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Abstract. We propose a distance between continuous-time Markov chains (CTMCs) and
study the problem of computing it by comparing three different algorithmic methodologies:
iterative, linear program, and on-the-fly.

In a work presented at FoSSaCS’12, Chen et al. characterized the bisimilarity distance
of Desharnais et al. between discrete-time Markov chains as an optimal solution of a linear
program that can be solved by using the ellipsoid method. Inspired by their result, we
propose a novel linear program characterization to compute the distance in the continuous-
time settings. Differently from previous proposals, ours has a number of constraints that
is bounded by a polynomial in the size of the CTMC. This, in particular, proves that the
distance we propose can be computed in polynomial time.

Despite its theoretical importance, the proposed linear program characterization turns
out to be inefficient in practice. Nevertheless, driven by the encouraging results of our
previous work presented at TACAS’13, we propose an efficient on-the-fly algorithm which,
unlike the other mentioned solutions, computes the distances between two given states
avoiding an exhaustive exploration of the state space. This technique works by successively
refining over-approximations of the target distances using a greedy strategy which ensures
that the state space is further explored only when the current approximations are improved.

Tests performed on a consistent set of (pseudo)randomly generated CTMCs show that
our algorithm improves, on average, the efficiency of the corresponding iterative and linear
program methods with orders of magnitude.
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Introduction

Continuous-time Markov chains (CTMCs) are one of the most prominent models in perfor-
mance and dependability analysis. They are exploited in a broad range of applications, and
constitute the underlying semantics of many modeling formalisms for real-time probabilistic
systems such as Markovian queuing networks, stochastic process algebras, and calculi for
systems biology. An example of CTMC is presented in Figure 1(left). Here, state s1 goes to
state s3 and s4 with probability 1

3 and 2
3 , respectively. Each state has an associated exit-rate

representing the rate of an exponentially distributed random variable that characterizes the
residence-time in the state. For example, the probability to move from s1 to any other state

within time t ≥ 0 is given by
∫ t
0 3e−3xdx = 1 − e−3t. A state with no outgoing transitions

(as s3 in Figure 1) is called absorbing, and represents a terminating state of the system.
A key concept for reasoning about the equivalence of probabilistic systems is Larsen and

Skou’s probabilistic bisimulation for discrete-time Markov chains (MCs). This notion have
been extended to several type of probabilistic systems, including CTMCs. In Figure 1(left)
s4 and s5 are bisimilar. Moreover, although s1 and s2 move with different probabilities to
state s4 and s5, their probabilities to reach any bisimilarity class is the same, so that, also
s1 and s2 are bisimilar.

However, when the numerical values of probabilities are based on statistical sampling
or subject to error estimates, any behavioral analysis based on a notion of equivalence is
too fragile, as it only relates processes with identical behaviors. This issue is illustrated in
Figure 1(right), where the states t1 and t2 (i.e., the counterpart of s1 and s2, respectively,
after a perturbation of the transition probabilities) are not bisimilar. A similar situation
occurs considering perturbations on the exit-rates or on associated labels, if one assumes
they are taken from a metric space.

This is a common issue in applications such as, systems biology [TK10], planning
[CP11], games [CdAMR10], or security [CG09], where one is interested in knowing whether
two processes that may differ by a small amount in the real-valued parameters (probabil-
ities, rates, etc.) have “sufficiently” similar behaviours. This motivated the development
of the metric theory for probabilistic systems, initiated by Desharnais et al. [DGJP04] and
greatly developed and explored by De Alfaro, van Breugel, Worrell, and others [dAMRS07,
vBW06, vBSW08]. It consists in proposing a bisimilarity distance (pseudometric), which
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Figure 1: A CTMC (left) and an ε-perturbation of it (right), for some ε ∈ (0, 23). Labels
are represented by different colors; states are additionally labelled with their exit
rates; and transitions with probability 0 are omitted.
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measures the behavioral similarity of two models. These pseudometrics, e.g., the one pro-
posed by Desharnais et al., are parametric in a discount factor that controls the significance
of the future in the measurements.

Since van Breugel et al. have presented a fixed point characterization of the aforemen-
tioned pseudometric in [vBW01], several iterative algorithms have been developed in order
to compute its approximation up to any degree of accuracy [FPP04, vBW06, vBSW08]. Re-
cently, Chen et al. [CvBW12] proved that, for finite MCs with rational transition function,
the bisimilarity pseudometrics can be computed exactly in polynomial time. The proof con-
sists in describing the pseudometric as the solution of a linear program that can be solved
using the ellipsoid method. Although the ellipsoid method is theoretically efficient, “compu-
tational experiments with the method are very discouraging and it is in practice by no means
a competitor of the, theoretically inefficient, simplex method”, as stated in [Sch86]. Unfortu-
nately, in this case the simplex method cannot be used to speed up performances in practice,
since the linear program to be solved may have an exponential number of constraints in the
number of states of the MC.

In this paper, we introduce a bisimilarity pseudometric over CTMCs that extends that
of Desharnais et al. over MCs, and we consider the problem of computing it both from a the-
oretical and practical point of view. We show that the proposed distance can be computed
in polynomial time in the size of the CTMC. This is obtained by reducing the problem of
computing the distance to that of finding an optimal solution of a linear program that can
be solved using the ellipsoid method. Notably, differently from the proposal in [CvBW12],
our linear program characterization has a number of constraints that is bounded by a poly-
nomial in the size of the CTMC. This, in particular, allows one to avoid the use of the
ellipsoid algorithm in favor of the simplex or the interior point methods.

However, also in this case, the linear program characterization turns out to be inef-
ficient in practice, even for small CTMCs. Nevertheless, supported by the encouraging
results in our previous work [BBLM13], we propose to follow an on-the-fly approach for
computing the distance. This is inspired by an alternative characterization of the bisimi-
larity pseudometric based on the notion of coupling structure for a CTMC. Each coupling
structure is associated with a discrepancy function that represents an over-approximation
of the distance. The problem of computing the pseudometric is then reduced to that of
searching for an optimal coupling structure whose associated discrepancy coincides with
the distance. The exploration of the coupling structures is based on a greedy strategy
that, given a coupling structure, moves to a new one by ensuring an actual improvement
of the current discrepancy function. This strategy will eventually find an optimal coupling
structure. The method is sound independently from the initial starting coupling structure.
Notably, the moving strategy is based on a local update of the current coupling structure.
Since the update is local, when the goal is to compute the distance only between certain
pairs of states, the construction of the coupling structures can be done on-the-fly, delimiting
the exploration only on those states that are demanded during the computation.

The efficiency of our algorithm has been evaluated on a significant set of randomly
generated CTMCs. The results show that our algorithm performs orders of magnitude
better than the corresponding iterative and linear program implementations. Moreover, we
provide empirical evidence that our algorithm enjoys good execution running times.

One of the main practical advantages of our approach consists in that one can focus on
computing only the distances between states that are of particular interest. This is useful
in practice, for instance when large systems are considered and visiting the entire state
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space is computationally expensive. A similar issue has been considered by Comanici et
al., in [CPP12] in the case of Markov decision processes with rewards, who noticed that for
computing the approximated pseudometric one does not need to update the current value
for all the pairs at each iteration, but it is sufficient only to focus on the pairs where changes
are happening rapidly. In our approach, the termination condition is checked locally, still
ensuring that the local optimum corresponds to the global one. Our methods can also be
used in combination with approximation techniques as, for instance, to provide a least over-
approximation of the behavioral distance given over-estimates of some particular distances.

Synopsis: The paper is organized as follows. In Section 1, we recall the basic preliminaries
on continuous-time Markov chains and define the bisimilarity pseudometric. Section 2 is
devoted to the analysis of the complexity of the problem of computing such a distance. Here,
two approaches are considered: an approximated iterative method and a linear program
characterization. In Section 3, we provide an alternative characterization of the distance
based on the notion of coupling structure. This is the basis for the development of an on-
the-fly algorithm (Section 5) for the computation of the pseudometric, whose correctness
and termination is proven in Section 4. The efficiency of this algorithm is supported by
experimental results, shown in Section 6. Final remarks and conclusions are in Section 7.

1. Continuous-time Markov Chains and Bisimilarity Pseudometrics

We recall the definitions of (finite) L-labelled continuous-time Markov chains (CTMCs) for
a nonempty set of labels L, and stochastic bisimilarity over them. Then, we introduce
a behavioral pseudometric over CTMCs to considered as a quantitative generalization of
stochastic bisimilarity.

Given a set X, a discrete probability distribution over it is a finitely supported function
µ : X → [0, 1] such that µ(X) = 1, where µ(E) =

∑
x∈E µ(x), for E ⊆ X. We denote the

set of discrete probability distributions over X by D(X).

Definition 1.1 (Continuous-time Markov chain). An L-labelled continuous-time Markov
chain is a tupleM = (S,A, τ, ρ, `) consisting of a countable nonempty finite set S of states,
a set A ⊆ S of absorbing states, a transition probability function τ : S \ A → D(S), a exit
rate function ρ : S \A→ R>0, and a labeling function ` : S → L. �

The labels in L represent properties of interest that hold in a particular state according
to the labeling function ` : S → L. If s ∈ S is the current state of the system and E ⊆ S is
a subset of states, τ(s)(E) ∈ [0, 1] corresponds to the probability that a transition from s to
arbitrary s′ ∈ E is taken, and ρ(s) ∈ R>0 represents the rate of an exponentially distributed
random variable that characterizes the residence time in the state s before any transition
is taken. Therefore, the probability to make a transition from state s to any s′ ∈ E within
time unit t ∈ R≥0 is given by τ(s)(E) · exp[ρ(s)]([0, t)), where exp[r](E) =

∫
E re

−rx dx, for
any Borel subset E ⊆ R≥0 and r > 0. Absorbing states in A ⊆ S are used to represent
termination or deadlock states. An example of CTMC is shown in Figure 1.

For discrete-time Markov chains, the standard notion of behavioral equivalence is prob-
abilistic bisimulation of Larsen and Skou [LS91]. The following definition extends it to
CTMCs. To ease the notation, for A ⊆ S, we introduce the relation ≡A ⊆ S × S defined
by s ≡A s′ if either s, s′ ∈ A or s, s′ /∈ A.
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Definition 1.2 (Stochastic Bisimulation). Let M = (S,A, τ, ρ, `) be a CTMC. An equiva-
lence relation R ⊆ S × S is a stochastic bisimulation on M if whenever s R t, then

(i) s ≡A t, `(s) = `(t), and
(ii) if s, t ∈ A, then ρ(s) = ρ(t) and, for all C ∈ S/R, τ(s)(C) = τ(t)(C).

Two states s, t ∈ S are bisimilar with respect to M, written s ∼M t, if they are related by
some probabilistic bisimulation on M.

Intuitively, two states are bisimilar if they have the same labels, they agree on being
absorbing or not, and, in the case they are non-absorbing, their residence-time distributions
and probability of moving by a single transition to any given class of bisimilar states is always
the same. As an example of two stochastic bisimilar states, consider s1 and s2 in the CTMC
depicted on the left hand side of in Figure 1. A bisimulation relation that relates them is
the equivalence relation with equivalence classes given by {s1, s2}, {s3}, and {s4, s5}.

1.1. Bisimilarity Pseudometrics on CTMCs. In this section, we introduce a family of
pseudometrics on CTMCs parametric in a discount factor λ ∈ (0, 1). Following the approach
of [vBHMW07], given a CTMCM = (S,A, τ, ρ, `) we define a (1-bounded) pseudometric on
S as the least fixed point of an operator on the set [0, 1]S×S of functions from S×S to [0, 1].
This pseudometric is then shown to be adequate with respect to stochastic bisimilarity: we
prove that two states are stochastic bisimilar if and only if they have distance zero.

Recall that d : X ×X → R≥0 is a pseudometric on a set X if d(x, x) = 0 (reflexivity),
d(x, y) = d(y, x) (symmetry) and d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality), for
arbitrary x, y, z ∈ X; it is a metric if, in addition, d(x, y) = 0 iff x = y. A pair (X, d) where
d is a (pseudo)metric on X is called a (pseudo)metric space.

The operator we are going to introduce will use three key ingredients: a 1-bounded met-
ric1 dL : L×L→ [0, 1] on the set of labels, a distance between residence-time distributions,
and a distance between transition distributions. The first is meant to measure the static
differences with respect to the labels associated with the states, the last two are meant to
capture the differences in the dynamics, respectively, with respect to the continuous and
discrete probabilistic choices.

To this end, we consider two distances over probability distributions. The first one is
the, so called, total variation metric, defined for arbitrary distributions µ, ν ∈ D(R≥0) as

‖µ− ν‖TV = supE |µ(E)− ν(E)| ,
where the supremum is taken over the Borel measurable sets of R≥0. The second one is
the Kantorovich distance, which is based on the notion of coupling of probability measures,
which we introduce next in the case of probability distributions over finite sets.

Definition 1.3 (Coupling). Let S be a finite set, and let µ, ν ∈ D(S). A probability
distribution ω ∈ D(S × S) is said a coupling for (µ, ν) if, for arbitrary u, v ∈ S∑

v∈S ω(u, v) = µ(u) and
∑

u∈S ω(u, v) = ν(v) .

In other words, ω is a joint probability distribution with left and right marginal, respectively,
given by µ and ν. We denote the set of couplings for (µ, ν) by Ω(µ, ν).

1Since the set S of states is assumed to be finite, one may assume the set of labels to be so as well. Thus,
the metric dL on labels can be bounded without loss of generality.
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For a finite set S and a 1-bounded distance d : S × S → [0, 1] over it, the Kantorovich
distance is defined, for arbitrary distributions µ, ν ∈ D(S) as follows

Kd(µ, ν) = min{
∑

u,v∈S d(u, v) · ω(u, v) | ω ∈ Ω(µ, ν)} .
Intuitively, Kd lifts a (1-bounded) distance over S to a (1-bounded) distance over its prob-
ability distributions. One can show that Kd is a (pseudo)metric if d is a (pseudo)metric.

Now, consider the following functional operator.

Definition 1.4. Let M = (S,A, τ, ρ, `) be CTMC and λ ∈ (0, 1) a discount factor. The
function ∆Mλ : [0, 1]S×S → [0, 1]S×S is defined as follows, for d : S × S → [0, 1] and s, t ∈ S

∆Mλ (d)(s, t) =


1 if s 6≡A t
L(s, t) if s, t ∈ A
max{L(s, t), λ · T (d)(s, t)} if s, t /∈ A

where T : [0, 1]S×S → [0, 1]S×S and L, E : S × S → [0, 1] are respectively defined by

T (d)(s, t) = E(s, t) + (1− E(s, t)) · Kd(τ(s), τ(t)) ,

L(s, t) = dL(`(s), `(t)) , and E(s, t) = ‖exp[ρ(s)]− exp[ρ(t)]‖TV .

The functional ∆Mλ measures the difference of two states with respect to: their labels
(by means of the pseudometric L), their residence-time distributions (by means of the
pseudometric E), and their discrete probabilities to move to the next state (by means of the
Kantorovich distance). If two states disagree on been absorbing (or not) they are considered
incomparable, and their distance is set to 1. If both states are absorbing, they express no
dynamic behavior, hence they are compared statically, and their distance corresponds to
that occurring between their respective labels. Finally, if the states are non-absorbing, then
they are compared with respect to both their static and dynamic features, namely, taking
the maximum among their respective associated distances. Specifically, the value E(s, t)
corresponds to the least probability that two transitions are taken independently from the
states s and t at different moments in time. This value is used by the functional T to measure
the overall differences that might occur in the dynamics of the two states in combination
with the Kantorovich distance between their transition probability distributions.

The set [0, 1]S×S is endowed with the partial orderv defined as d v d′ iff d(s, t) ≤ d′(s, t)
for all s, t ∈ S and it forms a complete lattice. The bottom element 0 is the constant 0
function, while the top element is the constant 1 function. For any subset D ⊆ [0, 1]S×S ,
the least upper bound

⊔
D, and greatest lower bound

d
D are, respectively, given by

(
⊔
D)(s, t) = supd∈D d(s, t) and (

d
D)(s, t) = infd∈D d(s, t), for all s, t ∈ S.

It is easy to check that, for any M and λ ∈ (0, 1), ∆Mλ is monotone (i.e., whenever

d v d′, then ∆Mλ (d) v ∆Mλ (d)), thus, since ([0, 1]S×S ,v) is a complete lattice, by Tarski’s
fixed point theorem it admits least and greatest fixed points.

Definition 1.5 (Bisimilarity distance). LetM be a CTMC and λ ∈ (0, 1). The λ-discoun-
ted bisimilarity pseudometric on M, denoted by δMλ , is the least fixed point of ∆Mλ .

The rest of the section is devoted to show that the least fixed point δMλ is indeed a pseu-
dometric and, moreover, is adequate with respect to stochastic bisimilarity (Theorem 1.9).
This justifies the definition above. To this end we need some technical lemmas. In par-
ticular, we prove that ∆Mλ preserves pseudometrics (Lemma 1.6) and it is non-expansive
(Lemma 1.7).
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Hereafter, unless mentioned otherwise, we fix a CTMC M = (S,A, τ, ρ, `) and a dis-
count factor λ ∈ (0, 1). To easy the notation ∆Mλ , δMλ , and ∼M will be denoted simply by
∆λ, δλ, and ∼, respectively, whenever M is clear from the context.

Lemma 1.6. The operator ∆λ preserves pseudometrics.

Proof. Let d : S × S → [0, 1] be a pseudometric. We want to prove that ∆λ(d) is a pseu-
dometric. Recall that L, E : S × S → [0, 1] are pseudometrics. Thus, since the point wise
maximum of pseudometrics is a pseudometric, it suffices to prove that T preserves pseu-
dometrics. Recall that, Kd : D(S) × D(S) → [0, 1] is a pseudometric, since d is so. Thus,
reflexivity and symmetry are immediate. The only nontrivial case is triangular inequality.
Let s, t, u ∈ S, we want to prove T (d)(s, t) ≤ T (d)(s, u) + T (d)(u, t). First note that, for
any 0 ≤ α, β ≤ 1 and α′ ≥ α, the following holds:

α+ (1− α)β = β − β + α+ (1− α)β

= β − αβ − (1− α)β + α+ (1− α)β (0 ≤ α ≤ 1)

= β − αβ + α = β + (1− β)α

≤ β + (1− β)α′ (α ≤ α′ and 0 ≤ β ≤ 1)

= α′ + (1− α′)β .
Thus, since E is a pseudometric, by triangular inequality and the above we have

T (d)(s, t) = E(s, t) + (1− E(s, t)) · Kd(τ(s), τ(t)) (def. T )

≤ E(s, u) + E(u, t) +
(
1− (E(s, u) + E(u, t))

)
· Kd(τ(s), τ(t)) (∗)

If we show that the last summand in (∗) is ≤ than the sum of (1− E(s, u)) · Kd(τ(s), τ(u))
and (1− E(u, t)) · Kd(τ(u), τ(t)), we get the following, and we are done

≤ E(s, u) + (1− E(s, u)) · Kd(τ(s), τ(u)) + E(u, t) + (1− E(u, t)) · Kd(τ(u), τ(t))

= T (d)(s, t) + T (d)(s, t) . (def. T )

To this end, consider two cases. If E(s, u) + E(u, t) > 1 then the inequality holds trivially,
since 1 − (E(s, u) + E(u, t)) < 0, so that the last summand in (∗) is negative. Instead, if
E(s, u) + E(u, t) ≤ 1 then 1− (E(s, u) + E(u, t)) ≥ 0, so we have(

1− (E(s, u) + E(u, t))
)
· Kd(τ(s), τ(t))

≤
(
1− (E(s, u) + E(u, t))

)
· (Kd(τ(s), τ(u) +Kd(τ(u), τ(t)) (triang. Kd)

=
(
1− (E(s, u) + E(u, t))

)
· Kd(τ(s), τ(u)) +

(
1− (E(s, u) + E(u, t))

)
· Kd(τ(u), τ(t))

≤
(
1− E(s, u)

)
· Kd(τ(s), τ(u)) +

(
1− E(u, t)

)
· Kd(τ(u), τ(t))

and we are done.

The set [0, 1]S×S can be turned into a metric space by means of the supremum norm
‖d−d′‖ = sups,t∈S |d(s, t)−d′(s, t)|. Next we show that the λ-discounted functional operator

∆λ is λ-non-expansive, that is ‖∆λ(d′)−∆λ(d)‖ ≤ λ · ‖d′ − d‖, for any d, d′ ∈ [0, 1]S×S .

Lemma 1.7. The operator ∆λ is λ-non-expansive

Proof. By [vB12, Corollary 1], to prove that ∆λ is λ-non-expansive it suffices to show that,
whenever d v d′ then, for all s, t ∈ S, ∆λ(d′)(s, t) − ∆λ(d)(s, t) ≤ λ · ‖d′ − d‖. The only
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nontrivial case is when s, t /∈ A and L(s, t) < λ · T (d)(s, t). To this end, assume that
Kd(s, t)(τ(s), τ(t)) =

∑
u,v∈S d(u, v) · ω(u, v), for some ω ∈ Ω(τ(s), τ(t)), then we have

∆λ(d′)(s, t)−∆λ(d′)(s, t) ≤ λ ·
(
T (d′)(s, s′)− T (d)(s, s′)

)
≤ λ ·

(
Kd′(s, t)−Kd(s, t)

)
≤ λ ·

(∑
u,v∈S d

′(u, v) · ω(u, v)−
∑

u,v∈S d(u, v) · ω(u, v)
)

= λ ·
(∑

u,v∈S(d′(u, v)− d(u, v)) · ω(u, v)
)

≤ λ ·
(∑

u,v∈S ‖d′ − d‖ · ω(u, v)
)

= λ ·
(
‖d′ − d‖ ·

∑
u,v∈S ω(u, v)

)
= λ · ‖d′ − d‖ .

It is standard that [0, 1]S×S with the supremum norm forms a complete metric space
(i.e, every Cauchy sequence converges). Therefore, since λ ∈ (0, 1), a direct consequence of
Lemma 1.7 and Banach’s fixed point theorem is the following.

Theorem 1.8. For any λ ∈ (0, 1), δλ is the unique fixed point of ∆λ. Moreover, for any
n ∈ N, and d : S × S → [0, 1] we have ‖δλ −∆n

λ(d)‖ ≤ λn

1−λ‖∆λ(d)− d‖.

Now we are ready to state the main theorem of this section.

Theorem 1.9 (Bisimilarity pseudometric). The least fixed point δλ of ∆λ is a pseudometric.
Moreover, for any s, t ∈ S, s ∼ t iff δλ(s, t) = 0.

Proof. We first prove that δλ is a pseudometric. By Lemma 1.7 and Banach’s fixed point
theorem, δλ =

⊔
n∈N ∆n

λ(0). Clearly, 0 is a pseudometric. Thus by Lemma 1.6, a simple
induction on n shows that, for all n ∈ N, ∆n

λ(0) is a pseudometric. Since the least upper
bound with respect to v preserves pseudometrics, we have that δλ is so.

Now we are left to prove that, for any s, t ∈ S, s ∼ t iff δλ(s, t) = 0.

(⇒) We prove that R = {(s, s′) | δλ(s, t) = 0} is a stochastic bisimulation. Clearly, R is an
equivalence. Assume (s, s′) ∈ R, then, by definition of ∆λ, one of the following holds:

(i) s, t ∈ A and L(s, t) = 0;
(ii) s, t /∈ A, L(s, t) = 0, and T (δλ)(s, t) = 0.

If (i) holds, by L(s, t) = 0 we get that `(s) = `(t). If (ii) holds, we have E(s, t) = 0 and
Kδλ(τ(s), τ(t)) = 0. By E(s, t) = 0 we get exp[ρ(s)] = exp[ρ(t)] and hence ρ(s) = ρ(t). By
[FPP04, Lemma 3.1], Kδλ(τ(s), τ(t)) = 0 implies that, for all C ∈ S/R, τ(s)(C) = τ(t)(C).
Therefore R is a bisimulation.
(⇐) Let R ⊆ S × S be a stochastic bisimulation on M, and define dR : S × S → [0, 1] by
dR(s, t) = 0 if (s, t) ∈ R and dR(s, t) = 1 if (s, t) /∈ R. We show that ∆λ(dR) v dR. If
(s, t) /∈ R, then dR(s, t) = 1 ≥ ∆λ(dR)(s, t). If (s, t) ∈ R, then `(s) = `(t) and one of the
following holds:

(i) s, t ∈ A;
(ii) s, t /∈ A, ρ(s) = ρ(t) and, ∀C ∈ S/R. τ(s)(C) = τ(t)(C).

If (i) holds, ∆λ(dR)(s, t) = L(s, t) = 0 = dR(s, t). If (ii) holds, by [FPP04, Lemma 3.1]
and the fact that, for all C ∈ S/R, τ(s)(C) = τ(t)(C), we have KdR(τ(s), τ(t)) = 0.
Moreover E(s, t) = 0. This gives that ∆λ(dR)(s, t) = 0 = dR(s, t). By the generality of the
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bisimulation relation R and by Tarski’s fixed point theorem, we have that s ∼ s′ implies
δλ(s, s′) = 0.

2. Complexity and Linear Programming representation

In this section, we study the problem of computing the bisimilarity distance by considering
two different approaches. The former is an iterative method that approximates δλ from
below (resp. above) successively applying the operator ∆λ starting from the least (resp.
greatest) element in [0, 1]S×S . The latter is based on a linear program characterization of
δλ that is based on the Kantorovich duality [Vil03]. In contrast to an analogous proposal
in [CvBW12], our linear program has a number of constraints that is polynomially bounded
in the size of the CTMC. As a consequence, the bisimilarity distance δλ can be computed
in polynomial time in the size of the CTMC.

2.1. Iterative method. By Theorem 1.8, for any ε > 0, it follows that to get ε-close to
δλ, it suffices to iterate the application of the fixed point operator dlogλ εe times.

Proposition 2.1. For any ε > 0 and d : S × S → [0, 1], ‖δλ −∆
dlogλ εe
λ (d)‖ ≤ ε.

Proof. By Theorem 1.8 we have ‖δλ −∆n
λ(d)‖ ≤ λn

1−λ‖∆λ(d)− d‖ and by ‖∆λ(d)− d‖ ≤ 1,

we have ‖δλ − ∆n
λ(d)‖ ≤ λn

1−λ . For n = logλ(ε − ελ), we have ε = λn

1−λ . Therefore, by

Lemma 1.7 and dlogλ εe ≥ logλ(ε− ελ), we have ‖δλ −∆
dlogλ εe
λ (d)‖ ≤ ε.

By the above result, we obtain a simple method for approximating δλ. If the starting
point is 0 we obtain an under-approximation, whereas starting from 1 we get an over-
approximation. Both the approximations can be taken arbitrary close to the exact value.

However, as shown in the following example, the exact distance value cannot be reached
in general. This holds for any discount factor.

Example 2.2 ([CvBW12]). Consider the {red,blue}-labeled CTMC below.

s
1

t
1

u
1

1 λ

1− λ

1

Let dL : L × L → [0, 1] be the discrete metric over L, defined as dL(l, l′) = 0 if l′ = l′ and

1 otherwise. One can check that δλ(s, t) = λ−λ2
1−λ2 and, for all n ∈ N, ∆n

λ(0)(s, t) ≤ λ−λ2n+1

1+λ .

Since, for all n ∈ N, λ−λ2n+1

1+λ < λ−λ2
1−λ2 , we have that the fixed point cannot be reached in a

finite number of iterations. �

In [CvBW12] is shown that the bisimilarity distance of Desharnais et al. [DGJP04] can
be computed exactly by iterating the fixed point operator up to a precision that allows one
to use the continued fraction algorithm to yield the exact value of the fixed point. This
method can be applied provided that the pseudometric has rational values. In their case,
this is ensured assuming that the transition probabilities are rational. Unfortunately, in our
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case this cannot be ensured under the same conditions. Indeed, the total variation distance
between exponential distributions with rates r, r′ > 0 is analytically solved as follows

‖exp[r]− exp[r′]‖TV =


0 if r = r′∣∣∣∣∣∣
(
r′

r

) r
r−r′

−
(
r′

r

) r′
r−r′

∣∣∣∣∣∣ otherwise
(2.1)

thus, even restricting to rational exit-rates and probabilities, the distance may assume
irrational values. As a consequence, we cannot assume to compute, in general, the exact
distance values.

2.2. Linear Program Characterization. Our linear program characterization leverages
on two key results. The first one is the unicity of the fixed point of ∆λ (Theorem 1.8). The
second one is a dual linear program characterization of the Kantorovich distance.

For S finite, d : S × S → [0, 1], and µ, ν ∈ D(S), the value Kd(µ, ν) coincides with the
optimal value of the following linear program

Kd(µ, ν) = min
ω

∑
s,t∈S d(u, v) · ωu,v∑
v ωu,v = µ(u) ∀u ∈ S∑
u ωu,v = ν(v) ∀v ∈ S .

(2.2)

By a standard argument in linear optimization, the above can be alternatively represented
by the following dual linear program

Kd(µ, ν) = max
y

∑
u∈S(µ(u)− ν(u)) · yu

yu − yv ≤ d(u, v) ∀u, v ∈ S .
(2.3)

This alternative characterization is a special case of a more general result commonly known
as the Kantorovich duality and largely studied in linear optimization theory (see [Vil03]).

Let n = |S| and m = n−|A|. Consider the linear program in Figure 2, hereafter denoted

by Dλ(M), with variables d ∈ Rn2
, y ∈ Rm2+n and k,m ∈ Rm2

. The objective function
of Dλ(M) attains its optimal value when k and m are maximized in every component.
Therefore, according to (2.3), an optimal solution (d∗, y∗, k∗,m∗) ∈ Dλ(M) satisfies the
following equalities

∀s, t 6∈ A. m∗s,t = min{L(s, t), λ
(
E(s, t) + (1− E(s, t))Kd∗(τ(s), τ(t))

)
}

∀s, t 6∈ A. k∗s,t = Kd∗(τ(s), τ(t))

By the above equalities and by the feasibility of the solution, it follows that d∗ is a fixed
point of ∆λ. Since the distance is the unique fixed point of ∆λ, d∗ = δλ.

Theorem 2.3. Let M be a CTMC, λ ∈ (0, 1) be a discount factor, and (d∗, y∗, k∗,m∗) be
an optimal solution of Dλ(M). Then, for all s, t ∈ S, d∗s,t = δλ(s, t) .
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arg max
d,y,k,m

∑
s,t 6∈A ks,t +ms,t

ds,t = 1 ∀s, t ∈ S. s 6≡A t
ds,t = L(s, t) ∀s, t ∈ A
ds,t = L(s, t) + λ

(
E(s, t) + (1− E(s, t))ks,t

)
−ms,t ∀s, t 6∈ A

ms,t ≤ L(s, t) ∀s, t 6∈ A
ms,t ≤ λ

(
E(s, t) + (1− E(s, t))ks,t

)
∀s, t 6∈ A

ks,t =
∑

u∈S(τ(s)(u)− τ(s)(u)) · ys,tu ∀s, t 6∈ A
ys,tu − ys,tv ≤ du,v ∀s, t 6∈ A,∀u, v ∈ S

Figure 2: Linear program characterization of δλ for λ ∈ (0, 1).

Proof. Let (d∗, y∗, k∗,m∗) be an optimal solution of Dλ(M), and consider the following
linear program, hereafter denoted by D′λ.

arg max
y,k,m

∑
s,t 6∈A ks,t +ms,t

ms,t ≤ L(s, t) ∀s, t 6∈ A
ms,t ≤ λ

(
E(s, t) + (1− E(s, t))ks,t

)
∀s, t 6∈ A

ks,t =
∑

u∈S(τ(s)(u)− τ(s)(u)) · ys,tu ∀s, t 6∈ A
ys,tu − ys,tv ≤ d∗u,v ∀s, t 6∈ A,∀u, v ∈ S

Since d∗ is part of a feasible solution of Dλ(M) and the constraints of D′λ are a subset of
those of Dλ(M), the optimal value for D′λ is greater or equal than the one for Dλ(M).

For each s, t 6∈ A, when ks,t is maximal also ms,t reaches its maximal value. Therefore,
an optimal solution for D′λ will be achieved when, for each s, t 6∈ A, the following holds

ks,t = max
y

∑
u∈S(τ(s)(u)− τ(s)(u)) · yu

yu − yv ≤ d∗u,v ∀u, v ∈ S
(2.4)

By the Kantorowich duality (2.3), the optimal value of (2.4) is Kd∗(τ(s), τ(t)). Since ms,t

is a lower bound for {L(s, t), λ
(
E(s, t) + (1 − E(s, t))ks,t

)
}, we obtain an optimal solution

for D′λ by instantiating the variables as follows

∀s, t 6∈ A. ms,t = min{L(s, t), λ
(
E(s, t) + (1− E(s, t))Kd∗(τ(s), τ(t))

)
} (2.5)

∀s, t 6∈ A. ks,t = Kd∗(τ(s), τ(t)) (2.6)

∀s, t 6∈ A. ys,t ∈ arg max
y

∑
u∈S(τ(s)(u)− τ(t)(u)) · yu

yu − yv ≤ d∗u,v ∀u, v ∈ S

(2.7)
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We will show that the above instantiation is part of a feasible solution of Dλ(M),
provided that d∗ is a fixed point for ∆λ. For any s, t 6∈ A the following holds

d∗s,t = L(s, t) + λ
(
E(s, t) + (1− E(s, t)) ks,t

)
−ms,t (by def. Dλ(M))

= L(s, t) + λ
(
E(s, t) + (1− E(s, t)) Kd∗(τ(s), τ(t))

)
−ms,t (by (2.6))

= L(s, t) + T (d∗)(s, t)−ms,t (by def. T )

= L(s, t) + T (d∗)(s, t)−min{L(s, t), T (d∗)(s, t)} (by (2.5) and def. T )

= max{L(s, t), T (d∗)(s, t)} ,
thus d∗ is a fixed point of ∆λ. The thesis follows by Theorem 1.8.

In [CvBW12] it has been shown that the bisimilarity distance of Desharnais et al. can
be computed in polynomial time as the solution of a linear program that can be solved by
using the ellipsoid method. However, in their proposal the number of constraints may be
exponential in the size of the model. This is due to the fact that the Kantorovich distance is
resolved listing all the couplings that correspond to vertices of the transportation polytopes
involved in the definition of the distance [Dem61].

In contrast, our proposal has a number of constraints and unknowns2 bounded by 4|S|2
and |S|3 + 3|S|2, respectively. This allows one to use general algorithms for solving LP
problems (such as the simplex and the interior point methods) that, in practice, are more
efficient than the ellipsoid method.

Moreover, this allows us to state the following complexity result.

Theorem 2.4. δλ can be computed in polynomial-time in the size of M.

Proof. By Theorem 2.3, δλ can be computed within the time it takes to construct and
solve Dλ(M). Dλ(M) has a number of constraints and unknowns that is bounded by a
polynomial in the size ofM, therefore its construction can be performed in polynomial time.
For the same reason, Dλ(M) admits a polynomial time separation algorithm: whenever a
solution is given, its feasibility is checked by scanning each inequality in Dλ(M); otherwise
the first encountered inequality that is not satisfied is returned as a separation hyperplane.
Therefore, the thesis follows by solving Dλ(M) using the ellipsoid method together with
the näıve separation algorithm described above.

3. Alternative Characterization of the Pseudometric

In the following, we propose an alternative characterization of the bisimilarity distance
δλ, based on the notion of coupling structure. Our result generalizes the one proposed
in [CvBW12, BBLM13] for MCs, to the continuous-time settings.

Definition 3.1 (Coupling Structure). Let M = (S,A, π, `) be a CTMC. A coupling struc-
ture for M is a function C : (S \ A) × (S \ A) → D(S × S) such that, for all s, t /∈ A,
C(s, t) ∈ Ω(τ(s), τ(t)).

Intuitively, a coupling structure forM can be though of as a joint transition probability
distribution with left and right marginals point wisely equal to τ : S \A→ D(S).

The following definition adapts the definition of the operator ∆λ (see Definition 1.4)
with respect to the notion of coupling structure for a CTMC.

2Actually, the variables k are used only for ease the presentation but they can be removed by substitution.
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Definition 3.2. Let M = (S,A, τ, ρ, `) be CTMC, C a coupling structure for M, and
λ ∈ (0, 1) a discount factor. The function ΓCλ : [0, 1]S×S → [0, 1]S×S is defined as follows, for
d : S × S → [0, 1] and s, t ∈ S

ΓCλ(d)(s, t) =


1 if s 6≡A t
L(s, t) if s, t ∈ A
max{L(s, t), λ ·Θ(d)(s, t)} if s, t /∈ A

where L, E : S × S → [0, 1] are as in Definition 1.4 and Θ: [0, 1]S×S → [0, 1]S×S is given by

Θ(d)(s, t) = E(s, t) + (1− E(s, t)) ·
∑

u,v∈S d(u, v) · C(s, t)(u, v) .

Recall that the Kantorovich distance between two distributions µ and ν is defined as
Kd(µ, ν) = minω

∑
u,v∈S d(u, v) · ω(u, v), where the minimum is taken over all the possible

couplings ω ∈ Ω(µ, ν). Thus, the operator ΓCλ can intuitively be thought of as a possible

instance of ∆Mλ with respect to a fixed choice of the couplings given by C.
One can easily check that ΓCλ is monotone, thus, by Tarski’s fixed point theorem, it

admits least and greatest fixed points. The least fixed point, in particular, will be denoted
by γCλ and referred to as the λ-discrepancy of C.

Theorem 3.3 (Minimum coupling). δλ = min{γCλ | C coupling structure for M}.

Proof. We first prove that δλ v γCλ , for any coupling structure C for M. By Tarski’s fixed

point theorem, it suffices to prove that, for any d : S × S → [0, 1], ∆λ(d) v ΓCλ(d). The
only nontrivial case is when s, t /∈ A, which follows by definition of Kd, by noticing that
T (d)(s, t) ≤ Θ(d)(s, t) and that the maximum is order preserving. It remains to prove that
the minimum is attained. To this end, define a coupling structure C∗ as C∗(s, t) = ωs,t, for
s, t /∈ A, where ωs,t ∈ Ω(τ(s), τ(t)) is such that Kδλ(τ(s), τ(t)) =

∑
u,v δλ(u, v) · ωs,t(u, v).

By construction, δλ = ΓC
∗
(δλ), hence γC

∗
λ v δλ. Since C∗ is a coupling structure for M, by

what we have shown above we also have δλ v γC
∗
λ . Therefore, δλ = γC

∗
λ .

4. Greedy Computation of the Bisimilarity Distance

Inspired by the characterization given in Theorem 3.3, we propose a procedure to compute
the bisimilarity pseudometric that is alternative to those previously described.

The set of coupling structures for M can be endowed with the preorder Eλ defined as
C Eλ C′ iff γCλ v γC

′
λ . Theorem 3.3 suggests to look at all the coupling structures C for

M in order to find an optimal one, i.e., minimal w.r.t. Eλ. However, it is clear that the
enumeration of all the couplings is unfeasible, therefore it is crucial to provide an efficient
search strategy which prevents us to do that. Moreover we also need an efficient method
for computing the λ-discrepancy associated with a coupling structure.

4.1. Computing the λ-Discrepancy. In this section we consider the problem of com-
puting the λ-discrepancy associated with a coupling structure.

By Tarsky’s fixed point theorem, γCλ corresponds to the least pre-fixed point of ΓC , that is

γCλ =
d
{d ∈ [0, 1]S×S | ΓC(d) v d}. This allows us to compute the λ-discrepancy associated
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with C as the optimal solution of the following linear program, denoted by Discrλ(C).
arg min

d

∑
s,t∈S ds,t

ds,t ≥ 1 if s 6≡A t
ds,t ≥ L(s, t) if s ≡A t
ds,t ≥ λ

(
E(s, t) + (1− E(s, t)) ·

∑
u,v∈S du,v · C(s, t)(u, v)

)
if s, t /∈ A

Discrλ(C) has a number of inequalities that is bounded by 2|S|2 and |S|2 unknowns, thus,
it can be efficiently solved using the interior point method.

Remark 4.1. If one is interested in computing the λ-discrepancy for a particular pair of
states (s, t), the method above can be applied on the least independent set of inequalities
containing the variable ds,t. Moreover, assuming that for some pairs the values associated
to d are known, the set of constraints can be further decreased by substitution. �

4.2. Greedy Strategy for Optimal Coupling Structures. In this section, we propose
a greedy strategy that moves toward an optimal coupling structure starting from any given
one. Then, we provide sufficient and necessary conditions for a coupling structure, to ensure
that its associated λ-discrepancy coincides with δλ.

Hereafter we fix a CTMC M = (S,A, τ, ρ, `) and a coupling structure C for it. The
greedy strategy takes a coupling structure and locally updates it at a given pair of states in
such a way that it decreases it with respect to Eλ. For s, t /∈ A and ω ∈ Ω(τ(s), τ(t)), we
denote by C[(s, t)/ω] the update of C at (s, t) with ω, defined as C[(s, t)/ω](u, v) = C(u, v),
for all (u, v) 6= (s, t), and C[(s, t)/ω](s, t) = ω; it is worth noting that, by construction,
C[(s, t)/ω] is a coupling structure of M.

The next lemma gives a sufficient condition for an update to be effective for the strategy.

Lemma 4.2. Let s, t /∈ A and ω ∈ Ω(τ(s), τ(t)). Then, for D = C[(s, t)/ω] and any
λ ∈ (0, 1], if ΓDλ (γCλ)(s, t) < γCλ(s, t) then γDλ < γCλ .

Proof. It suffices to show that ΓD(γCλ) < γCλ , i.e., that γCλ is a strict post-fixed point of ΓDλ .
Then, the thesis follows by Tarski’s fixed point theorem.

Let u, v ∈ S. If u 6≡A v, then ΓDλ (γCλ)(u, v) = 1 = ΓCλ(γCλ)(u, v) = γCλ(u, v). If u, v ∈ A,

then ΓDλ (γCλ)(u, v) = L(u, v) = ΓCλ(γCλ)(u, v) = γCλ(u, v). If u, v /∈ A and (u, v) 6= (s, t), by

definition of D, we have that ω̄(u, v) = ω(u, v), hence ΓCλ(γCλ)(u, v) = ΓDλ (γCλ)(u, v). The

remaining case, i.e., (u, v) = (s, t), holds by hypothesis. This proves ΓD(γCλ) < γCλ .

Lemma 4.2 states that C can be improved w.r.t. Eλ by updating it at (s, t), if s, t /∈ A
and there exists a coupling ω ∈ Ω(τ(s), τ(t)) such that the following holds∑

u,v∈S γ
C
λ(u, v) · ω(u, v) <

∑
u,v∈S γ

C
λ(u, v) · C(s, t)(u, v) .

A coupling that enjoys the above condition is ω ∈ TP (γCλ , τ(s), τ(t)) where, for arbitrary
µ, ν ∈ D(S) and c : S × S → [0, 1]

TP (c, µ, ν) = arg min
ω

∑
s,t∈S c(u, v) · ωu,v∑
v ωu,v = µ(u) ∀u ∈ S∑
u ωu,v = ν(v) ∀v ∈ S .

(4.1)
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The above problem is usually referred to as the (homogeneous) transportation problem with
µ and ν as left and right marginals, respectively, and transportation costs c. This prob-
lem has been extensively studied and comes with (several) efficient polynomial algorithmic
solutions [Dan51, FF56].

This gives us an efficient solution to update any coupling structure, that, together with
Lemma 4.2 represents a strategy for moving toward δλ by successive improvements on the
coupling structures.

Now we proceed giving a sufficient and necessary condition for termination.

Lemma 4.3. If γCλ 6= δλ, then there exist s, t /∈ A and a coupling structure D = C[(s, t)/ω]

for M such that ΓDλ (γCλ)(s, t) < γCλ(s, t).

Proof. We proceed by contraposition. If for all s, t /∈ A and ω ∈ Ω(τ(s), τ(t)), ΓDλ (γCλ)(s, t) ≥
γCλ(s, t), then γCλ = ∆λ(γCλ). Since, by Theorem 1.8, ∆λ has a unique fixed point, γCλ = δλ.

The above result ensures that, unless C is optimal w.r.t Eλ, the hypothesis of Lemma 4.2
are satisfied, so that, we can further improve C as aforesaid.

The next statement proves that this search strategy is correct.

Theorem 4.4. δλ = γCλ iff there is no coupling D for M such that ΓDλ (γCλ) < γCλ .

Proof. We prove: δλ 6= γCλ iff there exists D such that ΓDλ (γCλ) < γCλ . (⇒) Assume δλ 6= γCλ .
By Lemma 4.3, there exist a pair of states s, t ∈ S and a coupling ω ∈ Ω(τ(s), τ(t)) such
that λ ·

∑
u,v∈S γ

C
λ(u, v) · ω(u, v) < γCλ(s, t). As in the proof of Lemma 4.2, we have that

D = C[(s, t)/ω] satisflies ΓD(γCλ) < γCλ . (⇐) Let D be such that ΓDλ (γCλ) < γCλ . By Tarski’s

fixed point theorem γDλ < γCλ . By Theorem 3.3, δλ v γDλ < γCλ .

Remark 4.5. Note that, in general there could be an infinite number of couplings structures
for a given CTMC. However, for each fixed d ∈ [0, 1]S×S , the linear function mapping ω to∑

u,v∈S d(u, v) ·ω(u, v) achieves its minimum at some vertex in the transportation polytope

Ω(τ(s), τ(t)). Since the number of such vertices are finite, using the optimal TP schedule
for the update, ensures that the search strategy is always terminating. �

5. The On-the-Fly Algorithm

In this section we describe an on-the-fly technique for computing the bisimilarity distance
δλ fully exploiting the greedy strategy of Section 4.2.

Let Q ⊆ S ×S and consider the problem of computing δλ(s, t) for all (s, t) ∈ Q. Recall
that the strategy proposed in Section 4.2 consists in a traversal C0 .λ C1 .λ · · · .λ Cn of the
set of coupling structures for M that starts from an arbitrary coupling structure C0 and
leads to an optimal one Cn. We observe that, for any i < n

(1) the improvement of each coupling structure Ci is obtained by a local update at some

pair of states u, v /∈ A, namely Ci+1 = Ci[(u, v)/ω] for some ω ∈ TP (γCiλ , τ(u), τ(v));
(2) the pair (u, v) is chosen according to an optimality check that is performed locally

among the couplings in Ω(τ(u), τ(v)), i.e., Ci(u, v) /∈ TP (γCiλ , τ(u), τ(v));

(3) whenever a coupling structure Ci is considered, its associated λ-discrepancy γCiλ can
be computed by solving the linear program Discrλ(Ci) described in Section 4.1.
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Among the observations above, only the last one requires to look at the coupling structure Ci.
However, as noticed in Remark 4.1, the value γCiλ (s, t) can be computed without considering
the entire set of constraints of Discrλ(Ci), but only the least independent set of inequalities
that contains the variable ds,t. Moreover, provided that for some pairs of states E ⊆ S × S
the value of the distance is known, the linear program Discrλ(Ci) can be further reduced
by substituting the occurrences of the unknown du,v by the constant δλ(u, v), for each
(u, v) ∈ E. This suggests that we do not need to store the entire coupling structures, but
they can be constructed on-the-fly during the calculation. Specifically, the couplings that
are demanded to compute γCiλ (s, t) are only those Ci(u, v) such that (s, t) ;∗Ci,E (u, v), where

;∗Ci,E is the reflexive and transitive closure of ;Ci,E ⊆ S2 × S2, defined by

(s′, t′) ;Ci,E (u′, v′) iff Ci(s′, t′)(u′, v′) > 0 and (u′, v′) /∈ E .
The computation of the bisimilarity pseudometric is implemented by Algorithm 1. It

takes as input a finite CTMC M = (S,A, τ, ρ, `), a discount factor λ ∈ (0, 1), and a query
set Q ⊆ S × S. We assume the following global variables to store:

• C: the current (partial) coupling structure;
• d: the λ-discrepancy associated with C;
• ToCompute: the pairs of states for which the distance has to be computed;
• Exact: the set pairs of states (s, t) such that d(s, t) = δλ(s, t), hence those pairs

which do not need to be further improved3;
• V isited: the set of pairs of states that as been visited so far.

Moreover, Rs,t(Exact , C) will denote the set {(u, v) | (s, t) ;∗C,Exact (u, v)}.
At the beginning (line 1–2) both the coupling structure C and the discrepancy d are

empty, there are no visited states, no exact computed distances, and the pairs to be com-
puted are those in the input query.

While there are still pairs left to be computed (line 3), we pick one (line 4), say (s, t).
According to the definition of δλ, if s 6≡A t then δλ(s, t) = 1; if s = t then δλ(s, t) = 0 and if
s, t ∈ A then δλ(s, t) = L(s, t), so that, d(s, t) is set accordingly, and (s, t) is added to Exact
(lines 5–10). Otherwise, if (s, t) was not previously visited, a coupling ω ∈ Ω(τ(s), τ(t)) is
guessed, and the routine SetPair updates the coupling structure C at (s, t) with ω (line 14),
then the routine Discrepancy updates d with the λ-discrepancy associated with C (line 16).
According to the greedy strategy, C is successively improved and d is consequently updated,
until no further improvements are possible (lines 17–21). Each improvement is obtained
by replacing a sub-optimal coupling C(u, v), for some (u, v) ∈ Rs,t(Exact , C), by one taken
from TP (d, τ(u), τ(v)) (line 17). Note that, each improvement actually affects the current
value of d(s, t), since the update is performed on a pair in Rs,t(Exact , C). It is worth to
note that C and Exact are constantly updated, hence Rs,t(Exact , C) may differ from one
iteration to another.

When line 22 is reached, for each (u, v) ∈ Rs,t(Exact , C), we are guaranteed that
d(u, v) = δλ(s, t), therefore Rs,t(Exact , C) is added to Exact and, for these pairs, d will
no longer be updated. At this point (line 23), the couplings associated with the pairs in
Exact can be removed from C. In line 25, the exact pairs computed so far are removed
from ToCompute. Finally, if no more pairs need be considered, the exact distance on Q is
returned (line 27).

3Actually, the set Exact contains those pairs such that |d(s, t)− δλ(s, t)| ≤ ε where ε corresponds to the
precision of the machine. In our implementation ε = 10−9.
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Algorithm 1 On-the-Fly Bisimilarity Pseudometric

Input: CTMC M = (S,A, τ, ρ, `); discount factor λ ∈ (0, 1); query Q ⊆ S × S.
1. C ← empty; DomC ← ∅; d← empty; —initialize data structures—
2. V isited← ∅; Exact← ∅; ToCompute← Q
3. while ToCompute 6= ∅ do
4. pick (s, t) ∈ ToCompute
5. if s 6≡A t then
6. d(s, t)← 1; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
7. else if s = t then
8. d(s, t)← 0; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
9. else if s, t ∈ A then

10. d(s, t)← L(s, t); Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
11. else —if (s, t) is nontrivial—
12. if (s, t) /∈ V isited then —if (s, t) has not been encountered so far—
13. pick ω ∈ Ω(τ(s), τ(t)) —guess a coupling—
14. SetPair(M, (s, t), ω) —update the current coupling structure—
15. end if
16. Discrepancy(λ, (s, t)) —update d as the λ-discrepancy for C—
17. while ∃(u, v) ∈ Rs,t(Exact , C) such that C(u, v) /∈ TP(d, τ(u), τ(v)) do
18. ω ∈ TP(d, τ(u), τ(v)) —pick an optimal coupling for s, t w.r.t. d—
19. SetPair(M, (u, v), ω) —improve the current coupling structure—
20. Discrepancy(λ, (s, t)) —update d as the λ-discrepancy for C—
21. end while
22. Exact← Exact ∪RC(s, t) —add new exact distances—
23. remove from C all the couplings associated with a pair in Exact
24. end if
25. ToCompute← ToCompute \ Exact —remove exactly computed pairs—
26. end while
27. return d�Q —return the distance for all pairs in Q—

Algorithm 1 calls the subroutines SetPair and Discrepancy . The former is used to
construct and update the coupling structure C, the latter to update the current over-approxi-
mation d during the computation. Next, we explain how they work.

SetPair (Algorithm 2) takes as input a CTMC M = (S,A, τ, ρ, `), a pair of states
s, t ∈ S, and a coupling ω ∈ Ω(τ(s), τ(t)). In lines 1–2, the coupling structure C is set
to ω at (s, t), then (s, t) is added to Visited . The on-the-fly construction of the coupling
structure is recursively propagated to the demanded successor pairs of (s, t) according to
the information accumulated so far. During this construction, if some states with trivial
distances are encountered, d and Exact are updated accordingly (lines 5–7).

Discrepancy (Algorithm 3) takes as input a discount factor λ ∈ (0, 1) and a pair of states
s, t /∈ A. It constructs the least independent linear program obtained from Discrλ(C), that
can compute γCλ(s, t) using the information accumulated so far (line 1). In lines 3–7 the
current λ-discrepancy is updated accordingly; and those pairs (u, v) ∈ Rs,t(Exact , C) for
which the current λ-discrepancy coincide with the distance are added to Exact .
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Algorithm 2 SetPair(M, (s, t), ω)

Input: CTMC M = (S,A, τ, ρ, `); s, t ∈ S; ω ∈ Ω(τ(s), τ(t))
1. C(s, t)← ω —update the coupling at (s, t) with ω—
2. V isited← V isited ∪ {(s, t)} —set (s, t) as visited—
3. for all (u, v) /∈ Visited such that (s, t) ;C,Exact (u, v) do —for all demanded pairs—
4. V isited← V isited ∪ {(u, v)}
5. if u = v then d(u, v)← 0; Exact← Exact ∪ {(u, v)};
6. if u 6≡A v then d(u, v)← 1; Exact← Exact ∪ {(u, v)};
7. if u, v ∈ A then d(u, v)← L(u, v); Exact← Exact ∪ {(u, v)};
8. // propagate the construction
9. if (u, v) /∈ Exact then

10. pick ω′ ∈ Ω(τ(u), τ(v)) —guess a matching—
11. SetPair(M, (u, v), ω′)
12. end if
13. end for

Algorithm 3 Discrepancy(λ, (s, t))

Input: discount factor λ ∈ (0, 1); s, t ∈ S \A
1. Let LP be the linear program obtained from Discrλ(C) by keeping only the inequalities

associated with pairs in Rs,t(Exact , C) and replacing the unknown du,v by the constant
d(u, v), for all (u, v) ∈ Exact.

2. d∗ ← optimal solution of LP
3. for all (u, v) ∈ Rs,t(Exact , C) do —update distances—
4. d(u, v)← d∗u,v
5. if d(u, v) = 0 or d(u, v) = L(u, v) then
6. Exact← Exact ∪ {(u, v)}
7. end if
8. end for

Next, we present a simple example of Algorithm 1, showing the main features of our
method: (1) the on-the-fly construction of the (partial) coupling, and (2) the restriction only
to those variables which are demanded for the solution of the system of linear equations.

Example 5.1 (On-the-fly computation). Consider the CTMC in Figure 3, and assume we
want to compute the λ-discounted bisimilarity distance between states s1 and s4, for λ = 1

2 .
Algorithm 1 starts by guessing an initial coupling structure C0. This is done by con-

sidering only the pairs of states which are really needed in the computation. Starting
from the pair (s1, s4) a coupling in ω1,4 ∈ Ω(τ(s1), τ(s4)) is guessed as in Figure 3 and as-
signed to C0(s1, s4). This demands for the exploration of the pairs (s2, s3), (s2, s4), (s1, s2)
and the guess of three new couplings ω2,3 ∈ Ω(τ(s2), τ(s3)), ω2,4 ∈ Ω(τ(s2), τ(s4)), and
ω1,2 ∈ Ω(τ(s1), τ(s2)), to be associated in C0 with their corresponding pairs. Since no
other pairs are demanded, the construction of C0 terminates as shown in Figure 3. The
λ-discrepancy associated with C0 for the pair (s1, s4) is obtained as the solution of the
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Figure 3: Execution trace for the computation of δ 1
2
(1, 4) (details in Example 5.1).

following reduced linear program
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)
where α = ‖exp[15]−exp[9]‖TV =

6
√

3/5

25 (by Equation (2.1)). Note that, the bisimilarity dis-
tance for the pairs (s2, s2) and (s4, s4) is always 0, thus d2,2 and d4,4 are substituted accord-

ingly. The solution of the above linear program is dC0(s1, s4) = α
2 + 5(1−α)

21 , dC0(s2, s3) = 1
2 ,

dC0(s2, s4) = 2
3 , and dC0(s1, s2) = 1

2 .
Since, the λ-discrepancy for (s2, s3), (s2, s4), and (s1, s2) equals the distance L between

their labels, it coincides with the bisimilarity distance, hence it cannot be further decreased.
Consequently, the pairs of states are added to the set Exact and their associated couplings
are removed from C0. Note that, these pairs will no longer be considered in the construction
of a coupling structure.

In order to decrease the λ-discrepancy of (s1, s4), Algorithm 1 constructs a new coupling
structure C1. According to our greedy strategy, C1 is obtained from C0 updating C0(s1, s4)
(i.e., the only coupling left) by the coupling ω′1,4 ∈ Ω(τ(s1), τ(s4)) (shown in Figure 3) that
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is obtained as the solution of a transportation problem with marginals τ(s1) and τ(s4),
where the current λ-discrepancy is taken as cost function. The resulting coupling does
not demand for the exploration of new pairs in the CTMC, hence the construction of C1
terminates. The reduced linear program associated with C1 is given by

arg min
d

d1,4

d1,4 ≥
1

6

d1,4 ≥
α

2
+

(1− α)

2
·
(1

9
·

=0︷︸︸︷
d2,2 +

4

9
·

= 1
2︷︸︸︷

d2,3 +
10

63
·

= 2
3︷︸︸︷

d2,4 +
2

7
·

=0︷︸︸︷
d4,4

)
whose solution is dC1(s1, s4) = α

2 + 31(1−α)
189 .

Solving again a new transportation problem with the improved current λ-discrepancy
as cost function, we discover that the coupling structure C1 cannot be further improved,

hence we stop the computation, returning δλ(s1, s4) = dC1(s1, s4) = α
2 + 31(1−α)

189 . �

Remark 5.2. Algorithm 1 can also be used for computing over-approximated distances.
Indeed, assuming over-estimates for some particular distances are already known, they can
be taken as inputs and used in our algorithm simply storing them in the variable d and
treated as “exact” values. In this way our method will return the least over-approximation
of the distance agreeing with the given over-estimates. This modification of the algorithm
can be used to further decrease the exploration of the CTMC. Moreover, it can be employed
in combination with approximated algorithms, having the advantage of an on-the-fly state
space exploration. �

6. Experimental Results

In this section, we evaluate the performances of the on-the-fly algorithm on a collection of
randomly generated CTMCs4.

First, we compare the execution times of the on-the-fly algorithm with those of the
iterative method proposed in Section 2.1. Since the iterative method only allows for the
computation of the distance for all state pairs at once, the comparison is (in fairness) made
with respect to runs of our on-the-fly algorithm with input query being the set of all state
pairs. For each input instance, the comparison involves the following steps:

(a) we run the on-the-fly algorithm, storing both execution time and the number of solved
transportation problems,

(b) then, on the same instance, we execute the iterative method until the running time
exceeds that of step 1. We report the number of iterations and the number of solved
transportation problems.

(c) Finally, we calculate the approximation error between the exact solution δλ computed
by our method at step 1 and the approximate result d obtained in step 2 by the iterative
method, as ‖δλ − d‖.

4 The tests have been performed on a prototype implementation coded in Wolfram Mathematicar 9 (avail-
able at http://people.cs.aau.dk/~giovbacci/tools.html) running on an Intel Core-i7 3.4 GHz processor
with 12GB of RAM.

http://people.cs.aau.dk/~giovbacci/tools.html
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# States
On-the-Fly (exact) Iterating (approximated) Approx.

Time (s) # TPs # Iterations # TPs Error

10 0.352 10.500 2.660 266.667 0.0339
12 0.772 19.700 2.850 410.403 0.0388
14 2.496 35.800 3.880 760.480 0.0318
16 4.549 50.607 5.142 1316.570 0.0230
18 13.709 78.611 6.638 2151.021 0.0206
20 22.044 109.146 7.243 2897.560 0.0149
22 50.258 140.727 7.409 3586.010 0.0145
24 67.049 175.481 7.826 4508.310 0.0141
26 112.924 219.255 9.509 6428.150 0.0025
28 247.583 295.533 11.133 8728.530 0.0004
30 284.252 307.698 10.679 9611.320 0.0006
40 296.633 330.824 11.294 18070.600 0.0004
50 807.522 368.500 16.900 42250.000 0.00001

Table 1: Comparison between the on-the-fly algorithm and the iterative method.

# States
out-deg = 3 3 ≤ out-deg ≤ # States/2

Time (s) # TPs Time (s) # TPs

30 0.304 0.383 18.113 21.379
40 2.045 0.954 34.582 22.877
50 7.832 16.304 50.258 139.427

# States
out-deg = 3

Time (s) # TPs

60 34.858 12.053
70 48.016 14.166
80 73.419 29.383
90 75.591 13.116
100 158.027 20.301

Table 2: Average performances of the on-the-fly algorithm on single-pair queries. Execution
times and number of performed TPs are reported for CTMCs with different out-
degree. For instances with more than 50 states the out-degree is fixed to 3;

This has been made on a collection of CTMCs varying from 10 to 50 states. For each
n = 10, . . . , 30, we have considered 40 randomly generated CTMCs per out-degree, varying
from 3 to n; whereas for n = 40 and 50, the out-degree varies from 3 to 10. Table 1 reports
the average results of the comparison obtained for a discount factor λ = 1

2 .
As it can be seen, our use of a greedy strategy in the construction of the couplings

leads to a significant improvement in the performances. We are able to compute the exact
solution before the iterative method can under-approximate it with an absolute error of
≈ 0.03, which is a non-negligible error for a value within the interval [0, 1].

So far, we only examined the case when the on-the-fly algorithm is run on all state
pairs at once. Now, we show how the performance of our method is improved even further
when the distance is computed only for single pairs of states. Table 2 shows the average
execution times and number of solved transportation problems for (nontrivial) single-pair
queries for randomly generated of CTMCs with number of states varying from 30 to 100.
In the first two columns we consider CTMCs with out-degree equal to 3, while the last two
columns show the average values for out-degrees varying from 3 to haft of the number of
states of the CTMCs. The results show that, when the out-degree of the CTMCs is low,
our algorithm performs orders of magnitude better than in the general case.

Notably, our on-the-fly method scales well when the out-degree is small and successive
computation of the current λ-discrepancy are performed on a relatively small set of pairs.
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As for the linear program characterization of the bisimilarity distance illustrated in
Section 2.2, tests performed on small CTMCs show that solving Dλ(M) is inefficient in
practice, both using the simplex and the interior-point methods5. Even for CTMCs with
less than 20 states, the computation times are in the order of hours. For this reason,
the efficiency of our on-the-fly technique is by no mean comparable to the linear program
solution.

7. Conclusions and Future Work

In this paper, we proposed a bisimilarity pseudometric for measuring the behavioral sim-
ilarity between CTMCs, that extends that on MCs introduced by Desharnais et al. in
[DGJP04]. Moreover, we gave a novel linear program characterization of the distance that,
differently from similar previous proposals, have a number of constraints which is poly-
nomial in the size of the CTMC. This proved that the bisimilarity pseudometric can be
computed in polynomial time. Finally, we defined an on-the-fly algorithm for computing
the bisimilarity distance. We demonstrated that, using on-the-fly techniques the computa-
tion time is improved with orders of magnitude with respect to the corresponding iterative
and linear program approaches. Moreover, our technique allows for the computation on a
set of target distances that might be done by only investigating a significantly reduced set
of states, and for further improvement of speed.

Our algorithm can be practically used to address a large spectrum of problems. For
instance, it can be seen as a method to decide whether two states of a given CTMC are
probabilistic bisimilar, to identify bisimilarity classes, or to solve lumpability problems. It
is sufficiently robust to be used with approximation techniques as, for instance, to provide a
least over-approximation of the behavioural distance given over-estimates of some particular
distances. It can be integrated with other approximate algorithms, having the advantage
of the efficient on-the-fly state space exploration.

Having a practically efficient tool to compute bisimilarity distances opens the perspec-
tive of new applications already announced in previous research papers. One of these is the
state space reduction problem for CTMCs. Our technique can be used in this context as
an indicator for the sets of neighbour states that can be collapsed due to their similarity; it
also provides a tool to estimate the difference between the initial CTMC and the reduced
one, hence a tool for the approximation theory of CTMCs.
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[Dem61] O. Demuth. Poznámka k dopravńımu [Czech, with German summary; A remark on the trans-
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