Automatic Synthesis of Specifications
for First Order Curry Programs

Giovanni Bacci Marco Comini

DIMI, University of Udine (Italy)
giovanni.bacci@uniud.it, marco.comini@uniud.it

Abstract

This paper presents a technique to automatically infer algebraic
property-oriented specifications from first-order Curry programs.
Curry is a lazy functional logic language and the interaction be-
tween laziness and logical variables raises some additional difficul-
ties with respect to other proposals for functional languages. Our
technique statically infers from the source code of a Curry pro-
gram a specification which consists of a set of equations relating
(nested) operation calls that have the same behavior. We propose
a (glass-box) semantic-based inference method which relies on a
fully-abstract (condensed) semantics for achieving, to some extent,
the correctness of the inferred specification, differently from other
(black-box) approaches based on testing techniques.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ing of programs]: Specifying and Verifying and Reasoning about
programs—Specification techniques; D.3.2 [Programming Lan-
guages]: Constraint and logic languages

General Terms Documentation, Languages, Verification

Keywords Curry, property-oriented specifications, semantic-based
inference methods

1.

Specifications have been widely used for several purposes: they
can be used to aid (formal) verification, validation or testing, to
instrument software development, as summaries in program under-
standing, as documentation of programs, to discover components
in libraries or services in a network context, etc. [2, 8, 11, 12, 15,

, 19, 22]. Depending on the context and the use of specifica-
tions, they can be defined, either manually or automatically, be-
fore coding (e.g. for validation purposes), during the program cod-
ing (e.g. for testing or understanding purposes), or after the code
has been written (for verification or documentation). We can find
several proposals of (automatic) inference of high-level specifica-
tions (from an executable or from the source code) of a system, like
[2, 8, 12, 15], which have proven to be very helpful.

In the literature, specification formalisms have been classified
through some common characteristics [16]. It is frequent to distin-
guish between property-oriented specifications and model-oriented

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’12, September 19-21, 2012, Leuven, Belgium.

Copyright © 2012 ACM 978-1-4503-1522-7/12/09. .. $10.00

25

Marco A. Feliu

DSIC, Universitat Politécnica de Valéncia (Spain)
mfeliu@dsic.upv.es, villanue@dsic.upv.es

Alicia Villanueva

or functional specifications. It can be said that property-oriented
specifications are at a higher description level than other kinds of
specifications: they consist in an indirect definition of the system’s
behavior by means of stating a set of properties, usually in the form
of axioms, that the system must satisfy [20, 21]. In other words,
a specification does not represent the functionality of the program
(the output of the system) but its properties in terms of relations
among the operations that can be invoked in the program (i.e., iden-
tifies different calls that have the same behavior when executed).
This kind of specifications is particularly well suited for program
understanding: the user can realize non-evident information about
the behavior of a given function by observing its relation with other
functions. Moreover, the inferred properties can manifest potential
symptoms of program errors which can be used as input for (for-
mal) validation and verification purposes.

Clearly, the task of automatically inferring program specifica-
tions is in general undecidable and, given the complexity of the
problem, there exists a large number of different proposals which
impose several restrictions. Many aspects vary from one solution to
another: the kind of specifications that are computed (e.g., model-
oriented vs. property-oriented specifications), the kind of programs
considered, the correctness or completeness of the method, etc.

We can identify two mainstream approaches to perform the in-
ference of specifications: glass-box and black-box. The glass-box
approach [2, 8] assumes that the source code of the program is
available. In this context, the goal of inferring a specification is
mainly applied to document the code, or to understand it [8]. There-
fore, the specification must be more succinct and comprehensible
than the source code itself. The inferred specification can also be
used to automatize the testing process of the program [8] or to ver-
ify that a given property holds [2]. The black-box approach [12, 15]
works only by running the executable. This means that the only in-
formation used during the inference process is the input-output be-
havior of the program. In this setting, the inferred specification is
often used to discover the functionality of the system (or services
in a network) [12]. Although black-box approaches work without
any restriction on the considered language —which is rarely the case
in a glass-box approach— in general, they cannot guarantee the cor-
rectness of the results (whereas indeed semantics-based glass-box
approaches can).

For this work, we took inspiration from QuickSpec [8], which
is an (almost) black-box inference approach for Haskell programs
[18] based on testing. QuickSpec automatically infers program
specifications as sets of equations of the form e; = e2, where e,
e are generic program expressions that (should) have the same
computational behavior. This approach has two properties that we
like:

it is completely automatic as it needs only the program to run,
plus some indications on target functions and generic values
to be employed in equations, and

the outcomes are very intuitive since they are expressed only in
terms of the program components, so the user does not need
any kind of extra knowledge to interpret the results.

However, our proposal ended up being radically different from
QuickSpec:

e First, we aim to infer correct (algebraic) property-oriented
specifications. To this end, instead of a testing-based approach,
we propose a glass-box semantic-based approach.

Second, we consider the functional logic language Curry [13,

]. Curry is a multi-paradigm programming language that
combines in a seamless way features from functional program-
ming (nested expressions, lazy evaluation, higher-order func-
tions) and logic programming (logical variables, partial data
structures, built-in search). Due to lazy evaluation in presence
of (free) logical variables, the problem of inferring specifica-
tions for this kind of languages poses several additional prob-
lems w.r.t. other paradigms. We discuss these issues in Sec-
tion 2.

In the rest of the paper, we first introduce the problem of gen-
erating useful specifications for the functional logic paradigm by
discussing a simple, illustrative example. In Section 3, we define
our notion of specification, which is composed of equations of dif-
ferent kinds. Thereafter, in Section 4, we explain how the specifi-
cations are computed in detail. In Section 5 we show some exam-
ples of specifications computed by the prototype implementing the
technique. Finally, Section 6 discusses the most related work and
Section 7 concludes.

2. Analysis of the issues posed by the logical
features of Curry

Curry is a lazy functional logic language which admits free (logi-
cal) variables in expressions and whose program rules are evaluated
non-deterministically. Differently from the functional case', due to
the logical features, an equation e; = ez can be interpreted in many
different ways. We will discuss the key points of the problem by
means of a (very simple) illustrative example.

The syntax of Curry is very similar to that of Haskell. Variables
and function names start with a character in lower case, whereas
data constructors and type names start with a letter in upper case.
For a complete description of the Curry language, the interested
reader can consult [14]. In this work, we assume that the reader is
familiar with the syntax and basic semantic notions of Haskell.

EXAMPLE 2.1 (BOOLEAN LOGIC EXAMPLE) ___
Consider the definition of the boolean data type with values True
and False and operations and, or, not and imp:

and True x = x

and False _ = False
or True _ = True

or False x = x

not True = False
not False = True
imp False x = True
imp True x = X

This is a pretty standard “short-cut” definition of boolean connec-
tives. For example, the definition of and states that whenever the

! Actually, different from a language without logical variables that may be
instantiated during execution.

first argument is equal to False, the function returns the value
False, regardless of the value of the second argument. Since the
language is lazy, in this case the second argument will not be eval-
uated.

For this example, one could expect a (property-oriented) specifica-
tion with equations like?

imp x y =or (not x) y (2.1)
not (or x y) =and (not x) (not y) (2.2)
not (and x y) = or (not x) (not y) (2.3)
not (not x) =x 2.4)
and x (and y z) = and (and x y) 2z (2.5)
and x y=and y x (2.6)

which are well-known laws among the (theoretical) boolean op-
erators. This comprehensible specification aids the user to learn
the properties of the program. In addition, the specification can be
useful to detect bugs in the program by observing both, properties
(equations) that occur in the specification but were not expected,
and expected equations that are missing. These equations, of the
form e; = e, can be read as

all possible outcomes for eiare also outcomes for ez,
and vice versa. 2.7)

In the following, we call this notion of equivalence computed result
equivalence and we denote it by =cx.

Actually, Equations (2.1), (2.2), (2.3), (2.5) and (2.6) are liter-
ally valid in this sense since, in Curry, free variables are admitted
in expressions, and the mentioned equations are valid as they are.
This is quite different from the pure functional case where equa-
tions have to be interpreted as properties that hold for any ground
instance of the variables occurring in the equation.

On the contrary, Equation (2.4) is not literally valid. Let
us first introduce the notation for evaluations. The expression
{x/True} - True denotes that the normal form True (at the right of
the - symbol) has been reached with computed answer substitution
{x/True} (at the left of the - symbol). Now we are ready to dis-
cuss Equation (2.4). The goal on the left hand side of the equation
not (not x) evaluates to two normal forms: {x/True} - True
and {x/False} - False, whereas the right hand side of the equa-
tion x evaluates just to {} - x. Note however that any ground in-
stance of the two goals evaluates to the same results, namely both
True andnot (not True) evaluate to {} - True, and both False
and not (not False) evaluate to {} - False.

This fact motivates the use of an additional notion of equiva-
lence, called ground equivalence, which can be helpful for the user
since the equations that hold under this equivalence represent, in
general, interesting properties of the program. We denote it by =¢.
This notion coincides with the (only possible) equivalence notion
used in the pure functional paradigm: two terms are ground equiv-
alent if, for all ground instances, the outcomes of both terms coin-
cide.

Because of the presence of logical variables, there is another
very relevant difference w.r.t. the pure functional case, concerned
with contextual equivalence: given a valid equation e; = e2, is
it true that, for any context C, the equation Cle1] = Cles] still
holds? Curry is not referentially transparent® w.r.t. its operational
behavior, i.e., an expression can produce different computed values

2 Tn this section, our main goal is to give the intuition of the specification
computed by our approach, thus we show just a subset of the equations
satisfied by the program.

3The concept of referential transparency of a language can be stated in
terms of a formal semantics as: the semantics equivalence of two expres-

when it is embedded in a context that binds its free variables (as
shown by the following example), which makes the answer to the
question posed above not straightforward.

EXAMPLE 2.2
Given a program with the following rules

g x =C (h x)
g’ A =CA
h A=A

f (C x) B =3B

the expressions g x and g’ x compute the same result, namely
{x/A} - C A. However, the expression f (g x) x computes one
result, namely {x/B} - B, while expression £ (g’ x) x computes
none.

Thus, in the Curry case, becomes mandatory to additionally ask
in the equivalence notion of (2.7) that the outcomes must be equal
also when the two terms are embedded within any context. We call
this equivalence contextual equivalence and we denote it by =c.
Actually, Equations (2.1), (2.2), (2.3) and (2.5) are valid w.r.t. this
equivalence notion.

We can see that =¢ is (obviously) stronger than =cz, which
is in turn stronger than =¢. As a conclusion, for our example we
would get the following (partial) specification.*

imp x y =c or (not x) y

not (or x y) =c and (not x) (not y)

not (and x y) =c or (not x) (not y)

x (and y z) =¢ and (and x y) z
(not x) =¢ x
X y=¢and y x

This example has shown, first, the kind of property-oriented
specifications that we want to compute from the program, and
second, the need to consider different kinds of equalities between
terms in order to get a useful specification. It is worth noticing that
adopting only a notion of equivalence based on the referentially
transparent semantics (the =¢ equivalence) can be too restrictive:
we may lose important properties. However, by using the just the
weaker notions we cannot know if two equivalent expression are
also equivalent within any context.

The need of determining =¢ equalities can explain the rea-
son because we believe that, in the case of Curry, the use of a
semantics-based approach can be more suited than testing-based
approaches. In a test-based approach expressions should have to be
nested within some outer context in order to establish their =¢
equivalence. Since the number of needed terms to be evaluated
grows exponentially w.r.t. the depth of nestings, the addition of
a further outer context would dramatically alter the performance.
Moreover, if we try to mitigate this problem by reducing the num-
ber of terms/tests to be checked, the quality of the produced equa-
tions degrades sensibly. On the contrary, a semantics-based ap-
proach, based on a fully abstract semantics, achieves the =¢ equiv-
alence by construction.

3. Formalization of equivalence notions

In this section, we formally present all the kinds of term equiva-
lence notions that are used to compute equations of the specifica-

sions e, e/ implies the semantics equivalence of e and e’ when used within
any context C[-]. Namely, Ve, e/, C. [e] = [¢/] = [Cle]] = [C[e/]].

4 As we will show later, our technique computes a complete specification
for a specific size of terms in equations.

27

tion. We need first to introduce some basic formal notions that are
used in the rest of the paper.

We say that a first order Curry program is a set of rules P
built over a signature > which is partitioned in C, the constructor
symbols, and D, the defined symbols. V denotes a (fixed) countably
infinite set of variables and 7(X, V) denotes the terms built over
signature X and variables V. A fresh variable is a variable that
appears nowhere else.

The semantics. We evaluate first order Curry programs on the
condensed, goal-independent semantics recently defined in [3, 4]
for functional logic programs. We preferred this semantics instead
of the established (small-step) operational and I/O semantics [I,

] because they do not fulfill referential transparency, whereas the
former does. This fact makes the (more elaborated) semantics of
[3, 4] an appropriate base semantics for computing specifications
w.r.t. =c. Moreover, this semantics has another property which is
very important from a pragmatical point of view: it is condensed,
meaning that denotations are the smallest possible (between all
those semantics which are fully abstract). This is an almost essen-
tial feature in order to develop a semantic-based tool which has to
compute the semantics. In particular, with this semantics it is rea-
sonable to compute a finite number of iterations of the program’s
denotation itself, while the computation of the other mentioned se-
mantics is not.

The denotation F[P] of a program P is the least fixed-point
of an immediate consequence operator P [P]. This operator is
based on a term evaluation function E[[t] which, for any term
t € T(X,V), gives the semantics of ¢ as £ [t] 7py. Intuitively,
the evaluation £ [[t] 7ppj computes a tree-like structure collecting
the “relevant history” of the computation of all computed results
of ¢, abstracting from function calls and focusing only on the way
in which the result is built. In particular, every leaf of the tree
represents a normal form of the initial term. Nodes are pairs of
the form o - s, where o is a substitution (binding variables of the
initial expression with linear constructor terms), and s is a partially
computed value, that is, a term in 7(C,V U V,) that may contain
special variables go, 01, ... € V, (aset disjoint from V) indicating
an unevaluated subterm. Leaves with no occurrences of special
variables are computed results. We denote by cr(T") the set of
computed results of the semantic tree 7.

Full-abstraction w.r.t. the behavior and referential transparency
of the semantics are proven in [3]. Thus, it holds that ¢r(E [t] = p7)
corresponds to the set of computed outcomes of ¢ using P. More-
over, given two terms e and €, and a generic context C[], it
holds that if E[e]rjp; = E[€']Fpry. then E[Cle]]lrpy =
glCleN Frpr-

The following states the correctness of the semantics.

THEOREM 3.1 ([3]) Let P be a first-order Curry program and t
be a term in T (X, V). Then cr(E[[t] r1py) corresponds to the set
of computed outcomes of t using P.

Moreover, £ [-] 7y fulfills referential transparency:

THEOREM 3.2 Let P be a first-order Curry program, e, e’ terms

in T(X,V), and C|-] be a context. If E[e]rp] = E[€']F1pP].

then € [[C[e“]]:[[p]] =& [[C[el]]]}'ﬂp]] .

EXAMPLE 3.3 (EXAMPLE 2.2 CONTINUED) ____
The computed semantics for the program P in Example 2.2 is

the following:

gx—e-o0S5e-Cc oL {x/A}-CA

g’ x—e-0% {x/A}-C A

hxe 0 {x/A}-A

fxy—e o3 {x/Cxy/B}-B

FIP] =

The semantics of a program P is a family of semantic trees indexed
by most general expressions (a function symbol applied to distinct
variables). Edges in the semantic tree are labeled with the special
variable that is instantiated with an expression (that may contain
another special variable). Below we show the evaluation of the two
expressions that lead to different computed results in the example:

E[f (g x) x]rpp =c-0 > {x/B}-B
€t (& © x[rpy=c-0

Note that ¢ - g is not a computed result due to the occurrence of the
o variable.

Even if this semantics is condensed, the trees in denotations can be
infinite both in depth and in width, as we show with the following
example.

EXAMPLE 3.4
Consider the classical append function:

append [1 y =y
append (x:xs) y = x:(append xs y)

The semantics of the function append in F[P] is
append x y

{x/x11} - (x1:)
_—

o3 {x/x1:x81} (x1:01) Q1
01
{x/x1:x2:x82} - (x1:x2:02)

The dotted triangle in the figure denotes that the semantics has not
been completely computed.

In order to deal with infinite trees, we need to use an ap-
proximated (abstract) semantics (obtained by abstract interpreta-
tion [9, 10]) for the computation of our inference method (in Sec-
tion 4). A discussion about effectiveness and precision regarding
this issue is given in Section 4.1.

The specification. Formally, an algebraic specification S is a set
of (sequences of) equations of the form t1 =k t2 =k ... =Kk tn,
with K € {C, CR, G} and t1,t2,...,tn € T(3,V). K distin-
guishes the kinds of computational equalities that we previously
informally discussed, which we now present formally.

Contextual Equivalence =c. This equivalence states that two
terms ¢1 and ¢ are equivalent if C'[t1] and C[t2] have the same
behavior for any context C[-]. This is the most difficult equiva-
lence to be established by testing approaches. However, by us-
ing the semantics F [P] it is really easy because the semantics
is fully abstract w.r.t. the contextual program behavior equiv-
alence [3]. Therefore, two terms ¢1 and ¢» are related by the
contextual relation =¢ if and only if their semantics coincide,
namely

t1 =c t2 <= 5[[1511]]:[13]] = 5[[752]]]:[[13]]

Intuitively, due to the definition of this semantics, this means
that all the ways in which these two terms reach their normal
forms coincide. Note that =¢ does not capture termination
properties, which is out of our current scope. However, thanks
to the abstraction of the semantics, the inference technique
that we are now proposing can work even if we have a non-
terminating function, a situation in which black-box approaches
cannot work at all.

Computed-result equivalence =.. This notion of equivalence
states that two terms are equivalent when the outcomes of their

28

evaluation are the same. Therefore, the computed-result equiva-
lence abstracts from the way in which the results evolve during
computation.

It is important to note that we can determine =cr just by
collecting the leaves of £ [e] 7 py. This means that if we define
a function cr that, given a semantic tree computed by the
evaluation function, collects the leaves of the tree, then it holds
that

t1 =cr t2 <= cr(E[t1]#1py) = cr(Et2]Frry)

The =cr equivalence is coarser than =¢ (=c¢ C =cg) as
shown by Example 2.2.

Ground Equivalence =. This equivalence states that two terms
are equivalent if all their possible ground instances have the
same outcomes. This equivalence can be obtained by generating
all ground instances of the leaves of & [e] »pj. We will discuss
on possible effective implementations of this notion further
ahead.

Note that the ground equivalence = is the only possible notion
in the pure functional paradigm. This fact allows one to have an
intuition of the reason why the problem of specification synthesis
is more complex in the functional logic paradigm.

To summarize, by construction, we have that =¢c C =cz C =¢
and only =c is referentially transparent (i.e., a congruence w.r.t.
contextual embedding).

4. Deriving Specifications from Programs

Now we are ready to describe the process of inferring specifica-
tions. The input of the process consists of the Curry program to be
analyzed and two additional parameters: a relevant API, denoted
¥", and a maximum term size, maz_size. The relevant API allows
the user to choose the operations in the program that will be present
in the inferred specification, whereas the maximum term size limits
the size of the terms in the specification. As a consequence, these
two parameters tune the granularity of the specification, both mak-
ing the process terminating and allowing the user to keep the spec-
ification concise and easy to understand. The output consists of a
set of equations represented by equivalence classes of terms. Note
that inferred equations may differ for the same program depending
on the considered API and on the maximum term size. Similarly
to other property-oriented approaches like [&], the computed spec-
ification is complete up to terms of size max_size, i.e., it includes
all the properties (relations) that hold between the operations in the
relevant API and that are expressible by terms of size less or equal
than max_size.

The inference process consists of three phases, as depicted in
Figure 1. First, (an approximation of) the semantics of the input
program is computed. Second, a partition of terms, formed with
functions from the relevant API of size less or equal to the pro-
vided maximum size is computed. In our implementation, the size
of a term is determined by its depth; however, the inference process
is parametric w.r.t. the size function, thus other notions for size
are allowed (e.g., number of parameters, length, etc.). Each equiv-
alence class of the partition contains terms that are equivalent w.r.t.
the contextual equivalence =¢ defined in Section 3. Finally, the
equations of the specification are generated: first, the equations of
the contextual partition are computed, and then, the equations cor-
responding to the other two notions of equivalence are computed
by transforming the semantics.

In the following, we explain in detail the phases of the computa-
tion process by referring to the pseudo-code given in Algorithm 1.
For the sake of comprehension, we present an untyped version of
the algorithm. The actual one is a straightforward modification con-
formant w.r.t. types.

Inference Process

Curry Compute Generation
Program (abstract) of =¢
Semantics classification

Equations
generation

APL: X" |

max_size —|

Specification

Transformation
of the
Semantics

Figure 1. A general view of the inference process.

Algorithm 1 Inference of an algebraic specification

Require: Program P;
Program’s relevant API X"
Maximum term size max_size

1. Compute F [P] : the (abstract) semantics of P

2. part < initial_part(F[P])

3. repeat

4. part’ < part

5. forall f/n € X" do

6. for all ecy, ..., ec, € part such that at least one ec; has

been introduced in the previous iteration do
7. t + f(rep(eci),...,rep(ecy)) where the rep(ec;)
are renamed apart
8. if t ¢ part and size(t) < maz_size then
9. s <= E[t] 7ppy : Compute the (abstract) semantics
of term ¢

10. add_to_partition(t, s, part’)
11. end if
12. end for
13. end for

14. until part’ = part

15. specification <

16. add_equations(specification, part)

17. for all kind € [CR,G] do

18. part < transform_semantics(kind, part)
19. add_equations(specification, part)

20. end for

21. return specification

Computation of the abstract semantics (and initial classification).
The first phase of the algorithm, Lines 1 to 2 (in Algorithm 1),
is the computation of the initial classification that is needed to
compute the classification w.r.t. =¢. It is based on the computation
of an approximation of the semantics of the program (abstract
semantics).

Terms are classified by their semantics into a data structure,
which we call partition, consisting of a set of equivalence classes
(ec) formed by

e sem(ec): the semantics of (all) the terms in that class

e rep(ec): the representative term of the class, which is defined
as the smallest term in the class (w.r.t. the function size), and

e terms(ec): the set of terms belonging to that equivalence class.

The representative term is used in order to avoid much redundancy
in the generation of equations. The generation process is iterative,
thus we generate first equations of smaller size, and then we incre-
ment the size until the size limit is reached. Instead of using every
term of an equivalence class to build new terms of greater size, we
just use the representative term.

29

With the program’s semantics, the initial_part function builds
the initial classification which contains:

e one class for a free (logical) variable (€[] 7[py, , {2});’

e the classes for any built-in or user-defined constructor.

During the definition of the initial classification, it might occur
that two terms, for instance t1 := f(x1,...,2zn) and tz :=
9(y1, .. .,Yn), have the same semantics. If this happens, we don’t
generate two different classes, one for each term, but the second
generated term is added to the class of the first one. For this
particular example, we would have (€ [t1]#1p], t1, {t1,t2}).

Generation of =c classification. The second phase of the algo-
rithm, Lines 3 to 14, is the (iterative) computation of the classifica-
tion of terms w.r.t. =¢. As mentioned before, this classification is
also the basis for the generation of the other kinds of equivalence
classes.

We iteratively select all symbols f/n of the relevant API X"
(Line 5) %and n equivalence classes ec1, . . ., ecy, from the current
partition (Line 6) such that at least one ec; was newly produced
in the previous iteration. We build the term ¢ := f(t1,...,tn),
where each ¢; is the representative term of ec;, i.e., t; = rep(ec;).
In this way, by construction, the term ¢ has surely not been con-
sidered yet; Then, we compute the semantics s = £ [t] r(py and
update the current partition part’ by using the auxiliary method
add_to_partition(t, s, part’) (Lines 7 to 11). Here, the composi-
tionality of the semantics makes possible to compute the semantics
of terms (Line 9) efficaciously: since the semantics s; = sem(ec;)
for each term ¢; is already stored in ec;, then the computation of the
semantics of ¢ can be done in an efficient way just by nesting the
semantics s; into the semantics of f(z1,...,x,). This semantics
nesting operation is the core of the £ operation.”

The add_to_partition(t, s, part) function looks for an equiv-
alence class ec in the current classification part whose semantics
coincides with s. If it is found, then the term ¢ is added to the set
of terms in ec. Otherwise, a new equivalence class (s, ¢, {t}) is
created.

If the partition suffers any modification during the current iter-
ation (i.e., any term is added to the partition), then the algorithm
iterates. This phase terminates eventually because at each iteration
we consider, by construction, terms which are different from those
already existing in the partition and whose size is strictly greater
than the size of its subterms (but the size is bounded by maz _size).

The following example illustrates how the iterative process
works:

3 The typed version of the inference method uses one variable for each type.
6 Following the standard notation f /7 denotes a function f of arity n.

7 The interested reader can see [3] for the technical details about the seman-
tic operators.

EXAMPLE 4.1

Let us recall the program of Example 2.1 and choose as relevant
API the functions and, or and not. The following are the terms
considered during the first iteration:

t1.1 :=not x
tio:=and x y
ti3:=or xy

Since the semantics of all these terms are different, three new
classes are added to the initial partition. Thus, the partition at the
end of the first iteration consists of four equivalence classes: the
three corresponding to terms ¢1.1, t1.2 and ;.3 and the equivalence
class for the boolean free variable.

Then, during the second iteration, the following two terms
(among others) are built

t2.1 := and (not x) (not x’)

ta.o :=mnot (or x y)

More specifically, the term ¢2.1 is built as the instantiation of ¢ 2
with ¢1.1 (in both arguments), and the term t2 o is the instantiation
of t1.1 with ¢1.3. The semantics of these two terms is the same,
but it is different from the semantics of the existing equivalence
classes. Therefore, during this iteration (at least) a new class ecy
for this new semantics is added, having as representative the term
ta.o (i.e., rep(ect) = t2.2).

From this point on, only the representative of the class will
be used for constructing new terms. This means that terms like
not (and (not x) (not x’)), which is the instantiation of ¢1.1
with ¢2.1, will never be built since only 2.1 can be used.

We recall here that, thanks to the closedness w.r.t. context of
the semantics, this strategy for generating terms is safe. In other
words, when we avoid to build a term, it is because it is not able to
produce a behavior different from the behaviors already included
by the existing terms, thus we are not losing completeness.

Although the overall strategy has been organized in order to
avoid much redundancy in equations, there is one additional issue
that may introduce a little redundancy. In particular, it might occur
that we generate and classify a term which introduces a property
that can be deduced from other equations.

Let us discuss this with an artificial example that uses the terms
in Example 4.1.

EXAMPLE 4.2
The two terms t2.1 and t2.2 belong to the same equivalence
class, t2.1,t2.2 € terms(ec1), which means that, as we describe
below, the equation and (not x) (not y) =¢ not (or x y)
can be generated. Now, assume that there exists a second equiva-
lence class, eco, that includes the terms not (not x) and x, thus
allowing the generation of the equation not (not x) =c¢ x.

Let us move to the following iteration and assume that t2.1
is the representative of eci. Then, one of the built terms is
not (and (not x) (mot y)), which is the instantiation of
not x with t2.1. Let us suppose that the semantics of this term
is the same as that of the term or x y, thus it is added to its
equivalence class. This implies that the corresponding equation
not (and (not x) (mot y)) =¢ or x y will be generated.
However, this equation is redundant because it can be deduced
from the other (smaller) two.

These redundant equations are not common. In fact, the example
above is not a real one since in our example the generated equation
is and (not x) (not y) =cr mnot (or x y). Moreover, as
we will illustrate later, the eventual presence of these redundant
equations does not propagate to other equations.

30

Generation of the specification The third phase of the algo-
rithm (Lines 15 to 20) constructs the specification for the pro-
vided Curry program. First, Line 16 computes the =¢ equations
from the current partition. Since we have avoided much redundancy
thanks to the strategy used to generate the equivalence classes, the
add_equations function needs only to take each equivalence class
with more than one term and generate equations for these terms.

This function generates also a side effect on the equivalence
classes that is needed in the successive steps. Namely, it modifies
the third component of the classes so that it replaces the (non-
singleton) set of terms with a singleton set containing just the
representative term.

Then, Lines 17 to 20 compute the equations corresponding to
the other equivalence notions defined in Section 3. Let us explain
in detail the case for the computed result equations (kind CR).
As already noted, from the (tree) semantics 7' in the equivalence
classes computed during the second phase of the algorithm, it
is possible to construct (by losing the tree internal structure and
collecting just the computed result leaves cr(7")) the semantics
that models the computed result behavior. Therefore, we apply this
transformation to the semantic values of each equivalence class.
After the transformation, some of the equivalence classes which
had different semantic values may now collapse into the same
class. This transformation and reclassification is performed by the
transform_semantics function. The resulting (coarser) partition
is then used to produce the =cr equations by an application of
add_equations.

Thanks to the fact that add_equations ends with a partition
made of just singleton term sets, we cannot generate (again) equa-
tions t1 =cr t2 when an equation {1 =c t2 had been already
issued.

Let us clarify this phase by an example.

EXAMPLE 4.3

Assume we have a partition consisting of three equivalence
classes with semantics s1, s2 and s3 and representative terms %11,
tzg and t312

ec1 = (s1,t11, {t11,t12, t13})
eco = (s2,t22, {t217 t22}>
ecs = (s3,ta1, {ta1})

The add_equations procedure generates the equations

{t11 =c¢ t12 =c¢ t13,
to1 =c taa}
and, as side effect, the partition becomes
ec1 = (s1,t11, {t11})
eco = (82, taz, {t22})
ecs = (s3,ta1, {ts1})
Now, assume that cr(s1) = xo and cr(s2) = cr(s3) = z1. Then,
after applying transform_semantics, we obtain the new partition
eca = {xo, t11, {t11})
ecs = (x1, taz, {t22,t31})
Hence, the only new equation is t22 =c¢r t31. Indeed, equation
t11 =cr ti2 is uninteresting, since we already know t11 =c %12

and equation t21 =cr t31 is redundant (because t21 =c¢ t22 and
t22 =cr t31).

In summary, if £ =¢ t2 holds, then 1 =(cr, ¢} t2 are not present
in the specification.

The same strategy can be used to generate also the = kind
of equations. Conceptually, this could be done with a semantic

transformation equations. Conceptually, this could be done with
a semantic transformation which replaces each free variable in
all computed result with all its ground instances. In practice, we
can use a completely dual approach, were we use a variable to
represent all its possible ground instancies. The transformation
which corresponds to this representation

e retains only the most general instancies of the original seman-
tics (removing computed results which are instancies of others)
and,

replaces a set of computed results R with its common anti-
instance r when appropriate. This happens when the set of all
ground instancies of r is the same as that of the union of all
ground instancies of all elements in R. This can be implemented
by checking if we have a set with all the constructors of a
given type (applied to free variables), then, we replace the set of
constructors by a free variable and then we repeat the process
until we reach a fix point.

In this way the semantics are transformed by removing further
internal structure and again classes may collapse and new equations
(w.r.t. =¢) are generated.

4.1 Effectivity and efficiency considerations

In a semantic-based approach, one of the main problems to be
tackled is effectiveness. The semantics of a program is in general
infinite and thus we use abstract interpretation [9] in order to have
a terminating method. More specifically, in this work we use a
correct abstraction of the semantics of [3, 5] over the depth(k)
abstract domain. In the depth(k) abstraction, terms (occurring in
the nodes of the semantic trees) are “cut” at depth k by replacing
them with cut variables, distinct from program variables. Hence,
for a given signature 3, the universe of abstract semantic trees is
finite (although it increases exponentially w.r.t. k). Therefore, the
finite convergence of the computation of the abstract semantics is
guaranteed.

The presence of cut variables in the nodes of the abstract seman-
tics denotes that the (partial) computed result has been abstracted.
However, if no cut variable occurs in a node, we know that it coin-
cides with a node in the concrete semantics. Thanks to this struc-
ture, depth(k) semantics is technically an over approximation of
the semantics, but simultaneously it can be very precise (concrete)
when computed results show up without “cuts”.

Therefore, equations coming from equivalence classes whose
depth(k) semantics does not contain cut variables are correct
equations, while for the others we do not know (yet). If we use
a bigger k, the latter can definitively become valid or not. Thus,
equations involving approximation are equations that have not
been falsified up to that point, analogously to what happens in the
testing-based approach. We call these equations unfalsified equa-
tions. When showing the specification, we mark the latter with a
special equivalence symbol =¢. Unfalsified equations are the only
kind of equations that testing-based approaches can compute in
general.

The main advantage of our proposal w.r.t. the testing-based
approaches is the fact that we are able to distinguish when an
equation certainly holds, and when it just can hold. Moreover, we
can deal with non terminating programs.

Since the overall construction is (almost) independent of the
actual structure of the abstract semantics, it would be possible in
the future to use other abstract domains to reach a better trade-
off between efficiency of the computation and accuracy of the
specifications.

31

5. Case Studies

Let us start by discussing the results for a more elaborated example.
The following Curry program implements a two-sided queue where
it is possible to insert or delete elements on both left and right sides:

data Queue a = Q [a] [al

new = Q []1 []

inl x (Q xs ys) = Q (x:xs) ys

intr x (Q xs ys) = Q xs (x:ys)

outl (Q [] ys) = Q (tail (reverse ys)) []
outl (Q (_:xs) ys) = Q xs ys

outr (Q xs [1) = Q [1 (tail (reverse xs))
outr (Q xs (_:ys)) = Q xs ys

null (Q [] []) = True

null (Q (_:_) _) = False

null (Q [] (_:_)) = False

eqQ (Q xs ys) (Q xs’ ys’) =

(xs++reverse ys) =:= (xs’++reverse ys’)

The queue is implemented as two lists where the first list corre-
sponds to the first part of the queue and the second list is the sec-
ond part of the queue reversed. The inl function adds the new el-
ement to the head of the first list, whereas the inr function adds
the new element to the head of the second list (the last element of
the queue). The outl (outr) function drops one element from the
left (right) list, unless the list is empty, in which case it reverses the
other list and then swaps the two lists before removal. If we include
all the functions in the API and by assuming k& > 3 for the abstrac-
tion, an extract of the inferred specification for this program is the
following one:

null new =¢ True 5.1
new =¢ outl (inl x new) =¢
=¢ outr (inr x new) (5.2)
outl (inl x q) =c¢ outr (inr x q) (5.3)
outr (inl x new) —¢ outl (inr x new) (5.4)
inr x (inl y q@) =¢ inl y (inr x q) (5.5)
inl x (outl (inl y q)) =¢
=g outr (inl x (inr y q)) (5.6)
outl (inl x (outl q)) =g
=g outl (outl (inl x q)) 5.7
outr (outl (inl x q)) =¢
=c outl (inl x (outr q)) (5.8)
null (inl x new) —¢ null (inr x new) =¢
=¢ False 5.9
eqQ (inr x new) y =c¢ eqQ (inl x new) y (5.10)

We can see different kinds of equations in the specifications.
The asymmetry in the definition of the queue makes that Equa-
tion (5.6) holds only for ground instances. Moreover, the seman-
tics for terms in Equations (5.6) and (5.7) is abstracted (in fact,
the semantics tree is infinite for these cases). Equations (5.2), (5.3)
and (5.4) state that adding and removing one element produces
always the same result independently from the side in which we
add and remove it. Equations (5.5), (5.6), (5.7) and (5.8) show a
sort of restricted commutativity between functions. Finally, Equa-

tion (5.10) shows that, w.r.t. the user defined predicate eqQ, that
identifies queues which contain the same elements, inr x new
is equivalent to inl x new, although the internal structure of the
queue differs.

In Section 4, we have shown how we avoid much redundancy by
using a single representative for each equivalence class. However,
there is a situation in which equations may show some redundancy.
The Queue example allows us to better illustrate this fact:

EXAMPLE 5.1
Assume we are computing the specification for the Queue example
with relevant API X" = {inl, outl} following our method. The
initial partition computes four equivalence classes: one for each
of the two terms from the API and one for each of the two free
variables q and x of type Queue a and a, respectively.

ec1.1 = (s1.1,inl x q,{inl x q})
ec1.2 = (s1.2,0outl q,{outl q})
51.3,9,{qa})

51.4, X%, {X}>

During the second iteration, the term inl x (outl q) is built as
the instantiation of the representative of ec;.; with the representa-
tive of ecy.2. This term adds a new equivalence class to the parti-
tion:

ec1.3 = (
4=

€ci.

ecg.1 = (s2.1,inl x (outl q),{inl x (outl q)})

During the same iteration, also the term outl (inl x q) is built.
For the sake of this discussion, we assume that it has the same
semantics of q:

ec1.3 = (s1.3,9,{q,outl (inl x q)})

This means that the equation outl (inl x q) =¢ q will
be generated from ecy.3. Then, in the third iteration, the term
outl (inl x (outl q)) is built as the instance of the represen-
tative of ecy.o with the representative of eca.1. The semantics of
this new term coincides with that of outl g, thus ec; .2 is updated:

eci.2 = (s1.2,0utl q,{outl g,outl (inl x (outl @))})

As a consequence, the equation outl (inl x (outl q)) =¢
outl q is generated. However, this equation is redundant because
it is an instance of the equation already generated from eci 3,
outl (inl x q) =c¢ q. We recall that we have used the repre-
sentatives for building the term, thus we cannot avoid this kind of
redundancy with the strategy of just using the representatives.

Nevertheless, as we have already mentioned, these redun-
dant equations are not common. The example above is not a
real one since in our example the generated equation is q =¢
outl (inl x q). Moreover, the eventual presence of these re-
dundant equations does not propagate to other equations since,
when these (greater) terms are introduced, they are not used for
building other terms, but only the representative of the class.

It is worth noticing that the unfalsified equations for the Queue
example (Equations (5.6) and (5.7) above), represent properties
that actually hold for the program. However, it might occur that
unfalsified equations correspond to false properties of the program,
as the following example shows.

Consider the following program that computes the double of
numbers in Peano notation:

data Nat = Z | S Nat
double, double’
double Z = Z

double (S x) =

Nat -> Nat

S (S (double x))

32

double’ x = plus x X

plus Nat -> Nat -> Nat
plus Z y =y

plus (S x) y = S (plus x y)

Some of the inferred equations for the program are:
double’ (double’ (double x)) =gp
=0g double’ (double (double’ x)) (5.11)
double x ={; double’ x (5.12)
double’ (double’ x) =y, double’ (double x)=0p

=(r double (double’ x) =¢p

=gy double (double x) (5.13)
(S (double x)) =gy double (S x) (5.14)
plus (double x) y =¢; plus (double’ x) y (5.15)

We can observe that, in this case, all the equations are unfalsified
due to the nature of the example. Moreover, all equations hold with
the =cr relation. This is due to the asymmetry in the definition
of the two versions of double: although the computed results of
both versions are the same, there exist contexts in which the terms
behave differently. This characteristic of the program is not easy to
realize by just looking at the code, thus this is an example of the
usefulness of having different notions of equivalence.

Finally, Equation (5.14) is an unfalsified equation that states a
property which is false for the program. This is due to the approx-
imation of the abstraction. It is worth noting that we would need
to completely compute the (infinite) concrete semantics in order to
discard the equation from the specification.

We do not remove unfalsified equations from the specifications
since they have their own interest. Although it might be unfeasi-
ble to guarantee correctness of some equations (as in the exam-
ple above), unfalsified equations may nevertheless show behaviors
of the program which are actually correct. This is the only possi-
ble situation that arises in testing-based approaches, where all the
equations must to be considered unfalsified since it is impossible
to distinguish them from correct equations. In any case, we can try
to prove correctness of these equations by using a complementary
verification or validation technique.

5.1 AbsSpec: The prototype

We have implemented the basic functionality of this methodology
in a prototype written in Haskell. The core of the AbsSpec 1.0
prototype® consists of about 800 lines of code implementing the
tasks of generating and classifying terms. The inference core of
AbsSpec 1.0 is generic w.r.t. the abstract domain, i.e., the opera-
tions implementing the abstract domain are passed to the generic
inference process. Note that the AbsSpec 1.0 prototype invokes
the semantics’ prototype implementation, which consists of about
7500 additional lines of code. On top of the core part of the pro-
totype, the interface module implements some functions that allow
the user both to check if a specific set of equations hold, or to get the
whole specification. It is worth noting that, although in this paper
we consider as input Curry programs, the prototype also accepts
programs written in (the first order fragment of) Haskell (which are
automatically converted by orthogonalization into Curry equivalent
programs).

Unfortunately, we do not know of sets of benchmarks in the lit-
erature to be used to evaluate the prototype. Hence, we wrote some
examples as a proof of concept in order to get some impressions
on the efficacy of our proposal. Since the prototype does not han-

8 Available at http://safe-tools.dsic.upv.es/absspec.

http://safe-tools.dsic.upv.es/absspec

dle built-in arithmetic operators yet, we tested it on both Curry and
Haskell programs which do not involve arithmetics (mainly imple-
mentation of abstract data structures like queues, binary trees, ar-
rays, heaps, etc.).

The experiments were conducted on an Intel Core2 Quad CPU
Q9300(2.50GHz) with 6 Gigabytes of RAM. AbsSpec 1.0 was
compiled with version 6.12.3 of the Glorious Glasgow Haskell
Compilation System (GHC). Table 1 shows the execution times for
the inference of each program example with some additional infor-
mation. Column Program shows the name of the example program.
The first three cases correspond to the examples shown in this pa-
per. The fourth example is a more elaborated logic example where
a data structure representing formulas is defined; column Rules
shows the number of rules defining the program; column API size
shows the number of operations included in the relevant API for the
experiment. For the Booleans example, the experiment includes the
operator for the logic implication defined explicitly (not in terms of
the other boolean operators); column 7erms shows the number of
terms generated (thus, whose semantics is computed) during the
inference process; columns =c, and =z show, respectively, the
number of =¢, and =5 equivalence classes with more than one
term that have been generated.’

Our preliminary experiments show that many interesting prop-
erties hold over the depth(k) domain with low k values (we run the
prototype with depth 7 by default). Also, many interesting proper-
ties show up with max_size = 3. For example, we can see that
for the Queue example, with max_size = 2, only one equivalence
class is defined whereas for max_size = 3, 13 (sequences of) equa-
tions belong to the specification. We have used also max_size = 4,
but specifications tend to be less comprehensible for the user (64
equivalence classes for the same Queue example). Hence, increas-
ing this value should be done only when bigger terms make sense,
being at the same time very careful in choosing a sufficiently small
APIL. The Double example illustrates the usefulness of the =cp
equations: with maz_sitze = 2 we have already five of these equa-
tions.

The last example illustrates the fact that with a complex data
structure, the high number of generated terms penalizes the in-
ference process. Not that the increase of the number of generated
terms depends, not only on the number of elements included in the
relevant API (and on the number of arguments of the functions in
the API), but also on the semantics of the program. Intuitively, if
we have a program in which many terms share the same semantics,
then fewer terms will be generated.

We also made some experiments on programs which use arith-
metics by simulating the arithmetical operations using Peano’s no-
tation but, as one would expect, we got poor results.

A serious evaluation of the prototype should be done on a num-
ber of standard benchmarks (hopefully) not written by ourselves,
and we hope to get several contributions in this sense by the inter-
national community.

6. Related Work

To the best of our knowledge, in the functional logic setting there
are currently no proposals for specification synthesis. There is a
testing tool, EasyCheck [7], in which specifications are used as
the input for the testing process. Given the properties, EasyCheck
executes ground tests in order to check whether the property holds.
This tool could be used as a companion tool of ours in order to
check if the unfalsified = equations can be actually falsified.
However EasyCheck is not capable of checking the =¢ and =¢x
equations because it is based only on the execution of ground tests.

9 The prototype does not compute the = equations yet.

33

The mentioned tool QuickSpec [8] computes an algebraic spec-
ification for Haskell programs by means of (almost black-box) test-
ing. Like our approach, its inferred specifications are complete up
to a certain depth of the analyzed terms because of its exhaustive-
ness. However, the equations in their specification are all unfalsi-
fied equations due to the use of testing for the equation generation.
Instead, we follow a (glass-box) semantic-based approach that al-
lows us to compute specifications as complete as those of Quick-
Spec, but with correctness guarantees on part of them (depending
on the abstraction). We have not done an exhaustive comparison,
but performance of QuickSpec is better than that of our prototype
for similar programs. However, we have to recall that our purpose
is more ambitious since, for the case of functional-logic languages,
using just the ground equivalence is not enough: important behav-
iors regarding the loss of contextual closeness would not show up,
as shown by the double example. Moreover, we can deal with non
terminating programs.

Finally, a previous work ([6]) identifies the additional difficul-
ties for the inference of high level (property-based) specifications
for the functional-logic paradigm.

7. Conclusions and Future Work

This paper presents a method to automatically infer high-level,
property-oriented (algebraic) specifications in a functional logic
setting. A specification represents relations that hold between op-
erations (nested calls) in the program.

The method computes a concise specification of program prop-
erties from the source code of the program. We hope to have con-
vinced the reader that we reached our main goal, that is to get a
concise and clear specification that is useful for the programmer in
order to detect possible errors, or to check that the program corre-
sponds to the intended behavior.

The computed specification is particularly well suited for pro-
gram understanding since it allows to discover non-evident behav-
iors, and also to be combined with testing. In the context of (formal)
verification, the specification can be used to ease the verification
tasks, for example by using the correct equations as annotations, or
unfalsified equations as candidate axioms to be proven.

The approach relies on the computation of the semantics. There-
fore, to achieve effectiveness and good performance results, we
use a suitable abstract semantics instead of the concrete one. This
means that we may not guarantee correctness of all the equations
in the specification, but we can nevertheless infer correct equations
thanks to a good compromise between correctness and efficiency.

We have developed a prototype that implements the basic func-
tionality of the approach. We are working on the inclusion of all the
functionality described in this paper.

As future work, we plan to add another notion of equivalence
class =yeq. More specifically, when dealing with a user-defined
data type, the user may have defined a specific notion of equiv-
alence by means of an “equality” function. In this context, some
interesting equations could show up. For instance, in the Queue ex-
ample, the predicate eqQ identifies queues which contain the same
elements and Equation (5.10) should be presented as inl x new
=yeq inr x new. These equivalence classes would depend on
how the user defines the equality notion, thus we will surely need
some assumptions (to ensure that indeed the user-defined function
induces an equality relation) in order to get useful specifications.

Acknowledgments

M. A. Felid and A. Villanueva have been partially supported by the
EU (FEDER), the Spanish MICINN/MINECO under grant TIN2010-
21062-c02-02, the Spanish MEC FPU grant AP2008-00608, and
by the Generalitat Valenciana, ref. PROMETE02011/052.

Program Rules | APIsize | Term size | Terms =c =cr Time \
(# classes) (# classes)
Booleans 9 5 2 121 65 1 0m0.130s
3 2549 410 1 0m6.550s
4 6399 1378 1 0m42.320s
Queue 11 6 2 34 1 0 0m0.080s
3 132 12 1 0mO0.180s
4 473 56 8 0m0.580s
Double 5 3 2 25 0 5 0OmO0.110s
3 676 55 157 0m19.860s
4 2638 410 344 0m43.710s
BooleanDataStruct 8 4 2 42 0 0 3m53.980s
3 1648 2 0 9m0.140s
7 Z N _ _

Table 1. Inference process of example programs

References

[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational
Semantics for Declarative Multi-Paradigm Languages. Journal of
Symbolic Computation, 40(1):795-829, 2005.

G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In
29th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (POPL’02), pages 4-16, New York, NY, USA, 2002.
Acm. ISBN 1-58113-450-9. doi: http://doi.acm.org/10.1145/503272.
503275. URL http://doi.acm.org/10.1145/503272.503275.

G. Bacci. An Abstract Interpretation Framework for Semantics and
Diagnosis of Lazy Functional-Logic Languages. PhD thesis, Diparti-
mento di matematica e Informatica, Universita di Udine, 2011.

[2]

[3]

[4] G. Bacci and M. Comini. A Compact Goal-Independent Bottom-Up
Fixpoint Modeling of the Behaviour of First Order Curry. Technical
Report DIMI-UD/06/2010/RR, Dipartimento di Matematica e Infor-
matica, Universita di Udine, 2010. URL http://www.dimi.uniud.

it/comini/Papers/.

[5]1 G. Bacci and M. Comini. Abstract Diagnosis of First Order Func-
tional Logic Programs. In M. Alpuente, editor, Logic-based Pro-
gram Synthesis and Transformation, 20th International Symposium,
volume 6564 of Lecture Notes in Computer Science, pages 215-
233, Berlin, 2011. Springer-Verlag. ISBN 9783642205507. doi:

10.1007/978-3-642-20551-4_14.

G. Bacci, M. Comini, M. A. Felid, and A. Villanueva. The additional
difficulties for the automatic synthesis of specifications posed by logic
features in functional-logic languages. In ICLP (Technical Commu-
nications), volume To appear of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum Fuer Informatik, 2012.

[6]

[7

—

J. Christiansen and S. Fischer. Easycheck — test data for free. In
Proceedings of the 9th International Symposium on Functional and
Logic Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 322-336. Springer, 2008.

K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing
Formal Specifications using Testing. In 4th International Conference
on Tests and Proofs (TAP 2010), volume 6143, pages 6-21, 2010.
ISBN 978-3-642-13976-5.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, Los
Angeles, California, January 17-19, pages 238-252, New York, NY,
USA, 1977. ACM Press.

P. Cousot and R. Cousot. Systematic Design of Program Analysis
Frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, San Antonio,
Texas, January 29-31, pages 269-282, New York, NY, USA, 1979.
ACM Press.

C. Ghezzi and A. Mocci. Behavior model based component search:
an initial assessment. In Proceedings of 2010 ICSE Workshop on

[9

[10]

(1]

34

Search-driven Development: Users, Infrastructure, Tools and Evalua-
tion (SUITE’10), pages 9-12, New York, NY, USA, 2010. Acm. ISBN
978-1-60558-962-6.

[12] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behav-
ior models by graph transformation. In 31st International Conference
on Software Engineering (ICSE’09), pages 430—440, 2009.

[13] M. Hanus. A unified computation model for functional and logic pro-
gramming. In 24th ACM Symposium on Principles of Programming
Languages (POPL 97), pages 80-93, 1997.

[14] M. Hanus. Curry: An integrated functional
language (vers. 0.8.2), 2006. Available at
http://www.informatik.uni-kiel.de/ curry.

logic
URL:

[15] J. Henkel, C. Reichenbach, and A. Diwan. Discovering documentation
for java container classes. IEEE Transactions on Software Engineer-
ing, 33(8):526-542, 2007.

[16] A. A. Khwaja and J. E. Urban. A property based specification for-

malism classification. The Journal of Systems and Software, 83:2344—
2362, 2010.

I. Nunes, A. Lopes, and V. Vasconcelos. Bridging the Gap between
Algebraic Specification and Object-Oriented Generic Programming.
In S. Bensalem and D. Peled, editors, 9th International Workshop
on Runtime Verification (RV 2009), volume 5779 of Lecture Notes in
Computer Science, pages 115—131. Springer, 2009.

(17]

[18] S. Peyton Jones. Haskell 98 Language and Libraries -
The Revised Report. Cambridge University Press, Cam-
bridge, UK, 2003. ISBN 0521826144. Available at

http://www.haskell.org/definition/.

D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson.
Agile specifications. In Companion to the 24th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA 2009), pages 999-1006. Acm,
2009.

[20] H. van Vliet. Software Engineering—Principles and Practice. John
Wiley, 1993.

[21] J. M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):10-24, 1990.

[22] B. Yu, L. Kong, Y. Zhang, and H. Zhu. Testing Java Components
based on Algebraic Specifications. In First International Conference
on Software Testing, Verification, and Validation (ICST 2008), pages
190-199. IEEE Computer Society, 2008.

[19]

http://doi.acm.org/10.1145/503272.503275
http://www.dimi.uniud.it/comini/Papers/
http://www.dimi.uniud.it/comini/Papers/
http://www.informatik.uni-kiel.de/~curry
http://www.haskell.org/definition/

	Introduction
	Analysis of the issues posed by the logical features of Curry
	Formalization of equivalence notions
	Deriving Specifications from Programs
	Effectivity and efficiency considerations

	Case Studies
	AbsSpec: The prototype

	Related Work
	Conclusions and Future Work

