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Minimization of finite automata, i.e., the process of trans-
forming a given finite automaton into an equivalent one
with minimum number of states, has been a major subject
since the 1950s due to its fundamental importance for any
implementation of finite automata tools.

The first algorithm for the minimization of deterministic
finite automata (DFAs) is due to Moore [1], with time com-
plexity O(n2s), later improved by the now classical Hopcroft’s
algorithm [2] to O(ns log n), where n is the number of states
and s the size of the alphabet. Their algorithms are based on
a partition refinement of the states into equivalence classes of
the Myhill-Nerode equivalence relation. Partition refinement
has been employed in the definition of efficient minimization
procedures for a wide variety of automata: by Kanellakis and
Smolka [3], [4] for the minimization of labelled transition
systems (LTSs) w.r.t. Milner’s strong bisimulation [5]; by
Baier [6] for the reduction of Markov Chains (MCs) w.r.t.
Larsen and Skou’s probabilistic bisimulation [7]; by Alur et
al. [8] and by Yannakakis and Lee [9], respectively, for the
minimization of timed transition systems and timed-automata.

In [10], Jou and Smolka observed that for reasoning about
the behavior of probabilistic systems (and more in general,
all type of quantitative systems), rather than equivalences, a
notion of distance is more reasonable in practice, since it
permits “a shift in attention from equivalent processes to prob-
abilistically similar processes”. This observation motivated
the development of metric-based semantics for quantitative
systems, that consists in proposing 1-bounded pseudometrics
capturing the similarities of the behaviors in the presence of
small variations of the quantitative data. These pseudometrics
generalize behavioral equivalences in the sense that, two pro-
cesses are at distance 0 iff they are equivalent, and at distance
1 if no significant similarities can be observed between them.

The first proposal of a behavioral pseudometric is due to
Desharnais et al. [11] on labelled MCs, a.k.a. probabilistic
bisimilarity distance, with the property that two MCs are at
distance 0 iff they are probabilistic bisimilar. Its definition is
parametric on a discount factor λ ∈ (0, 1] that controls the
significance of the future steps in the measurement. This pseu-
dometric has been greatly studied by van Breugel and Worrell
[12]–[14] who noticed, among other notable results, its relation
with the Kantorovich distance on probability distributions and
provided a polynomial-time algorithm for its computation.

The introduction of metric-based semantics motivated the

interest in the approximate minimization of quantitative sys-
tems. The goal of approximate minimization is to start from
a minimal automaton and produce a smaller automaton that is
close to the given one in a certain sense. The desired size of
the approximating automaton is given as input. Inspired by the
aggregation of equivalent states typical of partition refinement
techniques, Ferns et al. [15] undertake the approximate mini-
mization problem by aggregating states having relative smaller
distance. An example of this approach on MCs using the λ-
bisimilarity distance of Desharnais et al. is shown below.
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LetM be the MC above and assume we want to approximate
it by an MC with at most 5 states. Since m1,m2 are the only
two states at distance less than 1, the most natural choice for
an aggregation shall collapse (via convex combination) m1

and m2, obtaining the MC on the left, which has distance
4
9 ( λ2

2−λ ) from M. Approximate aggregation of states does not
necessarily yield the closest optimal solution. Indeed, the MC
on the right is a closer approximant ofM, at distance 1

6 ( λ2

2−λ ).
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In this paper we address the issue of finding optimal solu-
tions to the approximate minimization problem. Specifically
we aim to answer to the following problem, left open in [15]:
“given a finite MC and a positive integer k, what is its ‘best’
k-state approximant? Here by ‘best’ we mean a k-state MC
at minimal distance to the original”. We refer to this problem
as Closest Bounded Approximant (CBA) and we present the
following results related to it.

1) We characterize CBA as a bilinear optimization problem,
proving the existence of optimal solutions.



2) We show that closest bounded approximants for Markov
chains with rational transition probabilities may not have
rational probabilities.

3) We study the complexity of the threshold problem of
CBA, called Bounded Approximant problem (BA), that asks
whether there exists a k-state approximant with distance
from the original MC bounded by a given rational threshold.
Specifically, we show that BA is in PSPACE and NP-hard.

4) We introduce the Significant Bounded Approximant
problem (SBA) problem, that asks whether there exists an
approximant of size k having some significant similarity to
the original MC (i.e., at distance strictly less than 1). We
show that this problem is NP-complete when one considers
the undiscounted bisimilarity distance.

5) Finally, we propose an algorithm for finding suboptimal
solutions of CBA that is inspired by Expectation Maximization
(EM) techniques [16], [17].
Related Work: In [18], the approximate minimization of MCs
is addressed via the notion of quasi-lumpability. An MC is
quasi-lumpable if the given aggregations of the states can be
turned into actual bisimulation-classes by a small perturbation
of the transition probabilities. This approach differs from ours
since there is no relation to a proper notion of behavioral
distance (the approximation is w.r.t. the supremum norm of
the difference of the stochastic matrices) and we do not
consider any approximate aggregation of states. In [19], Balle
et al. consider the approximate minimization of weighted
finite automata (WFAs). Their method is via a truncation of
a canonical normal form for WFAs that they introduced for
the SVD decomposition of infinite Hankel matrices. Both [18]
and [19] do not consider the issue of finding the closest
approximant, which is the main focus of this paper, instead
they give upper bounds on the distance from the given model.

I. MARKOV CHAINS AND BISIMILARITY PSEUDOMETRIC

For R ⊆ X ×X an equivalence relation, X/R denotes its
quotient set. D(X) denotes the set of discrete probability dis-
tributions on X , i.e., functions µ : X → [0, 1], s.t. µ(X) = 1,
where µ(E) =

∑
x∈E µ(x) for E ⊆ X . We fix a countable set

L of labels representing properties that hold in certain states.
Definition 1: A Markov chain is a tuple M = (M, τ, `)

consisting of a finite set of states M , a transition distribution
function τ : M → D(M), and a labelling function ` : M → L.
Intuitively, if M is in state m it moves to state m′ with
probability τ(m)(m′). The set of labels of M is denoted by
L(M) = {`(m) | m ∈M}.

Hereafter, we use M = (M, τ, `) and N = (N, θ, α) to
range over MCs and we refer to their constituents implicitly.

Probabilistic bisimulation of Larsen and Skou [7] is a key
concept for reasoning about the behavioral equivalence of
probabilistic systems. Two states are bisimilar if they have the
same label and equal probability of moving to any bisimilarity
class. Any probabilistic bisimulation R ⊆ M × M induces
another MC, called R-quotient ofM (a.k.a. R-lumping [20]),
having states in M/R. An MC is said minimal if it is
isomorphic to its quotient w.r.t. probabilistic bisimilarity.

A function d : X×X → [0, 1] is a (1-bounded) pseudomet-
ric on X if for any x, y, z ∈ X , d(x, x) = 0, d(x, y) = d(y, x),
and d(x, y) + d(y, z) ≥ d(x, z). 1-bounded pseudometrics on
X form a complete lattice under the point-wise partial order
d v d′ iff d(x, y) ≤ d′(x, y) for all x, y ∈ X .

The bisimilarity distance of Desharnais et al. [21] extends
probabilistic bisimilarity in the sense that two states are at
distance zero iff they are bisimilar. Its definition is based on
the Kantorovich (pseudo)metric on D(X) for a finite set X ,
defined as K(d)(µ, ν) = min

{∫
d dω | ω ∈ Ω(µ, ν)

}
, where

d is a (pseudo)metric on X and Ω(µ, ν) denotes the set of
couplings for (µ, ν), i.e., distributions ω ∈ D(X × X) such
that, for all E ⊆ X , ω(E×X) = µ(E) and ω(X×E) = ν(E).

Definition 2 (Bisimilarity Distance): Let λ ∈ (0, 1]. The
λ-discounted bisimilarity pseudometric onM, denoted by δλ,
is the least fixed-point of the following functional operator on
1-bounded pseudometrics over M (ordered point-wise)

Ψλ(d)(m,n) =

{
1 if `(m) 6= `(n)

λ · K(d)(τ(m), τ(n)) otherwise .

The operator Ψλ is monotonic, hence, by Tarski fixed-point
theorem, δλ is well defined.

Intuitively, if two states have different labels δλ considers
them as “incomparable” (i.e., at distance 1), otherwise their
distance is given by the Kantorovich distance w.r.t. δλ between
their transition distributions. The discount factor λ ∈ (0, 1]
controls the significance of the future steps in the measurement
of the distance; if λ = 1, the distance is said undiscounted.

Usually, MCs are associated with an initial state to be
thought of as their initial configurations. In the rest of the paper
when we talk about the distance between two MCs, written
δλ(M,N ), we implicitly refer to the distance between their
initial states computed over the disjoint union of their MCs.

II. THE CLOSEST BOUNDED APPROXIMANT PROBLEM

We introduce the Closest Bounded Approximant problem
w.r.t. δλ (CBA-λ), and study it as an optimization problem.

Definition 3 (Closest Bounded Approximant): Let k ∈ N
and λ ∈ (0, 1]. The closest bounded approximant problem
w.r.t. δλ for an MC M is the problem of finding an MC N
with at most k states minimizing δλ(M,N ).

When k is greater than or equal to the number of bisimilarity
classes of M, CBA-λ is efficiently solved by computing the
bisimilarity quotient of M (cf. [6], [22]). Therefore, w.l.o.g.,
we will assume 1 ≤ k < |M | and M to be minimal.

Let MC(k) denote the set of MCs with at most k states and
MCA(k) the subset of those using only labels in A ⊆ L.

In the following, we fix 〈M, k〉 as the instance of CBA-λ.
CBA-λ can be reformulated as finding N ∗ ∈ MC(k) such that

δλ(M,N ∗) = inf {δλ(M,N ) | N ∈ MC(k)} . (1)

A useful property of CBA-λ is that an optimal solution can
be found among MCs which use labels from the given MC.

Lemma 1: Let M be an MC. Then, for any N ′ ∈ MC(k)
there exists N ∈ MCL(M)(k) s.t. δλ(M,N ) ≤ δλ(M,N ′).



In general, it is not obvious that for arbitrary instances 〈M, k〉
a minimum in (1) exists. The following result states that any
instance of CBA-λ admits a minimal solution N ∗ in MC(k).

Theorem 1: CBA-λ always admits an optimal solution.
proof sketch: By Lemma 1 the search space of Equa-

tion (1) can be restricted to chains in MCL(M)(k) with exactly
k states. Since L(M) is finite, one can model the optimization
problem in Equation (1) as a bilinear program with a linear
cost function representing the value d(M,N ) for a generic
prefixpoint d of Ψλ, and a compact feasible set of solutions
modeling a generic approximant N ∈ MCL(M)(k) and d.

The following example shows that even when M has
rational transition probabilities, optimal solutions for CBA-λ
may have irrational transition probabilities.

Example 1: Consider the MC M on the left, with initial
state m0 and labels represented by colors. An optimal solution
of CBA-1 on 〈M, 3〉 is the MC Nxy on the right with initial
state n0 and x = 1
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Since the distance δ1(M,Nxy) = 436
675 −

163
√

163
13500 ≈ 0.49 is

irrational, by [14, Proposition 13], any optimal solution must
have some irrational transition probability.

III. COMPLEXITY RESULTS

The Bounded Approximant problem w.r.t. δλ (BA-λ) is the
threshold decision problem of CBA-λ, that, the given MCM,
integer k ≥ 1, and rational ε ≥ 0, asks whether there exists
N ∈ MC(k) such that δλ(M,N ) ≤ ε.

The first result on BA-λ establishes the following complex-
ity upper-bound.

Theorem 2: For any λ ∈ (0, 1], BA-λ is in PSPACE.
proof sketch: An instance 〈M, k, ε〉 of BA-λ can be

encoded as a decision problem for the existential theory of the
reals, precisely, a bilinear matrix inequality (cf. Theorem 1).
The encoding is polynomial in the size of 〈M, k, ε〉, thus it
can be solved in PSPACE (cf. Canny [23]).

We will also show that BA-λ is NP-hard via a polynomial-
time many-one reduction to VERTEX COVER. Recall that, a
vertex cover of an undirected graph G is a subset C of vertices
such that every edge in G has at least one endpoint in C.
Given a graph G and a positive integer h, the VERTEX COVER
problem asks if G has a cover of size at most h.

Theorem 3: For any λ ∈ (0, 1], BA-λ is NP-hard.
proof sketch: Let 〈G = (V,E), h〉 be an instance of

VERTEX COVER and let e = |E|. W.l.o.g. we assume e ≥ 2
and k < n. From G we construct the MC MG = (M, τ, `)
as follows. The set of states M is given as the union of V
and E to which we add two extra states: a root r (thought
of as the initial state) and a sink s. Each node of MG is
associated with a unique label (i.e., ` is injective). The sink
state s and all v ∈ V loop to themselves with probability 1.
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Fig. 1. (Top) An undirected graph G; (Left) The MC MG associated with
G; (Right) The MC MC associated with the vertex cover C = {1, 2} of G.

All the other states go with probability 1− 1
e to the sink state

s. The rest of their transition probability mass is assigned as
follows. The root r goes with probability 1

e2 to each a ∈ E,
and all (u, v) ∈ E go with probability 1

2e to their endpoints
u, v. An example of construction forMG is given in Figure 1.
One can show that 〈G, h〉 ∈ VERTEX COVER if and only if
〈MG, e+ h+ 2, λ

2

2e2 〉 ∈ BA-λ.

Recall that, two MCs are at distance 1 from each other when
there is no significant similarity between their behaviors. Thus
an MC N is said to be a significant approximant for the MC
M w.r.t. δλ if δλ(M,N ) < 1. Given an MCM and a positive
integer k, we call Significant Bounded Approximant problem
w.r.t. δλ (SBA-λ), the decision problem that asks whether there
exists N ∈ MC(k) such that δλ(M,N ) < 1.

SBA-λ is trivial for λ < 1: an MC N with a single state
labelled as the initial state ofM ensures that δλ(M,N ) ≤ λ.

Interestingly, the significant bounded approximant problem
w.r.t. the undiscounted distance (i.e., SBA-1) is NP-complete.

This result is based on the following technical lemma.
Lemma 2: Let M be a MC (assumed to be minimal) with

initial state m0 and G(M) its underlying directed graph. Then,
〈M, k〉 ∈ SBA-1 iff there exists a bottom strongly connected
component G′ = (V,E) in G(M) and a path m0 . . .mh in
G(M) such that mh ∈ V and | {`(mi) | i ≤ p} | + |V | ≤ k
where p < h is the smallest index such that there exists a path
vi . . . vh−1mh in G′ with `(mj) = `(vj) for all p ≤ j < h.

Theorem 4: SBA-1 is NP-complete.
proof sketch: Membership in NP can be proven by

using Lemma 2 and exploiting Tarjan’s algorithm for gen-
erating bottom SCCs. As for the NP-hardness, we provide a
polynomial-time many-one reduction from VERTEX COVER.
Let G = (V,E) be a graph with E = {e1, . . . , en}. We
construct the MC MG as follows. The set of states is given
by the set of edges E along with two states e1

i and e2
i , for

each edge ei ∈ E, representing the two endpoints of ei and
one extra sink state e0. The initial state is en. The transition
probabilities are given as follows. The sink state e0 loops
with probability 1 to itself. Each edge ei ∈ E goes with
probability 1

2 to e1
i and e2

i , respectively. For 1 ≤ i ≤ n,
the states e1

i and e2
i go with probability 1 to the state ei−1.
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Fig. 2. (Top) The MC MG associated to the graph G in Figure 1 and
(Bottom) an MC N associated to the vertex cover C = {1, 2} of G such
that δ1(MG,N ) < 1 (cf. Theorem 4).

Algorithm 1 Approximate Minimization – EM heuristic
Input: M = (M, τ, `), N0 = (N, θ0, α), and h ∈ N.

1. C0 ∈ Ω(M,N0) s.t. δλ(M,N0) = 1− β(Cλ)(M,Ni−1)
2. for i = 0 to h− 1 do
3. compute E[Zm,nu,v | Ci] for all m,u ∈M and n, v ∈ N
4. get θi+1 and Ci+1 from an optimal solution of M〈Ci〉
5. Ni+1 ← (N, θi+1, α) . Update
6. end for
7. return Nh

The edge states and the sink state are labelled by pairwise
distinct labels, while the endpoints states e1

i and e2
i are

labelled by the node in V they represent. An example of
construction for MG is shown in Figure 2. By Lemma 2 one
can easily show that 〈G, h〉 ∈ VERTEX COVER if and only if
〈MG, h+ n+ 1〉 ∈ SBA-1.

IV. AN EXPECTATION MAXIMIZATION HEURISTIC

We present an algorithm for computing suboptimal solutions
of CBA-λ. Given an initial approximant N0 ∈ MC(k), the
algorithm produces a sequence of MCs N0, . . . ,Nh in MC(k)
having successively decreased distance from M. The proce-
dure is described in Algorithm 1. Intuitively, the algorithm
updates the current MC Ni by assigning relatively greater
probability to transitions that are most representative of the
behavior of the MC M w.r.t. δλ.

The update procedure leverages on a characterization of δλ
based on the notion of coupling structure (cf. Lemma 3).

Definition 4: A function C : M × N → D(M × N) is a
coupling structure for (M,N ) if C(m,n) ∈ Ω(τ(m), θ(n)).
Ω(M,N ) denotes the set of coupling structures of (M,N ).
Intuitively, a coupling structure can be thought of as an MC
on the cartesian product M ×M , obtained as the probabilistic
combination of two copies of M. Consider the MC Cλ
obtained by extending C with a “sink” state ⊥ to which
any other state moves with probability (1 − λ). Let β(Cλ)
be the probability that Cλ never reaches a pair of states
with different labels. The following result gives an alternative
characterization of the bisimilarity distance in terms of β(Cλ).

Lemma 3: δλ(M,N ) = 1−maxC∈Ω(M,N ) β(Cλ).

From equation (1) and Lemma 3, we can reduce the problem
CBA-λ to that of taking the right marginal of a coupling
structure C that maximizes β(Cλ), namely

argmax {β(Cλ) | N ∈ MC(k), C ∈ Ω(M,N )} . (2)

This change in perspective allows us to apply Expectation
Maximization (EM) techniques in a way similar to [17].

Let RC ⊆M×N be the set of nodes in the underlying graph
of C from which there is no path passing from nodes (m,n)
such that `(m) 6= α(n). β(Cλ) is the probability that Cλ emits a
path with prefix in ∼=∗(RC∪⊥) starting from the pair (m0, n0)
of initial states, where ∼= = {(m,n) /∈ RC | `(m) = α(n)}.
The idea is to count the expected number of occurrences of
transitions in Ci in ∼=∗(RC ∪ ⊥) and update Ci by increasing
the weight of the transitions that contribute the most.

Let Zm,nu,v : (M × N)ω → N be the random variable that
counts the number of occurrences of the edge ((m,n)(u, v))
in a prefix in ∼=∗(RC ∪ ⊥) of the given path. We denote by
E[Zm,nu,v | C] the expected value of Zm,nu,v w.r.t. the probability
distribution induced by Cλ. We define M〈C〉 as

maximize
∑
m,u∈M

∑
n,v∈N E[Zm,nu,v | C] · ln(cm,nu,v )

such that
∑
v∈N c

m,n
u,v = τ(m)(u) (m,u ∈M , n ∈ N )∑

u∈M cm,nu,v = θn,v (m ∈M , n, v ∈ N )

cm,nu,v ≥ 0 (m,u ∈M , n, v ∈ N )

An optimal solution of M〈C〉 induces a coupling structure
(with transitions cm,nu,v ) and a Markov chain (with transitions
θn,v) that improves the coupling structure C in the sense of (2).

Theorem 5: Let β(Cλ) > 0. Then, an optimal solution for
M〈C〉 describes a Markov chain N ′ and a coupling structure
C′ ∈ Ω(M,N ′) such that β(Cλ) ≤ β(C′λ).
The choice of the initial approximant N0 may have a signif-
icant effect on the quality of the solution. For the labeling
of the states, one should follow Lemma 1. As for the choice
of the underlying structure one shall be guided by Lemma 2.
However, Theorem 3, suggests that its hard to select a good
starting approximant candidate. Nevertheless, good selections
for N0 may be suggested by looking at the problem instance.

V. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this is the first work address-
ing the complexity of the optimal approximate minimization
of MCs w.r.t. a behavioral metric semantics.

Preliminary experiments on Algorithm 1 show that the max-
imization step is inefficient to perform. To tame this problem,
we explored other heuristics based on relaxed versions of
M〈C〉 which admit analytic solutions. Prototype implementa-
tions1 of two different “relaxed” variants of Algorithm 1 have
given promising results.

In the light of [14], [24], relating the probabilistic bisim-
ilarity distance to the LTL-model checking problem as
δ1(M,N ) ≥ |PM(ϕ)− PN (ϕ)|, for all ϕ ∈ LTL, our results
might be used to lead saving in the overall model checking
time. Membership of BA-λ in NP is left open as future work.

1The prototype is available at http://people.cs.aau.dk/giovbacci/tools.html.



REFERENCES

[1] E. F. Moore, “Gedanken Experiments on Sequential Machines,” in
Automata Studies. Princeton University, 1956, pp. 129–153.

[2] J. Hopcroft, “An n logn algorithm for minimizing states in a finite
automaton,” in Theory of Machines and Computations, Z. Kohavi and
A. Paz, Eds. Academic Press, 1971, pp. 189–196.

[3] P. C. Kanellakis and S. A. Smolka, “CCS expressions, finite state
processes, and three problems of equivalence,” in Proceedings of the 2nd
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing. ACM, 1983, pp. 228–240.

[4] ——, “CCS expressions, finite state processes, and three problems of
equivalence,” Information and Computation, vol. 86, no. 1, pp. 43–68,
1990.

[5] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes in
Computer Science. Springer, 1980, vol. 92.

[6] C. Baier, “Polynomial time algorithms for testing probabilistic bisimu-
lation and simulation,” in CAV, ser. Lecture Notes in Computer Science,
vol. 1102. Springer, 1996, pp. 50–61.

[7] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Information and Computation, vol. 94, no. 1, pp. 1–28, 1991.

[8] R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-Toi,
“Minimization of timed transition systems,” in CONCUR, ser. Lecture
Notes in Computer Science, vol. 630. Springer, 1992, pp. 340–354.

[9] M. Yannakakis and D. Lee, “An efficient algorithm for minimizing real-
time transition systems,” Formal Methods in System Design, vol. 11,
no. 2, pp. 113–136, 1997.

[10] C.-C. Jou and S. A.Smolka, “Equivalences, congruences, and complete
axiomatizations for probabilistic processes,” in CONCUR’90 Theories
of Concurrency: Unification and Extension, ser. LNCS, vol. 458, 1990,
pp. 367–383.

[11] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics
for Labeled Markov Systems,” in CONCUR, ser. LNCS, vol. 1664.
Springer, 1999, pp. 258–273.

[12] F. van Breugel and J. Worrell, “Towards Quantitative Verification of
Probabilistic Transition Systems,” in ICALP, ser. LNCS, vol. 2076, 2001,
pp. 421–432.

[13] ——, “Approximating and computing behavioural distances in prob-
abilistic transition systems,” Theoretical Computer Science, vol. 360,
no. 3, pp. 373–385, 2006.

[14] D. Chen, F. van Breugel, and J. Worrell, “On the Complexity of
Computing Probabilistic Bisimilarity,” in FoSSaCS, ser. LNCS, vol.
7213. Springer, 2012, pp. 437–451.

[15] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite Markov
Decision Processes,” in UAI. AUAI Press, 2004, pp. 162–169.

[16] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions,
2nd ed. Wiley-Interscience, 2008.

[17] M. Benedikt, R. Lenhardt, and J. Worrell, “LTL Model Checking of
Interval Markov Chains,” in TACAS, ser. Lecture Notes in Computer
Science, vol. 7795. Springer, 2013, pp. 32–46.

[18] G. Franceschinis and R. R. Muntz, “Bounds for quasi-lumpable markov
chains,” Perform. Eval., vol. 20, no. 1-3, pp. 223–243, 1994.

[19] B. Balle, P. Panangaden, and D. Precup, “A canonical form for weighted
automata and applications to approximate minimization,” in LICS. IEEE
Computer Society, 2015, pp. 701–712.

[20] J. G. Kemeny and J. L. Snell, Finite Markov chains, ser. Undergraduate
texts in mathematics. New York: Springer, 1976, reprint of the 1960
ed. published by Van Nostrand, Princeton, N.J., in the University series
in undergraduate mathematics.

[21] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics for
labelled Markov processes,” Theoretical Compututer Science, vol. 318,
no. 3, pp. 323–354, 2004.

[22] S. Derisavi, H. Hermanns, and W. H. Sanders, “Optimal state-space
lumping in Markov chains,” Inf. Process. Lett., vol. 87, no. 6, pp. 309–
315, 2003.

[23] J. F. Canny, “Some Algebraic and Geometric Computations in PSPACE,”
in Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC’88). ACM, 1988, pp. 460–467.

[24] G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare, “Converging from
Branching to Linear Metrics on Markov Chains,” in ICTAC, ser. LNCS,
vol. 9399. Springer, 2015, pp. 349–367.


