,∀ΨUΨ′〉 will have an outgoing
hyper-edge with the concrete configuration v′ = 〈s,Ψ′〉 as its target, and, if
out(s) 6= ∅, an outgoing hyper-edge with the concrete configuration 〈s,Ψ〉,
and the symbolic configurations 〈si,∀ΨUΨ′〉 for each (fi, si) ∈ out(s) using
fi as the edge label, as its targets.
We must have

AGmax(v)(v) = inf

(
{sup{AGmax(v′)(v) + f0(v)}}⋃

i

{sup
⋃
i

{AGmax(u)(v) + f0(v), AGmax(ui)(v) + fi(v)}}

)

= inf

(
{sup{AGmax(v′)(v)}}⋃

i

{sup
⋃
i

{AGmax(u)(v), AGmax(ui)(v) + fi(v)}}

)
.

Let

X = {sup{AGmax(v′)(v)}}
⋃
i

{sup
⋃
i

{AGmax(u)(v), AGmax(ui)(v) + fi(v)}}

and Y = {q ∈ Q≥0 | K(v), s |= ∀Ψ U≤q Ψ′.
IfK(v), s |= Ψ′ we must have, for all runs π ∈ Run(K(v), s), thatK(v), π[0] |=
Ψ′ and W(π, 0) = 0 implying K(v), s |= ∀Ψ U≤0 Ψ′, further implying 0 ∈ Y ,
and therefore inf Y = 0. K(v), s |= Ψ′ implies, by the inductive hypothesis,
that AGmax(v′)(v) = 0 implying 0 ∈ X, and therefore inf X = 0 = inf Y .
SupposeK(v), s 6|= Ψ′ implying, for all runs π ∈ Run(K(v), s), thatK(v), π[0] 6|=
Ψ′, and, by the inductive hypothesis, that AGmax(v′)(v) =∞.
If out(s) = ∅ then |π| = 0 for all π ∈ Run(K(v), s) implying, sinceK(v), π[0] 6|=
Ψ′, that Y = ∅, and thus inf Y = ∞. It must also be the case that X =
{AGmax(v′)(v)} implying inf X =∞ = inf Y .
Suppose out(s) 6= ∅ implying, for all runs π ∈ Run(K(v), s) that |π| > 0.

24 G. Bacci, G. Bacci, K. G. Larsen, R. Mardare

If K(v), s 6|= Ψ then K(v), π[0] 6|= Ψ all runs π ∈ Run(K(v), s) implying Y =
∅, and thus inf Y = inf ∅ =∞. K(v), s 6|= Ψ implies, by the inductive hypoth-
esis, thatAGmax(u)(v) =∞ implying, for all i, that sup{AGmax(u)(v), AGmax(ui)(v)+
fi(v)} =∞, and therefore inf X =∞ = inf Y .
SupposeK(v), s |= Ψ implying, for all runs π ∈ Run(K(v), s), thatK(v), π[0] |=
Ψ. K(v), s |= Ψ implies, by the inductive hypothesis, that AGmax(u)(v) = 0
implying that sup

⋃
i{AGmax(u)(v), AGmax(ui)(v)+fi(v)}} = sup

⋃
i{AGmax(ui)(v)+

fi(v)} implying further that inf X = inf{sup
⋃

i{AGmax(ui)(v) + fi(v)}} =
sup

⋃
i{AGmax(ui)(v) + fi(v)}.

Let X ′ =
⋃

i{AGmax(ui)(v) + fi(v)}.
Suppose toward a contradiction that supX ′ < inf Y implying the exis-
tence of r ∈ Q≥0 such that supX ′ < r < inf Y implying further, for all
i, that AG(ui)(v) < r − fi(v), which implies the existence of r′ ∈ Q≥0

such that AG(ui)(v) ≤ r′ < r − fi(v) for all i. Therefore, by the induc-
tive hypothesis, K(v), si |= ∀Ψ U≤r′ Ψ′ for any i implying, for all i and
runs πi,l ∈ Run(K(v), si) the existence of a position ji,l ∈ N such that
W(πi,l, ji,l) ≤ r′, K(v), πi,l[ji,l] |= Ψ′ and K(v), πi,l[j

′] |= Ψ for all j′ < ji,l.
This implies, for all runs π′ ∈ Run(K(v), s), the existence of i and l such that
W(π′, k) =W(πi,l, k− 1) + fi(v) and π′[k] = πi,l[k− 1] for 1 ≤ k ≤ |πi,l|+ 1
implying further, for all runs π′ ∈ Run(K(v), s), the existence of i and
l such that W(π′, ji,l + 1) ≤ r′ + fi(v) < r, K(v), π′[ji,l + 1] |= Ψ′ and
K(v), π′[j′′] |= Ψ for all j′′ < ji,l +1. Therefore, K(v), s |= ∀ΨUrΨ′ implying
inf Y ≤ r leading to a contradiction, and thus inf Y ≤ supX ′.
Suppose toward a contradiction that inf Y < supX ′ implying the existence
of r ∈ Q≥0 such that inf Y < r < supX ′, implying further that K(v), s |=
∀Ψ U≤r Ψ′.
Let πi,l ∈ Run(K(v), s) be such that πi,l[1] = si.
This implies, for all runs πi,l ∈ Run(K(v), s), the existence of a position
ji,l ∈ N such thatW(πi,l, ji,l) ≤ r, K(v), πi,l[ji,l] |= Ψ′ and K(v), πi,l[j

′] |= Ψ
for all j′ < ji,l implying further, for all i and runs π′ ∈ Run(K(v), si), the
existence of l such thatW(π′, k) =W(πi,l, k+1)−fi(v) and π′[k] = πi,l[k+1]
for 0 ≤ k ≤ |πi,l| − 1.
Therefore, for all i and runs π′ ∈ Run(K(v), s), W(π′, ji,l − 1) ≤ r − fi(v),
K(v), π′i,l[ji,l − 1] |= Ψ′ and K(v), π′i,l[j

′′
i,l] |= Ψ for all j′′i,l < ji,l − 1.

W(π′i,l, ji,l−1) ≤ r−fi(v) impliesW(π′i,l, ji,l−1) < supX ′−fi(v) implying,
for all i, the existence of ri ∈ Q≥0 such thatW(π′i,l, ji,l−1) ≤ ri < supX ′−
fi(v) implying further, for all i that K(v), si |= ∀Ψ U≤ri Ψ′.
This implies, by the inductive hypothesis, that AGmax(ui)(v) ≤ ri for all i,
implying further, for all i, that AGmax(ui)(v) + fi(v) ≤ ri < supX ′ leading
to a contradiction. Therefore, inf Y = supX ′ = AGmax(v)(v).

ut

Proofs of Section 6

Proof (of Lemma 18). Recall that if Y = a ·X + b then E[Y] = a · E[X] + b.
Therefore E[J] = P(E[X]) and, by Equation (1) we obtain P(E[X]), s |= Φ if
and only if E[X] ∈ JP, s |= ΦK. ut

On the Verification of Weighted Kripke Structures Under Uncertainty 25

Proof (of Lemma 19). By definition of P and Equation (1), we have that

{K ∈WKSJ | K, s |= Φ} = {P(v) | v ∈ JP, s |= ΦK})

Therefore, by def. of ΣJ and measurability of affine transformations we we have
that the claim holds iff JP, s |= ΦK ∈ B(Rk).

Let G be the EPDG rooted at 〈s,Φ〉. By Lemma 15 we have the equality
JP, s |= ΦK = {v ∈ VG | AGmin(〈s,Φ〉)(v) ≤ 0}, which can be described by
means of a quantifier-free first-order formula in the linear theory of the reals.
Since sigma algebras are closes under complement (i.e., negation), countable
unions (i.e., disjunctions) and countable intersections (i.e., conjunctions) and,
furthermore, affine transformations are measurable, the claim holds true. ut

Proof (of Theorem 20). The claim holds true according to the following equali-
ties.

P [J , s |= Φ] = P [J]({K ∈WKSJ | K, s |= Φ}) (by (5))

= P [P ◦X]({K ∈WKSJ | K, s |= Φ}) (J = P ◦X)

= P [P ◦X](P(JP, s |= ΦK)) (def. P and Eq. (1))

= P ((P ◦X)−1(P(JP, s |= ΦK)) (def. push-forward)

= P (X−1(JP, s |= ΦK)) ((P ◦X)−1 = X−1 ◦ P−1)

= P [X ∈ JP, s |= ΦK] . (def. push-forward)

ut

	On the Verification of Weighted Kripke Structures Under Uncertainty

