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Introduction

Programming languages are divided into different paradigms. The most known and used is
the imperative paradigm. Declarative paradigms have born with the aim to ease the task of
programming: in contrast to imperative programming, one does not prescribes a sequence
of steps to be performed to obtain a solution to a problem, but what are the properties
of the problem and the expected solutions. Declarative programming languages provide
a higher and more abstract level of programming that leads to reliable and maintainable
programs. This paradigm has become of particular interest recently, as it may greatly
simplify writing parallel programs.

Historically declarative languages have been separated in two main paradigms: the
functional paradigm and the logic paradigm, both of them supporting different features
that have been shown to be useful in application programming. Since these worlds of
programming are based on common grounds, it is a natural idea to combine them into
a single multi-paradigm declarative language. However, the interactions between the dif-
ferent features are complex in detail so that the concrete design of a multi-paradigm
declarative language is non-trivial. This is demonstrated by many different proposals and
a lot of research work on the semantics, operational principles, and implementation of
multi-paradigm declarative languages since more than two decades. The languages Curry
[51] and T OY [16] come through the problem with a single mechanism, called narrowing,
which amalgamates the functional concept of reduction with unification and nondeter-
ministic search from logic programming. Moreover, if unification on terms is generalized
to constraint solving, features of constraint programming are also covered. Based on the
narrowing principle, one can define declarative languages integrating the good features of
the individual paradigms, in particular, with a sound and complete operational semantics
that is optimal for a large class of programs [6].

The operational narrowing principle has a very elegant logical counterpart, the Constru
ctor-based ReWriting Logic (CRWL) [49, 50, 64], which provides a logical semantics that
helped to better understand the meaning of programs and also to detect issues and flaws
in the language definitions (like the call-time versus need-time choice issue).

A (declarative) semantics for a programming language provides meanings for programs
or, more generally, program components. Clearly one purpose of a semantics is to help
understand the meaning of programs, however this is not the only one. Some successful
applications are the semantic-based techniques (such as program analysis, debugging and
transformation) which have been used to develop useful programming tools.

When a semantics is to be used for the development of efficacious semantic-based pro-
gram manipulation tools, one of the most useful features it can have is to be “condensed”.
Many declarative semantics contain many “semantically useless” elements that can be re-
trieved from a smaller set of “essential” elements. A semantics is “condensed” if it retains
in denotations only the “essential” elements. The operational [1, 6] or the rewriting logic
semantics [49] that are most commonly considered in functional logic programming are
not condensed. Indeed, a “condensed” (goal-independent) semantics for functional logic
languages, modeling the actual (implemented) behavior, does not exist.
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The main motivation of this thesis is to develop a framework for defining “condensed”
semantics which are adequate to model any abstraction (either precise or approximate)
of “the computed narrowing trees”, to be used as base semantics for the construction of
semantic-based program development tools (like program analyzers, debuggers, correctors
and verifiers).

In particular this framework should allow us to address problems such as

• the relation between the operational and the denotational semantics

• the existence of a goal-independent denotation for a set of program equations

• the properties of the denotations (e.g. compositionality, correctness and full abstrac-
tion)

We will construct such a framework starting from a semantics modeling the “small-
step” behavior (by means of what we called small-step trees) and then we will apply
abstract interpretation techniques to define observable properties (i.e., behavioral proper-
ties of the computation).

We will show then some applications of this framework. Namely,

• groundness dependency properties of computed results in lazy functional logic pro-
grams;

• an extension to the functional logic paradigm of the semantics-based debugging
approach of [26, 27], for logic programs, which extends declarative debugging to cope
with the analysis of operational properties such as computed and correct answers,
and abstract properties, e.g. depth(k) answers and groundness dependencies;

• automatic synthesis of (property-oriented) specifications in terms of equations relat-
ing (nested) operation calls that have the same behavior.

I.1 The functional logic paradigm

The evolution of programming languages is the stepwise introduction of abstractions hiding
the underlying computer hardware and the details of program execution. Along these lines,
declarative languages – the most prominent representatives of which are functional and
logic languages – hide the order of evaluation by removing assignment and other control
statements.

In contrast to imperative programming, in a declarative setting one does not have to
provide a description on how to obtain a solution to a problem by performing a sequence
of steps but on what are the properties of the problem and the expected solutions. In fact,
a declarative program is a set of logical statements describing properties of the application
domain. The execution of a declarative program is the computation of the value(s) of an
expression with respect to these properties. Thus, the programming effort shifts from
encoding the steps for computing a result to structuring the application data and the
relationships between the application components. Declarative languages could be seen
as formal specification languages, but with a significant difference: they are executable.
Different formalisms lead to different classes of declarative languages. This kinds of lan-
guages have similar motivations but provide different features. For example, functional
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languages provide efficient, demand-driven (or lazy) evaluation strategies that support
infinite structures, whereas logic languages provide nondeterminism and predicates with
multiple input/output modes that offer code reuse.

Functional logic languages aim to combine the features of both paradigms in a conser-
vative manner. Programs that do not use the features of one paradigm behave as programs
of the other paradigm.

I.2 Computation properties and semantics

Semantics can help to develop practical tools such as those which performs program analy-
sis, program debugging and program transformations. For this purpose we need notions of
models which really capture the actual operational properties of functional logic programs
and are, therefore, useful both for defining program equivalences and for semantic-based
analysis.

A program admits a number of different semantics depending on which properties of
the computation (observed behavior) we are interested in. A given choice of the property
to observe, let us call it α, induces an observational equivalence on programs. Namely
P1 ≈α P2 if and only if P1 and P2 can’t be distinguished on α, that is they have the
same behavior w.r.t. the observation made on α. In functional logic programs we can
be interested in different behavioral properties: if we are only concerned with the input-
output behavior of programs, we should just observe computed results. However, there are
tasks, such as program analysis and optimization, which force us to observe and take into
account other features of the derivations. In principle one could be interested in complete
informations about the small-step behavior, namely the possible sequences of (narrowing)
steps starting from any expression.

Defining an equivalence on programs ≈α and a formal semantics SαJP K are two
strongly related tasks. If the semantics is fully abstract, that is P1 ≈α P2 if and only
if SαJP1K = SαJP2K, then it identifies all and only the programs which can’t be distin-
guished by α. Such an abstract model can be considered as the semantics of a language
w.r.t. a given property α: all the other semantics can be reduced to it by abstracting from
the redundant information. A non-fully abstract semantics makes the intended meaning of
a program to include non relevant aspects, which do not depend on the behavior of the pro-
gram but on a particular “implementation”. Moreover this property is important, for in-
stance, for deciding correctness of program transformation techniques. Compositionality is
considered one of the most desirable characteristics of a formal semantics, since it provides
a foundation for program verification and modular design. Compositionality has to do with
a (syntactic) program construction operator ◦, and holds when the semantics of the com-
pound construct C1 ◦C2 can be computed by composing the semantics of the constituents
C1 and C2, i.e., if for a suitable homomorphism f , SαJP1 ◦ P2K = SαJP1K f (◦) SαJP2K.

Note that the typical operations that characterize a modular language are operations
on the parts which compose the program rather than on the program itself. Separate
compilation or analysis are examples of these operations. In fact, one of the most critical
aspects in modular systems is the possibility of making a separate compilation of modules,
and this can only be made in the presence of this property.
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I.3 Abstract interpretation and program analysis

Abstract interpretation [29, 31], a technique for constructing verified analyses of program
execution behavior, has been extensively applied to logic programming [57, 67, 44, 23].
The relevant feature of abstract interpretation is that, once the property intended to be
observed has been modeled by an abstract domain, we have a methodology to system-
atically derive an abstract semantics, which in turn allows us to effectively compute a
(correct) approximation of the property. By using this approach, most of the theorem-
proving, in the logical theory involved in program verification, boils down to computing
on the abstract domain. This is obtained in general at the expense of precision.

A program analysis is viewed as a non-standard, abstract semantics defined over a
domain of data description. An abstract semantics is constructed by replacing operations
in a suitable concrete semantics with the corresponding abstract operations defined on
data descriptions, namely, abstract domains. Such domains are called abstract because
they abstract, from the concrete computation domain, the properties of interest.

The definition of an appropriate concrete semantics, capable of modeling those pro-
gram properties of interest, is a key point in abstract interpretation [29] and semantic-based
data-flow analysis. Program analyses are then defined by providing finitely computable
abstract interpretations which preserve interesting aspects of program behavior. Formal
justification of program analyses is reduced to proving conditions on the relation between
data and data descriptions and on the elementary operations defined on the data descrip-
tion.

In program analysis, abstract interpretation theory is often used to establish the cor-
rectness of specific analysis algorithms and abstract domains. We are more concerned
instead in its application to the systematic derivation of the (optimal) abstract semantics
from the abstract domain.

Abstract interpretation is inherently semantic sensitive and different semantic defini-
tion styles lead to different approaches to program analysis, the main are the top-down
and the bottom-up approaches. In the case of functional logic programs, the most pop-
ular approach is the top-down, which propagates the information as narrowing does. In
this class there are ad hoc algorithms, frameworks based on an operational semantics and
frameworks based on a denotational semantics. The bottom-up approach propagates the
information as in the computation of the least fixpoint of the immediate consequence oper-
ator. The main difference between the top-down and the bottom-up approach is usually
related to goal dependency. In particular, a top-down analysis starts with a specific goal,
while the bottom-up approach determines an approximation of properties of programs
which is goal independent. Note, however, that goal-independent (concrete and abstract)
semantics can also be defined in a top-down way.

I.4 Program debugging

The time and effort spent on validation of computer programs is known to take well over
half of the total time for software development. Debugging is an essential ingredient in
software development. Indeed the testing phase may also arise after the installation of the
software and throughout its lifetime. An advantage of declarative languages is that they
facilitate declarative programming. They make it possible, at least to a certain extent,
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to separate the declarative, logical semantics (what is computed) from the operational
semantics (how it is computed). Even though declarative languages aim at easing the
task of programming, they can at the same time make debugging more difficult since the
computation flow is often hard to predict. Thus the emergence of automatic tools for
debugging closely follows the development of new programming paradigms and languages.

Debugging of functional logic programs is a special case of the general problem of
debugging. The role of debugging in general is to identify and eliminate differences between
the intended semantics of a program and its actual semantics. We will assume that
the user has a clear idea about the results that should be computed by the program.
An error occurs when the program computes something that the programmer did not
intend (incorrectness symptom), or when it fails to compute something he was expecting
(incompleteness or insuffciency symptom). In other words, incorrectness symptoms are
answers which are in the actual program semantics but are not in the intended semantics,
while incompleteness symptoms are answers which are in the intended semantics but are
not in the actual program semantics.

In principle, all the reasoning concerning the correctness of a program can be done on
the level of the declarative semantics, thus abstracting from any details of the computation.
This advantage is however lost when debugging has to be done on the level of the concrete
computations: this happens in the case of debugging tools which are different various
versions of tracers. They force the programmer to think in terms of the sequences of
computation steps. Thus it is important to develop debugging methods based on more
abstract semantics which take into account abstract properties of the computation.

The debugging problem can formally be defined as follows. Let P be a program, SαJP K
be the behavior of P w.r.t. the property α, and Iα be the specification of the intended
behavior of P w.r.t. α. Debugging consists in comparing SαJP K and Iα and determining
the wrong program components which are sources of errors, when SαJP K 6= Iα. The
formulation is parametric w.r.t. the property α considered in the specification Iα and in
the actual behavior SαJP K.

Declarative debugging – firstly proposed for logic programs [88, 62, 40] then extended
both for functional [72, 75] and functional logic programs [19, 17, 18, 14] – is concerned
with model-theoretic properties. The specification is the intended declarative semantics
(e.g. the least Herbrand model in [88], the set of atomic logical consequences in [40] and
the free term-model in [19, 17, 18]). The idea behind declarative debugging is to collect
information about what the program is intended to do and compare this with what it
actually does. By reasoning from this, a diagnoser can find errors. The information
needed can be found by asking the user a formal specification (which can be an extensive
description of the intended program behavior or an older correct version of the program).
The entities that provide the diagnoser with information are referred to as the oracle.

The declarative debugging method consists in two main techniques: incorrectness error
diagnosis and insufficiency error diagnosis. The principal idea for find incorrectness errors
is to inspect the proof tree constructed for an incorrectness symptom. To find the erroneous
declaration (which corresponds to a clause in a logic program or an equation in a functional
logic program) the diagnoser traverses the proof tree. At each node it asks the oracle about
the validity of the corresponding atom. With the aid of the answers the diagnoser can
identify the erroneous declaration. Dually, insufficiency error diagnosis concerns the case
when a program fails to compute some expected results. The objective for insufficiency
diagnosis is to scrutinize the attempt to construct a proof for a result which incorrectly
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viii Introduction

fails (or suspends). The reason for the error is located to one of the procedures (all clauses
defining a predicate or all equations defining an operation) in the computation.

The idea in declarative debugging to restrict attention to model-theoretic properties
has some limitations.

• The most natural observable for the diagnosis is that of computed results. It leads to a
more precise diagnosis technique than the declarative debugging in [88, 40, 19, 17, 18],
which can be reconstructed in terms of the more abstract observables instances of
computed results and correct answers.

• Debugging w.r.t. depth(k)-answers or groundness dependencies makes diagnosis ef-
fective, since both Iα and SαJP K are finite.

• Debugging w.r.t. types allows us to detect bugs as the inadmissible calls in [81].
If Iα specifies the intended program behavior w.r.t. types, abstract diagnosis boils
down to type checking.

• Debugging w.r.t. modes and ground dependencies allows us to verify other partial
program properties.
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Preliminaries

Most of the notations used in this thesis are introduced in this chapter.

Essentially, this chapter presents the informal, logical and set-theoretic notations and
concepts we will use to write down and reason about our ideas. The chapter is simply
presented by using an informal extension of our everyday language to talk about mathe-
matical objects like sets; it is not to be confused with the formal definitions about them
that we will encounter later.

Some more specific notions will be introduced in the chapters where they are needed.
For the terminology not explicitly shown and for a more motivated introduction about
fixpoint theory and algebraic notation, the reader can consult [66, 13, 12].

1.1 Basic Set Theory

To define the basic notions we will use the standard (meta) logical notation to denote
conjunction, disjunction, quantification and so on (and, or, for each, . . . ). We will use
some informal logical notation in order to stop our mathematical statements getting out
of hand. For statements (or assertions) A and B, we will commonly use abbreviations like:

A,B for (A and B), the conjunction of A and B,

A =⇒ B for (A implies B), which means (if A then B),

A⇐⇒ B for (A if and only if B), which expresses the logical equivalence of A and B.

We will also make statements by forming disjunctions (A or B), with the self-evident
meaning, and negations (not A), sometimes written ¬A, which is true if and only if A is
false. It is a tradition to write x � y instead of ¬(x ≤ y).

A statement like P (x, y), which involves variables x, y, is called a predicate (or prop-
erty, or relation, or condition) and it only becomes true or false when the pair x, y stands
for particular things. We use logical quantifiers ∃ (read “there exists”) and ∀ (read “for
all”) to write assertions like ∃x. P (x) as abbreviating “for some x, P (x)” or “there ex-
ists x such that P (x)”, and ∀x. P (x) as abbreviating “for all x, P (x)” or “for any x,
P (x)”. The statement ∃x, y, . . . , z. P (x, y, . . . , z) abbreviates ∃x.∃y. · · · ∃z. P (x, y, . . . , z),
and ∀x, y, . . . , z. P (x, y, . . . , z) abbreviates ∀x.∀y. · · · ∀z. P (x, y, . . . , z). In order to specify
a set S over which a quantifier ranges, we write ∀x ∈ S. P (x) instead of ∀x. x ∈ S =⇒ P (x),
and ∃x ∈ S. P (x) instead of ∃x. x ∈ S, P (x).
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1.1.1 Sets

Intuitively, a set is an (unordered) collection of objects, which are elements (or members)
of it. We write a ∈ S when a is an element of the set S. Moreover, we write {a, b, c, . . .}
for the set of elements a, b, c, . . ..

A set S is said to be a subset of a set S′, written S ⊆ S′, if and only if every element
of S is an element of S′, i.e., S ⊆ S′ ⇐⇒ ∀z ∈ S. z ∈ S′. A set is determined solely by its
elements in the sense that two sets are equal if and only if they have the same elements.
So, sets S and S′ are equal, written S = S′, if and only if every element of S is an element
of S′ and vice versa.

Sets and Properties

A set can be determined by a property P . We write S := {x |P (x)}, meaning that the
set S has as elements precisely all those x for which P (x) is true. We will not be formal
about it, but we will avoid trouble like Russell’s paradox (see [85]) and will have at the
same time a world of sets rich enough to support most mathematics. This will be achieved
by assuming that certain given sets exist right from the start and by using safe methods
for constructing new sets.

We write ∅ for the null or empty set and N for the set of natural numbers 0, 1, 2, . . ..

The cardinality of a set S is denoted by |S|. A set S is called denumerable if |S| = |N|
and countable if |S| ≤ |N|.

Constructions on Sets

Let S be a set and P (x) be a property. By {x ∈ S |P (x)} we denote the set {x |x ∈
S, P (x)}. Sometimes, we will use a further abbreviation. Suppose E(x1, . . . , xn) is some
expression which for particular elements x1 ∈ S1, . . . , xn ∈ Sn yields a particular element
and P (x1, . . . , xn) is a property of such x1, . . . , xn. We use

{E(x1, . . . , xn) |x1 ∈ S1, . . . , xn ∈ Sn, P (x1, . . . , xn)}

to abbreviate {y | ∃x1 ∈ S1, . . . , xn ∈ Sn. y = E(x1, . . . , xn), P (x1, . . . , xn)}.
The powerset of a set S, {S′ | S′ ⊆ S}, is denoted by ℘(S).

Let I be a set. By {xi}i∈I (or {xi | i ∈ I}) we denote the set of (unique) objects xi,
for any i ∈ I. The elements xi are said to be indexed by the elements i ∈ I.

The union of two sets is S ∪ S′ := {a | a ∈ S or a ∈ S′}. Let S be a set of sets,⋃
S = {a | ∃S ∈ S. a ∈ S}. When S = {Si}i∈I , for some indexing set I, we write

⋃
S as⋃

i∈I Si. The intersection of two sets is S ∩S′ := {a | a ∈ S, a ∈ S′}. Let S be a nonempty
set of sets. Then

⋂
S := {a | ∀S ∈ S. a ∈ S}. When S = {Si}i∈I we write

⋂
S as

⋂
i∈I Si.

The cartesian product of S and S′ is the set S × S′ := {(a, b) | a ∈ S, b ∈ S′}, the set
of ordered pairs of elements with the first from S and the second from S′. More generally
S1 × S2 × · · · × Sn consists of the set of n-tuples (x1, . . . , xn) with xi ∈ Si and Sn denotes
the set of n-tuples of elements in S.

S \ S′ denotes the set where all the elements from S, which are also in S′, have been
removed, i.e., S \ S′ := {x |x ∈ S, x 6∈ S′}.
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1.1.2 Relations and Functions

A binary relation between S and S′ (R : S × S′) is an element of ℘(S × S′). We write
x R y for (x, y) ∈ R.

A partial function from S to S′ is a relation f ⊆ S × S′ for which ∀x, y, y′. (x, y) ∈
f, (x, y′) ∈ f =⇒ y = y′. By f : S ⇀ S′ we denote a partial function of the set S (the
domain) into the set S′ (the range). The set of all partial functions from S to S′ is
denoted by [S ⇀ S′]. Moreover, we use the notation f(x) = y when there is a y such
that (x, y) ∈ f and we say f(x) is defined, otherwise f(x) is undefined. Sometimes, when
f(x) is undefined, we write f(x) ∈ ℵ, where ℵ denotes the undefined element. For each
set S we assume that ℵ ⊆ S, ℵ ∪ S = S and ∅ 6⊆ ℵ. This will be formally motivated in
Section 1.2.1.

Given a partial function f : S ⇀ S′, the sets supp(f) := {x ∈ S | f(x) is defined}
and img(f) := {f(x) ∈ S′ | ∃x ∈ S. f(x) is defined} are, respectively, the support and the
image of f . A partial function is said to be finite-support if supp(f) is finite. Moreover,
it is said to be finite if both supp(f) and img(f) are finite. In the following, we will often
use finite-support partial functions. Hence, to simplify the notation, by

f :=


v1 7→ r1

...

vn 7→ rn

we will denote (by cases) any function f which assumes on input values v1, . . . , vn output
values r1, . . . , rn and is otherwise undefined. Furthermore, if the support of f is just the
singleton {v}, we will denote it by f := v 7→ r.

A (total) function f from S to S′ is a partial function from S to S′ such that, for all
x ∈ S, there is some y ∈ S′ such that f(x) = y. That is equivalent as saying that f is
total if supp(f) = S. Although total functions are a special kind of partial function, it is
a tradition to understand something described as simply a function to be a total function.
So we will always say explicitly when a function is partial. To indicate that a function f
from S to S′ is total, we write f : S → S′. Moreover, the set of all (total) functions from
S to S′ is denoted by [S → S′].

A function f : S → S′ is injective if and only if for each x, y ∈ S if f(x) = f(y) then
x = y. f is surjective if and only if for each x′ ∈ S′ there exists x ∈ S such that f(x) = x′.

We denote by f = g the extensional equality, i.e., for each x ∈ S, f(x) = g(x).

Lambda Notation

It is sometimes useful to use the lambda notation to describe functions. It provides a
way of referring to functions without having to name them. Suppose f : S → S′ is a
function which, for any element x ∈ S, gives a value f(x) which is exactly described by
expression E, probably involving x. Then we can write λx ∈ S.E for the function f .
Thus, (λx ∈ S.E) := {(x,E[x]) |x ∈ S} and so λx ∈ S.E is just an abbreviation for
the set of input-output values determined by the expression E[x]. We use the lambda
notation also to denote partial functions by allowing expressions in lambda-terms that
are not always defined. Hence, a lambda expression λx ∈ S.E denotes a partial function
S ⇀ S′ which, on input x ∈ S, assumes the value E[x] ∈ S′, if the expression E[x] is
defined, and otherwise it is undefined.
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Composing Relations and Functions

We compose relations, and so partial and total functions, R : S × S′ and Q : S′ × S′′ by
defining their composition (a relation between S and S′′) by Q◦R := {(x, z) ∈ S×S′′ | y ∈
S′, (x, y) ∈ R, (y, z) ∈ Q}. Rn is the relation

R ◦ · · · ◦R︸ ︷︷ ︸
n

,

i.e., R1 := R and (assuming Rn is defined) Rn+1 := R ◦Rn. Each set S is associated with
an identity function IdS := {(x, x) |x ∈ S}, which is the neutral element of ◦. Thus we
define R0 := IdS .

The transitive and reflexive closure R∗ of a relation R on S is R∗ :=
⋃
i∈NR

i.
The function composition of g : S ⇀ S′ and f : S′ ⇀ S′′ is the partial function

f ◦ g : S ⇀ S′′, where (f ◦ g)(x) := f(g(x)), if g(x) (first) and f(g(x)) (then) are defined,
and it is otherwise undefined. When it is clear from the context ◦ will be omitted.

A function f : S → S′ is bijective if it has an inverse g : S′ → S, i.e., if and only if
there exists a function g such that g ◦ f = IdS and f ◦ g = IdS′ . Then the sets S and
S′ are said to be in 1-1 correspondence. Any set in 1-1 correspondence with a subset of
natural numbers N is said to be countable. Note that a function f is bijective if and only
if it is injective and surjective.

Direct and Inverse Image of a Relation

We extend relations, and thus partial and total functions, R : S × S′ to functions on
subsets by taking R(X) := {y ∈ S′ | ∃x ∈ X. (x, y) ∈ R} for X ⊆ S. The set R(X) is
called the direct image of X under R. We define R−1(Y ) := {x ∈ S | ∃y ∈ Y. (x, y) ∈ R}
for Y ⊆ S′. The set R−1(Y ) is called the inverse image of Y under R. Thus, if f : S ⇀ S′

is a partial function, X ⊆ S and X ′ ⊆ S′, we denote by f(X) the image of X under
f , i.e., f(X) := {f(x) |x ∈ X} and by f−1(X ′) the inverse image of X ′ under f , i.e.,
f−1(X ′) := {x | f(x) ∈ X ′}.

Equivalence Relations and Congruences

An equivalence relation ≈ on a set S is a binary relation on S (≈ : S × S) such that, for
each x, y, z ∈ S,

x R x (reflexivity)

x R y =⇒ y R x (symmetricity)

x R y, y R z =⇒ x R z (transitivity)

The equivalence class of an element x ∈ S, with respect to ≈, is the subset [x]≈ := {y |x ≈
y}. When clear from the context we abbreviate [x]≈ by [x] and often abuse notation by
letting the elements of a set denote their correspondent equivalence classes. The quotient
set S

/
≈ of S modulo ≈ is the set of equivalence classes of elements in S (w.r.t. ≈).

An equivalence relation ≈ on S is a congruence w.r.t. a partial function f : Sn ⇀ S
if and only if, for each pair of elements ai, bi ∈ S such that ai ≈ bi, (if f(a1, . . . , an) is
defined then also f(b1, . . . , bn) is defined and)

f(a1, . . . , an) ≈ f(b1, . . . , bn).
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Then, we can define the partial function f≈ : (S
/
≈)n ⇀ S

/
≈ as

f≈([a1]≈, . . . , [an]≈) := [f(a1, . . . , an)]≈,

since, given [a1]≈, . . . , [an]≈, the class [f(a1, . . . , an)]≈ is uniquely determined indepen-
dently of the choice of the representatives a1, . . . , an.

1.2 Domain Theory

We will present here the (abstract) concepts of complete lattices, continuous functions and
fixpoint theory, which are the standard tools of denotational semantics.

1.2.1 Complete Lattices and Continuous Functions

A binary relation ≤ on S (≤: S × S) is a partial order if, for each x, y ∈ S,

x ≤ x (reflexivity)

x ≤ y, y ≤ x =⇒ x = y (antisymmetry)

x ≤ y, y ≤ z =⇒ x ≤ z (transitivity)

A partially ordered set (poset) (S, ≤) is a set S equipped with a partial order ≤. A set S
is totally ordered if it is partially ordered and, for each x, y ∈ S, x ≤ y or y ≤ x. A chain
is a (possibly empty) totally ordered subset of S.

A preorder is a binary relation which is reflexive and transitive. A preorder ≤ on a set
S induces on S an equivalence relation ≈ defined as follows: for each x, y ∈ S,

x ≈ y ⇐⇒ x ≤ y, y ≤ x.

Moreover, ≤ induces on S
/
≈ the partial order ≤≈ such that, for each [x]≈, [y]≈ ∈ S

/
≈,

[x]≈ ≤≈ [y]≈ ⇐⇒ x ≤ y.

A binary relation < is strict if and only if it is anti-reflexive (i.e., not x < x) and
transitive.

Given a poset (S, ≤) and X ⊆ S, y ∈ S is an upper bound for X if and only if, for
each x ∈ X, x ≤ y. Moreover, y ∈ S is the least upper bound (called also join) of X, if
y is an upper bound of X and, for every upper bound y′ of X, y ≤ y′. A least upper
bound of X is often denoted by lubS X or by

⊔
S X. We also write

⊔
S{d1, . . . , dn} as

d1 tS · · · tS dn. Dually an element y ∈ S is a lower bound for X if and only if, for each
x ∈ X, y ≤ x. Moreover, y ∈ S is the greatest lower bound (called also meet) of X, if y is
a lower bound of X and for every lower bound y′ of X, y′ ≤ y. A greatest lower bound of
X is often denoted by glbS X or by

d
S X. We also write

d
S{d1, . . . , dn} as d1uS · · ·uS dn.

When it is clear from the context, the subscript S will be omitted. Moreover
⊔
{Di}i∈I

and
d
{Di}i∈I can be denoted by

⊔
i∈I Di and

d
i∈I Di. It is easy to check that if lub and

glb exist, then they are unique.
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Complete Partial Orders and Lattices

A direct set is a poset in which any subset of two elements (and hence any finite subset)
has an upper bound in the set. A complete partial order (CPO) S is a poset such that
every chain D has the least upper bound (i.e., there exists

⊔
D). Notice that any set

ordered by the identity relation forms a CPO, of course without a bottom element. Such
CPOs are called discrete. We can add a bottom element to any poset (S, ≤) which does
not have one (even to a poset which already has one). The new poset S⊥ is obtained by
adding a new element ⊥ to S and by extending the ordering ≤ as ∀x ∈ S.⊥ ≤ x. If S is
a discrete CPO, then S⊥ is a CPO with bottom element, which is called flat.

A complete lattice is a poset (S, ≤) such that for every subset X of S there exists⊔
X and

d
X. Let > denote the top element

⊔
S =

d
∅ and ⊥ denote the bottom

element
d
S =

⊔
∅ of S. The elements of a complete lattice are thought of as points of

information and the ordering as an approximation relation between them. Thus, x ≤ y
means x approximates y (or, x has less or the same information as y) and so ⊥ is the
point of least information. It is easy to check that, for any set S, ℘(S) under the subset
ordering ⊆ is a complete lattice, where t is union, u is intersection, the top element is S
and the bottom element is ∅. Also (℘(S))⊥ is a complete lattice.

Given a complete lattice (L, ≤), the set of all partial functions F = [S ⇀ L] inherits
the complete lattice structure of L. Let simply define f � g := ∀x ∈ S. f(x) ≤ g(x),
(f t g)(x) := f(x) t g(x), (f u g)(x) := f(x) u g(x), ⊥F := λx ∈ S.⊥L and >F := λx ∈
S.>L.

Continuous and Additive Functions

Let (L, ≤) and (M, v) be (complete) lattices. A function f : L→M is monotonic if and
only if

∀x, y ∈ L. x ≤ y =⇒ f(x) v f(y).

Moreover, f is continuous if and only if, for each non-empty chain D ⊆ L,

f(
⊔
L

D) =
⊔
M

f(D).

Every continuous function is also monotonic, since x ≤ y implies f(
⊔
L{x, y}) = f(y),

by continuity
⊔
M{f(x), f(y)} = f(

⊔
L{x, y}), which implies that f(x) v f(y), since

f(x) v
⊔
M{f(x), f(y)} and we already seen that f(

⊔
L{x, y}) = f(y).

Complete partial orders correspond to types of data (data that can be used as input or
output to a computation) and computable functions are modeled as continuous functions
between them.

A partial function f : S ⇀ S′ is additive if and only if the previous continuity condition
is satisfied for each non-empty set. Hence, every additive function is also continuous.
Dually we define co-continuity and co-additivity , by using u instead of t.

It can be proved that the composition of monotonic, continuous or additive functions
is, respectively, monotonic, continuous or additive.

The mathematical way of expressing that structures are “essentially the same” is
through the concept of isomorphism which establishes when structures are isomorphic.
A continuous function f : D → E between CPOs D and E is said to be an isomorphism



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.
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if there is a continuous function g : E → D such that g ◦ f = IdD and f ◦ g = IdE . Thus f
and g are mutual inverses. This is actually an instance of a general definition which applies
to a class of objects and functions between them (CPOs and continuous functions in this
case). It follows from the definition that isomorphic CPOs are essentially the same but
for a renaming of elements. It can be proved that a function f : D → E is an isomorphism
if and only if f is bijective and, for all x, y ∈ D, x ≤D y ⇐⇒ f(x) ≤E f(y).

Function Space

Let D,E be CPOs. It is a very important fact that the set of all continuous functions from
D to E can be made into a complete partial order. The function space [D → E] consists
of continuous functions f : D → E ordered pointwise by f v g ⇐⇒ ∀d ∈ D. f(d) v g(d).
This makes the function space a complete partial order. Note that, provided E has a
bottom element ⊥E , such a function space of CPOs has a bottom element, the constantly
⊥E function ⊥[D→E] := λd ∈ D.⊥E . Least upper bounds of chains of functions are given
pointwise, i.e., a chain of functions f0 v f1 v . . . v fn v . . . has lub

⊔
[D→E] fn := λd ∈

D.
⊔
E{fn(d)}n∈N.

It is not hard to see that the partial functions L ⇀ D are in 1-1 correspondence with
the (total) functions L → D⊥, and that, in this case, any total function is continuous;
the inclusion order between partial functions corresponds to the “pointwise order” f v
g ⇐⇒ ∀σ ∈ L. f(σ) v g(σ) between functions L→ D⊥. Because partial functions from a
CPO so does the set of functions [L→ D⊥] ordered pointwise. This is the reason why we
assumed that, for each set S, ℵ ⊆ S, ℵ ∪ S = S and ∅ 6⊆ ℵ.

1.2.2 Fixpoint Theory

Given a poset (S, ≤) and a function f : S → S, a fixpoint of f is an element x ∈ S such
that f(x) = x. A pre-fixpoint of f is an element x ∈ S such that f(x) ≤ x and dually a
post-fixpoint of f is an element x ∈ S such that x ≤ f(x). Moreover, we say that x ∈ S
is the least fixpoint of f (denoted by lfp f) if and only if x is a fixpoint of f and for all
fixpoints y of f , x ≤ y. Dually, we define the greatest fixpoint (denoted by gfp f).

The fundamental theorem of Knaster-Tarski states that the set of fixpoints of a mono-
tonic function f is a complete lattice.

Theorem 1.2.1 (Fixpoint theorem) [92] A monotonic function f on a complete lattice
(L, ≤) has the least fixpoint and the greatest fixpoint. Moreover,

lfp(f) =
l
{x | f(x) ≤ x} =

l
{x | x = f(x)}

gfp(f) =
⊔
{x | x ≤ f(x)} =

⊔
{x | x = f(x)}.

The Knaster-Tarski Theorem is important because it applies to any monotone function
on a complete lattice. However, most of the time we will be concerned with least fixpoints
of continuous functions which we will construct by the techniques of the previous section,
as least upper bounds of chains in a CPO. Therefore, it’s useful to state some more
notations and results on fixpoints of continuous functions defined on (complete) lattices.

First of all we have to introduce the notion of ordinal . We assume that an ordinal is a
set, where every element of an ordinal is still an ordinal and the class of ordinals is ordered
by membership relation (α < β means α ∈ β). Consequently, every ordinal coincides with
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the set of all smaller ordinals. The least ordinals are 0, 1 := {0}, 2 := {0, {0}}, etc..
Intuitively, the class of ordinals is the transfinite sequence 0 < 1 < 2 < . . . < ω < ω + 1 <
. . . < ω + ω < . . . < ωω, etc.. Ordinals will be often denoted by Greek letters. An ordinal
γ is a limit ordinal if it is neither 0 nor the successor of an ordinal; so, if β < γ, then there
exists σ such that β < σ < γ. The first limit ordinal, which is equipotent with the set
of natural numbers, is denoted (by an abuse of notation) by ω. Often, in the definitions
of CPO and of continuity, directed sets are used instead of chains. It is possible to show
that if the set S is denumerable, then the definitions are equivalent.

The ordinal powers of a monotonic function T : S → S on a CPO S are defined as

T↑α(x) :=


x if α = 0

T (T↑(α− 1)(x)) if α is a successor ordinal⊔
{T↑β(x) | β < α} if α is a limit ordinal.

In the following, we will use the standard notation T↑α := T↑α(⊥), where ⊥ is the least
element of S. In particular, T↑ω :=

⊔
n<ω T↑n, T↑n + 1 := T (T↑n), for n < ω, and

T↑0 := ⊥, where
⊔

is the lub operation of S. Sometimes, T↑α(x) may be denoted simply
by Tα(x).

The next important result is usually attributed to Kleene and gives an explicit con-
struction of the least fixpoint of a continuous function f on a CPO D.

Theorem 1.2.2 (Fixpoint Theorem) Let f : D → D be a continuous function on a
CPO D and d ∈ D be a pre-fixpoint of f . Then

⊔
{f↑n(d) | n ≤ ω} is the least fixpoint of

f greater than d. In particular f↑ω is the least pre-fixpoint and least fixpoint of f .

Each CPO D with bottom ⊥ is associated with a fixpoint operator fix : [D → D]→ D,
fix :=

⊔
n<ω(λf. fn(⊥)), i.e., fix is the least upper bound of the chain of the functions

λf.⊥ v λf. f(⊥) v λf. f(f(⊥)) v . . ., where each of these is continuous and so an element
of the CPO [[D → D]→ D].

1.3 Haskell and Curry Languages

In this section we describe those features of declarative programming that are preliminary
for the developments in this thesis. We present such features by means of the two languages
we’ll take into consideration in this thesis, namely Haskell (for the functional paradigm)
and Curry (for the functional logic paradigm). We chose these particular languages both
for they importance and for they syntactic similarities1.

For a detailed description about the syntax of Haskell we refer to [55, 82], and for Curry
to [51].

We start in Subsection 1.3.1 with important concepts found in functional programming
languages, namely, higher-order functions and demand-driven evaluation. Subsection 1.3.2
describes essential features of logic programming, namely, nondeterminism, unknown val-
ues and built-in search

1Actually Curry has born as a semantic extension of Haskell with the features of the logic paradigm.
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1.3.1 The Haskell Language

While running an imperative program means to execute commands, running a functional
program means to evaluate expressions. Functions in a functional program are functions in
a mathematical sense: the result of a function call depends only on the values of the argu-
ments. Functions in imperative programming languages may have access to variables other
than their arguments and the result of such a “function” may also depend on those vari-
ables. Moreover, the values of such variables may be changed after the function call, thus,
the meaning of a function call is not solely determined by the result it returns. Because of
such side effects, the meaning of an imperative program may be different depending on the
order in which function calls are executed. An important aspect of functional programs
is that they do not have side effects and, hence, the result of evaluating an expression
is determined only by the parts of the expression – not by evaluation order. As a con-
sequence, functional programs can be evaluated with different evaluation strategies, like
demand-driven evaluation.

Higher-order features

Functions in a functional program can not only map data to data but may also take func-
tions as arguments or return them as result. In type signatures of higher-order functions,
parentheses are used to group functional arguments. Probably the simplest example of a
higher-order function is the infix operator $ for function application:

($) :: (a -> b) -> a -> b

f $ x = f x

Another useful operator is function composition

(.) :: (a -> b) -> (b -> c) -> (a -> c)

f . g = \x -> f (g x)

This definition uses a lambda abstraction that denotes an anonymous function. The opera-
tor for function composition is a function that takes two functions as arguments and yields
a function as result. Lambda abstractions have the form \x -> e where x is a variable
and e is an arbitrary expression. The variable x is the argument and the expression e is
the body of the anonymous function. The body may itself be a function and the notation
\x y z -> e is short hand for \x -> \y -> \z -> e. While the first of these lambda
abstractions looks like a function with three arguments, the second looks like a function
that yields a function that yields a function. In Haskell, there is no difference between the
two. A function that takes many arguments is a function that takes one argument and
yields a function that takes the remaining arguments. Representing functions like this is
called currying.

There are a number of predefined higher-order functions for list processing. In order
to get a feeling for the abstraction facilities they provide, we discuss one of them here.
The map function applies a given function to every element of a given list:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs
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If the given list is empty, then the result is also the empty list. If it contains at least the
element x in front of an arbitrary list xs of remaining elements, then the result of calling
map is a non-empty list where the first element is computed using the given function f
and the remaining elements are processed recursively. The type signature of map specifies
that (i) the argument type of the given function f and the element type of the given list
and, (ii) the result type of f and the element type of the result list must be equal. For
instance, map length ["Haskell", "Curry"] is a valid application of map because the a
in the type signature of map can be instantiated with String which is defined as [Char]
and matches the argument type [a] of length. The type b is instantiated with Int and,
therefore, the returned list has the type [Int].

The type signature is a partial documentation for the function map because we get an
idea of what map does without looking at its implementation. If we do not provide the
type signature, then type inference deduces it automatically from the implementation.

Lazy evaluation

With lazy evaluation arguments of functions are only computed as much as necessary to
compute the result of a function call. Parts of the arguments that are not needed to
compute a result are not demanded and may contain divergent and/or expensive com-
putations. For example, we can compute the length of a list without demanding the list
elements. In a programming language with lazy evaluation, like Haskell, we can compute
the result of length [loop, fibonacci 100]. Neither the diverging computation loop

nor the possibly expensive computation fibonacci 100 are evaluated to compute the re-
sult 2. This example demonstrates that lazy evaluation can be faster than eager evaluation
because unnecessary computations are skipped.

With lazy evaluation we can not only handle large data efficiently, we can even handle
unbounded, potentially infinite data. Consider the function takeWhile

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile _ [] = []

takeWhile p (x:xs)

| p x = x : takeWhile p xs

| otherwise = []

that returns the longest prefix (possibly empty) of xs of elements that satisfy the predicate
p, and the function iterate

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

which, returns an infinite list of repeated applications of f to x. With lazy evaluation we
can generate an unbounded list number of increasing numbers, namely iterate (\n -> 2*n) 1,
selecting those which are less then 100:

takeWhile (< 100) (iterate (\n -> 2*n) 1)

Sharing

Conceptually, the call iterate f x yields the infinite list [x, fx, f(fx), f(f(fx)), . . .].
The elements of this list are only computed if they are demanded by the surrounding
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computation because lazy evaluation is non-strict. Although it is duplicated in the right-
hand side of iterate, the argument x is evaluated at most once because lazy evaluation
is sharing the values that are bound to variables once they are computed. If we call
iterate sqrt (fibonacci 100), then the call fibonacci 100 is only evaluated once,
although it is duplicated by the definition of iterate. Sharing of sub computations ensures
that lazy evaluation does not perform more steps than a corresponding eager evaluation
because computations bound to duplicated variables are performed only once even if they
are demanded after they are duplicated.

1.3.2 The Curry Language

Functional programming, discussed in the previous section, is one important branch in the
field of declarative programming. Logic programming is another. Despite conceptual dif-
ferences, research on combining these paradigms has shown that their conceptual divide
is not as big as one might expect. The programming language Curry unifies lazy func-
tional programming as in Haskell with essential features of logic programming. The main
extensions of Curry compared to the pure functional language Haskell are: logic variables,
nondeterministic operations, and built-in search.

Logic variables

The most important syntactic extension of Curry compared to Haskell are declarations of
logic variables. Instead of binding variables to expressions, Curry programmers can state
that the value of a variable is unknown by declaring it free. A logic variable will be bound
during execution according to demand: just like patterns in the left-hand side of functions
cause unevaluated expressions to be evaluated, they cause unbound logic variables to be
bound.

Consider a simple deductive database with family relationships2.

data Person = Mike | Hanna | George | John

parent :: Person -> Person -> Success

parent Mike Hanna = success

parent Hanna George = success

parent Hanna John = success

ancestor :: Person -> Person -> Success

ancestor x y = parent x y

ancestor x y = parent x z &> ancestor z x where z free

parent represents the basic parental relationship, while ancestor is a deduced relationship
which yields success if and only if there exists a parental path in the defined database
between two given persons. For instance the call ancestor Mike John yields success
since Mike is parent of Hanna which is parent of John.

We can also use logical variables to query the database. For instance the goal

> ancestor Mike p where p free

2 We use a relational programming style, i.e., all relationships are represented as constraints (i.e.,
functions with result type Success)
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asks every persons p who has Mike as ancestor. Thus the response is:

{p=Hanna} | {p=George} | {p=John}

Another example is the function last which returns the last element of a given list
xs. As in the logic paradigm, instead of having to write a recursive definition explicitly,
we can use the property that last ls equals x if and only if there is a list xs such that
xs ++ [x] equals ls.

last :: [a] -> a

last ls | ls =:= xs++[x] = x where x,xs free

The possibility to use predicates that involve previously defined operations to define new
ones improves the possibility of code reuse in functional logic programs. Logic variables
are considered existentially quantified and the evaluation mechanism of Curry includes a
search for possible instantiations.

Nondeterministic operations

The built-in search for instantiations of logic variables can lead to different possible in-
stantiations and, hence, nondeterministic results of computations. Consider, for example,
the following definition of insert:

insert :: a -> [a] -> [a]

insert x ls | ls =:= xs++ys = xs ++ x:ys

where xs,ys free

If the argument ls of insert is non-empty then there are different possible bindings for xs
and ys such that xs ++ ys =:= l. Consequently, the result of insert may contain x at
different positions and, thus, there is more than one possible result when applying insert to
a non-empty list. Mathematically, insert does not denote a function that maps arguments
to deterministic results but a relation that specifies a correspondence of arguments to
possibly nondeterministic results. To avoid the contradictory term nondeterministic func-
tion we call insert (and other defined operations that may have more than one result)
nondeterministic operation.

Variable instantiations are not the only source of nondeterminism in Curry programs.
As the run-time system needs to handle nondeterminism anyway, Curry also provides a
direct way to define nondeterministic operations. Unlike in Haskell, the meaning of defined
Curry operations does not depend on the order of their defining rules. While in Haskell
the rules of a function are tried from top to bottom committing to the first matching
rule3, in Curry the rules of an operation are tried nondeterministically. As a consequence,
overlapping rules lead to possibly nondeterministic results. We can use overlapping rules
to give an alternative implementation of the insert operation.

insert x ls = x: ls

insert x (y:ys) = y: insert x ys

This definition either inserts the given element x in front of the given list ls or – if ls
is non-empty – inserts x in the tail ys of ls, leaving the head y in its original position.

3We will see that this rule selection strategy, actually implements a sort of orthogonalization of the
constructor based TRS. It is well known that orthogonal TRSs are confluent. This property is necessary
to define (partial) functions.
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This version of insert is more lazy than the former version: while the equality constraint
=:= (which is strict) in the guard forces the evaluation of both arguments of insert, the
version with overlapping rules can yield a result without evaluating any of the arguments.
In the following we use the second definition of insert to benefit from its laziness. The
advantage of implicit nondeterminism (as opposed to explicitly using, for example, lists to
represent multiple results) is that the source code does not contain additional combinators
to handle nondeterminism which eases the composition of more complex nondeterministic
operations from simpler ones. For example, we can compute permutations of a given list
nondeterministically by recursively inserting all its elements into an empty list.

perm :: [a] -> [a]

perm [] = []

perm (x:xs) = insert x (perm xs)

In addition to the convenience of using the features of both paradigms within a single
language, the combination has additional advantages. For instance, the demand-driven
evaluation of functional programming applied to nondeterministic operations of logic pro-
gramming leads to more efficient search strategies.

For instance, one can use the non-deterministic operation perm to define a sorting
function psort based on a “partial identity” function sorted that returns its input list if
it is sorted:

sorted [] = []

sorted [x] = [x]

sorted (x:y:xs) | x <= y = x : sorted (y:xs)

psort xs = sorted (perm xs)

Thus, psort xs returns only those permutations of xs that are sorted. The advantage
of this definition of psort in comparison to traditional “generate-and-test” solutions be-
comes apparent when one considers the demand-driven evaluation strategy. Since in an
expression like sorted (perm xs) the argument perm xs is only evaluated as demanded
by sorted, the permutations are not fully computed at once. If a permutation starts with
a non-ordered prefix, like 1:0:perm xs, the application of the third rule of sorted fails
and, thus, the computation of the remaining part of the permutation (which can result in
n! different permutations if n is the length of the list xs) is discarded. The overall effect
is a reduction in complexity in comparison to the traditional generate-and-test solution.

Thus nondeterministic operations have advantages w.r.t. demand-driven evaluation
strategies so that they became a standard feature of recent functional logic languages
(whereas older languages put confluence requirements on their programs).

Call-time choice sematics

A subtle aspect of nondeterministic operations is their treatment if they are passed as
arguments. For instance, consider the call double coin and the program

coin = 0

coin = 1

double x = x + x

If the argument coin is evaluated (to 0 or 1) before it is passed to double, we obtain
the possible results 0 and 2. However, if the argument coin is passed unevaluated to
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double (as it should be done with a pure lazy strategy), we obtain after one reduction
step the expression coin+coin which has four possible results 0, 1, 1, and 2. The former
behavior is referred to as call-time choice semantics [56] since the choice for the desired
value of a nondeterministic operation is made at call time, whereas the latter is referred
to as need-time choice semantics.

Although call-time choice suggests an eager or call-by-value strategy, it fits well into
the framework of demand-driven evaluation where arguments are shared to avoid multiple
evaluations of the same subexpression. For instance, the actual subexpression (e.g. coin)
associated to argument x in the rule for double is not duplicated in the right-hand side
but a reference to it is passed so that, if it is evaluated by one subcomputation, the
same result will be taken in the other subcomputation. In contrast to Haskell, sharing
is not only a technique essential to obtain efficient (and optimal) evaluation strategies,
but in presence of nondeterministic operations, if used, it implements the call-time choice
semantics without any further machinery.

Furthermore, in many situations call-time choice is the semantics with the “least as-
tonishment”. For instance, consider the reformulation of the operation psort to

psort xs = idOnSorted (perm xs)

idOnSorted xs | sorted xs =:= xs = xs

then, for the call psort xs, the call-time choice semantics delivers only sorted permuta-
tions of xs, as expected, whereas the need-time choice semantics delivers all permutations
of xs since the different occurrences of xs in the rule of idOnSorted are not shared. Due to
these reasons, Curry and current functional logic languages like T OY adopt the call-time
choice semantics.

1.4 First Order Functional Logic (and Functional) Program-
ming

1.4.1 Terms, Equations and Substitutions

For detailed preliminaries about Term Rewriting the reader can consult [8, 59, 93]. For
simplicity, definitions are given in the one-sorted case. The extension to many–sorted
signatures is straightforward, see [78].

We consider a typed signature Σ partitioned into a set C of constructor (also called
data constructors) and a set D of defined symbols (also called operations). We write
c/n ∈ C and f/n ∈ D for any n-ary constructor and defined symbols, respectively. The set
of well-typed terms and well-typed constructor terms with variables from V are denoted
by T (Σ,V) and T (C,V), respectively. The set of variables occurring in a term t is denoted
by var(t). A term is linear if it does not contain multiple occurrences of any variable. We
write −→on for the list of syntactic objects o1, . . . , on. A pattern is a term of the form f(

−→
tn)

where f/n ∈ D and ti ∈ T (C,V) for every i ∈ {1, . . . , n}. A term t is operation-rooted
(respectively constructor-rooted) if it has a defined (respectively constructor) symbol at
the root. A position p in term t is represented by a sequence of natural numbers (Λ denotes
the empty sequence, i.e., the root position). t|p denotes the subterm of t at position p, and
t[s]p denotes the result of replacing the subterm t|p by the term s. ≡ denotes syntactic
equality.
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We denote by {x1/t1, . . . , xn/tn} the substitution σ with σ(xi) = ti for i ∈ {1, . . . , n},
and σ(x) = x for all other variables x; dom(σ), img(σ) and range(σ) indicate the domain
set {x1, . . . , xn}, the image set {t1, . . . , tn} and the range set

⋃n
i=1 var(ti) respectively. A

substitution σ is (ground) constructor, if σ(x) is (ground) constructor for all x ∈ dom(σ).
Substs and CSubsts indicate the set of substitutions and the set of constructor substitutions
respectively. A substitution σ := {x1/t1, . . . , xn/tn} is linear if and only if for every
i, j ∈ {1, . . . , n} ti is a linear term and i 6= j ⇒ var(ti) ∩ var(tj) = ∅. Furthermore, if σ
belongs to CSubsts then σ is said to be C-linear (constructor linear).

The identity substitution is denoted by ε. Given a term t and a substitution σ, σ(t)
(or tσ) indicates the term obtained from t by replacing all the occurrences of a variable
x in it by σ(x). Given a substitution σ and a set of variables V ⊆ V we denote by σ�V
the substitution obtained from σ by restricting its domain to V . Moreover, given a term
t, we abuse notation by denoting σ�var(t) simply as σ�t. The composition θ ◦ σ of θ and
σ is the substitution s.t. (θ ◦ σ)(x) = θ(σ(x)) for any x ∈ V. We use the notation σθ to
indicate θ ◦ σ. Given two substitutions ϑ1 and ϑ2 and two terms t and s, we say that
ϑ1 (respectively t) is more general then ϑ2 (respectively s), namely ϑ1 � ϑ2 (respectively
t � s) if and only if there exists a substitution σ s.t. ϑ1σ = ϑ2 (respectively tσ = s). We
denote by ' the induced equivalence, i.e., θ ' ϑ if and only if there exists a renaming ρ
s.t. θρ = σ (and σρ−1 = θ).

An equation is an expression of the form t = s where t and s are terms. A set of
equations E is unifiable if and only if there exists a substitution θ s.t. for all t = s in E,
tθ ≡ sθ holds, θ is said an unifier for E. A unifier σ for E is the most general (m.g.u.) if
and only if σ � θ for any unifier θ of E. Two terms t and s unify if and only if {t = s}
unify and mgu(t, s) indicates its most general unifier.

With s� X we denote a fresh variant s of a set of syntactic objects X, i.e., a renaming
of an x ∈ X that contains no variable previously met during computation (standardized
apart).

We will use the notation σ ↑ σ′ of [79] to indicate the l.u.b. (w.r.t. �) of σ and σ′

(σ ↑ σ′ = σmgu(σ, σ′) = σ′mgu(σ, σ′)). We assume that the reader has familiarity with
the algebraic properties of idempotent substitutions described in [79].

Term graphs and homomorphisms

Since we want to devise a semantics compliant with call-time choice in presence of sharing
we need indeed to express and work explicitly with sharing. Thus we cannot work on
terms that are simply trees, but we need DAGs. Now we introduce a formalism to work
on term graphs [37] so we can give, in Subsection 2.1.1, an explicit formal definition of the
small-step operational semantics of Curry in presence of sharing.

Many different notations are considered in the literature about graph rewriting [38, 90],
we are consistent with [37].

We consider a graph as a set of nodes and edges between the nodes. Each node is
labelled with a symbol in Σ or a variable in V. We indicate with N the countable set of
nodes. We assume that N and V are fixed throughout the rest of the thesis.

A graph g over 〈Σ, N, V〉 is a tuple g = 〈Ng, Lg , Sg , Rootg〉 such that

• Ng is a set of nodes;
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• Lg : Ng → Σ ∪ V is a labeling function, which maps to every node of g a symbol or
a variable;

• Sg is a successor function, which maps to every node of g a (possibly empty) string
of nodes, and

• Rootg is a subset of Ng called root nodes of g.

We also assume two conditions of well definedness.

1. Graphs are connected, i.e., for all nodes p ∈ Ng, there exists a root r ∈ Rootg and
a path from r to p.

2. Let var(g) be the set of variables of g, for all x ∈ var(g), there are no other nodes
in Ng labelled with the same x.

In [37] the authors consider possibly cyclic term graphs, namely a subclass of term graphs
they called admissible term graphs. In contrast in this thesis a term graph (or just term
when no confusion can arise) is just a (possibly infinite) acyclic graph with one root
denoted Rootg.

This is not a restriction since we will consider term graphs up to bisimilarity and an
admissible term graph with cycles is bisimilar to an infinite acyclic graph. Two term
graphs g1 and g2 are bisimilar if and only if they represent the same (infinite) tree when
one unravels them. With *t+ we denote the unraveling of a term graph t.

Given a graph g, and two nodes in p, q ∈ Ng we say that, q is reachable from p in g,
written p _g q if the successor function Sg induces a path from p to q, formally there
exists a sequence n1, . . . , nk of nodes in Ng such that, for every 1 ≤ i < k, ni+1 occurs
in Sg(ni), where n0 = p and nk = q. In contrast to the classical term case there could
be more than one path between two nodes, while in contrast to [37] the relation _g is a
partial order, since we are considering only the class of acyclic graphs. A path p1, . . . , pn
in a graph g is said a constructor (respectively operator) path if for every 1 ≤ i ≤ n, pi is
labeled with a constructor (respectively operator) symbol.

A subgraph of a graph g rooted by a node p, denoted g|p, is built by considering p as
root and deleting all the nodes which are not reachable from p in g. An outermost op-
rooted subgraph (respectively a critical variable) of a graph g is an op-rooted (respectively
variable) subgraph which can be reached by a constructor path that starts from Rootg.

Two term graphs g1 and g2 are said compatible if every node shared by g1 and g2 has
the same label and the same successors, and every variable occurring both in g1 and g2

labels the same node. The sum of two compatible graphs, denoted g1 ⊕ g2, is the graph
whose nodes and roots are those of g1 and g2. The replacement by a term graph s of the
subgraph rooted by a node p in a term graph g, denoted g[s]p, is built in three steps:

1. compute g ⊕ s,

2. redirect all the edges pointing on p to point on Roots in g ⊕ s and

3. delete all the “uninteresting” nodes that are those which are no more reachable from
Rootg.
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A (rooted) homomorphism h from a graph g1 to a graph g2, denoted h : g1 → g2, is a
mapping from Ng1 to Ng2 such that Rootg2 = h(Rootg1) and for all nodes p ∈ Ng1 , if
Lg1 (p) /∈ V then Lg2 (h(p)) = Lg1 (p) and Sg2 (h(p)) = h(Sg1 (p)); if Lg1 (p) ∈ V then
h(p) ∈ Ng2 . If h : g1 → g2 is a homomorphism and g is a subgraph of g1 rooted in p,
then we write h[g] for the subgraph g2|h(p). If h : g1 → g2 is a homomorphism and g is a
graph, h[g] is the graph built from g by replacing all the subgraphs shared between g and
g1 by their corresponding subgraphs in g2. [36] proves that there exists a homomorphism
h′ : g → h[g], h′ is called the extension of h to g.

Given a set of nodes N and a homomorphism h : g1 → g2, then h is said to be N -
preserving if for every p ∈ N , h(p) = p; analogously, given a set of labels L, h is said
L-preserving if for every p ∈ Ng1 , if Lg1 (p) ∈ L then h(p) = p.

In the rest of the thesis, with an abuse of notation we use the same name to denote a
homomorphism h : g1 → g2 and its possible extensions. Moreover, if not explicitly stated
otherwise, we will implicitly refer to the extension of h which is N -preserving for the set
of nodes N that doesn’t belong to Ng1 .

A term graph l matches a graph g at node p if there exists a homomorphism h : l→ g|p.
h is called a matcher of l on g at node p. Two term graphs g1 and g2 are unifiable if there
exist two graphs G and H and a homomorphism h : G→ H such that

1. g1 and g2 are both subgraphs of G and

2. h[g1] = h[g2].

h is called unifier of g1 and g2. If g1 and g2 are unifiable, it has been shown in [37] that
there exists a most general unifier h : g1 ⊕ g2 → g such that h[g1] = h[g2] = g and for all
unifiers h′ : G→ H, there exists a homomorphism h′′ : g → h′[g1 ⊕ g2].

Independently of homomorphisms, we need substitutions in order to define solutions
computed by narrowing. In the term graph case a term substitution is a partial function
from variables to the set of graph terms. Given a homomorphism h : g1 → g2, we indicate
with σh the substitution such that for every x ∈ var(g1) which labels some node p ∈ Ng1 ,
xσh = g2|h(p).

All concepts related to substitutions of standard terms (domain, range, restriction,
. . . ) have a straightforward generalization to the term graph case. We will abuse notations
about standard terms for term graphs as well.

1.4.2 Rewriting

A set of rewrite rules l → r s.t. l /∈ V is called a term rewriting system 4 (TRS). The
terms l and r are called the left-hand side (LHS) and the right-hand side (RHS) of the
rule, respectively. A TRS is left-linear if every LHS of its rules is linear. Two, possibly
renamed, rules l→ r and l′ → r′ overlap if there is a non-variable position p in l such that
l|p and l′ unify.

A TRS is constructor based (CB) if each LHS is a pattern. In the remainder of this
thesis, a (first order) functional logic program P is a left-linear constructor based TRS
where each rule is well-typed. By PΣ we denote the set of functional logic programs over
signature Σ.

4Note that in literature, l → r is a rewrite rule if l /∈ V and var(r) ⊆ var(l). In this thesis we allow
extra (or logical) variables occur in the RHS of a rule.
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A rewrite step t
p, η−−→
l→r

t′ w.r.t. a given TRS P is defined if there are a position p in t,

l → r � P and a substitution η with dom(η) ⊆ var(l) and t|p ≡ lη such that t′ ≡ t[rη]p.
t|p is called redex. A redex is outermost if it is not a subterm of another redex. As usual
we use −→∗ to denote the transitive and reflexive closure of the rewriting relation −→. A

term t is called a normal form if there is no term s such that t −→ s, while it is an head

normal form (HNF) if it has not a defined symbol in its root (i.e., has a constructor or a
variable).

1.4.3 Needed Narrowing (without sharing)

The combination of variable instantiation and rewriting is called narrowing. Formally,
t
p, σ
 
l→r

t′ is a narrowing step if tσ
p, η−−→
l→r

t′ were σ is a substitution, t|p /∈ V and dom(η) ⊆
var(l). The requirement that dom(η) ⊆ var(l) ensures that no extra variable in a rule is
instantiated during a narrowing step.

Needed narrowing [6] aims at performing only those narrowing steps which are really
needed for reaching a value (i.e., a constructor term). Its definition is based on the concept
of Definitional Trees, a hierarchical structure containing all the rules of a defined function.

Definition 1.4.1 (Definitional Tree [51, App. D.1]) T is a definitional tree with call
pattern π if and only if T is finite and one of the following cases hold:

• T = rule(l→ r), where l→ r � P such that l = π.

• T = branch(π, p, T1, . . . , Tk), where k > 0, π|p ∈ V, c1, . . . , ck are different construc-
tor symbols of the sort of π|p and, for all i = 1, . . . , k, Ti is a definitional tree with
call pattern π[ci(x1, . . . , xni)]p where ni is the arity of ci and x1, . . . , xni are fresh
variables.

• T = or(T1, T2), where T1 and T2 are definitional trees with pattern π.

A definitional tree of an n-ary function f is a definitional tree T with call pattern
f (−→xn), where −→xn are distinct variables, such that for each rule l → r with l = f(

−→
tn) there

is a node rule(l′ → r′) in T with l′ → r′ variant of l→ r.

In the rest of this thesis we indicate by pat(T ) the call pattern of T .

It is worth to mention that for every P ∈ PΣ there exists at least a definitional tree of
each specific operator symbol f ∈ D and, in general, there could be more than one 5.

Needed narrowing chooses the actual positions to perform a narrowing step, starting
from some outermost op-rooted term, in accord to definitional trees. Moreover substitu-
tions are not just MGUs between redex and rule head but depend also upon the initial
outermost op-rooted term. The formal definition is not relevant for our thesis, for details
consult [6].

5Curry considers only definitional trees generated by the algorithm shown in [51, App. D.5]
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1.5 Abstract Interpretation

Abstract interpretation [29, 31] is a general theory for approximating the semantics of
discrete dynamic systems, originally developed by Patrick and Radhia Cousot, in the
late 70’s, as a unifying framework for specifying and validating static program analyses.
The abstract semantics is an approximation of the concrete one, where exact (concrete)
values are replaced by approximated (abstract) values, modelled by an abstract domain
that explicitly exhibits a structure (e.g. ordering) which is somehow present in the richer
concrete structure associated to program execution.

1.5.1 Closures on Complete Lattices

Closures play a fundamental role in semantics and approximation theory [31]. In the
following we recall some basic notions on closure theory that will be useful throughout the
thesis. For a more complete treatment of the subject see [12, 30]. A closure operator on
a complete lattice (L, ≤) is an operator ρ : L→ L such that, for each x, y ∈ L,

x ≤ ρ(x) (extensivity)

x ≤ y =⇒ ρ(x) ≤ ρ(y) (monotonicity)

ρ(ρ(x)) = ρ(x) (idempotence)

Let (L, ≤) be a complete lattice. In the following we enumerate some basic properties
of closure operators on L. Let ρ be an upper closure operator on (L, ≤).

• For all x ∈ L, the set {y ∈ ρ(L) |x ≤ y} is not empty and ρ(x) is the least element.

• The image R := ρ(L) of L by ρ is a complete lattice (R, ≤), such that
⊔
R(X) =

ρ(
⊔
L(X)) and

d
R(X) =

d
L(X).

• ρ is a quasi-complete-join-morphism. Namely, for eachX ⊆ L, ρ(
⊔

(X)) = ρ(
⊔

(ρ(X))).

• Let R ⊆ L and ρ : L → R such that, for any x ∈ L, ρ(x) is the least element in
{y ∈ R |x ≤ y}. Then ρ is an upper closure operator on (L, ≤) and R := ρ(L).

• Let uco(L) be the set of all upper closure operators on L. Then (uco(L), �) is a
complete lattice, where � is defined as follows. For each ρ, ρ′ ∈ uco(L),

ρ � ρ′ ⇐⇒ ∀x ∈ L. ρ(x) ≤ ρ′(x).

1.5.2 Galois Connections

The theory requires the two semantics to be defined on domains which are partially ordered
sets. (C, v) (the concrete domain) is the domain of the concrete semantics, while (A, ≤)
(the abstract domain) is the domain of the abstract semantics. The partial order relations
reflect an approximation relation.

The guiding idea is to relate the concrete and the abstract interpretation of the calculus
by a pair of functions, abstraction α and concretization γ, which form a Galois connec-
tion. Galois connections are used to formalize this relation between abstract and concrete
meaning of a computation. This notion has been introduced in [77] to discuss a general
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type of correspondence between structures occurring in a great variety of mathematical
theories.

Galois connections can be defined on partially ordered sets. However in this thesis we
restrict our attention to complete lattices, where they enjoy stronger properties. Since in
approximation theory a partial order specifies the precision degree of any element in a
poset, it is obvious to assume that if α is a mapping associating an abstract object in
(A, ≤) for any concrete element in (C, v) then the following holds: if α(x) ≤ y, then y
is also a correct, although less precise, abstract approximation of x. The same argument
holds if x v γ(y). Then y is also a correct approximation of x, although x provides more
accurate information than γ(y). This gives rise to the following formal definition.

Definition 1.5.1 (Galois Insertion) Let (C, v,
⊔
,
d
, ⊥, >) and (A, ≤,

∨
,
∧
, ⊥, >)

be two complete lattices. A Galois Connection (C, v) −−−→←−−−α
γ

(A, ≤) is a pair of maps
α : C→ A and γ : A→ C such that, for each x ∈ C and y ∈ A,

α(x) ≤ y ⇐⇒ x v γ(y) (1.5.1)

Moreover, a Galois Insertion (of A in C) (C, v) −−−→−→←−−−−
α

γ
(A, ≤) is a Galois connection

where α is surjective.

An equivalent definition of Galois Connection is: a pair of maps α : C→ A and γ : A→ C
such that

1. α and γ are monotonic,

2. for each x ∈ C, x v (γ ◦ α)(x) and

3. for each y ∈ A, (α ◦ γ)(y) ≤ y.

Property 2 is called extensivity of γα while Property 3 is called reductivity of αγ.

When, in a Galois connection −−−→←−−−α
γ

, γ is not injective, several distinct elements of the
abstract domain (A, ≤) have the same meaning (by γ). This is usually considered useless
[31]; thus a Galois insertion can always be forced by considering a more concise abstract

domain (A
/
γ
≈
, ≤
/
γ
≈

), such that for each x, y ∈ A. x
γ
≈ y ⇐⇒ γ(x) = γ(y).

The following basic properties are satisfied by any Galois connection.

1. γ is injective if and only if α is surjective if and only if α ◦ γ = idA.

2. α is injective if and only if γ is surjective if and only if γ ◦ α = idC.

3. α is additive (α(
⊔
X) =

∨
α(X)) and γ is co-additive (γ(

∧
Y ) =

d
γ(Y )).

4. α and γ uniquely determine each other. Namely,

γ(y) =
⊔{

x ∈ C | α(x) ≤ y
}
, α(x) =

∧{
y ∈ A | x v γ(y)

}
.

5. γ ◦ α is an upper closure operator in (C, v).

6. α is an isomorphism from (γα)(C) to A, having γ as its inverse.
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Because of Property 4 the map α (γ) is called the lower (upper) adjoint .

Properties 6 and 5 characterize the ability of Galois insertions to formalize the no-
tion of “machine-representable” abstractions. An abstract domain is isomorphic (up to
representation) to an upper closure operator of the concrete domain of the computation
C. Thus, in principle, we can handle abstract computations as concrete computations on
the complete lattice which is the image of the upper closure operator γ ◦ α. However,
machine representable abstractions often result to be more intuitive and provides better
experimental results in efficient implementations.

A straightforward consequence of the latter observation is that abstract interpretations
can be formalized in a hierarchical framework. Abstract domains can be partially ordered
using the ordering on the corresponding closure operators on C. The lattice of abstract
interpretations of C is then the lattice of upper closure operators over C. As observed
in [77] the composition of upper closure operators is not (in general) an upper closure
operator. However, an abstract domain can be designed by successive approximations.
Let ρ be an upper closure operator on (C, v) and η be an upper closure operator on
ρ(C). Then η ◦ ρ is an upper closure operator on (C, v). In view of the compositional
design of abstract interpretations we have that the composition of Galois insertions is a
Galois insertion. Several techniques can be used to systematically derive new abstract
interpretations from a given set of abstract domains [31, 32]. We do not address these
techniques because they are outside the scope of this thesis.

1.5.3 Abstract semantics, correctness and precision

In abstract interpretation based static program analysis we compute an abstract (fixpoint
semantics). Given a concrete semantics and a Galois insertion between the concrete and
the abstract domain, we want to define an abstract semantics. The theory requires to have
a semantic evaluation function P JP K : C → C on a complete lattice (C, v), the concrete
domain, whose least fixpoint lfpC(P JP K) is the (concrete) semantics of the program P .
The class of program properties we want to consider is formalized as a complete lattice
(A, ≤), the abstract domain, related to (C, v) by a Galois insertion (C, v) −−−→−→←−−−−

α

γ
(A, ≤).

An abstract semantic function PaJP K : A → A is correct if ∀x ∈ C. P JP K(x) v
γ(PaJP K(α(x))). The resulting abstract semantics lfpA(PaJP K) is a correct approximation
of the concrete semantics by construction, i.e., α(lfpC(P JP K)) ≤ lfpA(PaJP K), and no
additional “correctness” theorems need to be proved.

Moreover, we can systematically derive from P JP K, α and γ a correct abstract semantic
evaluation function as PαJP K := α ◦ P JP K ◦ γ. PαJP K is indeed the most precise abstract
counterpart of P JP K, as for any correct PaJP K, PαJP K ≤ PaJP K. Thus PαJP K is called
the optimal abstract version of P JP K.

The abstract semantics lfpA(PαJP K) models a safe approximation of the property of
interest: if the property is verified in lfpA(PαJP K) it will also be verified in lfpC(P JP K).
An analysis method based on the computation of the abstract semantics lfpA(PαJP K) is
effective only if the least fixpoint is reached in finitely many iterations, i.e., if the abstract
domain is Nötherian. If this is not the case, widening operators can be used to ensure the
termination. Widening operators [33] give an upper approximation of the least fixpoint
and guarantee termination by introducing further approximation.

The framework of abstract interpretation can be useful to study hierarchies of semantics
and to reconstruct data-flow analysis methods and type systems. It can be used to prove
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the safety of an analysis algorithm. However, it can also be used to systematically derive
“optimal” abstract semantics from the abstract domain.

The systematic design aspect can be pushed forward, by using suitable abstract domain
design methodologies (e.g. domain refinements) [41, 45, 47], which allow us to systemati-
cally improve the precision of the domain.

1.5.4 Correctness and precision of compositional semantics

It is often the case that PαJP K is in turn defined as composition of “primitive” oper-
ators. Let f : Cn → C be one such an operator and assume that f̃ is its abstract
counterpart. Then f̃ is (locally) correct w.r.t. f if ∀x1, . . . , xn ∈ C. f(x1, . . . , xn) v
γ(f̃(α(x1), . . . , α(xn))). By replacing all concrete f with the abstract f̃ in the formal
definition of PαJP K we obtain the definition of an abstract operator PaJP K. The lo-
cal correctness of all the primitive operators implies the global correctness (the correct-
ness of PaJP K). Hence, we can define an abstract semantics by defining locally cor-
rect abstract primitive semantic functions. According to the theory, for each operator
f , there exists an optimal (most precise) locally correct abstract operator f̃ defined as
f̃(y1, . . . , yn) = α(f(γ(y1), . . . , γ(yn))). However, the composition of optimal operators is
not necessarily optimal.

The abstract operator f̃ is precise if ∀x1, . . . , xn ∈ C

α(f(x1, . . . , xn)) = f̃(α(x1), . . . , α(xn))

which is equivalent to

α(f(x1, . . . , xn)) = α(f((γ ◦ α)(x1), . . . , (γ ◦ α)(xn))).

Hence the precision of an optimal abstract operator can be reformulated in terms of
properties of α, γ and the corresponding concrete operator. The above definitions are
naturally extended to “primitive” semantic operators from ℘(C) to C.

There is not presently an agreement on a name for what we call precision. For instance:
[46] calls it full-completeness; [34, 69, 84, 87] use the term completeness; while [35] use
the term optimality for the same notion. We prefer to use the term precision, since
completeness may be confused with the completeness of a semantics.

Note that if
⊔

is the lub operation over (C, v) and −−−→−→←−−−−
α

γ
is a Galois insertion then⊔̃

= α ◦
⊔
◦ γ is the lub of (A, ≤) and is precise, i.e.,

⊔̃
◦ α = α ◦

⊔
(which is equivalent

to α ◦
⊔

= α ◦
⊔
◦ γ ◦ α).
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2
Small-step semantics

2.1 Small-Step Operational Semantics of Curry and Haskell

2.1.1 Small-Step Operational Semantics of Curry Expressions

A first-order Curry program is a set of constructor based rules. To deal with sharing,
similarly to [37]1, we have to put some conditions regarding the graph structure of a single
program rule l→ r:

1. l and r are term graphs, where l, in particular, is a pattern and

2. l and r share only variable nodes, that is, if p ∈ Nl ∩Nr than Lr (p) = Ll (p) ∈ V 2.

Needed narrowing [6] implements the, so called, need-time choice semantics. However
Curry implements what is known as call-time choice semantics, where all descendants of a
subterm are reduced to the same value in a derivation, according with the semantic models
of [50]. In [61, 37] has been shown that the call-time choice semantics is consistent with a
lazy evaluation strategy where all descendants of a subterm are shared. According to [51,
App. D.4] we need that in an expression several occurrences of the same variable are always
shared. Thus if, during a call, an argument of a function is instantiated to an expression
and this expression is evaluated to some expression s, then all other expressions resulting
from instantiating occurrences of the same argument are replaced by the same s. This is
necessary for the soundness of the operational semantics in presence of non-deterministic
functions. However, unlike [1] we intend to describe the small-step operational semantics
in a way which is more close to the official version described in [51, App. D.4].

With the term graph notation and constructions defined in the previous subsections
we can give a formal precise definition of the operational semantics of Curry along the
lines of that defined in [51, App. D.4]. Actually (as explicitly said in [51]), for the sake
of simplicity, that description of the operational semantics is based on term rewriting and
does not take into account that common subterms are shared. However, since we need to
work explicitly with sharing of variables, we use the more complicated framework of graph
rewriting and here we write a (fully detailed) formal description of Curry’s small-step
operational semantics based on term graphs. We also explicitly record outermost op-
rooted positions since we will need them in the definition of the abstraction for big-step
semantics.

1In [37] the authors take in consideration a particular class of programs, called admissible graph rewriting
systems, which is bigger than the Curry programs class.

2Point 2 implies that l and r are compatible term graphs.
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24 2. Small-step semantics

Actually, given a Curry program as a set of rules, the (small-step operational) semantics
of an expression in is not given just in terms of the rules of the program, but in terms of
definitional trees for any f ∈ D, which are not necessarily unique. In Section 2.2, by an
abuse of notation, whenever we will refer to “a program P ” we will actually intend a set
of definitional trees for each f ∈ D. In examples, we will implicitly use the definitional
trees obtained by the algorithm of [51, App. D.5]. In Section 3.1, where results will not
depend upon definitional trees we will simply use sets of rules.

The computation step relation EvalJtK p, σ
==⇒ s for a term (graph) t that evaluates the

subterm at node p, computing substitution σ, and delivering the term (graph) s, is defined
by the following rules.

Computation step for an expression:

EvalJtiK
p, σ
==⇒ s if t is of the form c(t1, . . . , tn)

Rootti = pi, i ∈ {1, . . . , n}EvalJtK p, σ
==⇒ t[s]pi

(Cntx)

EvalJt; T K σ
=⇒ s if t is of the form f(t1, . . . , tn)

T is a fresh definitional tree for f
EvalJtK Roott, σ=====⇒ s

(OuterOp)

Note that we are keeping track of the position of the outermost op-rooted position (even
if the actual step is occurring in a subterm).

Computation step for an operation-rooted expression:

if h : l→ t
EvalJt; rule(l→ r)K ε

=⇒ h[r] (Rw)

EvalJt; TiK
σ
=⇒ s

i ∈ {1, 2}
EvalJt; or(T1, T2)K σ

=⇒ s

EvalJt; TiK
σ
=⇒ s

if h : pat(Ti)→ t
EvalJt; branch(π, q, T1, . . . , Tk)K

σ
=⇒ s

σ = {x/ pat(Ti)|q} if h : π → t, t|h(q) = x ∈ V,
∀i ∈ {1, . . . , k}EvalJt; branch(π, q, T1, . . . , Tk)K

σ
=⇒ σ(t)

(Ins)

EvalJt|h(q)K
h(q), σ
====⇒ s if h : π → t and

Lt(h(q)) ∈ DEvalJt; branch(π, q, T1, . . . , Tk)K
σ
=⇒ t[s]h(q)

(Dem)

We call pure rewriting steps those corresponding to (Rw) while we call instantiation steps
those corresponding to (Ins). During an admissible evaluation sequence, according to the
Definitional Tree, several instantiation steps take place until a (sub)term becomes a redex
and then a pure rewriting step takes place. The “composition” of all these instantiation
steps with the rewriting step correspond exactly to a needed narrowing step.

2.1.2 Small-Step Operational Semantics of Haskell Expressions

Now we give a formal precise definition of the operational semantics of Haskell along the
lines of that defined in [48]. As done for Curry, we work explicitly with sharing of variables,
using the framework of graph rewriting and here we write a (fully detailed) formal descrip-
tion of Haskell’s small-step operational semantics based on term graphs. Accordingly to
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2.1. Small-Step Operational Semantics of Curry and Haskell 25

Curry’s small-step operational semantics, we also explicitly record outermost op-rooted
positions which will be useful for the definition of the abstraction for big-step semantics.

Since Haskell considers the order of the program’s equations3, a program P has to be
formalized as a list of rules. Thus, in the following, by abuse of notation, whenever we
refer to a Haskell program P we will implicitly intend it as an ordered list of rules. We
will use Haskell syntax for lists to denote a list of rules.

Before presenting the Haskell’s computation step relation we need the notion of feasible
rule.

Definition 2.1.1 (feasible rule) For an op-rooted ground term e = f(e1, . . . , en) and a
rule R : l→ r, we say that R is feasible for e if R defines f and either

1. l matches e, or

2. there exists a position p where l|p is constructor rooted whereas e|p is not 4.

The computation step relation HEvalJeK p
=⇒ e′ for a term (graph) e that evaluates

the subterm at node p delivering the term (graph) e′, is defined as the smallest relation
satisfying the following rules:

Computation step for an expression:

HEvalJe;QK =⇒ s if e is of the form f(t1, . . . , tn)
Q rules defining f in P

HEvalJeK Roote===⇒ s
(H-OuterOp)

HEvalJeiK
p

=⇒ s if e is of the form c(e1, . . . , en)
Rootei = pi, i ∈ {1, . . . , n}HEvalJeK p

=⇒ e[s]pi

(H-Cntx)

Note that we are keeping track of the position of the outermost op-rooted position as done
in Subsection 2.1.1 for Curry.

Computation step for an operation-rooted expression:

h : l→ e
HEvalJe; l→ r : P K =⇒ h[r] (H-Rew)

HEvalJe|pK =⇒ s p leftmost outermost position s.t.
l|p is C-rooted and e|p is not C-rootedHEvalJe; l→ r : P K =⇒ e[s]p

(H-Dem)

HEvalJe;P K =⇒ e′
R unfeasible rule for e

HEvalJe;R : P K =⇒ e′

The computation step relation for an op-rooted expression scans the program looking for
the first feasible rule. Once the first feasible rule l → r is found, either the rule can
directly rewrite (H-Rew), or there is (at least) a subterm which has to be evaluated first,
and (H-Dem) evaluates the leftmost outermost subterm which is demanded in the sense
of Point 2 of Definition 2.1.1.

Note that this is no ordinary leftmost outermost evaluation strategy.

3The rule selection strategy of Haskell is fundamental to ensure confluence in presence of overlapping
rules.

4Haskell evaluations can be made only over ground terms, thus e|p must be is op-rooted
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2.2 Modeling the small-step behaviour of Curry: Small-step
Tree Semantics

In this section we introduce the concrete small-step semantics of our framework, which is
suitable to model correctly the typical cogent features of modern functional-logic languages
(like Curry [51] or Toy [65]):

• permit non-confluent and non-terminating programs that define non-deterministic
non-strict functions;

• the call-time choice behaviour (where the values of the arguments of an operation
are determined before the operation is evaluated)

Let us formalize the notion of “model correctly”. Correctness of a semantics has to be
referred to a criterion of observability for the computations of admissible expressions (in
a given specific program). The collection of (fully detailed) computations for expressions,
frequently called concrete behaviour, is mostly expressed in terms of traces of (official)
small-step operational semantics. It can sometimes be expressed in even more concrete
terms, for instance traces of an abstract machine implementing the language. Criteria of
observability can then be expressed in term of functions over the concrete behaviour which
“filter out” the information of interest. These functions are called observables (e.g. [63]) or
observable properties. The application of the observable property to the concrete behaviour
is called observation; we prefer the term observable behaviour or simply behaviour.

To sum up, the (observable) behaviour is a property of interest that can be actually
observed about an expression which is solved by an abstract executor.

A semantics S models correctly a behaviour B , or (equivalently) semantics S is correct
w.r.t. the program equivalence induced by behaviour B , if

SJP1K = SJP2K =⇒ BJP1K = BJP2K

Equivalently, the program equivalence induced by the semantics is not coarser than the
program equivalence relation induced by the behaviour. When the two program equiva-
lences coincide S is fully abstract w.r.t. B .

In Subsection 2.2.1 we define as reference concrete behaviour the small-step (oper-
ational) behaviour BssJP K of a program P ∈ PΣ as the collection all the (substantive)
sequences of computations steps for all possible initial expressions.

Actually the aim of our work is a little broader than just guaranteeing semantics
correctness w.r.t. Bss . Specifically our goal is:

1. defining a denotation S for Curry programs which

• is fully abstract w.r.t. the small-step behaviour of evaluation of expressions, i.e.,
SJP1K = SJP2K ⇐⇒ BssJP1K = BssJP2K
• has a goal-independent definition

• is the fixpoint of a bottom-up construction

2. defining an abstraction α hiding all irrelevant intermediate steps of a small-step
computation in order to have a “big-step” behaviour of evaluation of expressions
(essentially the outcomes of small-step computations, given by constructor forms
reached by computations).
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3. (by means of the same α) obtain an abstract denotation (for programs) Sα which

• is fully abstract w.r.t. the big-step behaviour, i.e.,

SαJP1K = SαJP2K ⇐⇒ α(BssJP1K) = α(BssJP2K)

• has a goal-independent definition

• is the fixpoint of a bottom-up construction

• is as condensed as possible.

These requirements, especially the condensedness, are particularly relevant when the
semantics is to be employed to make abstract (approximate) versions via Abstract
Interpretation, since it involves using the join operation of the abstract domain
at each iteration in parallel onto all components of rules instead of using several
subsequent applications for all components. This has a twofold benefit. On one side,
it speeds up convergence of the abstract fixpoint computation. On the other side, it
considerably improves precision.

In the following of this section we will obtain a semantics with the characteristics of
Point 1 in several steps. Essentially we will successively transform the behaviour Bss by
removing the redundancy and (simultaneously) will define the semantics operations that
can reconstruct the redundant variants. Section 3.1 will tackle Points 2 and 3.

We prefer to follow a gradual approach since:

• It is easier to understand the rationale of the resulting semantics.

• We derive several interesting properties along the way (that are needed to prove
correctness).

• We will (re)use in the future the (small-step) concrete semantics S to synthesize
(with a different abstraction Φ) a semantics SΦ to model “functional dependencies”
of computed results. This semantics is needed in order to tackle pre-post conditions
and then be able to define Abstract Verification for Curry, along the lines of [24].

• It is actually the road that we followed to reach the result, after that all previous
direct approaches that we tried did fail5.

2.2.1 The small-step behaviour of Curry

As anticipated, we will define the small-step (operational) behaviour BssJP K of a set of
definitional trees P , w.r.t. the needed narrowing strategy with call-time choice semantics,
as the collection all the sequences of computations steps for all possible initial expressions
(Definition 2.2.6). We need first to introduce some notions before we can state its formal
definition.

5This is another interesting outcome of the Abstract Interpretation approach. We actually obtained
the desired semantics (a precise one, not an approximation) by abstraction of a more concrete one, after
all previous attempts to achieve the same goal by direct definition did fail, essentially because it is not at
all evident which is the (minimal) information that has to be kept into denotations.
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Definition 2.2.1 Given t, s two terms, σ an idempotent C-linear substitution and p a
position of an outermost op-rooted subterm of t, we have a small-step t

σ
=⇒
p
s if

1. either σ = ε and there exists u s.t. s ≡ t[u]p, or

2. σ = {x/c(−→yn)} where −→yn ∈ V and s ≡ tσ.

A sequence t0
σ1=⇒
p1

t1
σ2=⇒
p2

. . .
σn=⇒
pn

tn is called small-step sequence.

t0
σ
=⇒∗ tn denotes the existence of a small-step sequence where σ = (σ1 · · ·σn)�t0. σ is

the computed answer. When all pi are identical to p we write t0
σ
=⇒
p

∗ tn.

We use as label of an edge t
σ
=⇒
p
s the same elements of a Curry evaluation step

EvalJtK p, σ
==⇒ s and the requirements on σ and s comes from rules (Rw) and (Ins) (page 24)

corresponding to pure rewriting and instantiation steps.

The collection of all the possible evolutions of computations (which are small-step
sequences obeying the rules of the operational semantics) for all initial expressions is the
full small-step behaviour. Namely,

Definition 2.2.2 (full small-step behaviour of programs) Let P ∈ PΣ. Then

BfssJP K :=

{
e0

σ1=⇒
p1

e1
σ2=⇒
p2

. . .

∣∣∣∣ e0 ∈ T (Σ,V),∀i. EvalJeiK
pi, σi
===⇒ ei+1

}

We will call derivation (sequence) of e any small-step sequence e
σ
=⇒∗ e′ ∈ BfssJP K.

When e′ ∈ T (C,V) the sequence is called succeeding derivation, e′ computed value and
the pair σ · e′ computed result6.

We indicate with ≈fss the program equivalence relation induced by Bfss , namely P1 ≈fss

P2 ⇔ BfssJP1K = BfssJP2K.

Multiple outermost op-rooted subterms

The official small-step operational semantics definition does not specify that any particular
selection rule has to be adopted, and is left to implementation to choose one. We can easily
prove that any specific choice is actually irrelevant.

Let ≈λss be the equivalence induced by the small-step behaviour considering only se-
quences according to a selection rule λ.

Lemma 2.2.3 Let λ be a selection rule and P1, P2 ∈ PΣ. P1 ≈fss P2 if and only if
P1 ≈λfss P2 .

6The term derivation comes from the LP tradition. In the FLP community computed answer and
computed value are standard names. In some literature on FL programming, the term “solution” is used
for referring to a pair of answer and result, e.g. in [60]. However, to the best of our knowledge, there is no
well established name for such pairs, thus we chose computed result.
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Figure 2.1: Small-step derivations for C(f(x), g(y)) and C(f(x), g(x)).

Canonical (sequential) small-step derivations

There is an important property about small-step derivations that is crucial for the (com-
pact and easier) definition of the big-step abstraction. Even when we start with a term
having a single op-rooted subterm, during execution it in not unlikely that multiple out-
ermost op-rooted subterms have to be reduced. The small-step operational semantics
definition allows any sort of possible interleaving in their reduction. Regardless of all ac-
tual choices, the computed result are ensured to be the same. However there is an even
stronger property for all intermediate steps (which we rely on in the following) that we
are now going to evidence.

As a concrete example to start the discussion consider the program P := {f(1) →
A(h), g(1) → B(k), g(0) → B(k), h → · · · , k → · · ·}. In Figure 2.1 are shown all the
derivations for the goal e = C(f(x), g(y)). One can easily verify that, for all possible
reducts s of e, all possible different reduction paths from e to s compute the same answer
(i.e., the diagrams commute). The two “external” derivations work sequentially first on
one outermost op-rooted subterm until it is reduced to a head normal form and then on the
other one (until it is reduced to a head normal form too). All other possibilities interleave
reductions on the two positions and, when they reach the two head normal forms, their
computed answer will be the same of the sequential versions. The same holds when we
have shared subterms as one can see for the goal C(f(x), g(x)).

In general, for every derivation e0
ϑ1=⇒
p1

. . .
ϑn=⇒
pn

en working “interleavingly” between

more than one outermost op-rooted subterm eventually reducing the outermost op-rooted
subterm of e0 at position p to a head normal form, there will be another derivation

e0 = s0
σ1=⇒
q1

. . .
σi=⇒
qi

si
σi+1
==⇒
qi+1

. . .
σn=⇒
qn

sn = en working “sequentially” on p until si, where

si|p is a head normal form, and than reduces to en, with the same computed answer
(σ1 · · ·σn = ϑ1 · · ·ϑn).

Let us state this formally

Proposition 2.2.4 Let P ∈ PΣ and e0
ϑ1=⇒
p1

. . .
ϑn=⇒
pn

en ∈ BfssJP K a derivation which

eventually reduces an outermost op-rooted subterm at position p of e0 in head normal

form. Then, there exists s0
σ1=⇒
q1
. . .

σi=⇒
qi
si

σi+1
==⇒
qi+1

. . .
σn=⇒
qn

sn ∈ BssJP K such that
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• e0 = s0, en = sn and ϑ1 · · ·ϑn = σ1 · · ·σn,

• si|p is in head normal form,

• for all 1 ≤ j ≤ i, sj |p is not in head normal form and qj = p, 7

• for all i < j ≤ n, qj 6= p.

Notation 2.2.5 In the following we denote with s0
σ
↪−→
p

si a small-step sequence (not

necessarily a derivation) s0
σ1=⇒
p
. . .

σi=⇒
p
si where si|p is in head normal form, for all 1 ≤

j ≤ i, sj |p is not in head normal form and σ = σ1 · · ·σi.

Thus Proposition 2.2.4 can be reformulated as “Let . . . Then, there exists e0
σ
↪−→
p
si

η
=⇒∗ en

. . . ” where σ = σ1 · · ·σi and η = σi+1 · · ·σn.

By repeated application of Proposition 2.2.4 for any derivation e0
ϑ1=⇒
p1

. . .
ϑn=⇒
pn

en we

have corresponding ones which works contiguously, i.e.,

e0
σ1
↪−→
p1

u1
σ2
↪−→
p2

. . .
σk
↪−→
pk

uk
η

=⇒∗ en

where all ui|pi are head normal forms and ϑ1 · · ·ϑn = σ1 · · ·σkη. We may possibly need

a “leftover” tail uk
η

=⇒∗ en in case in en not all outermost op-rooted subterms of e0 are

reduced in head normal form.
In the following sequences of this form will be said in canonical form (or simply

canonical). Note that canonicity does not imply that the small-steps have to satisfy
the EvalJ·K =⇒ · relation.

Definition 2.2.6 (canonical form small-step behaviour of programs) Let P ∈ PΣ,

BssJP K :=
{
d
∣∣∣ d ∈ BfssJP K, d canonical

}
We indicate with ≈ss the program equivalence relation induced by Bss , namely ∀P1, P2 ∈

PΣ. P1 ≈ss P2 ⇔ BssJP1K = BssJP2K.

We have that BfssJP K is isomorphic to BssJP K and thus that the (induced) equivalences
≈fss and ≈ss are identical.

Proposition 2.2.7 For all P ∈ PΣ, BfssJP K is isomorphic to BssJP K. Moreover, for all
P1, P2 ∈ PΣ, P1 ≈ss P2 ⇔ P1 ≈fss P2.

As a matter of fact, all information that can be derived (and abstracted) from Bfss can be
derived (and abstracted) from Bss as well. Thus we can just use Bss instead of Bfss . One
could wander if we can “safely” omit some more redundancy. Actually there can be several
canonical alternatives (in Bss ) which reduce to the same values/normal forms. Thus, w.r.t.
computed results, Bss has indeed redundant information. However, as will be clear from
what follows, we cannot leave out any of the alternatives, because it would be impossible
to ensure to be able to (correctly) reconstruct the behaviour of nested expressions from
the components’ semantics (because of laziness). This is the reason why, in the following,
we will use Bss as the reference behaviour for Curry.

7Technically node p may no longer exist in si−1. However any path that reaches p in e0 is a path that
reaches qj in sj−1 and vice versa. The equality and inequality on positions has to be intended in this sense.
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2.2.2 The semantic domain

Now that we have settled which is the reference behaviour of Curry (Definition 2.2.6) that
we want to model, we start to define our semantics by introducing the semantic domain
of “Small-step Trees”.

Definition 2.2.8 (Small-step Trees) Given a term e ∈ T (Σ,V), a small-step tree T
for e is a (not necessarily finite) labelled tree, with terms of T (Σ,V) in nodes, rooted in e
where

1. Paths are canonical small-step sequences

2. Sibling subtrees must have different root terms.

We denote with SSTΣ (or simply SST when it is clear from the context) the set of all
the small-step trees (over Σ).

Moreover, for any e ∈ T (Σ,V), we denote with SSTe the set of all small-step trees for
e.

Point 2 ensures that all sibling steps in a small-step tree are pairwise distinct and thus
that we cannot have two different paths of the tree with the same terms and labels.

Definition 2.2.9 (Variance on SST) Let e ∈ T (Σ,V) and T1, T2 ∈ SSTe, then T1 and
T2 are variants if there exists an isomorphism ι : N → N (i.e., renaming of variables and
nodes) such that ι[T1] = T2 and ι[e] = e 8.

Intuitively, two small-step trees are variants if and only if they have the same root e and
their steps are equal up to renaming of nodes and variables which do not occur in e.

Note 2.2.10 From now on, with an abuse of notation, by SST we will actually indicate
its quotient w.r.t. variance. Moreover all small-step trees presented in the following will
actually be an arbitrary representative of an equivalence class.

Definition 2.2.11 (Order on SST) Let denote with paths(T ) the set of all the paths in
T starting from the root.

Let T1 and T2 be two small-step trees, then T1 v T2 if and only if paths(T1) ⊆ paths(T2).
Given T ⊆ SSTe, the least upper bound

⊔
T is the tree whose paths are

⋃
T∈T paths(T ).

Dually for the greatest lower bound
d

.

It is worth noticing that, for any e ∈ T (Σ,V), SSTe is a complete lattice.
By Point 2 of Definition 2.2.8, paths is injective, thus it establishes an order preserving

isomorphism (SSTe, v) −−−−−−→−→←←−−−−−−−
paths

prfxtree
(paths(SSTe), ⊆), where the adjoint of paths, prfxtree,

builds a tree from a set of paths by merging all common prefixes.
Moreover, if we denote by maxpaths(T ) the set of all the maximal paths starting from e,

we have another order preserving isomorphism (SSTe, v) −−−−−−−→−→←←−−−−−−−−
maxpaths

prfxtree
(maxpaths(SSTe), F),

where S F S′ if for all s ∈ S there exists s′ ∈ S′ such that s is a prefix of s′ (or, equivalently,
prfxtree(S) v prfxtree(S′)).

8Recall that, in order to tackle explicitly the sharing within terms, we use the explicit notation and
notions of [37] (introduced in Subsection 1.4.1).
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So we have three isomorphic representations of small-step trees and in the following
we will use in each specific case the representation that seems to be more convenient
(i.e., clearer or smaller). Moreover, for the same reason, we can simply write d ∈ T for
d ∈ paths(T ).

Definition 2.2.12 (Small-step Tree of a term in a program) Given e ∈ T (Σ,V) and
P ∈ PΣ, a small-step tree NJe in P K for the term t in program P is a small-step tree of
SSTe whose steps correspond to the computation steps of e:

NJe in P K := {d | d ∈ BssJP K, d starts from e}
/
∼=

Intuitively, NJe in P K denotes the small-step operational behaviour of t in the program P
modulo variance (i.e., local variables are up to renaming).

Example 2.2.13
Given the program P+ := {Z + y → y, S(x) + y → S(x + y)}9 the small-step tree
NJx+ y in P+K is

x+ y

Z + y yε

{x/Z}

S(x′) + y S(x′ + y)

S(Z + y) S(y)
ε

{x ′/Z}

S(S(x′′) + y) S(S(x′′ + y))
ε

{x′/S(x
′′ )}

ε

{x
/S

(x
′ )}

In the following we indicate with Nk Je in P K the operational behaviour of t up to k pure
rewriting steps, namely

Nk Je in P K := {d ∈ NJe in P K | d has at most k pure rewriting steps} (2.2.1)

It can be easily shown that

NJe in P K =
⊔
{Nk Je in P K | k ≥ 0}. (2.2.2)

Example 2.2.14
For the program P+ of Example 2.2.13 we have

N0 Jx+ y in P+K = x+ y

Z + y

{x/Z}

S(x1) + y
{x/S(x1)}

9Recall that in examples we will implicitly use the definitional trees obtained by the algorithm of [51,
App. D.5] over programs specified just as sets of rules.
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N1 Jx+ y in P+K = x+ y

Z + y yε

{x/Z}

S(x1) + y S(x1 + y)

S(S(x2) + y)

{x1/S(x2)}

S(Z + y)
{x1/Z

}

ε

{x
/S

(x
1
)}

The following result shows that small-step trees “capture” the behaviour of the op-
erational semantics of all expressions, i.e., the induced program equivalences coincide.

Theorem 2.2.15 Let P1, P2 ∈ PΣ. Then P1 ≈ss P2 if and only if, for every term e,
NJe in P1K = NJe in P2K.

It is important to note that another consequence of the repeated application of Proposi-
tion 2.2.4 is that given a canonical sequence that reduces redexes in a certain order, then
there will be another (equivalent) canonical sequence reducing the same redexes in any
other permutation of the order. Thus trees NJe in P K are also closed upon rearrangement
of order of reduction. Hence if we collect all (partial) evaluations of all possible expressions
for all possible programs

WSSTΣ := {Nk Je in P K | ∀e ∈ T (Σ,V), ∀P ∈ PΣ, ∀k ∈ N} (2.2.3)

we do not exhaust all SSTΣ, because there are several “ill-formed” small-step trees in
SSTΣ which cannot correspond to any behaviour of some expression. Trees of WSST will
be called well-formed. For any e ∈ T (Σ,V), WSSTe (the subset of WSST with root e) is
a sublattice of SSTe.
WSST is the semantic domain which we use in the following. From now on we will

implicitly consider only well-formed small-step trees, without explicitly mentioning it.
The collection for all e ∈ T (Σ,V) of NJe inP K is essentially a tree representation of the

operational behaviour BssJP K, merely identifying all possible operational derivations that
chose different fresh variable names while they are developed. Thus it is not the semantics
we are looking for, since it still has a goal-dependent definition (it is however a first step
toward our goal). Now we should look for a denotation of a program P which could be
used to retrieve, with suitable semantic operations, NJe in P K for any e.

2.2.3 Operational Denotations of Programs

The operational denotation of a program (function definitions without an initial goal)
can be defined as an interpretation giving meaning to defined symbols over (well-formed)
small-step trees “modulo variance”.

Definition 2.2.16 (Interpretations) Let MGC := {f (−→xn) | f/n ∈ D, −→xn are distinct
variables }. We call any π ∈MGC most general call.

Two functions I, J : MGC → WSST are variants, denoted by I ∼= J , if for each π ∈
MGC there exists an isomorphism ι (i.e., a renaming of variables and node names) such
that ι[I(π)] = J(ι[π]).
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An interpretation is a function I : MGC → WSST modulo variance10 such that, for
every π ∈MGC, I (π) is a small-step tree for π.

The semantic domain IΣ (or simply I when clear from the context) is the set of all
interpretations ordered by the pointwise extension of v.

It is important to note that MGC has the same cardinality of D (and is thus finite).
In the following, any I ∈ IΣ is implicitly considered as an arbitrary function MGC→

WSST obtained by choosing an arbitrary representative of the elements of I in the equiv-
alence class generated by ∼=. Actually, in the following, all the operators that we use on
IΣ are also independent of the choice of the representative. Therefore, we can define any
operator on IΣ in terms of its counterpart defined on functions MGC→WSST.

Moreover, we also implicitly assume that the application of an interpretation I to a
most general call π, denoted by I (π), is the application I(π) of any representative I of

I which is defined exactly on π. For example if I = (λf (x, y). f(x, y)
{x/c(z)}
=====⇒

p
c(y, z))

/
∼=

then I (f(u, v)) = f(u, v)
{u/c(z)}
=====⇒

p
c(v, z).

The partial order on I formalizes the evolution of the computation process. (I, v) is
a complete lattice and its least upper bound and greatest lower bound are the pointwise
extension of

⊔
and

d
, respectively. In the following we abuse the notations for WSST for

I as well. The bottom element of I is ⊥I := λπ. π (for each π ∈MGC).
Since MGC is finite, we will often explicitly write interpretations by cases, like

I :=


π1 7→ T1

...

πn 7→ Tn

for

I (π1) := T1

...

I (πn) := Tn

While defined symbols have to be interpreted according to program rules, constructor
symbols are meant to be interpreted as themselves. In order to treat them as a generic case
of function application, we assume that any interpretation I is also implicitly extended
on constructors as I (c(−→xn)) := c(−→xn). In the following we will use ϕ when we refer to a
generic symbol either constructor or defined.

Definition 2.2.17 (Operational Denotation of Programs) Let P ∈ PΣ, then the
operational denotation of P is

OJP K :=
(
λf (−→xn). NJf(−→xn) in P K

)/
∼= (2.2.4)

Intuitively, O collects the small-step operational behaviour of each most general call f (−→xn)
in P , abstracting from the particular choice of the variable names.

The small-step operational behaviour of any term e can be “reconstructed” from OJP K
by means of the following evaluation function E .

Evaluation Function

When we have the interpretation with the small-step operational behaviour of a most
general call f (−→xn) we can easily reconstruct the behaviour of any f (

−→
tn) for

−→
tn ∈ T (C,V)

10i.e., a family of elements of WSST, indexed by MGC, modulo variance.
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by simply replacing the most general bindings along a derivation by the suitable (more in-
stantiated) versions. However, with general nested expressions things gets more involved.
First, because of laziness, the subexpressions need not to be fully evaluated, hence one
cannot simply “plug” the derivation corresponding to an argument as a sub-derivation of
the main call. In practice we have an interleaving of parts of all sub-derivations corre-
sponding to most general calls of arguments, leaded by the most general derivation of the
main call. Furthermore we have sharing which constraints steps performed for a shared
subterm reached through a certain term path to be performed synchronously also in all
other possible alternative term paths. Intuitively our proposal consists in defining an em-
bedding operation that mimics parameter passing, namely taken two small-step trees T1,
T2 and a variable x of (the root of) T1, the tree-embedding operation T1[x/T2] transforms
T1 by replacing steps accordingly to steps of T2 which provides specific actual parameter
values to x in places where x in T1 was originally “freely” instantiated.

The problem of sharing can simply be solved by introducing a fresh variable and then
embedding the tree for the shared term in place of the fresh variable.

Formally, let us define knots(e) as the set of non-root positions p of e which are not
labelled with a variable. Moreover let baseknots(e) be the subset of knots(e) of positions
that cannot be reached by another position in knots(e).

The evaluation of a term e w.r.t. an interpretation I , namely E JeKI , is defined by
induction on the size of knots(e) as follows11

E JxKI := x (2.2.5a)

E Jϕ(−→xn)KI := I (ϕ(−→yn))[y1/x1] . . . [yn/xn] −→yn fresh distinct (2.2.5b)

E JeKI := E Je[y]pKI [y/ E Je|pKI ] y fresh, leftmost p ∈ baseknots(e) (2.2.5c)

where the tree-embedding operation G[x/B], given two small-step trees G and B rooted
in g and b respectively, such that

1. g and b are two compatible terms which do not share any D-labelled node, namely
p ∈ Ng ∩Nb =⇒ L(p) /∈ D;

2. G and B do not share any local node and local variable;

3. x is a variable which doesn’t occur in B

is defined as

G[x/B] := {d | dg ∈ G, db ∈ B, dg[x/db]ε ` d, d canonical} (2.2.6)

where, for all linear constructor substitution ϑ and all small-step sequences dg and db,
whose heads are g and b, such that there exists a homomorphism h : xϑ→ b, dg[x/db]ϑ ` d
is the least relation that satisfies the rules

dg[x/db]ϑ ` h[g] (2.2.7a)

dg `σ d′ d′[x/db′ ]ϑσ ` d′′
h[g]|p outermost op-rooted subterm

dg[x/b
σ
=⇒
p
db′ ]ϑ ` h[g]

σ
=⇒
p
d′′

(2.2.7b)

11For the sake of simplicity Equation (2.2.5c) is actually given in term of leftmost position, even if it can
be proved that the result would be independent of any other possible choice.
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dg′ [x/db]ϑ ` d′

(g
ε

=⇒
p
dg′)[x/db]ϑ ` h[g]

ε
=⇒
p
d′

(2.2.7c)

(g
σ
=⇒
p
dg′) `η d′ d′[x/db′ ]ϑη ` d′′

σ = {y/c(−→zn)}, h[y] rooted in q
(g

σ
=⇒
p
dg′)[x/b

η
=⇒
q
db′ ]ϑ ` h[g]

η
=⇒
p
d′′

(2.2.7d)

dg′ [x/db]ϑσ ` d′
σ = {y/c(−→zn)}, h[y] is C-rooted

(g
σ
=⇒
p
dg′)[x/db]ϑ ` d′

(2.2.7e)

db[w/c(
−→zn)]ε ` d′ dg′ [x/d

′]ϑσ ` d′′
σ = {y/c(−→zn)}, h[y] = w ∈ V

(g
σ
=⇒
p
dg′)[x/db]ϑ ` h[g]

{w/c(−→zn)}
======⇒

p
d′′

(2.2.7f)

provided that d `σ d′ is a shorthand for d = d′, when σ = ε, and d[x/t]ε ` d′, when
σ = {x/t}.

Broadly speaking, the role of ϑ in a statement dg[x/db]ϑ ` d is that of the “parameter
pattern” responsible to constrain “freely” instantiated formal parameters in dg to the ac-
tual parameters values which are actually “coming” from db. More specifically, Rules 2.2.7
govern the inlaying of the steps of a derivation db for a variable x into a derivation dg.
This is done by means of a sort of parameter passing, handled as the application of the
homomorphism h : xϑ→ b on the head of dg.

In particular

• the axiom (2.2.7a) stops any further possible inlaying;

• the rule (2.2.7b) considers the case when the first step of b
σ
=⇒
p
db′ concerns the sub-

term of b corresponding to an outermost op-rooted subterm of h[g]. We recursively
compute the inlaying of db′ into the update of dg with σ.

• the rule (2.2.7c) considers the case when the first step of dg is a pure rewriting step.
It this case there is no need to perform any step in an actual parameter before that
of g. Thus, we inlay the derivation db into dg′ .

• rules (2.2.7d), (2.2.7e) and (2.2.7f) consider the case when the first step of g
σ
=⇒
p
dg′

is an instantiation step which binds a formal parameter y, with a linear constructor
term c(−→zn), and its corresponding actual value

– is an outermost op-rooted subterm of b (h[y] is rooted in q) and the sequence

for the parameter b
η

=⇒
q
db′ actually performs a step on q. Rule (2.2.7d) inlays

db′ into the update of g
σ
=⇒
p
dg′ with η.

– matches. Hence the first step
σ
=⇒
p

is producing a binding “superseded” by the

actual value h[y], and thus rule (2.2.7e) simply discards it.

– is a variable too, namely h[y] = w. Rule (2.2.7f) first performs an instantiation
step with a fresh variant of c(−→zn) and then continues to inlay the updated
version of db into dg′ .
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Example 2.2.18
Consider the interpretation

I =
{

zeros 7→ zeros
ε

=⇒ Z : zeros

The evaluation of E JZ : zerosKI is

E JZ : zerosKI = [ by Equation (2.2.5c) ]

E Jy1 : zerosKI [y1/ E JZKI ] = [ since I (Z) = Z, by Equation (2.2.5b) ]

E Jy1 : zerosKI [y1/Z] = [ by Equation (2.2.5c) ]

(E Jy1 : y2KI [y1/Z])[y2/ E JzerosKI ] = [ since I (y1 : y2) = y1 : y2, by Equation (2.2.5b) ]

((y1 : y2)[y1/Z])[y2/ E JzerosKI ] = [ since, by Equation (2.2.7a), (y1 : y2)[y1/Z]ε ` Z : y2 ]

(Z : y2)[y2/ E JzerosKI ] = [ since E JzerosKI = I (zeros) ]

(Z : y2)[y2/zeros
ε

=⇒ Z : zeros] = [ by Equation (2.2.8) ]

Z : zeros
ε

=⇒ Z : Z : zeros

(2.2.7a)
(Z : y2)[y2/Z : zeros]ε ` Z : Z : zeros

(2.2.7b)
(Z : y2)[y2/zeros

ε
=⇒ Z : zeros]ε ` Z : zeros

ε
=⇒ Z : Z : zeros

(2.2.8)

It can be clarifying to give an alternative definition of tree-embedding, in terms of
“traditional” terms and substitutions (with the same preconditions). However note that
in this way we actually remove the sharing in favor of duplicating copies. Thus it is
correct w.r.t. call-time choice only when there are no shared subterms, where, given the
substitution σ = {x/t}, Gσ is a shorthand for G[x/L t; ∅ M].

It can be noted that Rules 2.2.7 produce “spurious” non-canonical derivations, which
are then filtered out by Equation (2.2.6). Actually Rules 2.2.7 could be changed to con-
struct only canonical derivations, but at the cost of a much more complex definition.
However, since the purpose of this semantics is just to define (and formally prove the
correctness of) the big-step abstraction, this change is not necessary, indeed it is counter-
productive, as for the correctness proofs the presented form is better.

Properties of the Program Operational Denotation

The following result states formally that the evaluation function can reconstruct the small-
step tree of any term.

Theorem 2.2.19 For all P ∈ PΣ and e ∈ T (Σ,V),

E JeKOJP K = NJe in P K.

A straightforward consequence of Theorems 2.2.19 and 2.2.15 is

Corollary 2.2.20 For all P1, P2 ∈ PΣ, P1 ≈ss P2 if and only if OJP1K = OJP2K.

Thus semantics O is fully abstract w.r.t. ≈ss . Now we should find a bottom-up goal-
independent equivalent definition of O . It definition is essentially given in terms of E of
rules’ right hand side.
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2.2.4 Fixpoint Denotations of Programs

We will now show a bottom-up goal-independent denotation which is equivalent to O
and thus adequate to characterize the small-step behaviour for Curry programs. It will
be defined as the fixpoint of an abstract immediate operator over interpretations. This
operator, given an interpretation I , essentially consists in

• building an initial sequence of instantiation steps of a most general call, according
to the definitional tree, and then

• applying the evaluation operator of the bodies of program rules over I

Formally, P : PΣ → I → I is defined as

P JP KI := λf (−→xn). ξJTf KI (2.2.9)

where each Tf is a fresh definitional tree for f s.t. pat(Tf ) = f(−→xn) and the evaluation
ξJT KI of a definitional tree T w.r.t. I is defined as

ξJrule(π → r)KI := π
ε

===⇒
Rootπ

E JrKI (2.2.10a)

ξJor(T1, T2)KI := ξJT1KI t ξJT2KI (2.2.10b)

ξJbranch(π, p,
−→
Tk)KI :=

⊔{
π

σ
===⇒
Rootπ

ξJTiKI

∣∣∣∣πσ = pat(Ti), 1 ≤ i ≤ k
}

(2.2.10c)

Until we do not reach a leaf of a definitional tree, Equation (2.2.10c) builds suitable
instantiation steps. Then (when we reach a leaf) Equation (2.2.10a) evaluates the body
of a rule over the (current) interpretation. For all or nodes Equation (2.2.10b) simply
collects all alternatives.

Example 2.2.21

Consider the program P

coin = Head

coin = Tail

zeros = Z : zeros

(by what shown in Example 2.2.18) the iterates of P JP K are

P JP K↑1 =


zeros 7→ zeros

ε
=⇒ Z : zeros

coin 7→ coin
Headε

Tail
ε

P JP K↑2 =


zeros 7→ zeros

ε
=⇒ Z : zeros

ε
=⇒ Z : Z : zeros

coin 7→ coin
Headε

Tail
ε

...
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2.2. Modeling the small-step behaviour of Curry: Small-step Tree Semantics 39

P JP K↑ω =


zeros 7→ zeros

ε
=⇒ Z : zeros

ε
=⇒ Z : Z : zeros

ε
=⇒ Z : Z : Z : zeros

ε
=⇒ . . .

coin 7→ coin
Headε

Tail
ε

Example 2.2.22
The first two iterates for the program P+ of Example 2.2.13 are

P JP+K↑1 =

x1 + y0 7→ x1 + y0

Z + y0 y0
ε

{x1/Z}

S(x0) + y0 S(x0 + y0)
ε

{x1/S
(x0)}

P JP+K↑2 =



x2 + y0 7→ x2 + y0

Z + y0

y0

ε
{
x

2 /Z
}

S(x1) + y0

S(x1 + y0)

S(Z + y0)

S(y0)

ε
{
x
′/Z
}

S(S(x0) + y0)

S(S(x0 + y0))

ε

{x
1/S(x

0 )}

ε

{x
2/S(x

1 )}

Note that, to highlight the construction order of the various subtrees, we used indices
in variables names that respect the order of introduction and boxed the corresponding
subtrees along the iterations.

By continuing the computation of the iterates, we have that (P JP+K↑ω)(x + y) =

OJP+K(x + y) = NJx + y in P+K (of Example 2.2.13). This is not a casualty, because of
Theorem 2.2.25.

Proposition 2.2.23 For all P ∈ PΣ, P JP K is continuous.

Since P JP K is continuous we can define our fixpoint semantics as

F JP K := P JP K↑ω = lfp(P JP K) (2.2.11)

Example 2.2.24
Consider the program P
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f (A x) = B (loop x)

g (A x) = B (h A)

loop (C x) = loop x

h B = C

the fixpoint F JP K is

h(x) 7→ h(x)
{x/B}
===⇒ h(B)

ε
=⇒ C

g(x) 7→ g(x)
{x/A(x1)}
======⇒ f(A(x1))

ε
=⇒ B(h(A))

loop(x0) 7→ loop(x0)
{x/C(x1)}
======⇒ loop(C(x1))

ε
=⇒ loop(x1)

{x1/C(x2)}
=======⇒

loop(C(x2))
ε

=⇒ loop(x2) · · ·

f (x) 7→ f(x)
{x/A(x1)}
======⇒ f(A(x1))

ε
=⇒ B(loop(x1))

{x1/C(x2)}
=======⇒

B(loop(C(x2)))
ε

=⇒ B(loop(x2)) · · ·

This example shows two functions f , g which do not produce computed results, one because
it has only an infinite derivation and the other because it uses a non total function. We
will see that f and g will have the same big-step semantics.

Properties of the Program Fixpoint Denotation

The top-down goal-dependent denotation O and the bottom-up goal-independent deno-
tation F are actually equivalent.

Theorem 2.2.25 For all P ∈ PΣ, F JP K = OJP K.

A straightforward consequence of Theorem 2.2.25 and Corollary 2.2.20 is

Corollary 2.2.26 (Full abstraction of F w.r.t. ≈ss) For all P1, P2 ∈ PΣ, P1 ≈ss P2

if and only if F JP1K = F JP2K.

This result states that the given fixed-point characterization is fully abstract w.r.t. the
small-step operational behaviour.

2.A Proofs

Proof of Lemma 2.2.3.

Let us define the (syntactic) program equivalence P1
pt
= P2 identifying programs that for

each definitional tree Tf of each defined symbol f have, along any path from the root of
Tf to a leaf node, the same patterns. In other terms have identical definitional trees up
to rearrangement of or-nodes.

Note that the possible different contributions of rules of the small-step operational
semantics depends solely on patterns in leaf-nodes or branch-nodes (or-nodes just collect
all the other contributions). Hence definitional trees for the same rules that have the same
patterns along root-to-leaves paths, must produce the same derivations. Thus

P1
pt
= P2 ⇐⇒ P1 ≈fss P2. (1)
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Now observe that if we take any derivation f(−→xn)
σ1=⇒
p
. . .

σn=⇒
p

f(−→xn)σ1 . . . σn
ε

=⇒
p
s ∈

BssJP K, f(−→xn), f(−→xn)σ1, . . . , f(−→xn)σ1 · · ·σn−1 are the patterns of the branch nodes en-
countered along a path from the root of Tf to a leaf node rule(π → s) such that π =
f(−→xn)σ1 · · ·σn.

Hence P1 ≈ss P2 ⇐⇒ P1
pt
= P2 and thus, with (1) we conclude.

Lemma 2.A.1 Let P ∈ PΣ and t0
σ1=⇒
p
t1

σ2=⇒
q
· · · σn=⇒

q
tn a derivation in BssJP K such that

p, q ∈ Nt0, p 6= q and (tn)|q is in head normal form. Then, there exists a derivation

s0
ϑ1=⇒
q
· · · ϑn−1

===⇒
q

sn−1
ϑn=⇒
o
sn in BssJP K such that s0 = t0, sn = tn, ϑ1 · · ·ϑn = σ1 · · ·σn and

o ∈ {p, q}.

Proof.
We first notice that for any derivation t0

σ1=⇒
p
t1

σ2=⇒
q
t2 there exist a derivation s0

ϑ1=⇒
q
s1

ϑ2=⇒
o
s2

such that s0 = t0, s2 = t2, ϑ1ϑ2 = σ1σ2 and o ∈ {p, q}. Actually, let p1, . . . , pn the nodes

traversed in the proof for EvalJt0K
p, σ1
==⇒ t1, and q1, . . . , qn those traversed in the proof for

EvalJt1K
q, σ1
==⇒ t2. Let p′n the node which takes place of pn in t1. If p′n ∈ {q1, . . . , qn},

by EvalJt1K
q, σ2
==⇒ t2, there must exists EvalJt0K

q, σ1
==⇒ t1. Otherwise, if p′n /∈ {q1, . . . , qn},

the two steps are disjoint and the order in which they are performed can be “swapped”.
This means that it exists a derivation t0

σ2=⇒
q
s1

σ1=⇒
p
s2 where s2 = s1[s′]p = (t0[s′′]q)[s

′]p =

(t0[s′]p)[s
′′]q = t1[s′′]q = t2 for some s′, s′′.

Now we are ready to prove the main result. We proceed by induction on the number
k of steps labelled with q:

Base Case: (k = 1) Straightforward, by that we stated before.

Inductive Step: (k > 1) As previously stated, there exists a derivation s0
ϑ1=⇒
q
s1

ϑ2=⇒
o
s2

such that s0 = t0, s2 = t2, ϑ1ϑ2 = σ1σ2 and o ∈ {p, q}. We consider two cases:

o = q
)

Immediate, and (s0 = )t0
ϑ1=⇒
q
s1

ϑ2=⇒
q

(s2 = )t2 · · ·
σn=⇒
q
tn is a witness.

o = p
)

consider (s0 = )t0
ϑ1=⇒
q
s1

ϑ2=⇒
p

(s2 = )t2 · · ·
σn=⇒
q
tn. The thesis follows by inductive

hypothesis on the sub-derivation s1
ϑ2=⇒
p
· · · σn=⇒

q
tn.

Proof of Proposition 2.2.4.
For the sake of clarity, we make a slight abuse of notation denoting the positions which
are not equivalent to p with p̄. Let k be the index of the last step labelled with a position
p. Under this assumption the starting derivation is denoted as

e0
ϑ1=⇒
p1

· · · ϑk−1
===⇒
pk−1

ek−1
ϑk=⇒
p
ek

ϑk+1
===⇒̄
p
· · · ϑn=⇒̄

p
en ,

where the positions p1, . . . , pk−1 can be either equivalent to p or not. We proceed by
induction on the number h of steps between e0 and ek which are denoted with a position
p̄.
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Base Case: (h = 0) immediate.

Inductive Step: (h > 0) Let i the index of the first step labelled with p̄ moving backward

from ek. e0
ϑ1=⇒
p1

· · · ϑi−1
==⇒
pi−1

ei−1
ϑi=⇒̄
p
ei

ϑi+1
==⇒
p
· · · ϑk=⇒

p
ek

ϑk+1
===⇒̄
p
· · · ϑn=⇒̄

p
en , by Lemma 2.A.1

there exists a derivation si−1
σi=⇒
p

si
σi+1
==⇒
p
· · · σk=⇒

o
sk such that si−1 = ti−1, sk = ek,

σi · · ·σk = ϑi · · ·ϑk and o ∈ {p, p̄}. Thus there exist e0
ϑ1=⇒
p1

· · · ϑi−1
==⇒
pi−1

si−1
σi=⇒
p
si

σi+1
==⇒
p
· · · σk=⇒

o

sk
ϑk+1
===⇒̄
p
· · · ϑn=⇒̄

p
en , such that ϑ1 · · ·ϑi−1σi · · ·σkϑk+1 · · ·ϑn = ϑ1 · · ·ϑn. There are two

possible cases:

o = p
)

we just need to apply the inductive hypothesis on the sub-derivation e0
ϑ1=⇒
p1

· · · ϑi−1
==⇒
pi−1

si−1
σi=⇒
p
si

σi+1
==⇒
p
· · · σk=⇒

p
sk;

o = p̄
)

again, we just apply the inductive hypothesis on the sub-derivation e0
ϑ1=⇒
p1

· · · ϑi−1
==⇒
pi−1

si−1
σi=⇒
p
si

σi+1
==⇒
p
· · ·

σk−1
===⇒
p

sk−1.

Proof of Proposition 2.2.7.
First we show that for all P ∈ PΣ it holds that

BfssJP K =

[ by Definition 2.2.2 ]

=

{
e0

σ0=⇒
p0

e1
σ1=⇒
p1

. . .

∣∣∣∣ ∀i. EvalJeiK
pi, σi
===⇒ ei+1

}
[ by Definition 2.2.6 and since any single step sequence is canonical ]

=

{
e0

σ0=⇒
p0

e1
σ1=⇒
p1

. . .

∣∣∣∣ ∀i. ei σi=⇒
pi
ei+1 ∈ BssJP K

}
(1)

Thus BfssJP K can be retrieved from BssJP K.
From this the thesis becomes immediate, since

P1 ≈fss P2 [ by definition of ≈fss ]

⇐⇒ BfssJP1K = BfssJP2K [ by Definition 2.2.6 and (1) ]

⇐⇒ BssJP1K = BssJP2K [ by definition of ≈ss ]

⇐⇒ P1 ≈fss P2

Proof of Theorem 2.2.15.
By Definitions 2.2.12 and 2.2.9 it is straightforward to see that for any P ∈ PΣ the following
equality holds

BssJP K =
⋃

e∈T (Σ,V)

{
ι[d]

∣∣∣∣∣ d ∈ paths(NJe in P K)
ι : N → N isomorphism s.t. ι[e] = e

}
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Then, BssJP1K = BssJP2K if and only if ∀e ∈ T (Σ,V). NJe in P1K = NJe in P2K.

In order to be more concise in our statements we introduce the notion of we called embed-
dable pair.

Definition 2.A.2 (embeddable pair) e, e′ ∈ T (Σ,V) is said embeddable pair if e and
e′ are compatible and do not share any D-labelled node.

An embeddable pair is a pair of terms which fulfills the minimal requirements that ensure
both the soundness (see Lemma 2.A.4) and the completeness (see Lemma 2.A.6) of the
small-step tree-embedding operation (Equation (2.2.6)) w.r.t. the operational semantics.

Lemma 2.A.3 For all small-step derivation dg ∈ NJg in P K and for all C-linear substitu-
tions σ either of the form ε or {x/c(−→zn)}, if dg `σ d then the head of d is gσ.

Proof of Lemma 2.A.3.

By definition of `σ if σ = ε then d = dg and the thesis trivially holds.

If σ = {x/t}, d is a derivation which holds dg[x/t]ε ` d. By construction there exists
h : x→ t and h[g] = gσ. The thesis hold since every rule in 2.2.7 infers a sequence whose
head is h[g].

Lemma 2.A.4 Let P ∈ PΣ, let g, b be an embeddable pair, x ∈ var(g) \ var(b), and let
ϑ be a C-linear substitution s.t. there exists a homomorphism h : xϑ → b. Then, NJg in

P K[x/NJb in P K] v NJg{x/b} in P K

Proof.

To keep clean the notation in the following dt will denote a small-step derivation whose
head is the term t.

By Equation (2.2.6) it suffices to prove that, given dg ∈ NJg in P K and db ∈ NJb in P K,
if it holds dg[x/db]ε ` d and d is canonical then d ∈ NJg{x/b} in P K.

To this aim we will prove a stronger result: let g, b be an embeddable pair, x /∈ var(b),
and let ϑ be a C-linear substitution such that img(θ) does not share any node with b and
there exists a homomorphism h : xϑ→ b. Then, for any dg ∈ NJg in P K and db ∈ NJb in P K
such that dg[x/db]ϑ ` d and d is canonical then d ∈ NJh[g] inP K. We proceed by induction
on the height of the proof for dg[υ/db]ϑ ` d.

Base Case: immediate by rule 2.2.7a.

Inductive Step: First of all note that, by Definition 2.2.12, for every step ti
σi=⇒
pi
ti+1 of

dg or db it holds EvalJtiK
pi, σi
===⇒ ti+1. Now we proceed with the proof by cases on the first

rule applied in the proof of dg[υ/db]ϑ ` d.

rule 2.2.7b
)

we have that db is of the form b
σ
=⇒
p
db′ and h[g]|p is an outermost op-rooted

subterm. By (Cntx) EvalJbK p, σ
==⇒ b′ if and only if EvalJb|pK

p, σ
==⇒ s and b′ = b[s]p.

Without loss of generality we assume the nodes introduced in the step (i.e., Ns \Nb)
are renamed apart both from xϑ and dg. By the conditions on rule 2.2.7b, p ∈ Nh[g];
by hypothesis, b and g do not share D-labelled nodes, and ϑ is a C-linear substitution



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.
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s.t. h : xϑ→ b, therefore h[g]|p = b|p. Since h[g]|p is an outermost op-rooted subterm

of h[g], by (Cntx), EvalJb|pK
p, σ
==⇒ s if and only if

EvalJh[g]K p, σ
==⇒ (h[g])[s]p. (1)

By Lemma 2.A.3 and inductive hypothesis d′ ∈ NJgσ in P K. Again, by inductive
hypothesis

d′′ ∈ NJh′[gσ] in P K (2)

where h′ : xϑσ → b′. If σ = ε, since b′ = b[s]p we have that (h[g])[s]p = h′[g] =
h′[gσ]. On the other hand, if σ 6= ε, we have that (h[g])[s]p = (h[g])σ = h′[gσ]. By

h′[gσ] = (h[g])[s]p, (1) and (2) we have that if h[g]
σ
=⇒
p
d′′ is canonical derivation then

h[g]
σ
=⇒
p
d′′ ∈ NJh[g] in P K.

rule 2.2.7c
)

we have that dg is of the form g
ε

=⇒
p
dg′ , that is g

ε
=⇒
p
g′ is a pure rewriting

step. Therefore there exist in g a position q reachable from p, a rule l → r and a
matcher m : l → g|q such that g′ = g[m[r]]q. By hypothesis h : xϑ → b, and xϑ is a
constructor term thus for every path in g from the root to q there exists a path in h[g]
with the same labels, obtained mapping each node of the former path with h. Thus a

proof for EvalJh[g]K
h(p), ε
===⇒ h[g′] can be given by mapping the proof for EvalJgK p, ε

=⇒ g′

with h. By construction h is D-preserving, thus h(p) = p and EvalJh[g]K p, ε
=⇒ h[g′].

By inductive hypothesis d′ ∈ NJh[g′] in P K, therefore if h[g]
σ
=⇒
p
d′ is canonical we

conclude that h[g]
σ
=⇒
p
d′ ∈ NJh[g] in P K.

rule 2.2.7e
)

we have that dg is of the form g
σ
=⇒
p
dg′ , with σ = {y/c(−→zn)}, that is g

σ
=⇒
p
g′

is an instantiation step and g′ = gσ. Without loss of generality both the nodes and
the variables of c(−→zn) are supposed to be renamed apart from both from xϑ and db.
By hypothesis h : xϑ → b, h[y] is C-rooted, and dg′ [x/db]ϑσ ` d′ holds, hence there
exists h′ : xϑσ → b. By construction h′[g′] = h[g]. By inductive hypothesis if d′ is
canonical then d′ ∈ NJh′[g′] in P K and therefore d′ ∈ NJh[g] in P K.

rule 2.2.7f
)

we have that dg is of the form g
σ
=⇒
p
dg′ , with σ = {y/c(−→zn)}, that is g

σ
=⇒
p
g′

is an instantiation step and g′ = gσ. Without loss of generality both the nodes and
the variables of c(−→zn) are supposed to be renamed apart from both from xϑ and
db. By hypothesis h[y] = w ∈ V and h : xϑ → b thus there exists a homomorphism
h′ : xϑσ → b{w/c(−→zn)}. By construction, h′[g′] = h[g′] = h[g]{w/c(−→zn)}. It is imme-

diate to see that a proof for EvalJh[g]K
p, {w/c(−→zn)}
=======⇒ h[g′] can be given by mapping the

proof for EvalJgK p, σ
==⇒ g′ with h, note that {w/c(−→zn)} = {h[y]/c(−→zn)} and h(p) = p

since h is D-preserving. By inductive hypothesis d′ ∈ NJb{w/c(−→zn)} in P K. By this
and construction of h′ we apply the inductive hypothesis on dg′ [x/d

′]ϑσ ` d′′ con-

cluding that if d′′ is canonical then d′′ ∈ NJh′[g′] in P K. Thus, if h[g]
{w/c(−→zn)}
======⇒

p
d′′ is

canonical then it belongs to NJh[g] in P K.
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rule 2.2.7d
)

we have that dg is of the form g
σ
=⇒
p
dg′ , with σ = {y/c(−→zn)}, and db is of

the form b
η

=⇒
q
db′ . Thus g

σ
=⇒
p
g′ is an instantiation step and g′ = gσ, moreover b|q

is an outermost op-rooted subterm of b. By hypothesis h : xϑb and ϑ is a C-linear
substitution, thus h[x] = b|q. Without loss of generality both the nodes and the
variables of c(−→zn) are supposed to be renamed apart from both from xϑ and db.

It is straightforward to see that the proof of EvalJgK p, ϑ
==⇒ g′ can be lifted with h up to

the next to the last rule application. Rather than (Ins), it can only be applied (Dem)
which makes this proof for h[g] depends on one for h[x]. We said that h[x] = b|q is

as outermost op-rooted subterm of b. By (Cntx), EvalJb|qK
q, η
==⇒ s holds if and only

if it holds EvalJbK q, η
==⇒ b′, where b′ = b[s]q. Hence EvalJh[g]K p, σ

==⇒ (h[g])[s]q admits a
proof.

By Lemma 2.A.3 and inductive hypothesis d′ ∈ NJgη in P K. Again, by inductive
hypothesis d′′ ∈ NJh′[gη] in P K where h′ : xϑη → b′. Similarly to the case for rule

2.2.7b (just replacing σ with η), we have that h′[gη] = (h[g])[s]q thus if h[g]
η

=⇒
p
d′′ is

canonical then it belongs to NJh[g] in P K.

Lemma 2.A.5 Let P ∈ PΣ, let σ be an idempotent C-linear substitution of the form
{x/c(−→yn)} and let t be a term renamed apart from c(−→yn). Then, for all k ≥ 0 and for all
dgσ ∈ Nk Jgσ in P K, it exists a derivation dg ∈ Nk Jg in P K such that dg `σ dgσ.

Proof.
The proof is similar to that of Lemma 2.A.6 but simpler, since the cases corresponding to
rule 2.2.7b and 2.2.7d do not have to be considered.

Lemma 2.A.6 Let P ∈ PΣ, let g, b be an embeddable pair, x ∈ var(g) \ var(b), and let ϑ
be a C-linear substitution s.t. there exists a homomorphism h : xϑ→ b. Then, Nk Jg{x/b}in

P K v Nk Jg in P K[x/Nk Jb in P K] for every k ≥ 0

Proof.
We show that for any given a C-linear substitution ϑ such that h : xϑ → b, for all k ≥ 0
and d ∈ Nk Jh[g] in P K there exist two derivations dg ∈ Nk Jg in P K and db ∈ Nk Jb in P K s.t.
dg[x/db]ϑ ` d holds. We proceed by structural induction on the derivation d:

Base Case: d is a zero-step derivation of the form h[g]. This case immediately holds by
rule 2.2.7a.

Inductive step: then d is of the form h[g]
σ
=⇒
p
d′. By hypothesis the statement

EvalJh[g]K p, σ
==⇒ s (1)

where s is the head of d′ holds. Let p1, . . . , pn be the nodes traversed in the proof of
(1). These nodes describe a path in h[g] from the root to either a V-labelled node or a
D-labelled one (respectively when the proof ends with (Ins) or (Rw)). The extension of
the homomorphism h : xϑ→ b on g is a homomorphism h : g → h[g]. Let q1, . . . , qm with
m ≤ n be the longest path in g such that h(qi) = pi for every 1 ≤ i ≤ m. From this, we
distinguish two cases:



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.
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∀1 ≤ i ≤ m. Lg(qi) /∈ D : then, by (1) there exists an index m < j ≤ n such that
pj = p and Lh[g](p) ∈ D. Thus Lg(qm) = y is a critical variable of g also belonging
to var(xϑ), and h[y] = b|pm . Therefore h[g]|p = h[y]|p = (b|pm)|p is an outermost op-
rooted subterm of h[g]. By (Cntx), a sub-tree of the proof tree of (1) is a proof tree for

EvalJb|pmK
p, σ
==⇒ s′, and s = (h[g])[s′]pm . By h : xϑ → b, ϑ C-linear, b|p is an outermost

op-rooted subterm of b. Hence, by (Cntx) also EvalJbK p, σ
==⇒ b′ with b′ = b[s′]pm holds.

If (1) is a pure rewriting step then σ = ε and it is easy to see that it exists an
homomorphism h′ : xϑ→ b′ s.t. h′[g] = (h[g])[s′]pm = s. By hypothesis d′ ∈ Nk−1 Jh′[g] in

P K then, by inductive hypothesis there exist dg ∈ Nk−1 Jg in P K and d′b ∈ Nk−1 Jb′ in P K
such that dg[x/db′ ]ϑσ ` d′. Therefore, by rule 2.2.7b, dg[x/b

σ
=⇒
p
db′ ]ϑ ` d holds.

On the other hand, if (1) is an instantiation step then σ 6= ε, s = h[g]σ and b′ = bσ. By
h : xϑ→ b, it also exists a homomorphism h′ : xϑ→ bσ. By construction σ is idempotent,
thus h′[gσ] = h[g]σ = s. Since (1) is an instantiation step, d′ ∈ Nk Jh′[gσ] in P K then, by
inductive hypothesis, there exist dgσ ∈ Nk−1 Jgσ in P K and d′b ∈ Nk−1 Jb′ in P K such that
dgσ[x/db′ ]ϑσ ` d′. By Lemma 2.A.5 there exists dg ∈ Nk−1 Jg in P K such that dg `σ dgσ.

Again, by Equation (2.2.7b), dg[x/b
σ
=⇒
p
db′ ]ϑ ` d holds.

Since Nk−1 Jg in P K v Nk Jg in P K then dg ∈ Nk Jg in P K and the thesis holds for both
the cases.

∃1 ≤ i ≤ m. Lg(qi) ∈ D : let j be the least index s.t. Lg(qj) ∈ D. By construction
h[g]|pj is an outermost op-rooted subterm of h[g], thus p = pj = h(qj) in (1). By hypothesis
ϑ is C-linear, thus h : xϑ → b is D-preserving, which means that h(qj) = qj and p = qj .
We distinguish two possible cases

m = n
)

If Lg(qn) ∈ D, by (1), EvalJgK p, ε
=⇒ g′ holds and (1) is a pure rewriting step, that

is σ = ε and s = h[g′]. Then d′ ∈ Nk−1 Jh[g′] in P K and, by inductive hypothesis,
there exist dg′ ∈ Nk−1 Jg′ in P K and db ∈ Nk−1 Jb in P K s.t. dg′ [x/db]ϑ ` d′ holds.

Hence, (g
σ
=⇒
p
dg′)[x/db]ϑ ` d holds by rule 2.2.7c.

Otherwise, we have that Lg(qn) = y ∈ V. Then (1) is an instantiation step, that
is σ = {y/c(−→zn)}, s = h[g]σ and h[y] = w ∈ V. By (1) it follows that the state-

ment EvalJgK p, σ
==⇒ g′ where g′ = gσ, holds. By hypothesis h : xϑ → b, thus it exists

h′ : xϑσ → b{w/c(−→zn)} and h[g]σ = h′[g′]. By hypothesis d′ ∈ Nk−1 Jh′[g′] in P K
then, by inductive hypothesis there exist dg′ ∈ paths(Nk−1 Jg′ in P K) and d′′ ∈
paths(Nk−1 Jbσ in P K) such that dg′ [x/d

′′]ϑσ ` d′ holds. By Lemma 2.A.5, there
exists db ∈ Nk−1 Jb in P K such that db[y/c(

−→zn)]ε ` d′′ holds. Therefore, by rule 2.2.7f,
dg[x/db]ϑ ` d holds.

By Nk−1 Jb in P K v Nk Jb in P K, db ∈ Nk Jb in P K, therefore the thesis holds for both
the former sub-cases.

m < n
)

In this case Lg(qm) = y ∈ var(g) ∩ var(xϑ) and, by Equation (1), there must
be an instantiation step for g whose substitution θ is of the form {y/c(−→zn)}, that is,

the statement EvalJgK p, θ
=⇒ g′ where g′ = gθ holds.

There are three possible cases depending on the root symbol of h[y] = b|pm , namely
Lb(pm):
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2.A. Proofs 47

Lb(pm) = w ∈ V : then (1) is an instantiation step, that is, σ = {w/c(−→zn)} and
s = h[g]σ. As in the former case, the thesis holds by rule 2.2.7f.

Lb(pm) ∈ D : by (1), EvalJb|pmK
pm, σ
===⇒ s′ where s = (h[g])[s′]pm holds. Since ϑ is C-

linear, b|pm is an outermost op-rooted subterm of b, then the statement EvalJbK pm, σ
===⇒

b′, where b′ = b[s′]pm , holds.

Let h′ be h′(qm) := Roots′ and h′(q) := h(q) for any node q 6= qm. It can be proved
that h′ is a homomorphism h′ : xϑ→ b′ and (h[g])[s′]pm = h′[g].

If (1) is a pure rewriting step then d′ ∈ Nk−1 Jh′[g]inP K and, by inductive hypothesis,
there exist dg ∈ Nk−1 Jg in P K and db′ ∈ Nk−1 Jb′ in P K such that dg[x/db′ ]ϑσ ` d′.
In particular, by (1) and d ∈ Nk Jh[g] in P K, dg must be of the form g

θ
=⇒
p
dg′ , where

dg′ = NJg′ in P K. Thus, by rule 2.2.7d, dg[x/db]ϑ ` d holds. Since Nk−1 Jb in P K v
Nk Jb in P K then db ∈ paths(Nk Jb in P K) hence the thesis holds for this sub-case.

If (1) is an instantiation step then b′ = bσ. By hypothesis d′ ∈ Nk−1 Jh′[gσ] in P K,
hence by inductive hypothesis there exist dgσ ∈ Nk−1 JgσinP K and db′ ∈ Nk−1 Jb′ inP K
s.t. dgσ[x/db′ ]ϑσ ` d′. By Lemma 2.A.5, there exist dg ∈ Nk−1 Jg in P K such that

dg `σ dgσ. As the previously mentioned dg must be of the form g
θ

=⇒
p
dg′ , where

dg′ = NJg′ in P K. Thus by rule 2.2.7d, dg[x/b
σ
=⇒
p
db′ ]ϑ ` d holds and therefore the

thesis.

Lb(pm) ∈ C : Lb(pm) = c since (1) holds. Thus, by h : xϑ → b there exists a

homomorphism h′ : xϑθ → b, hence h′[gθ] = h′[g′] = h[g]. By (1), EvalJh′[g′]K p, σ
==⇒ s

holds. Then, by rule 2.2.7e the problem is reduced to check whether exist dg′ ∈
Nk−1 Jg′ in P K and db ∈ Nk−1 Jb in P K such that dg′ [x/db′ ]ϑθ ` d. Actually, by (1),
Lh[g](pn) /∈ C thus this check is eventually reduces in one of the previous cases.

Now we can state the small-step operational denotations are “compositional” in this sense:

Corollary 2.A.7 Let P ∈ PΣ, let g, b be an embeddable pair, x ∈ var(g) \ var(b), and let
ϑ be a C-linear substitution s.t. there exists a homomorphism h : xϑ → b. Then, NJg in

P K[x/NJb in P K] = NJg{x/b} in P K.

Proof of Corollary 2.A.7.

The proof directly follows from Lemmata 2.A.4 and 2.A.6 since for all P ∈ PΣ and for all
e ∈ T (Σ,V), NJe in P K =

⊔
{Nk Je in P K | k ≥ 0}.

A straightforward consequence of Corollary 2.A.7 is Theorem 2.2.19.

Proof of Theorem 2.2.19.

We proceed by induction on the cardinality of baseknots(e)

Base Case: There are two possible cases for e:

e ∈ V
)

Immediate by Equation (2.2.5a)
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e = ϕ(−→xn)
)

By induction on n. The case n = 0 is straightforward by Equations (2.2.5b)
and (2.2.4). For n > 0 the following hold

E Jϕ(−→xn)KOJP K [ by Equation (2.2.5b) ]

= OJP K(ϕ(−→yn))[y1/x1] . . . [yn/xn] [ by inductive hypothesis on n ]

= NJϕ(−−→xn−1, yn) in P K[yn/xn] [xn = NJxn in P K and Corollary 2.A.7 ]

= NJϕ(−→xn) in P K

Inductive Step: Let p be the leftmost node in baseknots(e) and y a fresh variable. We
have that

E JeKOJP K = [ Equation (2.2.5c) ]

= E Je[y]pKOJP K [y/ E Je|pKOJP K ] [ by inductive hypothesis ]

= NJe[y]p in P K[y/NJe|p in P K] [ by Corollary 2.A.7 ]

= NJe in P K

Proof of Corollary 2.2.20.
Straightforward consequence of Theorems 2.2.19 and 2.2.15.

Proof of Proposition 2.2.23.
It is straightforward to prove that P JP K is monotone and finitary, thus it is continuous.

Proof of Theorem 2.2.25.
v
)

First we prove that given f ∈ D the definitional tree T for f in P ,

ξJT KOJP K v NJpat(T ) in P K. (1)

We proceed structural by induction on T .

T = rule(π → r) : By construction π → r ∈ P is a rule for f in P . By (2.2.10a)
ξJT KOJP K = π

ε
===⇒
Rootl

E JrKOJP K . Then, by (Rw) and Theorem 2.2.19, ξJT KOJP K v

NJpat(T ) in P K.

T = or(T1, T2) : By construction pat(T ) = pat(T1) = pat(T2) and, by inductive
hypothesis, Ti v NJpat(Ti) in P K for i = 1, 2. Therefore, by Equation (2.2.10b),
ξJT KOJP K v NJpat(T ) in P K.

T = branch(π, p,
−→
Tm) : by Equation (2.2.10c)

ξJbranch(π, p,
−→
Tm)KOJP K =

m⊔
i=1

{
π
{x/π′}
====⇒
Rootπ

ξJTiKOJP K

∣∣∣∣∣ x = π|p
π′ = pat(Ti)|p

}

By Equation (Ins) and Definition 1.4.1, EvalJπK p, σi
==⇒ pat(Ti) with σi := {π|p/ pat(Ti)|p}

for every 1 ≤ i ≤ m. By inductive hypothesis we conclude that ξJT KOJP K v
NJpat(T ) in P K.
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We conclude the proof showing that OJP K is a pre-fixed point of P JP K:

P JP KOJP K =

[ by Equation (2.2.9) ]

= λϕ(−→xn).


ϕ(−→xn) if ϕ ∈ C
ξJT KOJP K otherwise, T fresh definitional tree for ϕ

s.t. pat(T ) = ϕ(−→xn)

[ by (1) ]

v OJP K

w
)

By contradiction. Assume that there exists ϕ/n ∈ Σ and a path d such that d v
OJP K(ϕ(−→xn)) but d 6v F JP K(ϕ(−→xn)). Let indicate with Nm := λϕ(−→xn). NmJϕ(−→xn) in

P K for any m ≥ 0. Suppose d be one of the shortest paths among those holding the
former condition and let k be the number of rewriting steps of d. Consider the two
possible cases:

k = 0
)

by hypothesis d v N0(ϕ(−→xn)) but d 6v F JP K(ϕ(−→xn)). By Definition 2.2.10
and (2.2.9), N0 v P JP K⊥I . By monotonicity of P JP K and P JP KF JP K = F JP K,
N0 v F JP K, which is absurd.

k > 0
)

by hypothesis d v Nk(ϕ(−→xn)) but d 6v F JP K(ϕ(−→xn)). In fact Nk−1 v F JP K,
otherwise there exists a shorter path holding the former condition. By Equa-
tion (2.2.9) and Lemma 2.A.6 Nk v P JP KNk−1

. By monotonicity of P JP K and
P JP KF JP K = F JP K, Nk v F JP K, which is absurd.

Proof of Corollary 2.2.26.
Straightforward consequence of Theorem 2.2.25 and Corollary 2.2.20.
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3
Big-step semantics

Abstract

We present a condensed, goal-independent, bottom-up fixpoint semantics that is fully
abstract w.r.t. results computed for Curry expressions. This work is motivated by
the fact that a (condensed) goal-independent semantics for functional logic languages,
which is essential for the development of efficacious semantics-based program manip-
ulation tools (e.g. automatic program analyzers and debuggers), does not exist. The
operational or the rewriting logic semantics that are most commonly considered in
the functional logic paradigm are unnecessarily oversized, as they contains many “se-
mantically useless” elements that can be retrieved from a smaller set of “essential”
elements.

We believe that the condensedness of the semantics makes it particularly suit-
able for applications. Actually we have already developed some applications of the
presented semantics to the automatic debugging field which gave interesting results.

3.1 Modeling the Big-Step Operational Behaviour of Curry
programs

In this section, as anticipated in the introduction, we derive (by abstraction of the seman-
tics of Subsection 2.2.4) a fixpoint big-step semantics.

We first have to formally define the concept of big-step operational behaviour, which
can simply be the collection of all outcomes corresponding to value-terminating small-step
derivations1. In the FLP case the outcome, corresponding to value-terminating small-step
derivations, consists of a computed answer ϑ and a computed value v. To the best of
our knowledge in the literature there is no well established name for this pair, thus in the
following we will call it computed result (and denote it by ϑ · v).

Definition 3.1.1 (Computed result behaviour of programs) Let P ∈ PΣ,

Bcr JP K := λe.
{
σ · *v+

∣∣∣ e σ
=⇒∗ v ∈ BssJP K, v ∈ T (C,V)

}
(3.1.1)

We indicate with ≈cr the program equivalence relation induced by Bcr , namely P1 ≈cr

P2 ⇔ Bcr JP1K = Bcr JP2K.

1A direct definition of the big-step semantics with big-step rules as those given for the small-step version
is unnecessary for our current purposes
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Note that in (3.1.1) we need to unravel the v computed by the small-step semantics
(*v+) because we must not distinguish sharing in non-variable nodes.

Unfortunately, unlike the small-step case, because of laziness it is not enough to collect
just the computed results of most general calls in order to provide a goal-independent
denotation correct w.r.t. the behaviour of computed results. Consider for example the
programs

f x = S (g x)

g (S x) = 0

f (S x) = S 0

g (S x) = 0

which have the same computed results for most general calls, namely{
f(x) 7→ {{x/s(x′)} · s(0)}
g(x) 7→ {{x/s(x′)} · 0}

For the goal g(f(x)) the former program computes ε · 0 but the latter computes {x/s(x′)} · 0.
Thus a collecting semantics maintaining only the information of computed result for most
general calls would erroneously identify this two non-equivalent programs. Some addi-
tional information about the way in which a computed result is obtained must be kept.
However we do not want to resort to use all the information of a small-step derivation.

In this section we develop a goal-independent big-step semantics by optimal abstraction
of the (much more) concrete fixpoint semantics in Subsection 2.2.4 through an abstrac-
tion which hides the information about intermediate defined function symbols from the
observable behaviour of the program, while retaining the information which is needed in
order to preserve correctness w.r.t. the behaviour of computed results.

The idea is to look within all abstract interpretations which are obtained from a tree
abstraction α : (WSST, v) → (A, ≤). This tree abstraction can by systematically lifted

to a Galois Insertion I −−−→−→←−−−−
ᾱ

γ̄
[MGC→ A] by function composition (i.e., ᾱ(f) = α ◦ f).

Then we can derive the optimal abstract version of PαJP K simply as PαJP K := ᾱ ◦
P JP K ◦ γ̄.

As recalled in Section 1.5, abstract interpretation theory assures that FαJP K :=
lfpA(PαJP K) is the best correct approximation of F JP K. Correct means ᾱ(F JP K) ≤
FαJP K and best means that it is the minimum (w.r.t. ≤) of all correct approximations.

If ᾱ is precise, i.e., PαJP K ◦ ᾱ = ᾱ ◦ P JP K (or equivalently ᾱ ◦ P JP K ◦ γ̄ ◦ ᾱ =
ᾱ ◦ P JP K), then ᾱ(F JP K) = FαJP K. This means that FαJP K is not just a generic (safe)
approximation, but a (precise) abstract semantics.

Expressed it this terminology our goal is to find a precise abstraction α such that the
induced abstract semantics FαJP K is fully abstract w.r.t. ≈cr .

3.1.1 The semantic domain

To deal with non-strict operations, without considering all the details about expressions
still to be solved of the small-step behaviour, [49, 50, 64] consider constructor signatures
C⊥ extended by a special constructor symbol ⊥ to represent undefined values. Such partial
terms are considered as finite approximations of possibly infinite values. However, by using
just one abstraction symbol ⊥ it is impossible to distinguish between different occurrences
of the same abstractions. So we use instead an additional denumerable set of variables
V% , obviously disjoint from V, and we abstract a term graph by replacing all its op-rooted
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subterms with (fresh) variables from V% . When it is not clear from the context, in analogy
with [50], we will call variables in V% bottom variables, while variables in V data variables.

Moreover in the following we denote by %Substs the set of substitutions from V% to

T (C,V ∪ V%).

Formally, the term abstraction τ : T (Σ,V)→ T (C,V ∪ V%) is defined as

τ(e) := e[%1]p1 . . . [%n]pn (3.1.2)

where p1, . . . , pn are the positions of all outermost op-rooted subterms of e and %1, . . . , %n
are fresh bottom variables. A partial computed result σ · e is abstracted to σ · τ(e) (since
σ ∈ CSubsts does not contain op-rooted subterms). We call the latter τ -abstract partial
computed result or simply partial computed result for brevity, when its clear from the
context.

Abstracting small-step trees to evolving result trees

Conceptually, given a canonical small-step evaluation sequence d = e0
ϑ1
↪−→
p1

· · · ϑn
↪−→
pn

en, we

can think of applying the term abstraction τ to all terms of d. All terms sj of d which are
between ei and ei+1 in position pi will be abstracted to the same bottom variable % (i.e.,
τ(sj)|pi = τ(ei)|pi = % ∈ V%) as all evaluation steps that change an op-rooted subterm into
another op-rooted subterm are abstractly identical. With regard to neededness of a redex,
all these op-rooted subterms are equivalent. Things change when evaluation introduces
a new constructor, i.e., when we reach a head normal form (and the evaluation position
changes to pi+1). In this case we have a different term abstraction as % changes to a
non-bottom variable (i.e., τ(ei+1)|pi /∈ V%).

Intuitively, starting from a term e, we want to collapse together all intermediate small
steps related to the same op-rooted subterm which lead to an head normal form. All
positions along the way (of these sub-derivations) refer to an op-rooted subterm that is
abstracted to some bottom variable % and we need to explicitly remember this information
(otherwise we could not distinguish needed redexes from subterms that change because

of sharing). Hence we keep % as label of an abstract computation step ϑ · t̄ %−→ σ · s̄ going
from the abstract partial computed result ϑ · t̄ to σ · s̄.

We can see the process from the point of view of a partial computed result ϑ · t̄,
which contains a bottom variable % in position p, corresponding on the small-step side
to an outermost op-rooted subterm in position p. What we do is to collapse together all
small-steps until at least another constructor is added (see Examples 3.1.2, 3.1.3, 3.1.4
and 3.1.5). Then t̄ becomes s̄ ≡ t̄{%/r̄} and also ϑ becomes σ ≡ ϑη, giving the abstract

step ϑ · t̄ %−→ σ · s̄.
Altogether we obtain a sequence of abstract steps θ0 · t̄0

%1−→ . . .
%m−−→ θm · t̄m which we

call big-step sequence.

Given a set V of relevant variables and an initial substitution σ, with dom(σ) ⊆ V ,
we can formally define the abstraction (into a big-step sequence) of a small-step sequence
d, starting from t, by structural induction as

∂σV (d) :=

σ · t̄
%−→ ∂ηV (d′) if d = e

ϑ
↪−→
p
d′

σ · t̄ otherwise
(3.1.3)
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where ē = τ(t), h : e→ t̄, % = L(h(p)) and η = (σϑ)�V .

The intuition of Equation (3.1.3) is that when we abstract · · · t ϑ
=⇒
p
s · · · (having an

accumulated substitution σ) we have the following alternatives:

1. subterm s|p is an head normal form. Thus we build an abstract step over the bottom
variable of position p (and we continue with accumulator σϑ);

2. subterm s|p is not an head normal form. Thus we just skip to next term (updating
the accumulator with ϑ).

Definition (3.1.3) is extended to trees T of WSSTe as

∂var(e)(T ) := prfxtree(
⋃{

∂εvar(e)(d)
∣∣∣ d ∈ paths(T )

}
) (3.1.4)

where for any set S of big-step sequences prfxtree(S) computes the tree (whose nodes are
abstract partial computed results and edges are labelled over V%) whose paths are exactly
S.

Example 3.1.2
Consider F JP K of Example 2.2.21. We have

∂ε∅(coin
ε

=⇒ Head) = ε · % %−→ ε ·Head ∂ε∅(coin
ε

=⇒ Tail) = ε · % %−→ ε · Tail

and thus

∂∅

 coin
Headε

Tailε

 = ε · % ε ·Head%

ε · Tail%

Moreover

∂∅(zeros
ε

=⇒ Z : zeros
ε

=⇒ Z : Z : zeros
ε

=⇒ Z : Z : Z : zeros
ε

=⇒ . . .) =

ε · %1
%1−→ ε · Z : %2

%2−→ ε · Z : Z : %3
%3−→ ε · Z : Z : Z : %4

%4−→ . . .

Example 3.1.3
The abstraction of NJx+ y in P+K of Example 2.2.13 is

ε · % {x/S(x1)} · S(%1)

{x/Z} · y

{x/S(S(x2))} · S(S(%2))

{x/S(Z)} · S(y)

%

%

%1

%1

Example 3.1.4
The abstraction of the small-step semantics of the program P≤
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leq (S x) Z = False

leq (S x) (S y) = leq x y

is

ε · %

{x/Z} · True{
x/Sm(Z)
y/Sm(y′)

}
· True

{
x/S(x′)
y/Z

}
· False{

x/Sn(S(x′))
y/Sn(Z)

}
· False

%

%

%

%. . .
. . . . . .

These examples show that big-step trees can be infinite in two ways.

• The one associated to x+ y has infinite height, since + builds the solution one S at
a time.

• The one associated to leq(x, y) has height 1 but infinite width, since leq delivers just
value true or false, while binding x and y in infinitely many different combinations.

Example 3.1.5

The abstraction of small-step tree of Example 2.2.24 is
f (x) 7→ ε · % %−→ {x/A(x1)} ·B(%1)

loop(x) 7→ ε · %
g(x) 7→ ε · % %−→ {x/A(x1)} ·B(%1)

h(x) 7→ ε · % %−→ {x/B} · C

Note that (as anticipated in Example 2.2.24) the abstractions of f and g are the same.

In general normal forms, which are not values, simply disappears in the abstraction. Fur-
thermore, also non terminating (infinite) small-step paths disappear in the abstraction as
well, and thus become indistinguishable from normal forms which are not values (both
situations correspond to some sort of anomaly in the program).

This will mean that we cannot handle certain kinds of non-termination, which should
not come as a surprise as this derivations do not produce any computed results thus do
not appear in the big-step behaviour. With this abstraction we clearly cannot “observe”
derivations which do not produce computed results, either because we reach a non-value
normal form (a non total function) or because we are in a loop which is not producing
constructor bindings either in the result or in the free variables.

Evolving result trees

The trees that can be obtained by ∂V abstraction have the property that any path describes
the evolution of data constructors as a partial computed result is built by a computation.
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56 3. Big-step semantics

In other words, they describe, along a path, how a partial computed result evolves. Thus,
as a matter of terminology, we call such trees evolving result trees.

Our fixpoint semantics is based on interpretations that consist of families of evolving
result trees, indexed by MGC (analogously to the small-step case). The evolving result
tree abstraction is obtained by pointwise lifting of ∂V as

∂(I ) := λπ. ∂var(π)(I (π)). (3.1.5)

As happens frequently in abstract interpretation, in the following we derive system-
atically the abstract domain (both its support and order), as well as the corresponding
Galois insertion, from the abstraction ∂.

First we define the (support of the) domain of evolving result tree semantics as IERT :=
∂(I) = [MGC→ ERT]. As done in the concrete case we denote with ERT−→xn the sub-lattice
of evolving result trees referring to variables −→xn, namely2

ERT−→xn := {∂{−→xn}(T ) |T ∈WSSTf(−→xn), f/n ∈ D} (3.1.6)

For the sake of comprehension, we can give some properties of ERT elements by means of
the following (auxiliary) definition.

Definition 3.1.6 (evolving relation) Given two partial computed results ϑ · s̄, ϑ′ · s̄′
and % ∈ V% we say that ϑ′ · s̄′ is an evolution of ϑ · s̄ w.r.t. %, written ϑ · s̄ �% ϑ

′ · s̄′, if
and only if % ∈ var(s̄) and there exist σ ∈ CSubsts and ρ̂ ∈ %Substs such that %ρ̂ /∈ V%,
ϑσ = ϑ′, and s̄σρ̂ = s̄′.

Proposition 3.1.7 (ERT−→xn properties) For all T̄ ∈ ERT−→xn
1. The substitution of the root of T̄ is ε.

2. for any edge a
%−→ a′ of T̄ , a�% a

′,

3. all sibling nodes in T̄ are different, and

4. for any path in T̄ from a to b such that a �% b there is a path (in T̄ ) from a to a
suitable variant b′ of b whose first edge is labelled %.

Point 4 specifies that in case a node a has more than one bottom variable (in
presence of multiple outermost op-rooted redexes), and one of these bottom variables % is
eventually reduced along some path, then there will be an equivalent path starting with an
immediate reduction of %. In other words, like the small-step trees case, there is a sort of
closedness upon permutation of the order of instantiation (reduction) of multiple bottom
variables. However note that different orders in reduction may lead to paths of different
length (but with the same leaves, i.e., computed result) since, because of sharing, more
than one bottom variable can change simultaneously in a single abstract step (as shown
by the following example).

Example 3.1.8
Consider the program P

2Note that the only relevant information in this construction is the arity of the defined symbol since,
for all symbols of the same arity, the result is the same.
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main = g (id B)

g x = C x (h x)

h B = A

the fixpoint F JP K is

h(x) 7→ h(x)
{x/B}
===⇒ h(B)

ε
=⇒ A

g(x) 7→ g(x)
ε

=⇒ C(x, h(x))
{x/B}
===⇒

2
C(B, h(B))

ε
=⇒
2
C(B,A)

main 7→ main
ε

=⇒ g(id(B))
ε

=⇒ C(id (B), h(id (B)))

C(B, h(B)) C(B,A)

C(B, h(B)) C(B,A)

ε

1

ε

2

ε

2 ε

2

and its abstraction is
h(x) 7→ ε · % %−→ {x/B} ·A
g(x) 7→ ε · % %−→ C(x, %1)

%1−→ {x/B} · C(B,A)

main 7→ ε · % ε · C(%1, %2)
ε · C(B,A)

ε · C(B, %2) ε · C(B,A)

%
%2

%1

%2

Now we can derive systematically order, lub and glb of IERT as

I∂1 4 I∂2 :⇐⇒ I∂1 g I∂2 = I∂2 (3.1.7)
j
= := ∂(

⊔
{I ∈ I | ∂(I ) ∈ =}) (3.1.8)

k
= := ∂(

l
{I ∈ I | ∂(I ) ∈ =}) (3.1.9)

We have that IERT is, by construction, a complete lattice. The order on IERT also induces
an order on ERT−→xn as

T̄1 4 T̄2 :⇐⇒ T̄1 g T̄2 = T̄2 (3.1.10)
j
T̄ := ∂{−→xn}(

⊔{
T ∈WSSTf(−→xn)

∣∣∣ f/n ∈ D, ∂{−→xn}(T ) ∈ T̄
}

) (3.1.11)
k
T̄ := ∂{−→xn}(

l{
T ∈WSSTf(−→xn)

∣∣∣ f/n ∈ D, ∂{−→xn}(T ) ∈ T̄
}

) (3.1.12)

These (indirect) definitions may seem quite obscure, but the following result shows that
the (actual) direct characterization of these notions is absolutely clear.

Proposition 3.1.9 (4 characterization) Given T̄1, T̄2 ∈ ERT−→xn then T̄1 4 T̄2 if and
only if paths(T̄1) ⊆ paths(T̄2).b

T̄ is the tree whose paths are
⋃
T̄∈T̄ paths(T̄ ). Dually for

c
T̄ .

Order, lub and glb over IERT are the pointwise lifting of those over ERT−→xn.

The concretization function ∂γ : [MGC → ERT] → I can be provided by adjunction,
obtaining

∂γ(I∂) = λπ. ∂γπ(I∂(π)) (3.1.13)
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where, for all e ∈ T (Σ,V),

∂γe (T̄ ) :=
⊔{

T ∈WSSTe
∣∣ ∂var(e)(T ) 4 T̄

}
(3.1.14)

3.1.2 The semantics induced by the evolving result tree abstraction

The optimal abstract version of P JP K, P∂JP K := ∂ ◦P JP K ◦ ∂γ , is

P∂JP KI∂ = λf (−→xn).
j

f(
−→
tn)→r�P

ξ∂{−→xn}JrK
{−→xn/

−→
tn}

I∂ (3.1.15)

where

ξ∂V JrK
ϑ
I∂ :=

{
zaproot(ϑbE∂JrKI∂cV ) if r is D-rooted

ε · % %−→ ϑbE∂JrKI∂cV otherwise
(3.1.16)

ϑbT cV := {ϑba0cV
%1−→ . . .

%n−→ ϑbancV | a0
%1−→ . . .

%n−→ an ∈ T} (3.1.17)

ϑbσ · s̄cV := (ϑσ)�V · s̄ (3.1.18)

and zaproot(T ) replaces the substitution of the root of tree T with ε.

The abstract evaluation E∂JeKI∂ of a term e w.r.t. an interpretation I∂ , is defined by
induction on the size of knots(e) as follows

E∂JxKI∂ := ε · x (3.1.19a)

E∂Jϕ(−→xn)KI∂ := I∂(ϕ(−→yn))[y1/ε · x1]V1 . . . [yn/ε · xn]Vn (3.1.19b)
−→yn fresh distinct, Vi := {x1, . . . , xi, yi+1, . . . , yn}

E∂JeKI∂ := E∂Je[y]pKI∂ [y/ E∂Je|pKI∂ ]var(e) (3.1.19c)

y fresh, leftmost p ∈ baseknots(e)

provided that the abstract tree-embedding operation G[x/B]V over two evolving result
trees is

G[x/B]V := {d | dg ∈ G, db ∈ B, dg[x/db]V ` d} (3.1.20)

where, for all abstract derivations dḡ and db̄ whose heads are ϑ · ḡ and η · b̄, such that there
exists a V%-preserving h = ϑ ↑ η{x/b̄}, dg[x/db]V ` d is the least relation that satisfies the
rules

dḡ[x/db̄]V ` σh�V · h[ḡ] (3.1.21a)

dḡ[x/db̄′ ]V ` d % ∈ var(h[ḡ])
dḡ[x/(η · b̄

%−→ db̄′)]V ` σh�V · h[ḡ]
%−→ d

(3.1.21b)

(ϑ · ḡ %−→ dḡ′)[x/db̄′ ]V ` θ · s̄
%−→ d ϑ′ · ḡ′ head of dḡ′ ,

h′ = ϑ′ ↑ η{x/b̄},
h′[%′] is C-rooted(ϑ · ḡ %−→ dḡ′)[x/(η · b̄

%′−→ db̄′)]V ` σh�V · h[ḡ]
%−→ d

(3.1.21c)

dḡ′ [x/db̄]V ` d θ · s̄ head of d, h′ : h[ḡ]→ s̄,
h′[%] /∈ V%(ϑ · ḡ %−→ dḡ′)[x/db̄]V ` σh�V · h[ḡ]

%−→ d
(3.1.21d)
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dḡ′ [x/db̄]V ` θ · s̄
%′−→ d

h′ : h[ḡ]→ s̄, %′ = h′[%]
(ϑ · ḡ %−→ dḡ′)[x/db̄]V ` σh�V · h[ḡ]

%−→ d
(3.1.21e)

Rules 3.1.21 govern the inlaying of the steps of an abstract derivation db̄ for a variable x
into an abstract derivation dḡ. This is done by a sort of parameter passing, handled as
the application of the homomorphism h = ϑ ↑ η{x/b̄} to the head of dḡ. The existence
of h both constrains the heads of dḡ and db̄ to be compatible on their substitutions, and
constrains the actual parameter value “coming” from db̄ to be sufficiently evolved as the
“parameter pattern” xϑ demands. Note that we require h to be V%-preserving, in order to
prevent the inlaying of the nodes of successive steps, without before performing the step.

The inlay is done by taking the steps of dḡ and db̄ which are labelled with a bottom
variable occurring in h[ḡ], while ensuring at the same time that only compatible inlays are
performed. In particular

• the axiom (3.1.21a) stops any further possible inlaying;

• the rule (3.1.21b) performs a step into a bottom variable % appearing in h[ḡ] by

employing a step of η · b̄ %−→ db̄′ (which is evolving the same %);

• the rule (3.1.21c) considers the case when in ϑ· ḡ %−→ dḡ′ the parameter b̄ is sufficiently
evolved to be inlaid into ϑ · ḡ and then it scans the steps of db̄ until we have a node
which is sufficiently evolved to be inlaid into dḡ′ ;

• rules (3.1.21d) and (3.1.21e) both considers the case when the actual parameter b̄ is
sufficiently evolved to be inlaid directly into dḡ′ . We scan the steps of the resulting
inlaying until we actually change the bottom variable % to a non-bottom variable
term (to ensure to build a step which evolves %).

It is worth noting that P∂ results to be defined just in term of program rules, in-
dependently upon each specific choice of definitional tree. This is an expected outcome:
information about op-rooted subterms disappeared so we observe only reduction to head
normal form which does not depend upon the actual structure of definitional trees but
just on its leaves (thus program rules).

It is also important to note that Equation (3.1.19c) of the abstract evaluation function
could be defined with any possible choice of positions in baseknots(t) (rather than the
leftmost) and it can be proved that the result is independent upon the chosen order. This
suggests that is also possible to give an alternative definition with a simultaneous parallel
evaluation of all independent knots(t). However, it would certainly need a more complex
definition than the sequential version (3.1.19) (which is already not that simple), thus for
the sake of simplicity we stick to Definition 3.1.19. The parallelism is nevertheless a very
important property that is inherited in further abstractions and we will explicitly employ
it (see, for instance, the Groundness abstraction example of Subsection 4.2.1).

Since P∂JP K is monotonic by construction, we can define the (abstract) big-step fix-
point denotation as

F∂JP K := lfp(P∂JP K) (3.1.22)
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Example 3.1.10
The first iterate for the program of Example 2.2.13 is

P∂JP+K↑1 =

x1 + y1 7→ ε · %1
{x1/S(x0)} · S(%0)

{x1/Z} · y1

%1

%1

since

P∂JP+K⊥ERT =

[ by Equation (3.1.15), given V := {x1, y1} and σ := {x1/S(x0)} ]

=
{
x1 + y1 7→ ξ∂V Jy1K

{x1/Z}
⊥ERT

g ξ∂V JS(x0 + y1)Kσ⊥ERT

[ by Equations (3.1.16) and (3.1.19c), given V ′ := {x0, y1} ]

=

{
x1 + y1 7→

ξ∂V Jy1K
{x1/Z}
⊥ERT

g

ε · %1
%1−→ σbE∂JS(z)K⊥ERT [z/ E∂Jx0 + y1K⊥ERT ]V ′cV

[⊥ERT(S(z0)) = ε · S(z0), by Equations (3.1.19b) and (3.1.23) ]

=

{
x1 + y1 7→

ξ∂V Jy1K
{x1/Z}
⊥ERT

g

ε · %1
%1−→ σbε · S(z)[z/ E∂Jx0 + y1K⊥ERT ]V ′cV

[⊥ERT(z1 + z2) = ε · %0, by Equations (3.1.19b), (3.1.24) and (3.1.25) ]

=
{
x1 + y1 7→ ξ∂V Jy1K

{x1/Z}
⊥ERT

g
(
ε · %1

%1−→ σbε · S(z)[z/ε · %0]V ′cV
)

[ by Equations (3.1.17) and (3.1.26) ]

=
{
x1 + y1 7→ ξ∂V Jy1K

{x1/Z}
⊥ERT

g
(
ε · %1

%1−→ {x1/S(x0)} · S(%0)
)

[ by Equations (3.1.16), (3.1.17) and (3.1.19a) ]

=
{
x1 + y1 7→

(
ε · %1

%1−→ {x1/Z} · y1

)
g
(
ε · %1

%1−→ {x1/S(x0)} · S(%0)
)

=

x1 + y1 7→ ε · %1
{x1/S(x0)} · S(%0)

{x1/Z} · y1

%1

%1

(3.1.21a)
ε · S(z0)[z0/ε · z]{z} ` ε · S(z) (3.1.23)

(3.1.21a)
ε · %0[z1/ε · x0]{x0,z2} ` ε · %0

(3.1.24)

(3.1.21a)
ε · %0[z2/ε · y1]V ′ ` ε · %0

(3.1.25)

(3.1.21a)
ε · S(z)[z/ε · %0]V ′ ` ε · S(%0) (3.1.26)

The second iterate is

P∂JP+K↑2 =


x2 + y2 7→ ε · %2

{x2/S(x1)} · S(%1)

{x2/Z} · y2

{x2/S(S(x0))} · S(S(%0))

{x2/S(Z)} · y2

%2

%2

%1

%1
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The fixpoint F∂JP+K(x+ y) gives the same result shown in Example 3.1.3 (not a casualty
because of Theorem 3.1.13).

Example 3.1.11

The first two iterates for the union of the programs of Examples 2.2.21 and 3.1.4 are

P∂JP K↑1 =



coin 7→ ε · %1
ε ·Head

ε · Tail

%1

%1

zeros 7→ ε · %1
%1−→ ε · (Z : %)

leq . x, y 7→ ε · %1
{x/Z, y/S(y1)} · True

{x/S(x1), y/Z} · False

%1

%1

P∂JP K↑2 =



coin 7→ P∂JP K↑1(coin)

zeros 7→ ε · %2
%2−→ ε · (Z : %1)

%1−→ ε · (Z : Z : %)

leq(x, y) 7→ ε · %2

{x/Z, y/S(y1)} · True

{x/S(x1), y/Z} · False

{x/S(Z), y/S(S(y1))} · True

{x/S(S(x1)), y/S(Z)} · False

%2

%2

%2

%2

while the fixpoint on leq(x, y) is the same of Example 3.1.4 and on coin and zeros is the
same of Example 3.1.2 (which is not a casualty, because of Corollary 3.1.14).

Example 3.1.12

Let us consider an artificial example which manifests all the different aspects of P∂ com-
putation. Consider the program P

main x = val (h x)

val y = (y, isleaf y)

h x = N 1 (hson x) V

isleaf (N w V V) = True

hson 0 = V

hson 1 = U

Its evolving result tree semantics is obtained in three iterations.

P∂JP K↑1 =



val(x) 7→ ε · %1 ε · (x, %0)
%1

isleaf (x) 7→ ε · %1
%1−→ {x/N(v1, V, V )} · True

h(x) 7→ ε · %1 ε ·N(1, %0, V )
%1

hson(x) 7→ ε · %1
{x/0} · V
{x/1} · U

%1

%1

main(x) 7→ ε · %1



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.
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P∂JP K↑2 =



val(x) 7→ ε · %2
%2−→ ε · (x, %1)

%1−→ {x/N(v, V, V )} · (N(v, V, V ),True)

isleaf (x) 7→ P∂JP K↑1(isleaf (x))

h(x) 7→ ε · %2 ε ·N(1, %1, V )
{x/0} ·N(1, V, V )

{x/1} ·N(1, U, V )

%2
%1

%1

hson(x) 7→ P∂JP K↑1(hson(x))

main(x) 7→ ε · %2 ε · (%1, %0) ε · (N(1, %′0, V ), %0)
%2 %1

P∂JP K↑3 =



val(x) 7→ P∂JP K↑2(val(x))

isleaf (x) 7→ P∂JP K↑1(isleaf (x))

h(x) 7→ P∂JP K↑2(h(x))

hson(x) 7→ P∂JP K↑1(hson(x))

main(x) 7→ ε · %3 ε · (%1, %2) ε · (N(1, %0, V ), %2)

{x/0} · (N(1, V, V ),True)

{x/0} · (N(1, V, V ), %2)

{x/0} · (N(1, V, V ),True)

{x/1} · (N(1, U, V ), %2)

{x/0} · (N(1, V, V ),True)
%3 %1

%2

%1
%0

%0

%2

and finally P∂JP K↑4 = P∂JP K↑3 = F∂JP K.

By looking at the denotation of main(x) we can observe that, along a fixpoint com-
putation, trees does not evolve one level at a time. Nested expressions may need several
steps of the interpretation of the involved defined symbols altogether in order to trigger a
contribution.

Another interesting aspect is due to sharing. We have the nested expression val(h(x))
with a duplicating rule for val , which thus involves the reduction of h(x) as needed redex
of isleaf (h(x)) and simultaneously reduces the first component of the tuple as a side effect.
So, because of sharing, more than one bottom variable can evolve in the same abstract
step.

Let us analyze this situation more in detail. Consider (P∂JP K↑3)(main(x)) which has
three distinct evolving derivations leading to the same abstract computed result, namely
{x/0} · (N(1, V, V ), true). All of them have been inferred during the computation of
E∂Jval(h(x))KP∂JP K↑2 as the embedding d1

g[z/d
1
b ]{x} ` d of the derivations

d1
g := ε · %3

%3−→

d2
g︷ ︸︸ ︷

ε · (z, %4)
%4−→ {z/N(v, V, V )} · (N(v, V, V ), true)︸ ︷︷ ︸

d3
g

d1
b := ε · %2

%2−→

d2
b︷ ︸︸ ︷

ε ·N(1, %1, V )
%1−→ {x/0} ·N(1, V, V )︸ ︷︷ ︸

d3
b
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where d1
g ∈ E∂Jval(z)KP∂JP K↑2 and d1

b ∈ E∂Jh(x)KP∂JP K↑2. The three proof trees are the
following

(3.1.21a)
d3
g[z/d

3
b ]{x} ` {x/0} · (N(1, V, V ), true)

(3.1.21d)
d2
g[z/d

3
b ]{x} ` {x/0} · (N(1, V, V ), %4)

%4−→ {x/0} · (N(1, V, V ), true)︸ ︷︷ ︸
d

(3.1.21b)
d2
g[z/d

2
b ]{x} ` ε · (N(1, %1, V ), %4)

%1−→ d
(3.1.21b)

d2
g[z/d

1
b ]{x} ` ε · (%2, %4)

%2−→ ε · (N(1, %1, V ), %4)
%1−→ d

(3.1.21d)
d1
g[z/d

1
b ]{x} ` ε · %3

%3−→ ε · (%2, %4)
%2−→ ε · (N(1, %1, V ), %4)

%1−→ d

(3.1.27)

(3.1.21a)
d3
g[z/d

3
b ]{x} ` {x/0} · (N(1, V, V ), true)

(3.1.21d)
d2
g[z/d

3
b ]{x} ` {x/0} · (N(1, V, V ), %4)

%4−→ {x/0} · (N(1, V, V ), true)
(3.1.21c)

d2
g[z/d

2
b ]{x} ` ε · (N(1, %1, V ), %4)

%4−→ {x/0} · (N(1, V, V ), true)︸ ︷︷ ︸
d

(3.1.21b)
d2
g[z/d

1
b ]{x} ` ε · (%2, %4)

%2−→ d
(3.1.21d)

d1
g[z/d

1
b ]{x} ` ε · %3

%3−→ ε · (%2, %4)
%2−→ d

(3.1.28)

(3.1.21a)
d3
g[z/d

3
b ]{x} ` {x/0} · (N(1, V, V ), true)

(3.1.21d)
d2
g[z/d

3
b ]{x} ` {x/0} · (N(1, V, V ), %4)

%4−→ {x/0} · (N(1, V, V ), true)
(3.1.21c)

d2
g[z/d

2
b ]{x} ` ε · (N(1, %1, V ), %4)

%4−→ {x/0} · (N(1, V, V ), true)
(3.1.21c)

d2
g[z/d

1
b ]{x} ` ε · (%2, %4)

%4−→ {x/0} · (N(1, V, V ), true)
(3.1.21d)

d1
g[z/d

1
b ]{x} ` ε · %3

%3−→ ε · (%2, %4)
%4−→ {x/0} · (N(1, V, V ), true)

(3.1.29)

Note that in (3.1.28) when %4 evolves also %1 does, while in (3.1.29) when %4 evolves also
%2 does.

Properties of the evolving result tree semantics

The abstract evaluation operator E∂ is precise.

Theorem 3.1.13 For all e ∈ T (Σ,V) and all I ∈ I, ∂var(e)(E JeKI ) = E∂JeK∂(I ).

With this result we can prove that P∂JP K is precise as well.

Corollary 3.1.14 For all P ∈ PΣ,

1. P∂JP K ◦ ∂ = ∂ ◦P JP K,

2. P∂JP K is continuous,

3. F∂JP K = P∂JP K↑ω,

4. F∂JP K = ∂(F JP K).
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Corollary 3.1.15 (correctness of F∂ w.r.t. ≈cr) For all P1, P2 ∈ PΣ, F∂JP1K = F∂JP2K
implies P1 ≈cr P2.

The converse implication does not hold, as shown by the following example.

Example 3.1.16

Consider the programs P1 and P2

g x = A (h x)

h B = C

g B = A C

h B = C

Although P1 ≈cr P2, F∂JP1K 6= F∂JP2K since F∂JP1K(g(x)) = ε · A(%)
%−→ {x/B} · A(C)

while F∂JP2K(g(x)) = ε · % %−→ {x/B} ·A(C).

Hence our semantics is not fully abstract w.r.t. ≈cr . So, apparently, we failed our goal.
However, is it reasonable to refer to the computed result program equivalence? While
in the case of logic languages or eager functional languages it is perfectly reasonable, in
the setting of lazy languages this is no longer the case. For instance, in the lazy setting
infinite values are allowed, but ≈cr does not consider infinite values by definition. Thus
a program defining an infinite value is equivalent to a program that computes nothing
at all. However if we add a function that extracts a finite component then the two
programs can be distinguished even with finite computed results. The issue, in general, is
connected to the fact that equivalent expressions no longer need to be so when embedded
in some context. For example, if we add the rule f (A x) D = D to both the programs of
Example 3.1.16, the functions g become distinguishable, since the call f (g x) x exhibits
different computed results in the two programs, namely {x/D} ·D in P1 and no computed
results in P2.

In general, because of laziness, we can have two functions that can be called (with
any arbitrary non-value arguments) and give the same computed results, but can produce
different computed results when used as arguments of another function call. Thus (as also
observed by [63] and others) the program equivalence which has reasonably to be considered
need to be a congruence w.r.t. “usage”, i.e., for each “independent” context into which
we embed the two behaviour equivalent expressions we still have the same behaviors. The
rationale behind “program usage” is that we know the (same) API of two programs and
we are able to use them as we please (make calls and observe their outputs), but we cannot
tamper in any way with their code (by redefining some functions or by directly accessing
to its internal structure). Let us define this formally.

Definition 3.1.17 (Congruence w.r.t. usage) Let Σ = D∪C and Σ′ = D′ ∪ C′ be two
signatures.

We define the set of using programs UPΣ′
Σ := {Q | ∀f(

−→
tn) → r ∈ Q, f/n ∈ D′,

−→
tn ∈ T (C ∪ C′,V), r ∈ T (Σ ∪ Σ′,V)} if Σ and Σ′ are disjoint. Otherwise we consider it
empty.

We say that a program equivalence ≈ is a congruence w.r.t. usage when, for all P1,
P2 ∈ PΣ,

P1 ≈ P2 ⇐⇒ ∀Σ′.∀Q ∈ UPΣ′
Σ . Q ∪ P1 ≈ Q ∪ P2 (3.1.30)
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Given any P1, P2 ∈ PΣ we define the usage computed result program equivalence ≈uscr

as

P1 ≈uscr P2 :⇐⇒ ∀Σ′. ∀Q ∈ UPΣ′
Σ . Q ∪ P1 ≈cr Q ∪ P2 (3.1.31)

By looking in detail, we can note that for a using program there is no technical restriction
on the usage of constructors in patterns and no restriction at all on the RHSs. This is
in contrast with the just stated rationale. First new constructors cannot be mixed with
old ones without changing the datatype declarations of the original program. Similarly
original functions cannot have as argument new functions which return new datatypes.
However the expressive power of these two notions is identical because any instance of the
apparently stronger notion can be converted to the other. Indeed, if we have a “bad” using
program P , i.e., P admissible w.r.t. Definition 3.1.17 but violating the stated rationale, we
can transform P by including a clone of C into C′ and then add in-place conversion functions
that convert old values into clones in all places of P that violates the type constraints.
This conversion preserves computed results. Hence we can safely use Definition 3.1.17
which is technically easier.

The previous discussion on programs P1, P2 of Example 3.1.16 shows that ≈cr is not
a congruence w.r.t. usage3.

Clearly ≈uscr is a refinement of ≈cr (since ∅ ∈ UPΣ′
Σ ) and, by definition, it is a congruence

w.r.t. usage (since, ∀Q ∈ UPΣ′
Σ , P1 ≈uscr P2 implies Q ∪ P1 ≈uscr Q ∪ P2). Actually it is the

minimal (coarser) congruence w.r.t. usage amongst all refinements of ≈cr . Thus ≈uscr is
the reasonable program equivalence for the lazy functional logic paradigm.

Note that there is an isomorphism between our notion congruence w.r.t. usage program
equivalence and the constructor form observable expression equivalence w.r.t. every possi-
ble context which is used by [63] as reference behaviour for its semantics full abstraction.

• First note that Pe ∈ PΣ∪Σ′ safely extends P ∈ PΣ if and only if Pe \ P ∈ UPΣ′
Σ .

We technically need the extending rules separately because we have to add the same
extension simultaneously to two programs.

• The constructor form observable equivalence of expressions e1, e2 w.r.t. program P
of [63], with our notation can be formalized as: for all Q ∈ UPΣ′

Σ ,

Bcr JQ ∪ P K(C[e1]) = Bcr JQ ∪ P K(C[e2]), for all context C (3.1.32)

By taking an extra function symbol f and var(e1) ∪ var(e2) = {−→xn} we can define
Pi := P ∪ {f(−→xn) → ei}. It is straightforward to prove that, for all Q ∈ UPΣ′

Σ ,
(3.1.32) is equivalent to

∀e ∈ T (Σ ∪ Σ′,V). Bcr JQ ∪ P1 K(e) = Bcr JQ ∪ P2 K(e) (3.1.33)

which actually is P1 ≈uscr P2.

Vice versa, given P1, P2 ∈ PΣ, we can clone signature Σ into Σ̂ and also clone
accordingly P2 into P̂2. For all Q ∈ UPΣ′

Σ with Σ′ disjoint with Σ̂, Q∪P1 ≈cr Q∪P2

if and only if, for all context C,

∀e ∈ T (Σ ∪ Σ′,V). Bcr JQ ∪ P1 K(C[e]) = Bcr JQ ∪ P2 K(C[e])

3take Q := {f(A(x), D)→ D} ∈ UP{f}Σ and Q ∪ P1 6≈cr Q ∪ P2.
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if and only if (given ê the cloning of e)

∀e ∈ T (Σ ∪ Σ′,V). Bcr JQ ∪ P1 K(C[e]) = Bcr JQ ∪ P̂2 K(C[ê])

if and only if (since Σ̂, Σ′and Σ are disjoint)

∀e ∈ T (Σ ∪ Σ′,V). Bcr JQ ∪ P1 ∪ P̂2 K(C[e]) = Bcr JQ ∪ P1 ∪ P̂2 K(C[ê])

and thus, for program P := P1 ∪ P̂2, e1 := e and e2 := ê, we get Equation (3.1.32).

We preferred the formulation of Definition 3.1.17 because with it is easier, for the reasoning
at the level of program’s rule definitions, to establish the full abstraction of program’s
denotations.

Actually our semantics F∂ is correct w.r.t. ≈uscr as stated formally by the following
result.

Theorem 3.1.18 (correctness of F∂ w.r.t. ≈uscr ) For all P1, P2 ∈ PΣ, F∂JP1K = F∂JP2K
implies P1 ≈uscr P2.

However the converse implication does not hold either, as shown by the following example.

Example 3.1.19
Consider the programs P1 and P2

f x = A x f x = id (A (id x))

Although P1 ≈uscr P2, F∂JP1K 6= F∂JP2K since F∂JP1K(f (x)) = ε·A(x) while F∂JP2K(f (x)) =

ε · %1
%1−→ ε ·A(%2)

%2−→ ε ·A(x).

Hence our semantics is not fully abstract even w.r.t. (the stronger) ≈uscr . So we still missed
our goal. However we are indeed quite near. In Subsection 3.1.3 we will show a semantics,
obtained with a further (slight) abstraction of F∂ , which is indeed fully abstract w.r.t.
≈uscr .

Relating evolving result trees to computed results

We can easily define an abstraction which collects the computed results of a small-step
tree:

χ(I ) := λπ.

{
(σ1 · · ·σn)�π · v

∣∣∣∣π σ1=⇒
p1

· · · σn=⇒
pn

v ∈ I (π), v ∈ T (C,V)

}
(3.1.34)

Actually, as can be expected, it turns out that χ can be expressed as a further ab-
straction of ∂. Namely, χ = β ◦ ∂ where, given I∂ ∈ IERT ,

β(I∂) := λπ.
{
σ · v

∣∣∣σ · v ∈ I∂(π), v ∈ T (C,V)
}

(3.1.35)

Let βγ be β adjoint (and χγ := ∂γ ◦βγ). The optimal abstraction β ◦ P∂JP K ◦ βγ =
χ ◦P JP K ◦ χγ turns out to be not precise. For example consider

I∂1 :=

{
g(x) 7→ ε · % %−→ {x/B} ·A(C)

f (x, y) 7→ ε · % %−→ {x/A(x′), y/D} ·D
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I∂2 :=

g(x) 7→ ε · % %−→ {x/B} ·A(C)

ε ·A(%)
%−→ {x/B} ·A(C)

f (x, y) 7→ ε · % %−→ {x/A(x′), y/D} ·D
v βγ(β(I∂1 ))

For program P := {k(x)→ f(g(x), x)} we have β(P∂JP KI∂1 ) =
{
k(x) 7→ ∅ while β(P∂JP KI∂2 ) ={

k(x) 7→ {ε ·D}. Hence, by P∂ monotonicity, P∂JP KI∂1 6= P
∂JP Kβγ(β(I∂1 )).

This is clearly an expected result as all the work of this section originated by the
observation that the collection of computed results cannot give a correct semantics, which
means that the corresponding optimal abstract immediate consequences operator has to
be non precise (as we have just formally proved).

Note that having a correct abstraction, which means that we have a conservative
approximation of concrete solutions, does not mean to have an abstract semantics which
is correct w.r.t. a certain program equivalence. The approximation can indeed add extra
solutions that render two program indistinguishable, while they should not be such.

3.1.3 Full abstraction w.r.t. ≈us
cr

The two programs of Example 3.1.19 cannot be distinguished by ≈uscr , even if one program
has different (longer) derivations. One of the two programs computes the solution “atomi-
cally”, while the other does it in two more steps but without altering the computed answer
in the extra steps. In general, small-step behaviors with extra steps that do not alter the
computed answer are indistinguishable by ≈uscr . Counterintuitively, we can note that if
we would have chosen to introduce constructors and variables one at a time, then the
semantics of the two programs would have been equivalent. This is, besides, exactly what
happens in the CRWL approach [49, 50, 64], where partial results “evolve” one constructor
at a time, even if the small-step semantics would introduce them in coarser combinations.

Thus we can think of making a further abstraction of ∂ which shucks the introduction
of constructors (introducing, consequentially, more edges in the denotation). However this
näıve definition is not enough as the actual situation is quite more complex. So, to obtain
the desired abstraction, we proceed with a typical abstract interpretation construction.
To obtain an abstraction whose induced (abstract) semantics is fully abstract w.r.t. ≈uscr ,
we need to develop an abstraction over IERT which maps to the same abstract element
all denotations of ≈uscr -equivalent programs. So we start by defining an upper closure
operator Ξ which maps any denotation I∂ into the biggest denotation I∂m amongst all
the denotations of ≈uscr -equivalent programs. Such I∂m = Ξ(I∂) is called the closure of I∂
w.r.t. Ξ and in the rest of the discussion we just call it “the closure” for brevity.

Having identified in this way the image of the concretization function within IERT (“the
semantics” of the new domain in terms of IERT elements), we proceed by finding a suitable
representation for the new domain, together with the searched abstraction.

Let us explain which is the characterization of the closures by reasoning on a concrete
example.

Example 3.1.20
Consider the program P1 := {g(x) → C(x, n : f(x), n), f(A) → B} which has the IERT
denotation

F∂JP1K(g(x)) = n0 : ε · % %−→ n1 : ε · C(x, %2, %2)
%2−→ n2 : {x/A} · C(A,n : B,n)
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Now consider the program P2 := {g(x) → id (C(id (x), id (f(x)), id (f(x)))), f(A) →
id (B)} which is ≈uscr -equivalent to P1. Its IERT denotation is4

F∂JP2K(g(x)) = n0 n3

n4

n5

n6

n7

n8

n9

n10
%

%1

%2

%3

%2

%3

%1

%3 %1

%2

%3

%2

%1

where, for ϑ := {x/A},

n3 = ε · C(%1, %2, %3) n4 = ε · C(x, %2, %3) n5 = ϑ · C(%1, B, %3)

n6 = ϑ · C(%1, %2, B) n7 = ϑ · C(A,B, %3) n8 = ϑ · C(A, %2, B)

n9 = ϑ · C(%1, B,B) n10 = ϑ · C(A,B,B)

In the closure of F∂JP1K we have:

• All the nodes which can be obtained by replacing, in all possible combinations, into
(the value of) ε ·C(x, %2, %2) a bottom variable in each node. Namely n0, n1, n3 and
n4.

• Moreover, all the nodes which can be obtained by replacing, in all possible combi-
nations, into (the value of) {x/A} · C(A,n : B,n) a bottom variable in each node,
unless we obtain one of the former values. Namely n2 and n5–n10, but not (for
instance) {x/A} · C(%1, %2, %3) because we already have n3.

Moreover all these nodes are connected with an edge if one can be an evolution of another
(an instance of substitution and value that changes at least a bottom variable).

In general

Property 3.1.21 In a closure we have all possible introductions of one constructor (or
variable) at a time between any two nodes which are connected in the original tree. More
precisely we have all terms which can be obtained by removing the constructors from each
original node n (by replacing, in all possible combinations, a bottom variable in each
subterm), but without the elements which can also be generated by an ancestor of n.

Moreover all these nodes are connected with an edge if one can be an evolution of
another.

The latter fact implies that the tree structure is actually irrelevant, because the presence
of an edge is determined solely by the content of nodes. Thus we can use just the set of
the nodes of a closure to represent a closure.

Furthermore, something really interesting happens about shared subterms. If we have
a path involving shared bottom variables (like n0, n1, n2) then we have all its non-shared

4For the sake of conciseness we share common nodes in the following pictures. The real evolving result
trees can be obtained by unraveling the depicted DAGs.
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variants (n0, n3, . . . , n10). Thus only terms which share only data variables are relevant.
But then we can forget also the variable sharing and use in the new denotation just
traditional terms instead of term graphs.

In the following we denote by T(C,V ∪ V%) the term graphs of T (C,V ∪ V%) which are
actually trees. We will call ψ-term any term in T(C,V ∪V%). To model Property 3.1.21 we
will use ψ-terms and order them with the approximation ordering ., defined as the least
partial ordering satisfying

1. % . t for all t ∈ T(C,V ∪ V%) and % ∈ V% ,

2. x . x for all x ∈ V and

3.
∧n
i=1 ti . si ⇒ c(t1, . . . , tn) . c(s1, . . . , sn) for all c/n ∈ C.

This order is essentially the approximation ordering of [63] using variables in V% instead
of ⊥.

In case we have data variables in the value of nodes of a denotation there is also another
very impacting phenomenon.

Example 3.1.22
Consider again the program P1 of Example 3.1.20. Its extension P3 := P1∪{g(C(x1, x2, x3))→
C(C(undf, x2, x3), undf, undf)} ≈uscr P1 has

F∂JP3K(g(x)) = n0
n1 n2

n11 : {x/C(x1, x2, x3)} · C(C(%4, x2, x3), %2, %3)
% %2

%

We can add another rule

g(C(x1, C(x2, x3, x4), x5))→ C(C(x1, C(x2, undf, undf), undf), undf, undf)

and obtain another ≈uscr -equivalent program. In the closure of F∂JP1K this corresponds to
instantiate the variable x of node n4 with C(undf, x2, x3) and C(x1, C(x2, undf, undf) in its
partial value, and, at the same time, composing {x/C(x1, x2, x3)} and {x/C(x1, C(x2, x3, x4), x5)}
in its substitution. The resulting nodes are n11 and

n12 = {C(x1, C(x2, x3, x4), x5)} · C(C(x1, C(x2, %4, %5), %6), %2, %3).

Moreover all approximations between these nodes are also in the closure of F∂JP1K.
In the closure of F∂JP1K we also have

• all unraveling of the mentioned nodes;

• other instances of variable x, like C(E(%7), E(%8), x3), E(E(E(%9))), etc.;

Furthermore, as before, we have all approximations between all these nodes.

The instances of variables which cannot appear are those that are non-linear or contain a
value subterm which is not a variable. Thus, in general, if we have in a closure a partial
computed result with data variables, then we also have all its instances with any linear
ψ-term t such that all its data subterms are just variables. Namely the terms of

uiT(C,V,V%) := {t ∈ T(C,V ∪ V%) \ V% | t linear, t|p ∈ T(C,V)⇔ t|p ∈ V}.
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We call these terms usage-invisible, since they cannot alter the behaviour of usage-equivalent
programs. To each usage-invisible term t we associate a term dtc which is the result of
the replacement in t of each bottom variable with a fresh data variable. Note that dtc is
linear by construction.

In the following uiSubstsV denotes all the linear substitutions from V to usage-invisible
terms and, by an abuse of notation, uiSubstsvar(t)∩V will be denoted by uiSubstst for any
given term t. Again, to each ϑ ∈ uiSubstsV we associate a linear substitution dϑc s.t.
dom(dϑc) = dom(ϑ) and xdϑc = dxϑc for x ∈ dom(dϑc).

It is very important to note that, in presence of data variables in (the value of) nodes,
even if we start with a finite tree the closure will be infinite.

To sum up, to obtain a closure we need to unravel all terms, instantiate data variables
with usage-invisible terms and then add all approximations between these nodes, in the
sense of Property 3.1.21. So, to define the abstraction of a big-step sequence in ERT−→xn , we
need first a function ψ(t̄) to unravel a τ -term t̄ and replace every occurrence of a bottom
variable with a fresh one. Formally, ψ : T (C,V ∪ V%)→ T(C,V ∪ V%) 5

ψ(x) := x ψ(%) := %′ fresh ψ(c(t1, . . . , tn)) := c(ψ(t1), . . . , ψ(tn)) (3.1.36)

Now we define the abstraction of a big-step sequence d̄ ∈ ERT−→xn by structural induction
as

ζ̃{−→xn}(σ · s̄) := 〈σ · s̄〉{−→xn} (3.1.37a)

ζ̃{−→xn}(σ · s̄
%−→ d̄′) := 〈σ · s̄〉{−→xn} ∪

{
θ · t ∈ ζ̃{−→xn}(d̄

′)
∣∣∣ t|p /∈ V% , s̄|p = %

}
(3.1.37b)

where 〈σ · s̄〉V is the down-closure (w.r.t. .) of all the usage-invisible instances of σ · s̄
defined by

〈σ · s̄〉V :=

{
(σdϑc)�V · s

∣∣∣∣∣ t . ψ(s̄), ϑ ∈ uiSubstst

s′ ∈ base(t, ϑ), s′ . s . ψ(tϑ)

}
(3.1.38)

and base(t, θ) is the set of all the ψ-terms obtained by replacing in t every occurrence of a
variable x ∈ dom(θ) except one, with the least approximation of xθ not belonging to V% ,
then replacing the remaining occurrence with xθ. For instance

base(C(y, y, z, w,A(z, %1)), {y/A(v, v), z/B}) =

{C(A(v, v), A(%2, %3), B,w,A(B, %1)), C(A(%2, %3), A(v, v), B,w,A(B, %1))}

ζ̃ yields all approximations according to Property 3.1.21. This is done in this way:

• Equation (3.1.37a) just collects all the approximations of all the usage-equivalent
instances of the head,

• Equation (3.1.37b) both collects every approximation for every usage-equivalent in-
stance of the head, and the elements recursively collected from the tail which actually
represents an evolvement of one occurrence of the bottom variable that labels the
step. This prevents from collecting elements which are more approximated than any
ancestor encountered in the same path.

5Note that in ψ(t̄) nothing is shared.
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Definition 3.1.37 is extended to evolving result tree in ERT−→xn as

ζ̃{−→xn}(T ) :=
⋃
d̄∈T

ζ̃{−→xn}(d̄) (3.1.39)

The sets built by ζ̃ contains all possible approximations which are coherent with pro-
gram behaviour, thus we will call them approximated result sets.

We can define the new abstraction by composition as

ν̃V := ζ̃V ◦ ∂V ζ̃(I∂) := λπ. ζ̃var(π)(I∂(π)) ν̃ := ζ̃ ◦ ∂

and, analogously to what done for the evolving result tree case, derive systematically the
domain (both its support and order), as well as the corresponding Galois insertion, from
the abstraction ν̃ (or ζ̃).

First we define the (support of the) domain of approximated result set semantics as
IARS := ζ̃(IERT) = ν̃(I) = [MGC → ARS] (ARS ⊂ ℘(CSubsts × T(C,V ∪ V%))). Moreover
let ARS−→xn := ζ̃{−→xn}(ERT−→xn).

Note that, by construction, any S ∈ ARS contains ε · % (for some % ∈ V%).
The order induced by ζ̃{−→xn} is set inclusion on ARS−→xn and the pointwise lifting of set

inclusion on IARS . Hence IARS and ARS−→xn are (trivially) complete lattices.

Example 3.1.23
Consider the program P1 of Example 3.1.20. The ζ̃{x} abstraction of F∂JP1K(g(x)) is

ε · %0, ε · C(%1, %2, %3), ε · C(x, %2, %3), {x/A} · C(%1, B, %3),

{x/A} · C(%1, %2, B), {x/A} · C(A,B, %3), {x/A} · C(A, %2, B),

{x/A} · C(%1, B,B), {x/A} · C(A,B,B)

∪{
{x/dtc} · C(t, %2, %3)

∣∣ t ∈ uiT(C,V,V%)
}

Note that although {x/A} · C(A, %0, %1) belongs to ζ̃{x}({x/A} · C(A,n : B,n)), it is
not collected in the final abstraction. This is justified by the fact that there is no way
to change variable x in C(x, %, %) without “evolving” % and thus it is impossible to have
{x/A} ·C(A, %, %) in F∂JP1K(g(x)) and then it must not be generated by ζ̃{x} abstraction.

Example 3.1.24
The ζ̃{x} abstraction of both F∂JP1K(f (x)) and F∂JP2K(f (x)) of Example 3.1.19 is {ε ·
%, ε ·A(%), ε ·A(x)} ∪ {{x/t} ·A(t) | t ∈ uiT(C,V,V%)}.

This is not a coincidence because of Theorem 3.1.45.

Example 3.1.25
The ζ̃∅ abstractions of the evolving result trees of Example 3.1.2 are

{ε · %, ε ·Head , ε · Tail}

{
ε · t

∣∣∣∣∣ t . Z : . . . : Z︸ ︷︷ ︸
n

: %, n ≥ 0

}

Note that the abstraction of zeros is “exponentially bigger” because we have all possible
replacements of a Z with a bottom variable.
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Example 3.1.26
The ζ̃{x ,y} abstraction of the evolving result tree of Example 3.1.3 is{
{x/Sn(x′)} · Sn(%)

∣∣n ≥ 0
}
∪
{
{x/Sn(Z)} · Sn(y)

∣∣n ≥ 0
}
∪{

({x/Sn(Z), y/dtc}) · Sn(t)
∣∣n ≥ 0, t ∈ uiT(C,V,V%)

}

Example 3.1.27
The ζ̃{x ,y} abstraction of the evolving result tree of Example 3.1.4 is

{ε · %} ∪
{
{x/Sn(Z), y/Sn(y′)} · True

∣∣n ≥ 0
}
∪{
{x/Sn+1(x′), y/Sn(Z)} · False

∣∣n ≥ 0
}

Example 3.1.28
The ζ̃ abstraction of the Example 3.1.5 is

f (x) 7→ {ε · %, {x/A(x1)} ·B(%1)}
loop(x) 7→ {ε · %}
g(x) 7→ {ε · %, {x/A(x1)} ·B(%1)}
h(x) 7→ {ε · %, {x/B} · C}

The previous examples show how the IARS denotations may explode in size, in par-
ticular, in Examples 3.1.23 and 3.1.24 they have infinite size even if their ∂ counterparts
are finite. This is an expected outcome, since the direct representation of an abstraction
defined by a closure operator is not condensed by construction. Thus, now it remains to
tackle the pragmatical and theoretical problem of determining a condensed version of IARS
denotations.

A condensed representation is very important in view of further abstractions and, of
course, the implementation of the abstract fixpoint computations. For example applying
a depth(k) cut to a condensed version of F ν̃ will certainly give better results than using
F ν̃ directly.

Weak evolving result sets

So far, F ν̃ has been obtained as a closure of the denotations of F∂ , namely, adding all
the usage-equivalent instances of the nodes and all the possible approximations between
nodes. We have seen that ν̃ is not injective, therefore the program equivalence induced
by F ν̃ is coarser than that of F∂ . We can have an isomorphic representation of F ν̃ ,
which solves the size explosion issue. The underlying idea is somehow similar to the
representation of intervals [a, b] ⊆ Z, indeed, what is needed to retrieve the entire subset
are just the two extreme points a and b. The same approach can be applied to ARS−→xn
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obtaining a smarter representation for denotations. The counterparts of the extremes are
partial computed results σ · s1 and σ · s2 with the same substitution which define the set
of all their usage-equivalent instances and all the possible approximations in-between. We
denote such intervals by σ � s1–s2, whereas, by an abuse of notation σ � s–s will be denoted
simply by σ � s.

Every approximated result set in ARS can be described by means of unions of such
intervals. Although, for the same approximated result set we may have different coverings,
but for technical reasons we prefer to chose coverings which contain only and all the
maximal intervals w.r.t. subset inclusion.

Note that, infinite evolving result trees paths with the same substitution collapse in a
single interval where the upper extreme is an abstract partial computed result of an infinite
value. For instance, the derivation of zeros of Examples 3.1.2 and 3.1.25 is represented by
ε � %–(Z : Z : Z : . . . ). In the following we admit also infinite terms in T(C,V ∪ V%).

Formally, an interval σ � s1–s2 represents the following set of partial computed results

unfoldV (σ � s1–s2) :=

{
(σdϑc)�−→xn · s

∣∣∣∣∣ s1 . t . s2, ϑ ∈ uiSubstst

s′ ∈ base(t, ϑ), s′ . s . ψ(tϑ)

}
(3.1.40)

Clearly for t1 . s1 and s2 . t2, unfoldV (σ � s1–s2) ⊆ unfoldV (σ � t1–t2).
An approximated result set S̃ is represented by means of a covering the following set

of intervals

foldV (S̃) := {σ � s1–s2 |maximal unfoldV (σ � s1–s2) ⊆ S̃} (3.1.41)

Let us define WERS−→xn := fold{−→xn}(ARS−→xn) (and WERS :=
⋃
−→xn∈VWERS{−→xn}). For

any S ∈WERS−→xn we define

unfoldV (S) :=
⋃
{unfoldV (σ � s1–s2) |σ � s1–s2 ∈ S} (3.1.42)

We define order, lub and glb of WERS−→xn as

S1 4̂ S2 :⇐⇒
ĵ
{S1, S2} = S2 (3.1.43)

ĵ
S := fold{−→xn}(

⋃{
unfold{−→xn}(S)

∣∣∣S ∈ S}) (3.1.44)

k̂
S := fold{−→xn}(

⋂{
unfold{−→xn}(S)

∣∣∣S ∈ S}) (3.1.45)

WERS−→xn is, by construction, a complete lattice.
WERS−→xn and ARS−→xn are isomorphic, more specifically, there is an order preserving

isomorphism between them.

Proposition 3.1.29 For all −→xn ∈ V, (ARS−→xn , ⊆) −−−−−−−−→−→←←−−−−−−−−−
fold{−→xn}

unfold{−→xn}
(WERS−→xn , 4̂)

Note that, by construction, in any S ∈ WERS we have at least an interval starting
from a bottom variable and the substitution of all intervals starting from a bottom variable
is necessarily ε.
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Example 3.1.30

Consider as A the approximated result set of Example 3.1.23. fold{x}(A) is

{ε � %0–C(x, %2, %3), {x/A} � C(%1, B, %3)–C(A,B,B),

{x/A} � C(%1, %2, B)–C(A,B,B)}

We have two intervals starting from one B either in second or third position in C both
reaching C(A,B,B).

Example 3.1.31

The fold{x ,y} abstraction of the evolving result tree of Example 3.1.26 is{
{x/Sn(x′)} � Sn(%)

∣∣n ≥ 0
}
∪
{
{x/Sn(Z)} � Sn(y)

∣∣n ≥ 0
}

This denotation is essentially the same of Example 3.1.3: both have the same nodes and
edges in Example 3.1.3 correspond to edges of the Hasse diagram w.r.t. ..

Example 3.1.32

The fold{x ,y} abstraction of the evolving result tree of Example 3.1.27 is

{ε � %} ∪
{
{x/Sn(Z), y/Sn(y′)} � True

∣∣n ≥ 0
}
∪{
{x/Sn+1(x′), y/Sn(Z)} � False

∣∣n ≥ 0
}

Also this abstraction is essentially the same of Example 3.1.4.

Example 3.1.33

The fold∅ abstraction of the evolving result tree of Example 3.1.25 is{
zeros 7→ {ε � %–Z : Z : Z : . . .}
coin 7→ {ε � %–Head , ε � %–Tail}

This denotation is essentially the same of Example 3.1.2 for coin but for zeros we started
from an infinite derivation having an “exponentially bigger” closure which boils down to a
finite denotation (containing an infinite value which can be finitely representable as well).

We can consider weak evolving result sets as trees where we have edges connecting
intervals which have the same ending and starting extremes (i.e., σ � t–s with ϑ � s–r). The
previous examples confirm that this new big-step trees can still be infinite in height and
width as evolving result trees. Moreover now we can also have finite trees that contain
infinite term values (also in image of answers). This also shows that in particular
cases the “compression” made by ζV is remarkable.

The sets in WERS−→xn are a compressed representation of the sets of ARS−→xn . Sets
of ARS−→xn that can be obtained by ν{−→xn} abstraction describe how a computed result
evolves constructor by constructor (potentially allowing all sorts of interleaving in presence
of multiple op-rooted expressions) in contrast with ∂{−→xn} where several constructors are
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introduced “atomically”. Thus, as a matter of terminology, we call sets of WERS−→xn weak
evolving computed result sets or weak evolving result sets for brevity.

Since elements of WERS−→xn are condensed, we can finally define our new fixpoint se-
mantics based on interpretations that consist of weak evolving result sets, indexed by
MGC. The weak evolving result set abstraction is obtained by composing foldV with ν̃V

(and ζ̃V ) as

ζV := foldV ◦ ζ̃V νV := foldV ◦ ν̃V = ζV ◦ ∂V (3.1.46)

ζ := fold ◦ ζ̃ ν := fold ◦ ν̃ = ζ ◦ ∂ (3.1.47)

fold(I ν̃) := λπ. foldvar(π)(I ν̃(π)) unfold(Iν) := λπ. unfoldvar(π)(Iν(π))

Now let us define IWERS := fold(IARS) = ζ(IERT) = ν(I) = [MGC→WERS]. We have that
IWERS is, by construction, a complete lattice. Moreover, the order preserving isomorphism
lifts straightforwardly to interpretations as well.

Corollary 3.1.34 (IWERS , 4̂) −−−−−−→−→←←−−−−−−−
unfold

fold
(IARS , ⊆)

Example 3.1.35
The ζ abstraction of Example 3.1.5 is

f (x) 7→ {ε � %, {x/A(x1)} �B(%1)}
loop(x) 7→ {ε � %}
g(x) 7→ {ε � %, {x/A(x1)} �B(%1)}
h(x) 7→ {ε � %, {x/B} � C}

Example 3.1.36
The ζ abstraction of the program of Example 3.1.8 is

main 7→ {ε � %–C(B,A)}
h(x) 7→ {ε � %, {x/B} �A}

g(x) 7→
{
ε � %–C(x, %1), {x/B} � C(B, %1)–C(B,A),
{x/B} � C(%2, A)–C(B,A)

}

Example 3.1.37
Consider the programs P1 and P2

f x = B C (g x)

f A = B (g D) (g D)

g A = C

f x = B C (g x)

f A = B (g A) (g A)

g A = C

their ∂ program denotation are

F∂JP1K =


f (x) 7→ ε · % {x/A} ·B(%1, %2)

ε ·B(C, %2) {x/A} ·B(C,C)

%

% %2

g(x) 7→ ε · % %−→ {x/A} · C
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F∂JP2K =


f (x) 7→ ε · % {x/A} ·B(%1, %2)

ε ·B(C, %2) {x/A} ·B(C,C)

{x/A} ·B(C, %2)

{x/A} ·B(%1, C)

%

%

%1

%2

%2

%2

%1

g(x) 7→ ε · % %−→ {x/A} · C

and
their ζ̃ abstract versions are

ζ̃(F∂JP1K) =

f (x) 7→
{
ε · %, ε ·B(%1, %2), ε ·B(C, %2), {x/A} ·B(%1, %2),
{x/A} ·B(%1, C), {x/A} ·B(C,C)

}
g(x) 7→ {ε · %, {x/A} · C}

ζ̃(F∂JP2K) =

f (x) 7→
{
ε · %, ε ·B(%1, %2), ε ·B(C, %2), {x/A} ·B(%1, %2),
{x/A} ·B(%1, C), {x/A} ·B(C, %2), {x/A} ·B(C,C)

}
g(x) 7→ {ε · %, {x/A} · C}

while the ζ versions are

ζ(F∂JP1K) =

f (x) 7→
{
ε � %–B(C, %2), {x/A} �B(%1, %2)–B(%1, C),
{x/A} �B(%1, C)–B(C,C)

}
g(x) 7→ {ε � %, {x/A} � C}

ζ(F∂JP2K) =

{
f (x) 7→ {ε � %–B(C, %2), {x/A} �B(%1, %2)–B(C,C)}
g(x) 7→ {ε � %, {x/A} � C}

Note that, for function f , the ζ̃ version of P1 has less elements than P2, while for the ζ
version is the opposite.

The element {x/A} · n : B(C, %2) which differentiates the two denotations can be used
to produce a “most general testimony” that P1 6≈uscr P2. Indeed for the program Q

h (B C _) = E

where the pattern is obtained by replacing in node n bottom variables with anonymous
variables, we have that Bcr JP1 ∪QK(h(f(x))) = {ε · E} whereas Bcr JP2 ∪QK(h(f(x))) =
{ε · E, {x/A} · E}.

This example give us the possibility to outline an interesting fact, indeed, these pro-

grams are equivalent w.r.t. the CRWL semantics [49, 50, 64], because JeKP1
CRWL = JeKP2

CRWL for
all let-expressions e. These two programs compute the same results w.r.t. let-rewriting, but
have different behaviour w.r.t. let-narrowing because P2 computes {x/A} · E whereas P1

does not. This is not surprising because of the well-known relations between let-rewriting
and let-narrowing. For this same reason it can be proved that the CRWL semantics can
be obtained by (further) abstraction of Fν .

The concretization function νγ : [MGC → WERS] → I can be provided by composition
with the adjunction of ζ,

ζγ(Iν) = λπ. ζγπ (Iν(π)) (3.1.48)
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ζγe (S) :=
j
{T̄ ∈ ERTvar(e) | ζvar(e)(T̄ ) 4̂ S} ∀e ∈ T (Σ,V) (3.1.49)

obtaining

νγ(Iν) = λπ.
⊔
{T ∈WSSTπ | νvar(π)(T ) 4̂ Iν(π)}.

The semantics induced by the weak evolving result set abstraction

The optimal abstract version of P JP K w.r.t. ν, PνJP K := ν ◦P JP K ◦ νγ = ζ ◦P∂JP K ◦ ζγ ,
is

PνJP KIν = λf (−→xn).
ĵ

f(
−→
tn)→r�P

zap
{−→xn/

−→
tn}

{−→xn} (EνJrKIν ) (3.1.50)

where zap is the extension over sets of intervals of

zapϑV (σ � s1–s2) :=

{
σ � s1–s2 if s1 ∈ V%
(ϑσ)�V � s1–s2 otherwise

(3.1.51)

and the abstract evaluation of e ∈ T (Σ,V) w.r.t. an interpretation Iν , namely EνJeKIν , is
defined by induction on the size of knots(e) as

EνJxKIν := {ε � %–x} (3.1.52a)

EνJϕ(−→xn)KIν := Iν(ϕ(−→yn))[y1/ EνJx1KIν ]V1 . . . [yn/ EνJxnKIν ]Vn (3.1.52b)
−→yn � V distinct, Vi := {x1, . . . , xi, yi+1, . . . , yn}

EνJeKIν := EνJe[y]pKIν [y/ EνJe|pKIν ]var(e) (3.1.52c)

y � V, leftmost p ∈ baseknots(e)

provided that the abstract tree-embedding operation G[x/B]V over two weak evolving
result sets is

G[x/B]V :=
ĵ
{i | ig ∈ G, ib ∈ B, ig[x/ib]V ` i} (3.1.53)

where (ϑ �g1–g2)[x/(η � b1–b2)]V ` σ �s1–s2 if exist g, b ∈ T(C,V ∪V%) such that g1 . g . g2

and b is the least one such that b1 . b . b2 and

1. ∃ δ := ϑ ↑ η{x/b} s.t. it is V%-preserving and ∀y ∈ V ∩ var(g). yδ /∈ V% ,

2. for all p, if b|p /∈ V% then (xϑ)|p /∈ var(xϑ) \ var(g)

for σ := δ�V , s1 ∈ base(g, δ) and s2 := ψ(g2(ϑ ↑ η{x/b2})).
Broadly speaking, G[x/B]V is the lub of all the intervals obtained as the inlay of an

interval of B into one of G. The inlaying of an interval η � b1–b2 for a variable x into an
interval ϑ � g1–g2, namely ϑ � g1–g2[x/η � b1–b2]V ` σ � s1–s2, is done by determining the
starting and the ending terms of the inlay (respectively s1 and s2), which are obtained by
a sort of parameter passing handled as the application of two specific substitutions.

The conditions determine two elements from the given intervals, namely ϑ · g and η · b,
which are suitable for the construction of the start s1 of the resulting inlay. In particular,
Point 1 constrains the parameter value b to be sufficiently evolved as the “parameter



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.
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pattern” xϑ demands, while Point 2 forbids b to be evolved in positions which are not
demanded. Once g and b have been determined, s1 is obtained by updating, with base(g, δ),
variables in g with the computed substitution δ but only on single occurrencies of variables.
Namely, in case we have duplicated variables in g only one occurrence is bound, while the
other occurrencies are approximated with a bottom variable.

The end s2 can be simply obtained by “embedding” the maximal extreme b2 into g2,
by using the V%-preserving substitution ϑ ↑ η{x/b2}. The existence of such a substitution
is guaranteed by Point 1. In this case we don’t care about demandness because non
demanded “over computed” contributions are referred to variables not occurring in g2.

Our weak evolving result set fixpoint denotation is defined as

FνJP K := lfp(PνJP K) (3.1.54)

Example 3.1.38

The first two iterates for the program of Example 2.2.21 are

PνJP K↑1 =

{
zeros 7→ {ε � %1–Z : %}
coin 7→ {ε � %–Head , ε � %–Tail}

PνJP K↑2 =

{
zeros 7→ {ε � %2–Z : Z : %}
coin 7→ PνJP K↑1(coin)

while its least fixed point is the same of Example 3.1.33. This is not a casualty, because
of Corollary 3.1.44.

Example 3.1.39

The first two iterates for the program of Example 2.2.13 are

PνJP+K↑1 =
{
x+ y 7→ {ε � %, {x/Z} � y, {x/S(x0)} � S(%)}

PνJP+K↑2 =

{
x+ y 7→

{
ε � %, {x/Z} � y, {x/S(x0)} � S(%),
{x/S(Z)} � S(y), {x/S(S(x0))} � S(S(%))

}
while FνJP+K(x+ y) is the same of Example 3.1.31.

Example 3.1.40

The first two iterates for the program of Example 3.1.4 are

PνJP≤K↑1 =
{

leq(x, y) 7→ {ε � %, {x/Z, y/S(y0)} � True, {x/S(x0), y/Z} � False}

PνJP≤K↑2 =

{
leq(x, y) 7→

{
ε � %, {x/Z, y/S(y0)} � True, {x/S(x0), y/Z} � False
{x/S(Z), y/S(S(y0))} � True, {x/S(S(x0)), y/S(Z)} � False

}
while FνJP≤K(leq(x, y)) is the same of Example 3.1.32.
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Example 3.1.41
Consider the program of Example 3.1.8, its weak evolving result set semantics is obtained
in three iterations.

PνJP K↑1 =


main 7→ {ε � %}
h(x) 7→ {ε � %, {x/B} �A}
g(x) 7→ {ε � %–C(x, %1)}

PνJP K↑2 =


main 7→ {ε � %–C(B, %1)}
h(x) 7→ PνJP K↑1(h(x))

g(x) 7→
{
ε � %–C(x, %1), {x/B} � C(B, %1)–C(B,A),
{x/B} � C(%2, A)–C(B,A)

}

PνJP K↑3 =


main 7→ {ε � %–C(B,A)}
h(x) 7→ PνJP K↑1(h(x))

g(x) 7→ PνJP K↑2(g(x))

and finally PνJP K↑4 = PνJP K↑3 = FνJP K.

Example 3.1.42
The iterates for the program of Example 3.1.12 are

PνJP K↑1 =



val(x) 7→ {ε � %1–(x, %0)}
isleaf (x) 7→ {ε � %1, {x/N(v1, V, V )} � True}
h(x) 7→ {ε � %1–N(1, %0, V )}
hson(x) 7→ {ε � %, {x/0} � V, {x/1} � U}
main(x) 7→ {ε � %1}

PνJP K↑2 =



val(x) 7→ {ε � %1–(x, %0), {x/N(v1, V, V )} � (N(v1, V, V ),True)}
isleaf (x) 7→ PνJP K↑1(isleaf (x))

h(x) 7→ {ε � %1–N(1, %0, V ), {x/0} �N(1, V, V ), {x/1} �N(1, U, V )}
hson(x) 7→ PνJP K↑1(hson(x))

main(x) 7→ {ε � %1–(N(1, %′0, V ), %0)}

PνJP K↑3 =



val(x) 7→ PνJP K↑2(val(x))

isleaf (x) 7→ PνJP K↑1(isleaf (x))

h(x) 7→ PνJP K↑2(h(x))

hson(x) 7→ PνJP K↑1(hson(x))

main(x) 7→
{
ε � %1–(N(1, %′0, V ), %0), {x/1} � (N(1, U, V ), %2)
{x/0} � (N(1, V, V ), %2)–(N(1, V, V ),True)

}
and finally PνJP K↑4 = PνJP K↑3 = FνJP K. Note how the various paths leading to the
same computed result in Example 3.1.12 have been compacted into the same interval.

Properties of the weak evolving result set semantics

The abstract evaluation operator Eν is precise.
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Theorem 3.1.43 For all e ∈ T (Σ,V) and all I ∈ I, νvar(e)(E JeKI ) = ζvar(e)(E∂JeK∂(I )) =
EνJeKν(I ).

With this result we can prove that PνJP K is precise as well.

Corollary 3.1.44 For all P ∈ PΣ,

1. PνJP K ◦ ζ = ζ ◦P∂JP K, PνJP K ◦ ν = ν ◦P JP K,

2. PνJP K is continuous,

3. FνJP K = PνJP K↑ω,

4. FνJP K = ζ(F∂JP K) = ν(F JP K).

5.
{
σ · *v+

∣∣σ · v ∈ F∂JP K, v ∈ T (C,V)
}

= {σ · v |σ � t–v ∈ FνJP K, v ∈ T(C,V)}

Theorem 3.1.45 (Full abstraction of Fν w.r.t. ≈uscr ) For all P1, P2 ∈ PΣ, FνJP1K =
FνJP2K if and only if P1 ≈uscr P2.

This completes the story about the big-step semantics, since we have indeed found a
fully abstract semantics w.r.t. the reasonable Curry program equivalence ≈uscr !

3.2 Modeling the Big-Step Operational Behaviour of Haskell
programs

In this section we present a systematic way to convert a first-order Haskell program into
a first-order Curry one which will “preserve small-step semantics”, in the sense that from
the small-step operational (Curry) semantics (defined in Subsection 2.1.1) of the converted
program we can retrieve the small-step operational (Haskell) semantics (defined in Sub-
section 2.1.2) of the original Haskell program. This will permit us to easily reuse all the
results given in this thesis for first-order Curry programs to first-order Haskell programs.

3.2.1 Conversion algorithm

In the following, we assume that all rules are unconditional (it is obvious how to extend it to
conditional rules since only the left-hand sides of the rules are relevant for the definitional
trees). To specify the construction algorithm, we define a partial function IP(π, l → r)
which returns the pair 〈p, τ〉 such that

• p is the leftmost position of a variable in π such that l|p is constructor rooted, and

• τ is the type of the constructor symbols which labels the node p in l

If there is no position satisfying the first condition, IP(π, l→ r) is left undefined.

The generation of a definitional tree for a call pattern π and a non-empty list of rules
P (where l unifies π for each l→ r occurring in P ) is described by the function gt(π, P ).
Let R be the first rule of P , we distinguish the following cases for gt :
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• if IP(π,R) = 〈p, τ〉, let c1, . . . , ck be all the constructors of type τ with arities
n1, . . . , nk respectively and Pi = [l→ r ∈ P | l and π unify], then

gt(π, P ) := branch(π, p, T1, . . . , Th)

where {T1, . . . , Th} = {gt(π[ci(x1, . . . , xni)]p, Pi) | 1 ≤ i ≤ k, Pi not empty}

• if IP(π,R) is undefined, let R = l→ r and σ = mgu(l, π), then

gt(π, P ) := rule(lσ → rσ)

If Pf is the list of rules defining the function f/n in the Haskell program P , then, the
definitional tree generated by computing gt(f(x1, . . . , xn), P ) is the definitional tree for f
in the converted Curry program Cnv(P ).

In summary, given a Haskell program P , its conversion Cnv(P ) (into a Curry program)
is:

Cnv(P ) := {gt(f(x1, . . . , xn), Pf ) |Pf subprogram of P defining the function f/n}
(3.2.1)

Remark 3.2.1 The conversion algorithm always terminates computing a definitional tree
for each Haskell function. Indeed, the number of constructors in each Haskell rule is
supposed to be finite, and in each recursive call gt(π,R) the number of constructors in π
increases. Thus IP(π,R) will be eventually undefined leading to the base case of gt .

Observation 3.2.2 It is worth noting that, by construction, the given conversion produces
only definitional trees with either branch nodes or rule nodes, thus any Curry program
computed by the algorithm leads to an inductively sequential TRS. It is well known that
this class of TRS is confluent w.r.t. rewriting.

Example 3.2.3

Consider the program

data T = A | B

data Bool = True | False

f x B True = A

f A y False = y

Its the conversion produces the following definitional tree

f(x1, x2, x3)

f(x1, A, x3)

f(A,A, x3)

f(A,A, False)→ A

f(x1, B, x3)

f(x1, B, True)→ A f(x1, B, False)

f(A,B, False)→ B
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The conversion process may yield to a Curry program with more rules than the original
Haskell one. For instance, in Example 3.2.3, the equation f A y False = y produces two
contributes, namely f(A,B, False)→ B and f(A,A, False)→ A.

As the reader could expect, a different permutation of the same rules may lead to a
different converted program.

Example 3.2.4
Inverting the rule order in the program of Example 3.2.3, that is

f A y False = y

f x B True = A

the the conversion yields to the following definitional tree

f(x1, x2, x3)

f(A, x2, x3)

f(A, x2, T rue)

f(A,B, True)→ A

f(A, x2, False)→ x2

f(B, x2, x3)

f(B,B, x3)

f(B,B, True)→ A

Although the programs of Examples 3.2.3 and 3.2.4 have the same set of rules, the relative
order of the rules may change the program behavior. Consider for instance a looping
expression ⊥ and the expression f(⊥, B, True). Then, f(⊥, B, True) is evaluated to A
with the program of Example 3.2.3, while it does not terminate with that of Example 3.2.4.

The converted Curry program is not always bigger than the original one, as the following
example shows.

Example 3.2.5
Consider the program

g x = A

g B = B

The algorithm produces the definitional tree rule(g(x) → A), discarding the equation
g B = B. This happens whenever a rule R occurs after another rule whose LHS subsumes
that of R, making R useless in the program7.

The generation process for a definitional tree of Cnv(P ) preserves this invariant: every
call to gt is performed with a call pattern π and a subprogram Q of P which contains all the
rules of P whose LHS unifies with π. Moreover, whenever a call gt(π, P ) is responsible for
a recursive call gt(πi, Pi), πi is equal to π[ci(x1, . . . , xni)]p for some constructor ci, where
IP(π, l → r) = 〈p, τ〉 and l → r is the first rule occurring in P . Thus, for any ground
expression e which unifies π, we have that l→ r is the first feasible rule for e in P if and
only if either

7This kind of situations are reported as a waring by the Glasgow Haskell Compiler.
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• e unifies one of the call patterns πi, or

• e|p is operation rooted.

Starting from the former considerations, we can relate the (small-step) operational
behavior of a Haskell program with its conversion into a Curry one.

Proposition 3.2.6 Given the Haskell program P , and two ground expressions e1 and e2,

then, HEvalJe1K
p

=⇒ e2 holds for P if and only if EvalJe1K
p, ε
=⇒ e2 holds for Cnv(P ).

3.2.2 Curry small-step behavior vs. Haskell small-step behavior

Now we define the small-step (operational) behavior Bfss
H JP K of a Haskell program P , w.r.t.

the rewriting strategy introduced in Subsection 2.1.2. As done for Curry it will be defined
as the collection all the sequences of computations steps for all possible initial expressions.

Definition 3.2.7 (small-step behavior of Haskell programs) For P a Haskell pro-
gram, let the small-step behavior of P be defined by

BH JP K :=

{
e0 =⇒

p1

e1 =⇒
p2

. . .

∣∣∣∣ e0 ground term, ∀i. HEvalJeiK
pi
=⇒ ei+1

}
We indicate with ≈H the equivalence relation induced by BH , namely P1 ≈H P2 if and

only if BH JP1K = BH JP2K.

Note that, Definition 3.2.7 considers as initial expressions only ground terms, instead of
(possibly non ground) terms as in Definition 2.2.2.

An immediate consequence of Proposition 3.2.6 is

Corollary 3.2.8 For any Haskell program P , BH JP K = Bfss
gr JCnv(P )K.

Where, Bfss
gr JQK := {d ∈ BfssJQK | the head of d is ground} for any Curry program Q.

Theorem 3.2.9 Given P1 and P2 two Haskell programs, then P1 ≈H P2 if and only if
Cnv(P1) ≈fss Cnv(P2).

Definition 3.2.10 (computed result behaviour for Haskell) Given a Haskell program
P , its computed result behaviour is

Bcr
H JP K := λe.

{
*v+
∣∣∣ e =⇒∗ v ∈ Bss

H JP K, v ground data term
}

(3.2.2)

We indicate with
H
≈ cr the program equivalence relation induced by Bcr

H , namely P1

H
≈ cr

P2 ⇔ Bcr
H JP1K = Bcr

H JP2K.
The deterministic nature of Haskell permits to formalize the computed result behavior

as a partial function from ground terms to ground data terms. We preferred this alternative
version just for symmetry w.r.t. Equation (3.1.1).

Proposition 3.2.11 Let P a Haskell program, then Bcr
H JP K(e) = Bcr JCnv(P )K(e) for

every ground expression e.
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3.3 Related Works

The weak evolving result set (evolving result tree) semantics which we present here is the
first condensed goal-independent semantics which is fully abstract (correct) w.r.t. ≈uscr . In
the literature there are several proposals that are correct but not fully abstract, or are
fully abstract but not goal-independent, or fully abstract and goal-independent but not
condensed. The issue is the simultaneous presence of all these characteristics, which we do
not consider an option, because we are mainly interested in an application of the semantics
for the construction of (semantics-based) program treatment tools, and our experience has
shown how the use of a condensed goal-independent semantics dramatically effects the
results.

As happened for other paradigms, the condensed goal-independent proposal has to
“pay the fee” for the extra “expressive power” and the technical definition is more complex
than other (non-condensed) proposals.

Even if there is no strictly comparable proposal, given the “long way” approach that
we followed to reach our goal, in this work we are actually proposing several intermediate
semantics which can be compared to other proposal by considering only some of the
features. We try to illustrate in detail the several possibilities.

Goal-dependent approaches.

• The small-step (operational) semantics of [1] is essentially isomorphic to our
small-step operational semantics. We have chosen to develop our version be-
cause:

– its definition is (essentially a refinement of) the official small-step opera-
tional semantics [51, App. D.4] and so, as one can easily see, it is much
closer (and more faithful) to the original version than the proposal of [1];

– it does not “destroy” sharing on constructor nodes as [1] does, and thus it
is much closer to what happens in implementations;

– most importantly, with this form it is easier to define the big-step abstrac-
tion.

• The big-step (operational) semantics of [1] is just the collection of the value
terminating small-step computations. Even if formally the big-step relation
relates goals with computed results, its definition is inherently based on the
construction of a small-step computation in order to determine the computed
results. In particular it is not suited for developing analyses methods because
it eventually needs to compute small-step sequences and one has to invent from
scratch an ad hoc algorithm which statically terminates.

It is completely different w.r.t. our big-step proposal, which computes just
the needed part of computed results within denotations, without having any
information at all about intermediate reducts. Analyses methods can be (quite)
easily constructed on top of it (as shown in Subsection 4.2.1).

• There are several aspects of our proposal similar to those of CRWL semantics
[49, 50, 64], from which we have taken several inspirations. The use of bottom
variables in Fν instead of a unique bottom symbol like in CRWL is, limiting
to this paper, mostly cosmetic. We are using bottom variables just in view
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of future applications because it can be essential (or at least helpful) in the
definition of abstractions.

The main difference is that of moving from a logical (denotational) approach
(whose outcome is a non-condensed semantics, closed under instance) to a con-
densed (with a more operational flavor, but still denotational) approach. The
result, as also pointed out in Example 3.1.37, is a semantics fully abstract
w.r.t. let-narrowing outcomes (≈uscr ), instead of a semantics fully abstract w.r.t.
let-rewriting [63] (but at a higher cost).

Goal-independent non-condensed approaches. [68], based on the CRWL semantics,
shows a goal-independent semantics which is fully abstract w.r.t. let-rewriting out-
comes. This proposal is not condensed, being closed under instance. It could be
possible to provide a condensed representation by keeping just the crown of denota-
tions, but it would nevertheless be fully abstract w.r.t. let-rewriting and not w.r.t.
let-narrowing outcomes (≈uscr ).

Furthermore we are convinced that the result of such reformulation would lead to a
proposal as complex as ours.

It can be formally shown that interpretations of [68] can be obtained by (further)
abstraction of weak evolving result set semantics (with a very redundant actual
representation).

Goal-independent condensed approaches. [3] proposed a condensed goal-independent
fixpoint semantics for Term Rewriting Systems. It is defined for some (important)
subclasses of TRS (almost orthogonal, right linear, topmost) while we consider left
linear construction based TRS with free variables (which is the complete class of
first order functional logic languages). Our proposal certainly originates from the
experience made in [3] but the target languages are substantially different and thus
a detailed comparison is not very relevant.

Anyway, the major drawback of the proposal of [3], in view of employing that seman-
tics for abstract diagnosis, is that buggy programs cannot reasonably satisfy a priori
any condition at all, so one cannot guarantee to have an applicable methodology.
Our proposal on the contrary poses no conditions and thus is always applicable (as
shown in [9]).

Abstract approaches. In the literature there are some abstract semantics which can be
compared with some of our abstract proposals. For instance, the depth(k) abstract
semantics proposed in [9] (abstraction of evolving result tree semantics) encompasses
some limitations of previous works on the same subject. Namely,

• Since we use a “truly” goal-independent concrete semantics we obtain a much
more condensed abstract semantics than [4]. This is exactly the reason why we
started our research on condensed semantics for generic TRS ([3]) and func-
tional logic languages (this work).

• For k = 1 if we consider a TRS which is admissible to apply the technique of
[11] we obtain the same results. However the abstract rewriting methodology
of [11] requires canonicity, stratification, constructor discipline, and complete
definedness for the analyses. This class of TRS is very restricted (even for
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functional programming) and certainly cannot cover functional logic programs.
On the contrary we require only left linearity and construction basedness.

• Also [52] works with the domain depth(k). However it uses another abstraction
of the terms (accounting sharing in a different way) and, most importantly, the
baseline semantics is much more concrete than evolving result tree semantics,
since it models call patterns. We are very interested in the future in defining an
abstraction to model call patterns, as it will be the base to define a framework
for Abstract Verification for Curry. In that occasion we will also compare that
proposal to [52].

3.4 Discussion on the results

In this chapter three bottom-up fixpoint semantics for first order fragment of Curry are
given. We started by giving a concrete bottom-up fixpoint semantics which we showed
to be fully abstract w.r.t. the small-step behavior. Then, using abstract interpretation
techniques, we obtained a hierarchy of fixpoint semantics by successive abstractions. This
methodology has served both to design the semantics and to relate them with the small-
step operational semantics in a formal way.

The first semantics models the small-step behaviour of programs by means of a collec-
tion of trees, small-step trees, describing the small-step computations of each operator.

Small-step trees have been abstracted to evolving result trees. These trees describe the
evolution of data constructors by means of paths of partial computed results. In this way
we obtained a fixpoint goal-independent semantics which is correct w.r.t. the computed
result behaviour.

A further abstraction on evolving result trees has been performed, obtaining what we
called weak evolving result set semantics, where denotations now consist in a collection
of weak evolving result sets which describe how partial computed results evolve one con-
structor symbol at a time. The weak evolving result set semantics fulfills all (our) desired
requirements:

• is fully abstract w.r.t. the ≈uscr behaviour,

• has a goal-independent definition,

• is the fixpoint of a bottom-up construction, and

• is as condensed as possible.

The program equivalence ≈uscr is good for reasoning in terms of module composition.
Indeed, whenever P1 ≈uscr P2 holds we can consider the two programs as different imple-
mentations of the same module in the sense that, one can choose to use in a program Q
either the operations defined in P1 or those in P2 without affecting the computed result
behavior of Q. In contrast to similar program equivalence notions [63, 68] based on (Higher
Order) Construction-based Conditional Rewriting Logic (HO-CRWL), we have stronger
results. In particular, our semantics models precisely the computed result behaviour w.r.t.
usage.

Moreover, among all other proposals, the evolving result tree semantics is the first one
which achieves, at the same time, goal-independency and condensedness. The experience
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of the senior members of our research group shows that these properties are essential for
the development of efficacious semantics-based program manipulation tools, e.g. automatic
program analyzers, debuggers, etc..

Furthermore, we introduced a method to automatically convert a well typed first order
Haskell program into a semantically equivalent inductively sequential Curry program. We
investigated on the adequateness of this transformation both w.r.t. the small-step and the
big-step behaviour. As a consequence, our semantics can be used to handle well typed
first order Haskell programs as well.

In the future we are interested in extending our results to all the features of Curry:
equational constraints (i.e., strict equality), residuation (in order to tackle strict primitive
arithmetic operations) and higher-order. To do so, we think it would be profitable to
formalize the partial computed results as elements of a cylindric constraint system ([86])
and, once the semantics has been reformulated in such terms, then extend the constraint
system with strict equality and arithmetic primitives. Furthermore, cylindric constraint
systems go particularly well with abstract interpretation techniques, as good abstractions
can be obtained by abstracting only the constraint system while keeping the overlying
structure.

Another interesting possibility, along the lines of this construction, is to develop (by
abstraction of small-step trees) a semantics which can model “functional dependencies”.
Such a semantics is needed to tackle pre-post conditions and could be employed to define
the homologous of abstract verification for logic programs [24] in the functional logic
paradigm.

3.A Proofs

Proof of Proposition 3.1.7.

Point 1
)

Immediate by Equation (3.1.4).

Point 2
)
∂ is surjective, therefore for any path σ0 · s̄0

%1−→ . . .
%n−→ σn · s̄n in T̄ there exists

a path e0
ϑ1
↪−→
p1

. . .
ϑ
↪−→
pn

en such that s̄i = τ(ei), σ0 = ∅, σi+1 = (ϑ1 · · ·ϑi+1)�e0 , and

%i+1 = s̄i|pi+1 for every 0 ≤ i ≤ n. Thus %i+1 ∈ var(s̄i) for any 0 ≤ i ≤ n. For every
0 ≤ i ≤ n we have that

τ(ei+1) = [ Definition 2.2.1 for some s ]

= τ((ei[s]pi+1)ϑi+1) [ by by Equation (3.1.2), since ϑ ∈ CSubsts ]

= τ(ei[s]pi+1)ϑi+1 [ by Equation (3.1.2) ]

= τ(ei)[τ(s)]pi+1 [ since ei|pi+1 is D-rooted, for some ρ̂ ∈ %Substs ]

= τ(ei)ρ̂ϑi+1

Hence, by Definition 3.1.6, ϑi · s̄i �%i+1 ϑi+1 · s̄i+1 for every 0 ≤ i ≤ n.

Point 3
)

Immediate by Equation (3.1.4) and definition of prfxtree.

Point 4
)

Since ∂ is surjective, there exists T ∈ WSSTe such that ∂var(e)(T ) = T̄ . The
proof follows by Proposition 2.2.4.
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Proof of Proposition 3.1.9.

T̄1 4 T̄2 ⇐⇒
[ by Equation (3.1.10) ]

T̄1 g T̄2 = T̄2 ⇐⇒
[ by Equation (3.1.11) and ∂V surjectivity, given V := var(e) ]

∂V (
{
T ∈WSSTe

∣∣ ∂V (T ) = T̄1

}
t
{
T ∈WSSTe

∣∣ ∂V (T ) = T̄2

}
) =

∂V (
{
T ∈WSSTe

∣∣ ∂V (T ) = T̄2

}
)⇐⇒

[ by Equation (3.1.4) and
⊔

definition ]

prfxtree(
⋃{

∂εV (d)
∣∣ d ∈ paths(

{
T ∈WSSTe

∣∣ ∂V (T ) = T̄1 or ∂V (T ) = T̄2

}
)
}

) =

prfxtree(
⋃{

∂εV (d)
∣∣ d ∈ paths(

{
T ∈WSSTe

∣∣ ∂V (T ) = T̄2

}
)
}

)⇐⇒

[ by ∂V surjectivity ]

prfxtree(
⋃{

d̄
∣∣ d̄ ∈ paths(T̄1) or d̄ ∈ paths(T̄2)

}
) =

prfxtree(
⋃{

d̄
∣∣ d̄ ∈ paths(T̄2)

}
)⇐⇒

paths(T̄1) ⊆ paths(T̄2)

Lemma 3.A.1 Given g, b an embeddable pair, dg, db small-step sequences for g and b

respectively and σ a C-linear substitution. If dg[x/db]σ ` t
θ

=⇒∗ t′ then, there exists g
ϑ
=⇒∗

g′ ∈ paths(dg) and b
η

=⇒∗ b′ ∈ paths(db) such that h̄ = σ ↑ ϑ ↑ η{x/ τ(b′)} exists and is

V%-preserving.

Moreover, σh̄�var(t) = θ�t and τ(t′) = h̄[τ(g′)].

Proof.

By structural induction on the proof tree of

dg[x/db]σ ` t
θ

=⇒∗ t′ (1)

Base Case: The proof tree is a single application of axiom (2.2.7a). In this case t
θ

=⇒∗ t′

coincides with the zero step sequence t, that is t = t′ and θ = ε. We will show that
g[x/b]σ ` t. h : xσ → b exists by (1), and σ ∈ CSubsts by hypothesis, hence h′ : xσ → τ(b)
exists. Hence, h̄ = σ ↑ {x/ τ(b)} = σ ↑ ϑ ↑ η{x/ τ(b′)} exists and is V%-preserving. By
(1), t′ = h[g], therefore τ(t′) = τ(h[g]) = h′[τ(g)], moreover h′[τ(g)] = h̄[τ(g)] . Hence
τ(t′) = h̄[τ(g)]. It remains to show that θ�var(t) = σh̄�var(t). Since θ = ε is it sufficient to
show that tσh̄ = t. tσh̄ = h[g]σh̄ = h[g](σ ↑ {x/ τ(b)}) = h[g]σ = h[g] = t.

Inductive Step: by cases on the rule which ends the proof tree
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(2.2.7b): the proof tree for (1) is of the form

(a)︷ ︸︸ ︷
dg `η

′
d′

(b)︷ ︸︸ ︷
d′[x/db′′ ]ση′ ` t′′

θ′
=⇒∗ t′

(2.2.7b)
dg[x/b

η′
=⇒
q
db′′ ]σ ` t

η′
=⇒
q
t′′

θ′
=⇒∗ t′

By inductive hypothesis on (b) there exists s
θ′′
=⇒∗ s′ and b′′

η′′
=⇒∗ b′ respectively prefix

of d′ and db′′ such that h̄1 = ση′ ↑ θ′′ ↑ η′′{x/ τ(b′)} exists and is V%-preserving,
σh̄1
�var(t′′) = θ′�var(t′′) and τ(t′) = h̄1[τ(s′)].

By inductive hypothesis on (b) there exists g
ϑ
=⇒∗ g′ prefix of dg such that h̄2 = ϑ ↑ η′

exists and V%-preserving (actually no bottom variable occurs in h̄2), σh̄2
�var(s) =

θ′′�var(s) and τ(s′) = h̄2[τ(g′)].

The following equalities hold

h̄1 =

= ση′ ↑ θ′′ ↑ η′′{x/ τ(b′)} [ by dom(σ) ∩ var(η′) = ∅ ]

= σ ↑ η′ ↑ θ′′ ↑ η′′{x/ τ(b′)} [ by θ′′ � ϑ ↑ η′ and η′ ↑ η′ = η′ ]

= σ ↑ η′ ↑ ϑ ↑ η′′{x/ τ(b′)} [ by dom(η′) ∩ var(η′′) = ∅ ]

= σ ↑ ϑ ↑ η′η′′{x/ τ(b′)} [ η = η′η′′ ]

= σ ↑ ϑ ↑ η{x/ τ(b′)}
= h̄

Therefore h̄ exists and is V%-preserving. Moreover, τ(t′) = h̄1[τ(s′)] = h̄[τ(s′)] =
h̄[h̄2[τ(g′)]] = h̄[τ(g′)] since h̄ ◦ h̄2 = h̄.

To show that tσh̄ = tη′θ′ we first consider the case where η′ 6= ε: in this case tη′ = t′′,
thus t′η′θ′ = t′′θ′ = t′′σh̄1

, but η′σh̄1
= σh̄1

= σh̄, hence t′η′θ′ = tσh̄. On the the
other hand, if η′ = ε, we just have to note that t′′θ′ = t′′σh̄1

which immediately
implies that tη′θ′ = tθ′ = tσh̄1

= tσh̄1
since θ′�var(t) = θ′�var(t)∩var(t′′).

(2.2.7c): the proof tree for (1) is of the form

(a)︷ ︸︸ ︷
dg′′ [x/db]σ ` t′′

θ′
=⇒∗ t′

(2.2.7c)
(g

ε
=⇒
p
dg′′)[x/db]σ ` t

ε
=⇒
p
t′′

θ′
=⇒∗ t′

By inductive hypothesis on (a) there exist g′′
ϑ′
=⇒∗ g′ and b

η
=⇒∗ b′ respectively prefix

of dg′′ and db such that h̄1 = σ ↑ ϑ′ ↑ η{x/ τ(b′)} exists and is V%-preserving, τ(t′) =
h̄1[τ(g′)] and σh̄1

�var(t′′) = θ′�var(t′′).

h̄ = σ↑ϑ↑η{x/ τ(b′)} = σ↑εϑ′↑η{x/ τ(b′)} = h̄1, hence h̄ exists and is V%-preserving
and τ(t′) = h̄[τ(g′)]. Moreover tσh̄ = tθ since ϑ = εθ′ and θ′�var(t) = θ′�var(t)∩var(t′′).
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(2.2.7d): the proof tree for (1) is of the form

(a)︷ ︸︸ ︷
dg `η

′
d′

(b)︷ ︸︸ ︷
d′[x/db′′ ]ση′ ` t′′

θ′
=⇒∗ t′

(2.2.7d)
dg[x/b

η′
=⇒
q
db′′ ]σ ` t

η′
=⇒
p
t′′

θ′
=⇒∗ t′

where (g
{y/c(−→zn)}
=====⇒

p
dg′′), h : xσ → b and h[y] is rooted in q. The thesis can be proved

to hold for this case analogously to that of (2.2.7b).

(2.2.7e): the proof tree for (1) is of the form

(a)︷ ︸︸ ︷
dg′′ [x/db]σ{y/c(−→zn)} ` t′′

θ′
=⇒∗ t′

(2.2.7c)

(g
{y/c(−→zn)}
=====⇒

p
dg′′)[x/db]σ ` t′′

θ′
=⇒∗ t′

where h : xσ → b and h[y] is C-rooted.

By inductive hypothesis on (a) there exist g′′
ϑ′
=⇒∗ g′ and b

η
=⇒∗ b′ respectively prefix

of dg′′ and db such that h̄1 = σ{y/c(−→zn)}↑ϑ′ ↑η{x/ τ(b′)} exists and is V%-preserving,
τ(t′) = h̄1[τ(g′)] and σh̄1

�var(t′′) = θ′�var(t′′).

It is immediate to see that h̄ = σ↑{y/c(−→zn)}ϑ′↑η{x/ τ(b′)} = h̄1 since, by hypothesis
{y} ∩ var(ϑ′) = ∅ and dom(σ) ∩ {y,−→zn} = ∅. The thesis straightforwardly holds by
inductive hypothesis and h̄ = h̄1.

(2.2.7f): the proof tree for (1) is of the form

(a)︷ ︸︸ ︷
db[w/c(

−→zn)]ε ` d′

(b)︷ ︸︸ ︷
dg′′ [x/d

′]σ{y/c(−→xn)} ` t′′
θ′
=⇒∗ t′

(2.2.7b)

g
{y/c(−→xn)}
======⇒

p
dg′′ [x/db]σ ` t

{w/c(−→xn)}
======⇒

p
t′′

θ′
=⇒∗ t′

where h : xσ → b and h[y] = w ∈ V. By σ ∈ CSubsts we have that if y 6= w then w
is a critical variable of b.

By inductive hypothesis on (b) there exists g′′
ϑ′
=⇒∗ g′ and s

θ′′
=⇒∗ s′ respectively prefix

of dg′′ and d′ such that h̄1 = σ{y/c(−→zn)}↑ϑ′↑θ′′{x/ τ(s′)} exists and is V%-preserving,
τ(t′) = h̄1[τ(g′)], and h̄1�var(t′′) = θ′�var(t′′).

By inductive hypothesis on (a) there exists b
η

=⇒∗ b′ such that h̄2 = η ↑ {w/c(−→zn)}
exists, τ(s′) = h̄2[τ(b′)] and, h̄2�var(s) = θ′′�var(s).

The following equalities hold

h̄1 = σ{y/c(−→zn)} ↑ ϑ′ ↑ θ′′{x/ τ(s′)}
[ θ′′ � h̄2 ]



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.

3.A. Proofs 91

= σ{y/c(−→zn)} ↑ ϑ′ ↑ (η ↑ {w/c(−→zn)}){x/ τ(s′)}
[ τ(s′) = h̄2[b′] and if y 6= w then w is critical variable of b ]

= σ{y/c(−→zn)} ↑ ϑ′ ↑ η ↑ {x/ τ(b′)}
[ by dom(σ) ∩ {y,−→zn} and {y} ∩ var(ϑ′) ]

= σ ↑ {y/c(−→zn)}ϑ′ ↑ η ↑ {x/ τ(b′)}
[ϑ = {y/c(−→zn)}ϑ′ ]

= σ ↑ ϑ ↑ η ↑ {x/ τ(b′)}
= h̄

Therefore τ(t′) = h̄2[τ(g′)] = h̄[τ(g′)]. Moreover, since t{w/c(−→zn)} = t′′ and t′′θ′ =
t′′σh̄1

we have that t{w/c(−→zn)}θ′ = t{w/c(−→zn)}σh̄1
but we showed that {w/c(−→zn)}σh̄1

=
σh̄1

= σh̄, thus t{w/c(−→zn)}θ′ = tσh̄.

Lemma 3.A.2 Given g, b an embeddable pair, Vg = var(g), Vb = var(b), x ∈ Vg \ Vb
and V = var(g{x/b}). For all G,G′ ∈ WSSTg s.t. ∂Vg (G) = ∂Vg (G′) and for all B,B′ ∈
WSSTb s.t. ∂Vb

(B) = ∂Vb
(B′), ∂V (G[x/B]) 4 ∂V (G′[x/B′]).

Proof.
In the following, to keep the notation clear, given a sequence of substitutions σ1, . . . , σn
we will write −→σ0 and −−→σj+1 respectively for ε and −→σjσj+1 for every 0 ≤ j ≤ n.

We will prove a stronger result: for any dg ∈ G, db ∈ B and d canonical small-step
sequences such that dg[x/db]ε ` d, then there exist d′g ∈ G′, d′b ∈ B′ and d′ s.t. d′ is
canonical, d′g[x/d

′
b]ε ` d′, ∂εV (dg) = ∂εV (d′g) and ∂εV (d) = ∂εV (d′).

Suppose that d = t0
σ1
↪−→
p1

. . .
σn
↪−→
pn

tn for some n ≥ 0. We proceed by induction on n.

The case n = 0 is immediate.
For n > 0, by Lemma 3.A.1 exist g0

ϑ1=⇒∗ . . . ϑn=⇒∗ gn and b0
η1
=⇒∗ . . . ηn=⇒∗ bn, respectively

prefix of dg and db, s.t. for any 0 ≤ i ≤ n, exists h̄i =
−→
ϑi ↑ −→ηi{x/ τ(bi)} which is V%-

preserving, τ(ti) = h̄i[τ(gi)] and −→σi�V = σh̄i�V . The inductive hypothesis states that there
exist d′′g ∈ G′, d′′b ∈ B′ and d′′ s.t. d′′ is canonical and

d′′g [x/d
′′
b ]ε ` d′′

∂εVg
(d′′g) = ∂εVg

(g0
ϑ1=⇒∗ . . . ϑn−1

===⇒∗ gn−1)

∂εV (d′′) = ∂εV (t0
σ1
↪−→
p1

. . .
σn−1
↪−−−→
pn−1

tn−1)

By Lemma 3.A.1, d′′g = g′0
ϑ′1=⇒∗ . . .

ϑ′n−1
===⇒∗ g′n−1 and d′′b = b′0

η′1=⇒∗ . . .
η′n−1
===⇒∗ b′n−1 where

it exists h̄′i =
−→
ϑ′i ↑

−→
η′i{x/ τ(b′i)} V%-preserving, τ(ti) = h̄′i[τ(g′i)] and −→σi�V = σh̄′i�V for

0 ≤ i ≤ n − 1. Therefore, we have that ϑi = ϑ′i, τ(gi) = τ(g′i), ηi = η′i and τ(bi) = τ(b′i)
for every 0 ≤ i ≤ n− 1.

By Equation (3.1.3) ∂εV (d) is of the the form a0
%1−→ . . .

%n−→ an where ai = −→σi�V · τ(ti)
for 0 ≤ i ≤ n. Thus ai = σh̄i�V · h̄i[τ(gi)] for 0 ≤ i ≤ n. Moreover ai = σh̄′i�V · h̄

′
i[τ(g′i)] for

0 ≤ i ≤ n− 1. By construction an−1 �%n an, thus there are two possible cases:
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%n ∈ var(τ (bn−1))
)

then bn−1
ηn
=⇒∗ bn is of the form bn−1

ηn
↪−→
pn

bn, gn−1 = gn and

ϑn = ε. In fact, the steps tn−1
σn
↪−→
pn

tn come form a sequence of applications of rule

(2.2.7b). By ∂Vb
(B) = ∂Vb

(B′) it exists a derivation d̃b ∈ B′ s.t. ∂εVb
(d̃b) = ∂εVb

(db).
Therefore, by B′ ∈ WSSTb and Proposition 2.2.4, there exists d′b ∈ B′ of the form

b′0
η′1=⇒∗ . . .

η′n−1
===⇒∗ b′n−1

ηn
↪−→
pn

b′n where τ(b′n) = τ(bn) and τ(b′n−1)|pn = %n. Thus,

choosing d′g = d′′g , there exists d′ s.t. ∂εV (d) = ∂εV (d′), for which d′g[x/d
′
b]ε ` d′

holds. In fact, its proof tree can be obtained extending that of d′′g [x/d
′′
b ]ε ` d′′ with

a sequence of application of rule (2.2.7b).

%n ∈ var(τ (gn−1))
)

then gn−1
ϑn=⇒∗ gn is of the form gn−1

ϑn
↪−→
p
gn where ϑn = ϑ1

n · · ·ϑmn
and ϑin, for 1 ≤ i ≤ m, are the labels of the small-steps sequence composing the
former “big-step”.

By ∂Vg (G) = ∂Vg (G′), it exists d′g ∈ G′ of the form g′0
ϑ′1=⇒∗ . . .

ϑ′n−1
===⇒∗ g′n−1

ϑ′n
↪−→
q

g′n

such that ∂Vg (d′g) = ∂Vg (dg). By construction ϑ′n = ϑn, but the labels of the small-
steps sequence composing the former “big-step” can differs from those composing
ϑn. Let ϑ′1n · · ·ϑ′

k
n be the decomposition of ϑ′n.

In fact, exists h̄ =
−→
ϑn ↑ −−→ηn−1{x/ τ(bn−1)}, since there exists h̄i =

−→
ϑn ↑ −→ηn{x/ τ(bn)},

hence there are two possible sub-cases:

h̄ is V%-preserving
)

if h̄[τ(gn)]|pn = % ∈ V% , then τ(gn)|pn ∈ V and % ∈ var(τ(bn−1)),

that is bn−1
ηn
=⇒∗ bn is of the form bn−1

ηn
↪−→
q
bn where τ(bn−1)|q = %. In fact, the

steps of tn−1
σn
↪−→
pn

tn come form a sequence of m applications of rules selected

within (2.2.7c),(2.2.7e) and (2.2.7f), followed by a sequence of applications of
rule (2.2.7b).

For the same reason of the former case, there exists d′b ∈ B′ of the form

b′0
η′1=⇒∗ . . .

η′n−1
===⇒∗ b′n−1

ηn
↪−→
q

b′n where τ(b′n) = τ(bn) and τ(b′n−1)|q = %. It

is straightforward to see that there exists d′ s.t. ∂εV (d) = ∂εV (d′), for which
d′g[x/d

′
b]ε ` d′ holds. In fact, its proof tree can be obtained extending that

of d′′g [x/d
′′
b ]ε ` d′′ with a sequence of k applications of rules selected within

(2.2.7c),(2.2.7e) and (2.2.7f), followed by a sequence of applications of rule
(2.2.7b).

On the other hand, if h̄[τ(gn)]|pn = % /∈ V% then τ(gn)|pn /∈ V. Thus bn−1 = bn

and ηn = ε. Indeed, the steps of tn−1
σn
↪−→
pn

tn come from a sequence of appli-

cations of rules selected within (2.2.7c),(2.2.7e) and (2.2.7f). Thus, choosing
d′b = d′′b , it is straightforward to see that there exists d′ s.t. ∂εV (d) = ∂εV (d′),
for which d′g[x/d

′
b]ε ` d′ holds. In fact, its proof tree can be obtained extending

that of d′′g [x/d
′′
b ]ε ` d′′ with a sequence of k applications of rules selected within

(2.2.7c),(2.2.7e) and (2.2.7f).

h̄ isn’t V%-preserving
)
h̄ =
−−→
ϑn−1ϑ

′
n↑−−→ηn−1{x/ τ(b′n−1)}, since ϑ′n = ϑn and τ(bn−1) =

τ(b′n−1). Let 1 ≤ j ≤ k be the first index for which
−−→
ϑn−1ϑ

′1
n · · ·ϑ′

j
n↑−−→ηn−1{x/ τ(b′n−1)}
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is not V%-preserving. By construction, it exists a unique %1 ∈ var(τ(bn−1))∩V%
s.t. h[%1] 6= %1. Actually h[%1] is C-rooted.

By ∂Vb
(B) = ∂Vb

(B′), B′ ∈WSSTb, and Proposition 2.2.4, there exists d′1b ∈ B′

of the form b′0
η′1=⇒∗ . . .

η′n−1
===⇒∗ b′n−1

η1
n

↪−→
q1

b1n−1
θ1

=⇒∗ b′n s.t. η1
nθ

1 = ηn. Moreover

−−→
ϑn−1ϑ

′1
n · · ·ϑ′

j
n ↑ −−→ηn−1η

1
n{x/ τ(b1n−1)} is V%-preserving.

By repeated application of this construction we eventually obtain a derivation
d′lb ∈ B′ of the form

b′0
η′1=⇒∗ . . .

η′n−1
===⇒∗ b′n−1

η1
n

↪−→
q1

. . .
ηln
↪−→
ql

bln−1
θl
=⇒∗ b′n,

for some 1 ≤ l ≤ k s.t.
−−→
ϑn−1ϑ

′
n ↑ −−→ηn−1η

1
n · · · η1

nθ
l{x/ τ(b1n−1)} is V%-preserving,

thus holding the the hypothesis of the former sub-case. Therefore it is straight-
forward to see that there exists d′b ∈ B′ and d′ s.t. ∂εV (d) = ∂εV (d′), for which
d′g[x/d

′
b]ε ` d′ holds. Actually, its proof tree can be obtained extending that of

d′′g [x/d
′′
b ]ε ` d′′ with a sequence of rule applications obtained alternating l times

• a sequence of applications of rules selected within (2.2.7c),(2.2.7e) and
(2.2.7f), and

• a sequence of applications of rule (2.2.7d). Then ending the proof as de-
scribed in the former sub-case.

Corollary 3.A.3 Given g, b an embeddable pair, Vg = var(g), Vb = var(b), x ∈ Vg \ Vb
and V = var(g{x/b}). For all G ∈WSSTg and B ∈WSSTb

∂V (G[x/B])
(1)
= ∂V (∂γg ◦ ∂Vg (G)[x/ ∂γb ◦ ∂Vb

(B)])
(2)
= ∂Vg (G)[x/ ∂Vb

(B)]V

Proof.
(1) Since ∂var(e) ◦ ∂

γ
e ◦ ∂var(e) = ∂var(e) for all e ∈ T (Σ,V) and Lemma 3.A.2.

(2) Noting that the each rule in (3.1.21) corresponds to one of the cases listed in the
proof of Lemma 3.A.2.

Proof of Theorem 3.1.13.
We proceed by induction on the cardinality of baseknots(e)

Base Case: There are two possible cases for e:

e = x ∈ V
)

the following equalities hold

∂{x}(E JxKI ) = [ by Equation (2.2.5a) ]

= ∂{x}(x) [ by Equation (3.1.4) ]

= ε · x [ by Equation (3.1.19a) ]

= E∂JxK∂(I )
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e = ϕ(−→xn)
)

consider −→yn ∈ V fresh distinct, and Vi := {x1, . . . , xi, yi+1, . . . , yn} for i ∈
{1, . . . , n}, then the following equalities hold

∂{−→xn}(E Jϕ(−→xn)KI ) =

[ by Equation (2.2.5b) ]

= ∂{−→xn}(I (ϕ(−→yn))[y1/x1] . . . [yn/xn])

[ by straightforward induction on n using Corollary 3.A.3 ]

= ∂{−→yn}(I (ϕ(−→yn)))[y1/ ∂{x1 }(x1)]V1 . . . [yn/ ∂{xn}(xn)]Vn

[ by Equation (3.1.4) ]

= ∂{−→yn}(I (ϕ(−→yn)))[y1/ε · x1]V1 . . . [yn/ε · xn]Vn

[ by Equation (3.1.5) ]

= ∂(I )(ϕ(−→yn))[y1/ε · x1]V . . . [yn/ε · xn]V

[ by Equation (3.1.19b) ]

= E∂Jϕ(−→xn)K∂(I )

Inductive Step: let p be the leftmost node in baseknots(e), and y be a fresh data variable.
We have that

∂var(e)(E JeKI ) =

[ by Equation (2.2.5c), with y fresh variable ]

= ∂var(e)(E Je[y]pKI [y/ E Je|pKI ])

[ by Corollary 3.A.3 ]

= ∂var(e[y]p)(E Je[y]pKI )[y/ ∂var(e|p)(E Je|pKI )]var(e)

[ by inductive hypothesis ]

= E∂Je[y]pK∂(I )[y/ E∂Je|pK∂(I )]var(e)

[ by Equation (3.1.19c) ]

= E∂JeK∂(I )

Proof of Corollary 3.1.14.
Point 1

)
Given an op-rooted term e and T ∈ WSSTe of the form e

σ
=⇒∗ eσ ε

=⇒
p
T ′ where

the root term of T ′ is r, we have that

∂var(e)(T ) =

[ by Equations (3.1.3) and (3.1.4) ]

=

zaproot(
b{

∂σvar(e)(d)
∣∣∣ d ∈ paths(T ′)

}
) if r is D-rooted

ε · % %−→
b{

∂σvar(e)(d)
∣∣∣ d ∈ paths(T ′)

}
otherwise

[ by Equation (3.1.17) ]

=

{
zaproot(σb∂var(r)(T

′)cvar(e)) if r is D-rooted

ε · % %−→ σb∂var(r)(T
′)cvar(e) otherwise

(1)
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Now we prove that P∂JP K ◦ ∂ = ∂ ◦P JP K. Given I ∈ I, f (−→xn) ∈ MGC, V = {−→xn}
and Tf a fresh variant of the definitional tree for f in P , for pat(Tf ) = f(−→xn), the
following equalities hold

∂(P JP KI )(f (−→xn)) =

[ by Equation (3.1.5) ]

= ∂V (P JP KI (f (−→xn)))

[ by Equation (2.2.9) ]

= ∂V (ξJTf KI )

[ by Definition 2.2.10 ]

= ∂V (
⊔{

f (−→xn)
σ
=⇒∗ E JrKI

∣∣∣ rule(f (
−→
tn)→ r) ∈ Tf , σ = {−→xn/

−→
tn}
}

)

[ by Definition 1.4.1 ]

= ∂V (
⊔{

f (−→xn)
σ
=⇒∗ E JrKI

∣∣∣ f (
−→
tn)→ r � P , σ = {−→xn/

−→
tn}
}

)

[ by ∂ ◦
⊔

=
b
◦ ∂ ]

=
j{

∂V (f (−→xn)
σ
=⇒∗ E JrKI )

∣∣∣ f (
−→
tn)→ r � P , σ = {−→xn/

−→
tn}
}

[ by Equation (3.1.16), (1) and Theorem 3.1.13 ]

=
j
{ξ∂{−→xn}JrK

{−→xn/
−→
tn}

∂(I ) | f (
−→
tn)→ r � P }

[ by Equation (3.1.15) ]

= (P∂JP K∂(I ))(f (−→xn))

Point 2
)

Consider any {Ai} ⊆ IERT . Since ∂ is surjective

∃Ci ∈ I. Ai = ∂(Ci) (2)

Then

j
{P∂JP KAi} = [ by (2) ]

j
{P∂JP K∂(Ci)} = [ by Point 1 of Corollary 3.1.14 ]

j
{∂(P JP KCi)} = [ since ∂ ◦

⊔
=
b
◦ ∂ ]

∂(
⊔
{P JP KCi}) = [ since P JP K is continuous ]

∂(P JP K⊔{Ci}) = [ by Point 1 of Corollary 3.1.14 ]

P∂JP K∂(
⊔
{Ci}) = [ again since ∂ ◦

⊔
=
b
◦ ∂ ]

P∂JP Kb{∂(Ci)} = [ by (2) ]

P∂JP Kb{Ai}

that is, P∂JP K is continuous.

Point 3
)
F∂JP K = P∂JP K↑ω is an immediate consequence of Point 2.
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Point 4
)

The following equalities hold

F∂JP K = [ by Point 3 ]

= P∂JP K↑ω [ repeatedly applying Point 1 ]

= ∂(P JP K↑ω) [ by Equation (2.2.11) ]

= ∂(F JP K)

Proof of Corollary 3.1.15.

First observe that for all e ∈ T (Σ,V), the following hold

∂var(e)(NJe in P K) = [ by Theorems 2.2.19 and 2.2.25 ]

∂var(e)(E JeKF JP K) = [ by Theorem 3.1.13 ]

E∂JeK∂(F JP K) = [ by Point 4 of Corollary 3.1.14 ]

E∂JeKF∂JP K .

This and Corollary 2.2.26 implies that, F∂JP1K = F∂JP2K if and only if

∀e ∈ T (Σ,V). ∂var(e)(NJe in P1K) = ∂var(e)(NJe in P2K) (1)

By Equation (3.1.3), for any canonical small-step derivation d of the form e0
ϑ1
↪−→
pn

. . .
ϑn
↪−→
pn

en, the last node of ∂εvar(e0 )(d) is (ϑ1 · · ·ϑn)�e0 · τ(en). In particular, by Equation (3.1.2),

if en ∈ T (C,V) then τ(en) = en.

Thus, by Definitions 3.1.1 and 2.2.12, we conclude that (1) implies P1 ≈cr P2.

Proof of Theorem 3.1.18.

LetQ ∈ UPΣ′
Σ for some Σ′, Hi(I∂) := P∂JQKF∂JPiKgI∂ , Xi := lfp(Hi) and Si := Xi g F∂JPiK.

Then

P∂JQ ∪ PiKSi = [ by Equation (3.1.15) and Si definition ]

P∂JQKXigF∂JPiK
g P∂JPiKXigF∂JPiK

= [ by Hi definition ]

Hi(Xi)g P∂JPiKXigF∂JPiK
= [ since P∂JPiKXigF∂JPiK

does not use Xi ]

Hi(Xi)g P∂JPiKF∂JPiK
= [ since Xi and F∂JPiK are fixpoints ]

Xi g F∂JPiK = [ by Si definition ]

Si

Thus Si is a fixpoint. It has to be the least fixpoint, otherwise either Xi or F∂JPiK should
not be the least fixpoint of Hi or P∂JPiK, which is absurd.

Thus F∂JQ∪PiK = Xi g F∂JPiK, where Xi depends uniquely on Q and F∂JPiK. Hence
F∂JP1K = F∂JP2K if and only if F∂JQ ∪ P1K = F∂JQ ∪ P2K.

The thesis follows then by Definition 3.1.17 and Corollary 3.1.15.
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Proof of Proposition 3.1.29.

By construction (ARS−→xn , ⊆) −−−−−−−−→−→←−−−−−−−−−
fold{−→xn}

unfold{−→xn}
(WERS−→xn , 4̂), thus it suffices to prove that

∀S̃ ∈ ARS−→xn . unfold{−→xn} ◦ fold{−→xn}(S̃) = S̃.

unfold{−→xn}(fold{−→xn}(S̃)) =

[ by Equation (3.1.41) ]

= unfold{−→xn}({σ � s1–s2 |maximal unfold{−→xn}(σ � s1–s2) ⊆ S̃})
[ by Equation (3.1.42) ]

=
⋃
{unfold{−→xn}(σ � s1–s2) |maximal unfold{−→xn}(σ � s1–s2) ⊆ S̃}

= S̃

In order to prove the precision w.r.t. the ζV abstraction of the embedding operator of
Equation (3.1.53) (formally stated by Corollary 3.A.8) we proceed as follows:

• we define an auxiliary embedding operator over ARS (see Equation (3.A.1)),

• then in Lemma 3.A.6 we prove its precision w.r.t. the ζ̃V abstraction,

• finally, in Lemma 3.A.7 we prove the operator of Equation (3.A.1) is equal (up to
isomorphism of Proposition 3.1.29) to that of Equation (3.1.53).

Given g, b an embeddable pair, x a variable in var(g) \ var(b), G ∈ ARSg, and B ∈
ARSb, the embedding of B into G w.r.t. x is defined by

G[x/B]V :=


σ�V · s

∣∣∣∣∣∣∣∣∣∣∣∣

ϑ · g ∈ G, η · b ∈ B,
σ = ϑ ↑ η{x/b} V%-preserving,

∀y ∈ V ∩ var(g). yσ /∈ V% ,
b|p /∈ V% ⇒ (xϑ)|p /∈ var(xϑ) \ var(g)

s′ ∈ base(g, σ), s′ . s . ψ(gσ)


(3.A.1)

Lemma 3.A.4 Given a τ -term ḡ and a substitution σ,

{t | t . ψ(ḡσ)} = {t | g . ψ(ḡ), s′ ∈ base(g, σ), s′ . t . ψ(gσ)}

Proof.
⊇
)

immediate by definition of base.

⊆
)

Let t . ψ(ḡσ). There are two possible cases: (1) t . ψ(ḡ); (2) t 6. ψ(ḡ). If (1)
holds then t ∈ {t | g . ψ(ḡ)}, therefore, since {t | g . ψ(ḡ)} ⊆ {t | g . ψ(ḡ), s′ ∈
base(g, σ), s′ . t . ψ(gσ)}, we have that t ∈ {t | g . ψ(ḡ), s′ ∈ base(g, σ), s′ . t .
ψ(gσ)},
On the other hand, if (2) holds, then we can take the greatest g . ψ(ḡ) such that
all the positions of g are also positions of t. Now it is immediate to see that s′ . t .
ψ(gσ) for some s′ ∈ base(g, σ). Therefore t ∈ {t | g . ψ(ḡ), s′ ∈ base(g, σ), s′ . t .
ψ(gσ)}.
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Lemma 3.A.5 Let T ∈ ERT−→xn, and d = σ0 · s̄0
%1−→ · · · %k−→ σk · s̄k ∈ T . Then, σ · s ∈

ζ̃{−→xn}(d) and ∀d′ ∈ paths(d) \ {d}. σ · s /∈ ζ̃{−→xn}(d
′) if and only if σ · s ∈ 〈σk · s̄k〉{−→xn} and

∀1 ≤ i ≤ k there exists p such that s̄i−1|p = %i and s|p /∈ V%

Proof.

⇒
)

By hypothesis σ ·s ∈ ζ̃{−→xn}(d). Then, by a straightforward induction on the structure
of d, using Point 2 of Proposition 3.1.7 and Equations (3.1.37), it can be proved that
there exists 0 ≤ i ≤ k such that σ · s ∈ 〈σi · s̄i〉{−→xn} and for ∀1 ≤ j ≤ i there exists
p such that s̄j−1|p = %j and s|p /∈ V% . By hypothesis, for every proper prefix d′ of d,
σ · s /∈ ζ̃{−→xn}(d

′). Therefore i must coincide to k.

⇐
)

By hypothesis and Definition 3.1.37 we have that σ · s ∈ ζ̃{−→xn}(d).

It remains to prove that, for all d′ ∈ paths(d) \ {d}, σ · s /∈ ζ̃{−→xn}(d
′). We proceed

by contradiction: assume that there exists a proper prefix d′ of d such that σ ·
s ∈ ζ̃{−→xn}(d

′). By Definition 3.1.37, σ · s ∈ 〈σi · s̄i〉{−→xn} for some 0 ≤ i < k. By
Equation (3.1.38), for every position p such that s̄i|p = %i, if p is a position of s then
s|p = %i. By Point 2 of Proposition 3.1.7 we have that for all 1 ≤ j < k and for all
p, if s̄j−1|p = %j than s̄k|p ∈ T (C,V ∪ V%) \ V% . This is in contradiction with the
hypothesis that ∀1 ≤ i ≤ k there exists p such that s̄i−1|p = %i and s|p /∈ V% .

Lemma 3.A.6 Given g, b an embeddable pair, Vg = var(g), Vb = var(b), x ∈ Vg \ Vb
and V = var(g{x/b}). For all G ∈ ERTg and for all B ∈ ERTb, ζ̃V (G[x/B]V ) =
ζ̃Vg (G)[x/ ζ̃Vb

(B)]V

Proof.

⊆
)

Let σ · s ∈ ζ̃V (G[x/B]V ). By Equations (3.1.20) and (3.1.39) there exist dg ∈ G and

db ∈ B such that dg[x/db]V ` d and σ · s ∈ ζ̃V (d). Assume w.l.o.g. that

a
)

for every proper prefix d′ of d, σ · s /∈ ζ̃V (d′), and

b
)

for every proper prefix d′g of dg and any proper prefix d′b of db, d
′
g[x/d

′
b]V ` d

does not hold.

Let d = σ0 · s̄0
%′′1−→ · · ·

%′′k−→ σk · s̄k, dg = ϑ0 · ḡ0
%1−→ · · · %n−→ ϑn · ḡn, and db = η0 · b̄0

%′1−→

· · · %′m−−→ ηm · b̄m. By Point (b) and dg[x/db]V ` d, it holds that σk = σh̄�V and
s̄k = h̄[ḡn] where h̄ = ϑn ↑ ηm{x/b̄m} is V%-preserving.

By Corollary 3.A.3, d ∈ ERTg{x/b}. Therefore, by Lemma 3.A.5, σ · s ∈ 〈σk · s̄k〉V
and ∀1 ≤ ` ≤ k ∃p s.t. s̄`−1|p = %′′` and s|p /∈ V% .

Consider the set 〈σk · s̄k〉V , it can be over-approximated by (2)

〈σk · s̄k〉V =

[ by Equation (3.1.38) ]
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=

{
(σkdθc)�V · s′′

∣∣∣∣∣ t . ψ(s̄k), θ ∈ uiSubstst

s′ ∈ base(t, θ), s′ . s′′ . ψ(tθ)

}
[ ∀t1, t2. t1 . t2 ⇒ uiSubstst1 ⊆ uiSubstst2 ]

⊆
{

(σkdθc)�V · s
∣∣ θ ∈ uiSubstsψ(s̄k), s

′′ . ψ(s̄kθ)
}

[ by σk = σh̄�V , s̄k = h̄[ḡn] and ψ(h̄[ḡn]) = ψ(ḡnσh̄) ]

=
{

(σh̄dθc)�V · s
∣∣ θ ∈ uiSubstsψ(ḡnσh̄), s

′′ . ψ(ḡnσh̄θ)
}

[ by Lemma 3.A.4 ]

=

{
(σh̄dθc)�V · s

∣∣∣∣∣ θ ∈ uiSubstsψ(ḡnσh̄), t . ψ(ḡn),

s′ ∈ base(t, σh̄θ), s
′ . s′′ . ψ(ḡnσh̄θ)

}
(1)

⊆


δ�V · s′′

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϑ · g̃ ∈ 〈ϑn · ḡn〉Vg η · b̃ ∈ 〈ηm · b̄m〉Vb
δ = ϑ ↑ η{x/b̃} V%-preserving

∀y ∈ V ∩ var(g̃). yδ /∈ V%
b̃|p /∈ V% ⇒ (xϑ)|p /∈ var(xϑ) \ var(g̃)

s′ ∈ base(g̃, δ), s′ . s′′ . ψ(gδ)


(2)

since for every partial computed result of (1) where θ = ε there exist two opportune
partial computed results ϑn · g′ ∈ 〈ϑn · ḡn〉Vg and ηm · b′ ∈ 〈ηn · b̄m〉Vb which (2)
can use to make it. Indeed, there exist two suitable approximations g′ and b′ of
ψ(ḡn) and ψ(b̄m) respectively, such that δ = ϑn ↑ ηm{x/b′} is V%-preserving, and
∀y ∈ V ∩ var(g′). yδ /∈ V% . Moreover, the requirement that b′|p /∈ V% ⇒ (xϑn)|p /∈
var(xϑn) \ var(g′) for all positions p does not alter neither base(g′, δ) nor ψ(g′δ).
Similar arguments can be used also in case θ 6= ε, using two opportune usage invisible
instances of ϑn · g′ and ηm · b′ respectively.

Actually, we are interested only on partial computed results σ · s ∈ 〈σk · s̄k〉V s.t.
∀1 ≤ ` ≤ k, ∃p s.t. s̄`−1|p = %′′` and s|p /∈ V% .

By dg[x/db]V ` d and Rules 3.1.21, for every 1 ≤ j ≤ m it holds that

c
)
∃ 1 ≤ i ≤ n such that h = ϑi ↑ ηj−1{x/b̄j−1} and h[%j ] is C-rooted (see Equa-
tion (3.1.21c)), or

d
)
∃ 1 ≤ i ≤ n such that h = ϑi↑ηj−1{x/b̄j−1} is V%-preserving and %j ∈ var(h[ḡi])
(see Equations (3.1.21b) and (3.1.21e)).

Therefore, since ϑi � ϑn for every 1 ≤ i ≤ n, we have that any partial computed
result η · b̃ chosen in (2) satisfy ∀1 ≤ j ≤ m.∃q′. b̄j−1|q′ = %′j and b̃|q′ /∈ V% .

Moreover, by dg[x/db]V ` d and Rules 3.1.21, all the labels of dg are labels of d
(namely, {%1, . . . , %n} ⊆ {%′′1, . . . , %′′k}) and if %′′` = %i then s`−1|%′′` = gi−1|%i . Thus,
in order to satisfy ∀1 ≤ ` ≤ k, ∃p s.t. s̄`−1|p = %′′` and s|p /∈ V% , in (2) it must be
taken a partial computed result ϑ · g̃ which holds that ∀1 ≤ i ≤ n, ∃q s.t. gi−1|q = %i
and g̃|q /∈ V% .

Hence, by Lemma 3.A.5, we have that, in order to make σ · s, (2) can take ϑ · g̃ and
η · b̃ respectively form ζ̃Vb

(dg) and ζ̃Vb
(db).

In conclusion, by Equation (3.A.1) we have that σ · s ∈ ζ̃Vg (G)[x/ ζ̃Vb
(B)]V .
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⊇
)

Let σ · s ∈ ζ̃Vg (G)[x/ ζ̃Vb
(B)]V , by Equation (3.A.1) there exist ϑ · g̃ ∈ ζ̃Vg (G) and

η · b̃ ∈ ζ̃Vb
(B) such that

1. ∃σ̃ = ϑ ↑ η{x/b̃} V%-preserving s.t. ∀y ∈ V ∩ var(g̃). yσ̃ /∈ V% ,

2. for all p, b̃|p /∈ V% implies (xϑ)|p /∈ var(xϑ) \ var(g̃)

3. s′ . s . ψ(g̃σ̃) for some s′ ∈ base(g̃, σ̃) and σ̃�V = σ.

By ϑ · g̃ ∈ ζ̃Vg (G), η · b̃ ∈ ζ̃Vb
(B), and Equation (3.1.39) we have that there exist

dg ∈ G and db ∈ B such that ϑ · g̃ ∈ ζ̃Vg (dg) and η · b̃ ∈ ζ̃Vb
(db).

Suppose w.l.o.g. that for every proper prefix d′g of dg, ϑ · g̃ /∈ ζ̃Vg (d′g) and for every

proper prefix d′b of db η · b̃ /∈ ζ̃Vb
(d′b). Let

dg = ϑ0 · ḡ0
%1−→ · · · %n−→ ϑn · ḡn and db = η0 · b̄0

%′1−→ · · · %
′
m−−→ ηm · b̄m.

By Lemma 3.A.5 we have that ϑ · g̃ ∈ 〈ϑn · ḡn〉Vg and for every 1 ≤ i ≤ n, there
exists a position q such that ḡi−1|q = %i and g̃|q /∈ V% . Again, by Lemma 3.A.5 we
have that η · b̃ ∈ 〈ηn · b̄m〉Vb and for every 1 ≤ j ≤ m, there exists a position q such
that b̄j−1|q = %′j and b̃|q /∈ V% .

By Equation (3.1.38), (ϑndθ′c)�Vg = ϑ and (ηmdθ′′c)�Vb = η, for some usage invisible

substitutions θ,θ′. Therefore, by Point 1 we have that there exists h̄ = ϑn↑ηm{x/b̄m}
which is V%-preserving and such that (σh̄dθc)�V = σ̃�V for some usage invisible
substitution θ. By Point 2 and since ϑi � ϑn for all 1 ≤ i ≤ n, we have that none of
the steps of db has been performed in a non demanding position. Namely, for every
1 ≤ j ≤ m

– ∃ 1 ≤ i ≤ n such that h = ϑi ↑ ηj−1{x/b̄j−1} and h[%j ] is C-rooted (see rule
(3.1.21c)), or

– ∃ 1 ≤ i ≤ n such that h = ϑi↑ηj−1{x/b̄j−1} is V%-preserving and %j ∈ var(h[ḡi])
(see rules (3.1.21b) and (3.1.21e)).

It can be proved that there exists a path d = σ0 · s̄0
%′′1−→ · · ·

%′′k−→ σk · s̄k such
that dg[x/db]V ` d and σk · s̄k = σh̄�V · h̄[ḡn]. By this and Point 3, we have that
σ · s ∈ 〈σh̄�V · h̄[ḡn]〉V .

By dg[x/db]V ` d and Rules 3.1.21, for every 1 ≤ ` ≤ k, %′′` is either %i for some
1 ≤ i ≤ n or a %′j for some 1 ≤ j ≤ m. By Points 1 and 3, for every 1 ≤ ` ≤ k,
there exists a position q such that s`−1|q = %′′` and s|q 6= V% . By Equations (3.1.20)
and (3.1.39), d ∈ G[x/B]V and, by Corollary 3.A.3, G[x/B]V ∈ ERTg{x/b}. Finally,

by Lemma 3.A.5, we have that σ · s ∈ ζ̃V (d), hence σ · s ∈ ζ̃V (G[x/B]V ).

Lemma 3.A.7 Given g, b an embeddable pair, Vg = var(g), Vb = var(b), x ∈ Vg \ Vb
and V = var(g{x/b}). For all G ∈ ARSg and for all B ∈ ARSb, foldV (G[x/B]V ) =
foldVg (G)[x/ foldVb

(B)]V
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Proof.

Straightforward, by proving that for all pair of intervals ϑ � g1–g2 and η � b1–b2 such that
unfoldVg (ϑ � g1–g2) ⊆ G and unfoldVb

(η � b1–b2) ⊆ B the following equality holds

unfoldVg (ϑ � g1–g2)[x/ unfoldVb
(η � b1–b2)]V =

unfoldV ({i | (ϑ � g1–g2)[x/(η � b1–b2)]V ` i}) (1)

Corollary 3.A.8 Given g, b an embeddable pair, Vg = var(g), Vb = var(b), x ∈ Vg \ Vb
and V = var(g{x/b}). For all G ∈ ERTg and for all B ∈ ERTb, ζV (G[x/B]V ) =
ζVg (G)[x/ ζVb

(B)]V

Proof.

ζV (G[x/B]V ) = [ by ∀V. ζV = foldV ◦ ζ̃V ]

= foldV (ζ̃V (G[x/B]V )) [ by Lemma 3.A.6 ]

= foldV (ζ̃Vg (G)[x/ ζ̃Vb
(B)]V ) [ by Lemma 3.A.7 ]

= foldVg (ζ̃Vg (G))[x/ foldVb
(ζ̃Vb

(B))]V [ by ∀V. ζV = foldV ◦ ζ̃V ]

= ζVg (G)[x/ ζVb
(B)]V

Proof of Theorem 3.1.43.

By νV = ζV ◦ ∂V and Theorem 3.1.13, νvar(e)(E JeKI ) = ζvar(e)(E∂JeK∂(I )). It remains to

prove that ζvar(e)(E∂JeK∂(I )) = EνJeKζ(∂(I )). Let I∂ := ∂(I ), we procede by induction on
the cardinality of baseknots(e)

Base Case: there are to possible cases: if e = x ∈ V is immediate.

If e = ϕ(−→xn), let −→yn ∈ V fresh distinct, and let Vi := {x1, . . . , xi, yi+1, . . . , yn} for
i ∈ {1, . . . , n}. Then

ζ{−→xn}(E
∂Jϕ(−→xn)KI∂ ) =

[ by Equation (3.1.19b) ]

= ζ{−→xn}(I
∂(ϕ(−→yn))[y1/ε · x1]V1 . . . [yn/ε · xn]Vn)

[ repeatedly applying Corollary 3.A.8 ]

= ζ{−→yn}(I
∂(ϕ(−→yn)))[y1/ ζ{x1 }(ε · x1)]V1 . . . [yn/ ζ{xn}(ε · xn)]Vn

[ by ∀π. ζπ(I∂(π)) = ζ(I∂)(π) and the former case ]

= ζ(I∂)(ϕ(−→yn))[y1/ EνJx1Kζ(I∂)]V1 . . . [yn/ EνJxnKζ(I∂)]Vn

[ by Equation (3.1.52b) and construction of I∂ ]

= EνJϕ(−→xn)Kζ(I∂) = EνJϕ(−→xn)Kζ(∂(I ))
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Inductive Step: Let p be the leftmost position in baseknots(e) and y a fresh data variable,
then

ζvar(e)(E∂JeKI∂ ) = [ by Equation (3.1.19c) ]

= ζvar(e)(E∂Je[y]pKI∂ [y/ E∂Je|pKI∂ ]var(e)) [ by Corollary 3.A.8 ]

= ζvar(e[y]p)(E∂Je[y]pKI∂ )[y/ ζvar(e|p)(E∂Je|pKI∂ )]var(e) [ by ind. hypothesis ]

= EνJe[y]pKζ(I∂)[y/ EνJe|pKζ(I∂)]var(e) [ by Equation (3.1.52c) ]

= EνJeKζ(I∂) = EνJeKζ(∂(I ))

Proof of Corollary 3.1.44.
Point 1

)
We first show that, given I∂ ∈ IERT , f(

−→
tn)→ r ∈ P , and −→xn ∈ V fresh distinct,

it holds that

ζ{−→xn}(ξ
∂−→xnJrK

{−→xn/
−→
tn}

I∂ ) = zap
{−→xn/

−→
tn}

{−→xn} (ζvar(r)(E∂JrKI∂ )) (1)

We proceed by cases as Equation (3.1.16)

• if r is op-rooted, ξ∂−→xnJrK
{−→xn/

−→
tn}

I∂ = zaproot({−→xn/
−→
tn}bE∂JrKI∂c−→xn). By Defini-

tion 3.1.52 the head of E∂JrKI∂ is of the form ε · % for some % ∈ V% . By defi-

nition of zaproot and Equation (3.1.17) ε · % is the root node of ξ∂−→xnJrK
{−→xn/

−→
tn}

I∂ .

Moreover, for every node σ · s of E∂JrKI∂ such that s /∈ V% there is a node

({−→xn/
−→
tn}σ)�{−→xn} · s in ξ∂−→xnJrK

{−→xn/
−→
tn}

I∂ corresponding to it and vice versa. Thus,
by definition of zap and ζV we have that

• if r is not op-rooted, ξ∂−→xnJrK
{−→xn/

−→
tn}

I∂ = ε · % %−→ {−→xn/
−→
tn}bE∂JrKI∂c−→xn . By Defi-

nition 3.1.52 the head of E∂JrKI∂ is ε · τ(r) where τ(r) is not op-rooted. It is
straightforward to see that

ε · % %−→ {−→xn/
−→
tn}bE∂JrKI∂c−→xn = zaproot({−→xn/

−→
tn}bε · %

%−→ E∂JrKI∂c−→xn)

Thus, similarly to the former case we have that (1) holds.

Now we prove that PνJP K ◦ ζ = ζ ◦P∂JP K. Given I∂ ∈ IERT , and f (−→xn) ∈MGC we
have that

ζ{x}(P∂JP KI∂ (f (−→xn))) = [ by Equation (3.1.15) ]

= ζ{x}(
j
{ξ∂−→xnJrK

{−→xn/
−→
tn}

I∂ | f(
−→
tn)→ r � P }) [ ζV ◦

b
=
b̂
◦ ζV ]

=
ĵ{

ζ{x}(ξ
∂−→xnJrK

{−→xn/
−→
tn}

I∂ )

∣∣∣∣ f(
−→
tn)→ r � P

}
[ by (1) ]

=
ĵ{

zap
{−→xn/

−→
tn}

{−→xn} (ζvar(r)(E∂JrKI∂ ))

∣∣∣∣ f(
−→
tn)→ r � P

}
[ by Theorem 3.1.13 ]

=
ĵ{

zap
{−→xn/

−→
tn}

{−→xn} (E∂JrKζ(I∂))

∣∣∣∣ f(
−→
tn)→ r � P

}
[ by Equation (3.1.50) ]

= PνJP Kζ(I∂)(f (−→xn))
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Finally, we have that

PνJP K ◦ ν [ since ν = ζ ◦ ∂ ]

= PνJP K ◦ ζ ◦ ∂ [ since PνJP K ◦ ζ = ζ ◦P∂JP K ]

= ζ ◦P∂JP K ◦ ∂ [ by Point 1 of Corollary 3.1.14 ]

= ζ ◦ ∂ ◦P JP K [ again, since ν = ζ ◦ ∂ ]

= ν ◦P JP K

Point 2
)

Identical to proof of Point 2 of Corollary 3.1.14 with ν instead of ∂ and Point 1
of Corollary 3.1.44 instead of Point 1 of Corollary 3.1.14

Point 3
)
FνJP K = PνJP K↑ω is an immediate consequence of Point 2.

Point 4
)

Identical to proof of Point 4 of Corollary 3.1.14 with Point 3 instead of Point 3
of Corollary 3.1.14 and Point 1 instead of Point 1 of Corollary 3.1.44.

Point 5
)

Immediate by Point 4 and Definition 3.1.37.

Corollary 3.A.9 For all P1, P2 ∈ PΣ, FνJP1K = FνJP2K implies P1 ≈cr P2.

Proof.

For all e ∈ T (Σ,V) we have that

νvar(e)(NJe in P K) = [ by Theorems 2.2.19 and 2.2.25 ]

νvar(e)(E JeKF JP K) = [ by Theorem 3.1.43 ]

EνJeKν(F JP K) = [ by Point 4 of Corollary 3.1.44 ]

EνJeKFνJP K

Therefore,

FνJP1K = FνJP2K
[ by the former equalities and Corollary 2.2.26 ]

⇐⇒ ∀e ∈ T (Σ,V). νvar(e)(NJe in P1K) = νvar(e)(NJe in P2K)

[ νV = ζV ◦ ∂V ]

⇐⇒ ∀e ∈ T (Σ,V). ζvar(e)(∂var(e)(NJe in P1K)) = ζvar(e)(∂var(e)(NJe in P2K))

As stated in the proof of Corollary 3.1.15 for every canonical small-step derivation e
ϑ
=⇒∗ v

with v ∈ T (C,V), the last node of ∂εvar(e)(e
ϑ
=⇒∗ v) is ϑ · v. By the maximality of v

w.r.t. . and Equation (3.1.46) in ζvar(e)(∂
ε
var(e)(e

ϑ
=⇒∗ v)) there is an interval of the form

ϑ � s–v′ for some s ∈ T(C,V ∪ V%) and v′ = ψ(v). Since v ∈ T (C,V), by Equation (3.1.36)
v′ = *v+. Thus, by Definitions 3.1.1 and 2.2.12, we conclude that FνJP1K = FνJP2K
implies P1 ≈cr P2.
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Lemma 3.A.10 For any given t ∈ T(C,V ∪V%) there exist t′ ∈ uiT(C,V,V%) and θ : V →
T(C,V) such that t = t′θ

Proof.

If t ∈ uiT(C,V,V%) then it suffices to take t′ = t and θ = ε. Otherwise, there exists a non
variable position p such that t|p ∈ T(C,V). Let s0 := t[y]p and σ0 = {y/t|p} with y � V.
If s0 ∈ uiT(C,V,V%) we are done, otherwise, we repeat this construction on s0 obtaining
s1 and σ1 going on until a sn such that sn ∈ uiT(C,V,V%) is eventually reached.

Then, we conclude by taking taking t′ = sn and θ = σ0 · · ·σn.

Proof of Theorem 3.1.45.

⇒
)

Identical to proof of Theorem 3.1.18 with PνJP K instead of P∂JP K, Equation (3.1.50)
instead of Equation (3.1.15) and Corollary 3.A.9 instead of Corollary 3.1.15.

⇐
)

Before starting the proof we need to define some auxiliary suffs : consider a signature

Σ̂ = Ĉ ∪ D̂ disjoint from Σ and the transformation ·̂ : T(C,V ∪V%)→ T(Ĉ,V) defined
by

t̂ :=


x if t = x ∈ V
⊥ if t ∈ V%
c(t̂1, . . . , t̂n) if t = c(t1, . . . , tn)

where ⊥ ∈ Ĉ.

To any ψ-term t we associate a program QJtK := {gt(a) → b} where gt ∈ D̂ and
〈a, b〉 := toRule(t)

toRule(t) :=


〈y, y〉 if t ∈ V and y � V
〈y, ⊥〉 if t ∈ V% and y � V
〈c(−→an), ĉ(

−→
bn)〉 if t = c(

−→
tn) and ∀1 ≤ i ≤ n. t̃i = 〈ai, bi〉

By Definition 3.1.17, QJtK ∈ UPΣ̂
Σ for any given t ∈ T(C,V ∪ V%).

By Proposition 3.1.29 we can reason in ARS−→xn instead ofWERS−→xn , thus in the rest of
the proof, by abuse of notation, we will write σ ·s ∈ A to indicate σ ·s ∈ unfold{−→xn}(A)
for any given A ∈WERS−→xn .

Now we prove the thesis by showing that FνJP1K 6= FνJP2K implies P1 6≈uscr P2. To
this end we proceed by contradiction. Assume that FνJP1K 6= FνJP2K but P1 ≈uscr P2,
then there exists a f/n ∈ D such that FνJP1K(f(−→xn)) 6= FνJP2K(f(−→xn)). Assume,
w.l.o.g., that σ · s ∈ FνJP1K(f(−→xn)) but σ · s /∈ FνJP2K(f(−→xn)) and that σ · s is the
most general partial computed result holding the previous condition.

Let Ri := Pi ∪QJsK for i ∈ {1, 2} where QJsK = {gs(πs)→ π̂s}.

As proven in Corollary 3.A.9, we have that all the (totally) computed result belonging
to EνJgs(f(−→xn))KFνJR1K belongs to Bcr JR1K(gs(f(−→xn))). Thus, it is straightforward
to see that σ · ŝ ∈ Bcr JR1K(gs(f(−→xn))). Hence, by σ ·s /∈ FνJP2K(f(−→xn)), we also have
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σ · ŝ ∈ Bcr JR2K(gs(f(−→xn))). Again, this implies that σ · ŝ ∈ EνJgs(f(−→xn))KFνJR2K .
Therefore

σ · ŝ ∈ EνJgs(f(−→xn))KFνJR2K

[ by Definition 3.1.52 with y � V ]

⇐⇒ σ · ŝ ∈ FνJR2K(gs(y))[y/FνJR2K(f(−→xn))]{−→xn}

[ by FνJR2K(f(−→xn)) = FνJP2K(f(−→xn)) ]

⇐⇒ σ · ŝ ∈ FνJR2K(gs(y))[y/FνJP2K(f(−→xn))]{−→xn}. (1)

By Equation (3.A.1), σ ·ŝ can be retrieved in (1) only from the (totally) computed re-
sult {y/πs}·π̂s ∈ FνJR2K(gs(y)) and a partial computed result σ′·s′ ∈ FνJP2K(f(−→xn))
satisfying the following conditions

1. ∃δ = {y/πs} ↑ σ′{y/s′} V%-preserving s.t. ∀y ∈ var(π̂s). yδ /∈ V%
2. ∀p. s′|p /∈ V% ⇒ πs|p /∈ var(πs) \ var(π̂s)

3. σ · ŝ = δ�−→xn · π̂sδ.

Let θ := σ′mgu(πs, s
′), by the previous conditions we have that zδ = zθ for every

z ∈ V \ {y}.
By Point 2, for any position p s.t. πs|p ∈ var(πs) \ var(π̂s) either p is not a position
of s′ (and, by Point 1, there exists an outer position p′ s.t. s′|p′ ∈ V), or s′|p ∈ V% .
By construction πsρρ

′ = s for some ρ : var(πs)\var(π̂s)→ V% and ρ′ : var(π̂s)→ V,
and ŝ = π̂sρ

′. Thus, by Point 3, we have that π̂sρ
′ = π̂sδ and mgu(s, s′) exists and

is V%-preserving (up-to renaming on bottom variables).

In particular we have that s′θ′ = s for some substitution θ′ : V → T(C,V%∪V). There
are to possible cases

θ′ ∈ uiSubstss′
)

in this case we have that σ · s is a usage invisible instance of
σ′·s′, which implies that σ·s ∈ FνJP2K(f(−→xn)), since unfold{−→xn}(F

νJP2K(f(−→xn)))
is closed under invisible instantiations. This contradicts the hypothesis that
σ · s /∈ FνJP2K(f(−→xn)).

θ′ /∈ uiSubstss′
)

By decomposing every ψ-term in img(θ′) as in Lemma 3.A.10 we
can decompose θ′ as ϑϑ′ where ϑ ∈ uiSubstss′ and ϑ′ : var(s′θ′′) → T(C,V).
Let R′i = Pi ∪QJs′ϑK for i ∈ {1, 2}.
Since σ · s ∈ FνJP1K(f(−→xn)) but σ · s /∈ FνJP2K(f(−→xn)), it can be shown that
σ · ŝ ∈ EνJg(s′θ)(f(−→xn))KFνJR′1K but σ · ŝ /∈ EνJg(s′θ)(f(−→xn))KFνJR′2K . Hence, σ · ŝ ∈
Bcr JR′1K(g(s′ϑ)(f(−→xn))) but σ · ŝ /∈ Bcr JR′2K(g(s′ϑ)(f(−→xn))). This contradicts the
assumption P1 ≈uscr P2.

In conclusion, we proved that FνJP1K 6= FνJP2K implies P1 6≈uscr P2, that is to say,
P1 ≈uscr P2 implies FνJP1K = FνJP2K.

Proof of Proposition 3.2.6.

By structural induction on e1.
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Proof of Corollary 3.2.8.
Immediate by Definitions 2.2.2 and 3.2.7, and Proposition 3.2.6.

Proof of Theorem 3.2.9.
⇐
)

Immediate by Corollary 3.2.8.

⇒
)

Suppose that Cnv(P1) 6≈fss Cnv(P2), that is BfssJCnv(P1)K 6= BfssJCnv(P1)K. We
proceed by showing that there exists a ground term t such that the Curry small-step
behavior for t w.r.t. Cnv(P1) differs from that w.r.t. Cnv(P2). If such a term exists

it is a witness for Bfss
gr JCnv(P1)K 6= Bfss

gr JCnv(P2)K. By Corollary 3.2.8, we have that
BH JP1K 6= BH JP2K therefore, by Definition 3.2.7, P1 6≈H P2 which concludes the
proof.

It remains to show how to construct t. To this aim, we recall the notion of (syntactic)

program equivalence
pt
= defined in the proof of Lemma 2.2.3 where its has been proved

that the equivalence
pt
= is exactly ≈fss .

Let T1 and T2 two definitional tree for some operator f respectively belonging

Cnv(P1) and Cnv(P2) such that T1 6
pt
= T2 (such trees exist by hypothesis). By

construction pat(T1) = pat(T2), let denote with π that pattern. Let also denote with
⊥ a looping expression. As observed in Observation 3.2.2, neither T1 nor T2 has
or-nodes thus we can describe a constructive method for generating t by cases as
follows:

1. if both T1 and T2 are brach nodes. Let p1 and p2 be the inductive position of
T1 and T2 respectively, then there are two possible cases:

p1 6= p2
)

We take t as a ground instance of π such that t|p1 = ⊥ and t|p2 = ⊥.

p1 = p2
)

Let T 1
1 , . . . , T

k1
1 be the subtrees of T1 and T 1

2 , . . . , T
k2
2 be those of T2.

If there is a T i1 for some 1 ≤ i ≤ k1, such that pat(T i1) 6= pat(T j2 ) for all
1 ≤ j ≤ k2, we take as t a ground instance of a pattern of a rule node
reachable from T i1 (we make the same construction if the former condition
holds replacing T1 with T2)
Otherwise, we chose two subtrees T i1 and T j2 for some 1 ≤ i ≤ k1 and

1 ≤ j ≤ k2 such that pat(T i1) = pat(T j2 ) and T i1 6
pt
= T j2 and we repeat the

construction of t starting from T i1 and T j2 .

2. if T1 or T2 are both rule nodes t will be any ground instance of π. It is worth
noting that the RHS of the rule of T1 is must be different from that of T2.

3. otherwise, w.l.o.g. we have that T1 is a branch node whereas T2 is a rule node
(the case). Then we take t as a ground instance of π such that t|p = ⊥, where
p is the inductive position of T1.

It can be shown that the term t generated by the former construction is such that the
Curry small-step behavior for t w.r.t. Cnv(P1) differs from that of t w.r.t. Cnv(P2).

Proof of Proposition 3.2.11.
Immediate by Corollary 3.2.8 and Definition 3.2.10.
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4
Abstraction Framework

Abstract

In this chapter, starting from the fixpoint semantics in Subsection 3.1.3, we describe
how to develop an abstract semantics which approximates the observable behavior
of a Curry program. We focus on particular program properties modeled as Galois
Insertions between the domain IWERS and the abstract domain chosen to model the
property.

Then, we present two motivating instances of this abstraction framework by means
of two well studied abstract domains, namely the depth(k) and the POS domains. The
first one will be used to model the computed result behavior up to a fixed depth, and
the second one will be used to model the computed result groundness behavior.

4.1 Abstraction Scheme

In this section, starting from the fixpoint semantics in Subsection 3.1.3, we develop an
abstract semantics which approximates the observable behavior of the program. Program
properties which can be of interest are Galois Insertions between the domain IWERS and
the abstract domain chosen to model the property.

We will restrict our attention to a special class of abstract interpretations which are
obtained from what we call a weak evolving result set abstraction that is a Galois Inser-
tion (WERS, 4̂) −−−→−→←−−−−

α

γ
(A,≤). This abstraction can be systematically lifted to a Galois

Insertion IWERS −−−→−→←−−−−
ᾱ

γ̄
[MGC→ A] by function composition (i.e., ᾱ(f) = α ◦ f).

Then we can derive the optimal abstract version of PαJP K simply as PαJP K := ᾱ ◦
PνJP K ◦ γ̄ guaranteeing that FαJP K := PαJP K↑ω is the best correct approximation of
FνJP K by construction. We recall that correct means α(FνJP K) ≤ FαJP K and best
means that it is the minimum (w.r.t. ≤) of all correct approximations. In particular, if
A is Noetherian the abstract fixpoint is reached in a finite number of steps, that is, there
exists a finite natural number h such that PαJP K↑ω = PαJP K↑h.

4.2 Case study

In this section, following the abstraction scheme of Section 4.1, we present two instances of
our framework, namely by using the depth(k) and the POS domains. depth(k) will be used
for modeling respectively the computed result behavior up to a fixed depth of the results,
while POS will be used for modeling the groundness behavior of the computed result.
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The case studies proposed in this section aim at showing the applicative potentiality of
the abstraction framework even if applied to (conceptually) simple abstract properties.
Indeed, in Chapters 5 and 6 we will exploit weak evolving result set abstractions for the
development of semantic-based tools.

4.2.1 Modeling the Groundness Behaviour of Curry

We now outline a simple example of analysis obtained by abstraction of the weak evolving
result set semantics, namely Groundness Analysis of computed results in Curry.

In order to define the abstract domain we have to do several small steps. We will use
propositional formulas to represent the groundness dependencies of variables. In partic-
ular, we will use the domain POS [7] of positive propositional formula classes modulo
logical equivalence, built using ↔, ∧ and ∨ over variable names1, and ordered by logical
implication.

First of all (following the lines of [23, 25]) we have to define the abstraction Γ(t) of a
term t ∈ T(C,V) as

Γ(t) :=
∧

x∈var(t)

x (4.2.1)

The formula intuitively suggests that in order for t to be ground, all its variables must be
ground.

We can lift Γ to substitutions to obtain abstract substitutions as2

Γ(ϑ) :=
∧
x/t∈ϑ

(x↔ Γ(t))

Abstract substitutions are propositional formulas which express the groundness depen-
dencies between the variables of the domain and the ones of the range of the concrete
substitution. We must define the abstract notion of restriction of an abstract substitution
w.r.t. a set of variables. Namely, 3

F |−→xn :=

{
F if var(F ) ⊆ {−→xn}
(F [y 7→ true] ∨ F [y 7→ false])|−→xn for some y ∈ var(F ) \ {−→xn}

where the formula F [y 7→ E] is obtained by replacing each occurrence of the variable y in
F by E.

Now we would conceptually define the abstraction of a computed result ϑ·v representing
a possible result of a function call. When the computed answer ϑ shares variables with t
we have a dependency between function arguments and the resulting value. Thus, w.r.t.
groundness, the result value plays the same role as data variables.

In order to have an uniform treatment of arguments and results, which besides makes
definitions much clearer, we augment the “signature” of MGC by a bottom variable. That
is MGC := {f (−→xn) . % | f/n ∈ D, −→xn ∈ V are distinct variables, % ∈ V%}. This can be
seen, with a more logical eye, as explicitly considering n-ary (multi-valued) functions as

1As usual we also add the bottom formula false to obtain a complete lattice.
2Note that Γ(ε) = true.
3by using Schröder’s elimination principle
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n+ 1-ary predicates, where the result variable is a special variable that has to be treated
differently from the argument variables. We prefer to use the notation f (−→xn).% instead of
f(x1, . . . , xn, %) to make more evident that % plays the role of the result of the call f (−→xn).

Actually all definitions of the previous sections are isomorphic to their counterpart
with the augmented version of MGC, thus in the following we will implicitly abuse all
notations.

We can obtain the desired groundness dependencies of computed results abstraction
αΓ by further abstraction of ν. Namely4

Γ%(S) :=
∨
{Γ(σ{%/t}) |σ � t–v ∈ S, v ∈ T(C,V)}

and

αΓ (Iν) := λf (−→xn) . %.Γ%(Iν(f (−→xn)))|−→xn,%

Analogously to what done previously we define IGR := αΓ (IWERS) = [MGC→ GR] ⊆
[MGC → POS] and GR−→xn.% := Γ%(ERT−→xn). The abstraction is not surjective on POS
because bottom variables are not bounded in the same way as program variables are.

Let γΓ be αΓ adjoint. The optimal abstract version of P∂ , Pgr JP K := αΓ ◦P∂ ◦ γΓ ,
is

Pgr JP KIgr = λf (−→xn) . %.
∨

f(
−→
tn)→r∈P

(Γ({−→xn/
−→
tn}) ∧ Egr Jr . %KIgr )|−→xn,% (4.2.2)

where the abstract evaluation function Egr is defined as

Egr Jx . %KIgr := % ↔ x (4.2.3)

Egr Jϕ(
−→
tn) . %KIgr := Igr (ϕ(−→%n) . %) ∧

n∧
i=1

Φi
−→%n fresh (4.2.4)

where

Φi :=


Egr Jti . %iKIgr if Igr (ϕ(−→%n) . %) ≤ (% → %i) or

ti ∈ T (C,V)

true otherwise

Note that, by the assumptions on interpretations, for a constructor c Equation (4.2.4)
boils down to

Egr Jc(−→tn) . %KIgr = (% ↔
n∧
i=1

%i) ∧
n∧
i=1

Egr Jti . %iKIgr −→%n fresh

4Note that if S has no interval ending in a value then Γ%(S) = false.
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Example 4.2.1
Consider the prelude’s ++ definition. Then

Pgr J++K↑1 =
{
xs ++ ys . % 7→ xs ∧ (% ↔ ys)

Pgr J++K↑2 =
{
xs ++ ys . % 7→ % ↔ (xs ∧ ys)

Pgr J++K↑3 = Pgr J++K↑2 = Pgr J++K↑ω

Thus the abstract semantics states that the result of ++ is ground if and only if both its
arguments are ground.

Example 4.2.2
Consider the union of the programs of Examples 2.2.13, 2.2.21 and 3.1.4.

Pgr JP K↑1 = Pgr JP K↑ω =


x+ y . % 7→ x ∧ (% ↔ y)

leq(x, y) . % 7→ % ∧ (x ∨ y)

coin . % 7→ %

zeros . % 7→ false

Thus the abstract semantics states that

• + will always bind its first argument to a ground term, while its result will be ground
if and only if its second argument will be;

• leq will always return a ground result and will bind one of its two arguments to a
ground term;

• coin will always return a ground result;

• zeros will not give finite results (either no results or infinite ones).

Example 4.2.3
Consider the program

find k ((k’,v):_) = k =:= k’ &> v

find k (_:xs) = find k xs

with the predefined interpretation{
x =:= y . % 7→ % ∧ x↔ y

x &> y . % 7→ x ∧ (% ↔ y)

we have

Pgr JP K↑1 = Pgr JP K↑ω =
{

find(x, y) . % 7→ y → (x ∧ %)

Thus the abstract semantics states that whenever the second argument of find is ground
then the result and its first argument will become ground.
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4.2.2 Modeling the computed result behavior up to a fixed depth

An interesting finite abstraction of an infinite set of constructor terms are sets of terms up
to a particular depth k, which has already been used in call-pattern analysis for functional
logic programs [52], the abstract diagnosis of functional programs [4] and logic programs
[27] or in the abstraction of term rewriting systems [11] (with k = 1).

Now we show how to approximate a weak evolving result set by means of a depth(k)
cut  k which cuts terms having a depth greater than k. Terms are cut by replacing each
subterm placed at depth k with a fresh variable, called cut variable and denoted with a •̂,
taken from the set V̂ (disjoint from V). depth(k) terms represent each term obtained by
instantiating the variables of V̂ with ψ-terms.

We extend  k to intervals of the form {x1/t1, . . . , xn/tn} � s1–s2 essentially by cutting
s1, s2 and all ti. However, same positions in s1 and s2 have to be cut with same cut
variables. For instance, given the interval i

{x/S(x′), y/A(z, S(S(y)))} �B(%1, S(%2), S(S(%3)), x′)–B(y, S(S(z)), S(S(z)), x′)

we have

i 3 = {x/S(x′), y/A(z, S(S(x̂1)))} �B(%1, S(%2), S(S(x̂2)), x′)–B(y, S(S(x̂3)), S(S(x̂2)), x′)

i 2 = {x/S(x′), y/A(z, S(x̂1))} �B(%1, S(x̂2), S(x̂3), x′)–B(y, S(x̂2), S(x̂3), x′)

i 1 = {x/S(x̂1), y/A(x̂2, x̂3)} �B(x̂4, x̂5, x̂6, x̂7)

We define the order ≤ for this domain by successive lifting of the order x̂ ≤ t for every
ψ-term t ∈ T(C,V ∪V%) and variable x̂ ∈ V̂. First we extend ≤ by structural induction on
the structure over terms, then we extend it to substitutions by pointwise extension and
then over depth(k) partial computed result by pairwise extension.

Finally given two depth(k) weak evolving result sets Ŝ1 and Ŝ2, Ŝ1 ≤ Ŝ2 in and only
if for any i1 ∈ Ŝ1 there exists a i2 ∈ Ŝ2 such that i1 ≤ i2. The set of all depth(k) weak
evolving result sets ordered by ≤ is a complete lattice. Let

∨
be its join.

The depth(k) cut of a weak evolving result set S is

κ(S) :=
∨
{β k |β ∈ S} (4.2.5)

Example 4.2.4
Given the depth(k) weak evolving result set S = {ε � %, i1, i2} where

i1 = {x/S(S(y))} � S(S(%1))–S(S(y)), i2 = {x/S(S(Z))} � S(%1)–S(S(Z))

for k = 2, κ(S) = {ε � %, {x/S(S(x̂1))} � S(%1)–S(S(x̂2))}.

It is worth noting that the join operator in Equation (4.2.5) may cause some depth(k)
intervals to “collapse” within a greater depth(k) interval. Indeed, in Example 4.2.4 the
depth(k) abstractions of α and β collapse together because α 2 ≤ β 2.

Supposing a k ≥ 1, the resulting (optimal) abstract immediate consequence operator
is

PκJP KIκ = λf(−→xn).
∨

f(
−→
tn)→r�P

κzap
{−→xn/

−→
tn}

{−→xn} (EκJrKIκ)
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where κzap is the extension on sets of depth(k) intervals of

κzapϑV (σ � s1–s2) :=

{
(σ � s1–s2) k if s1 ∈ V%
((ϑσ)�V � s1–s2) k otherwise

(4.2.6)

and the abstract evaluation of e ∈ T (Σ,V) w.r.t. an interpretation Iκ, namely EκJeKIκ ,
has the same definition of Equation (3.1.52)5.

Example 4.2.5
Consider the program P defined by

from n = n : from (S n)

take 0 _ = []

take (S n) (x:xs) = x : take n xs

and take k = 3. According to the previous definition, the abstract semantics of P is
reached at the third iteration:

PκJP K↑1 =

{
from(n) 7→ {ε � %–n:%1}
take(n, xs) 7→ {ε � %, {n/0} � [], {n/S(n1), xs/x1:xs′} � %1:%2–x:%2}

PκJP K↑2 =


from(n) 7→ {ε � %–n:S(x̂):%1}

take(n, xs) 7→


ε � %, {n/0} � [], {n/S(n′), xs/x1:xs′} � %1:%2–x1:%2

{n/S(0), xs/x1:xs′} � [%1]–[x1],
{n/S(S(n′)), xs/x1:x2:xs′} � %1:%2:%3–x1:x2:%3



PκJP K↑3 =



from(n) 7→ {ε � %–n:S(x̂1):x̂2:x̂3}

take(n, xs) 7→


ε � %, {n/0} � [], {n/S(n′), xs/x1:xs′} � %1:%2–x1:%2

{n/S(0), xs/x1:xs′} � [%1]–[x1],
{n/S(S(n′)), xs/x1:x2:xs′} � %1:%2:%3–x1:x2:%3

{n/S(S(0)), xs/x1:x2:xs′} � %1:%2:[]–x1:x2:[]
{n/S(S(S(n̂))), xs/x1:x2:x̂3:x̂s′} � %1:%2:ŷ1:ŷ2–x1:x2:ŷ3:ŷ4


PκJP K↑4 = PκJP K↑3 = FκJP K

Example 4.2.6
Consider the program P+ of Example 2.2.13. For k = 1

FκJP+K =
{
x+ y 7→ {ε � %, {x/Z} � y, {x/S(x̂1)} � S(x̂2)}

This is essentially the same result that can be obtained by [11], with the head upper-
closure operator, that derives the following abstract TRS:

Za +a 0a → Za Za +a Sa(>nat)→ Sa(>nat)
Sa(>nat) +a Za → Sa(>nat) Sa(>nat) +a Sa(>nat)→ Sa(>nat)

Note that in our semantics the first two rules of the abstract TRS are subsumed by {x/Z}�y
while the remaining rules are subsumed by {x/S(x̂1)} � S(x̂2).

5Note that the definition implicitly treats cut variables as data variables.
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Example 4.2.7

Consider the program P defined by

main = diff (pair (sub2 (S (Z ? S Z))))

diff (Z, S x) = True

pair x = (x,x)

sub2 (S (S x)) = x

For k = 2, the abstract analysis of P reaches the fixpoint in 3 steps, giving
sub2 (x) 7→ {ε � %, {x/S(S(ŷ))} � x′}
pair(x) 7→ {ε � %–(x, x)}
diff (x) 7→ {ε � %, {x/(Z, S(x̂))} � True}
main 7→ {ε � %}

For the same program and same k [52] reaches the call pattern disj((>,>))
.
= True

causing main
.
= True to be observed, which does not correspond to a concrete call pattern.

However, for k ≥ 3, this false call pattern is no more observed.

It is worth noting that the resulting abstract semantics encompasses some limitations of
previous works

• Since we use a “truly” goal-independent concrete semantics we obtain a much more
compact abstract semantics than [4].

• For k = 1 if we consider TRS admissible to apply the technique of [11] we obtain the
same results. However the abstract rewriting methodology of [11] requires canonicity,
stratification, constructor discipline, and complete definedness for the analyses. This
class of TRS is very restricted (even for functional programming) and certainly
cannot cover functional logic programs. On the contrary we require only left linearity
and construction basedness.

• Since we use a careful definition of the abstraction function that uses cut variables
instead of just a single > symbol like does [52] we have some slightly better results.
For the same k we do not produce all false answers which are produced by [52].
These answers won’t be generated by [52] for k + 1, but due to the quickly growing
size of depth(k) our improvement can be worthy.

4.3 Discussion of the results

We formulated a parametric abstraction scheme for systematically deriving goal-independent
bottom-up fixpoint (approximate) abstract semantics from the weak evolving result set se-
mantics introduced in Subsection 3.1.3. In particular we have shown two specific instances
of this framework which model interesting properties of the computed result behavior of
Curry programs, such as the groundness behavior of computed result, and the computed
result behavior w.r.t. usage up to a fixed depth of the results. We showed the potential of
these specific instances by means of examples.
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To the best of our knowledge, the abstract semantics of Subsection 4.2.1 is the first
attempt of groundness analysis of computed results for lazy functional logic languages. We
are aware that this first proposal is pretty rough, but the theoretical environment which
we have developed provides good foundations to improve such proposal in the future.

We also compared the depth(k) instance of our framework with [4, 11, 52] showing how
it encompasses some limitations of these works.

Clearly in this framework we cannot handle properties like termination or observations
over call patterns, namely properties which are not an abstraction of weak evolving result
sets. To this end we need more concrete semantics, which could be developed by (more
concrete than ν) abstractions of the small-step semantics introduced in Section 2.2. Note
that if we would have opted for a direct construction of Fν then a different base semantics
would have to be constructed from scratch.
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5
Abstract Diagnosis

Abstract

We present a generic scheme for the abstract debugging of functional logic programs.
We associate to programs a semantics based on a (continuous) immediate consequence
operator, P JP K, which models correctly the powerful features of modern functional
logic languages (non-deterministic, non-strict functions defined by non-confluent pro-
grams and call-time choice behaviour). Then, we develop an effective debugging
methodology which is based on abstract interpretation: by approximating the in-
tended specification of the semantics of P we derive a finitely terminating bottom-up
diagnosis method, which can be used statically. Our debugging framework does not
require the user to provide error symptoms in advance and is applicable with partial
specifications and even partial programs.

Finding program bugs is a long-standing problem in software development, even for
highly expressive declarative languages. In the field of lazy functional programming, the
problem is well known since the mid eighties because, as pointed out by [71, 18], the
execution flow is, in general, hard to predict from the program code because of laziness.
This makes these languages problematic to debug using conventional debugging tools such
as breakpoints, tracing and variable watching.

There has been a lot of work on declarative debugging for functional logic languages,
amongst all [2, 19, 14, 17, 72, 18], mostly following the declarative debugging approach.

Declarative debugging is a semi-automatic debugging technique where the debugger
tries to locate the node in a computation tree which is ultimately responsible for a visible
bug symptom. This is done by asking questions on correctness of solutions to the user,
which assumes the role of the oracle. As noted by [2, 75], when debugging real code, the
questions are often textually large and may be difficult to answer.

Abstract diagnosis for Logic Programs [27, 26, 28] is a framework parametric w.r.t.
an abstract program property which can be considered as an extension of declarative
debugging since there are instances of the framework that deliver the same results. It
is based on the use of an immediate consequence operator TP to identify bugs in logic
programs. The framework is goal independent and does not require the determination of
symptoms in advance.

In this chapter, we develop an abstract diagnosis method for functional logic programs
using the ideas of [27]. The technique is inherently based on the use of an immediate
consequence operator, therefore the (top-down) operational semantics for functional logic
languages in the literature are not suited for this purpose. Thus we make use of the
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abstraction framework of Chapter 4 for producing an “abstract immediate consequence
operator” PαJP K by approximation the concrete PνJP K operator of Subsection 3.1.3.

We show that, given the abstract intended specification Sα of the semantics of a
program P , we can check the correctness of P by a single application of PαJP K and thus,
by a simple static test, we can determine all the rules which are wrong w.r.t. the considered
abstract property.

The diagnosis is based on the detection of incorrect rules and uncovered elements, which
both have been defined in terms of one application of PαJP K to the abstract specification.
It is worth noting that no fixpoint computation is required, since the abstract semantics
does not need to be computed. The key issue of this approach is the goal-independence of
the concrete semantics, meaning that the semantics is defined by collecting the observable
properties about “most general” calls, while still providing a complete characterization of
the program behavior.

Among other valuable facilities, this debugging approach supports the development of
efficacious diagnostic tools that detect program errors without having to determine symp-
toms in advance. By using suitable abstract domains several details of the computation
can be hidden and thus the information that is required to the user about the (abstract)
intended behaviour can be dramatically reduced. Obviously if we use more abstract do-
mains we can detect less errors: for example an erroneous integer value cannot be detected
by looking at groundness information. The choice of an abstract domain is thus a trade-
off between the precision of errors that can be detected and the effort in providing the
specification.

5.1 Declarative debugging of functional logic programs

Declarative debugging algorithms were first developed for diagnosing wrong and missing
answers in Prolog [89]. More recently the ideas have been adapted to diagnosing errors in
lazy functional languages [74, 70, 72] and functional logic languages [19, 14, 17, 18].

In [71], Lee Naish proposed a simple but very general scheme for declarative debugging
which can be applied to multiple classes of bugs in a variety of languages. The debugging
scheme assumes that any terminated computation can be represented as a finite tree, called
computation tree. The root of this tree corresponds to the result of the main computation,
and each node corresponds to the result of some intermediate subcomputation. Moreover
it is assumed that the result at each node is determined by the results of the children
nodes. Therefore, every node can be seen as the outcome of a single computation step.

Diagnosis proceeds by traversing the computation tree, asking questions to an external
oracle (generally the user) looking for erroneous nodes. Notice, however, that an erroneous
node which has some erroneous child does not necessarily correspond to a wrong compu-
tation step, since it can have some erroneous children which actually cause the symptom.
In oder to avoid unsoundness, the debugging scheme continues the traversing until a so-
called buggy node is found, that is a node whose result is erroneous, but its children have
all correct results. The user does not need to understand detailed operational information
about the computation. Any buggy node represents an erroneous computation step, and
the debugger can display the program fragment responsible for it.

It often happens that an error symptom is caused by more than one bug. In such cases
it is necessary to reiterate the application of the scheme to detect all the bugs related to
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the same error symptom. For instance, suppose that a node corresponds truly to a wrong
computation but it is not a buggy node, in a first stage it is not returned by the debugger,
however, after fixing the bugs corresponding to the buggy nodes, it eventually becomes a
buggy node which can be detected by using again the debugger.

The known declarative debuggers can be understood as concrete instances of the de-
bugging scheme. Each particular instance is determined by three parameters: (i) a notion
of computation tree, (ii) a notion of erroneous node, (iii) a method to extract a buggy
program fragment from a buggy node. The choice of these parameters depends on the
programming paradigm and the kind of errors to be debugged.

5.3 Abstract diagnosis of functional logic programs

Now, following the approach of [27], we define abstract diagnosis of functional logic pro-
grams. The framework of abstract diagnosis [27] comes from the idea of considering the
abstract versions of Park’s Induction Principle [80]1. It can be considered as an exten-
sion of declarative debugging since there are instances of the framework that deliver the
same results. However, in the general case, diagnosing w.r.t. abstract program properties
relieves the user from having to specify in excessive detail the program behavior (which
could be more error-prone than the coding itself).

There have been several proposals about Declarative Diagnosis of functional logic lan-
guages, like [72, 18, 17, 19]. The approach has revealed much more problematic in this
paradigm than in the logic paradigm. As can be read from [18] “A more practical problem
with existing debuggers for lazy functional (logic) languages is related to the presentation
of the questions asked to the oracle”. Actually the call-time choice model and the pe-
culiarity of the needed narrowing strategy cannot be tackled by pure declarations about
expected computed results. Roughly speaking, the oracle must “understand” neededness.

As already noted by [18], the “simplification” proposed in [72] to adopt the generic
approach to FLP is not well-suited. [18] aims at a debugging method that asks the oracle
about computed answers that do not involve function calls, plus possible occurrences
of an “undefined symbol”. However this is exactly the kind of information we have in
our concrete semantics, which then makes it a suitable starting point for our diagnosis
methodology.

In the following, Pν plays the role of the concrete semantic operator and is referred
to as P omitting ν. Sα is the specification of the intended behavior of a program w.r.t.
the property α.

Definition 5.3.1 Let P be a program, α be a property over domain A and Sα ∈ A.

1. P is (abstractly) partially correct w.r.t. Sα if α(F JP K) ≤ Sα.

2. P is (abstractly) complete w.r.t. Sα if Sα ≤ α(F JP K).

3. P is totally correct w.r.t. Sα, if it is partially correct and complete.

It is worth noting that the above definition is given in terms of the abstraction of the con-
crete semantics α(F JP K) and not in terms of the (possibly less precise) abstract semantics
FαJP K. Sα is the abstraction of the intended concrete semantics of P . Thus, the user can

1a concept of formal verification that is undecidable in general
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only reason in terms of the properties of the expected concrete semantics without being
concerned with (approximate) abstract computations. Note also that our notion of total
correctness does not concern termination (as well as finite failures). We cannot address
termination issues here, since the concrete semantics we use is too abstract.

The diagnosis determines the “originating” symptoms and, in the case of incorrectness,
the relevant rule in the program. This is captured by the definitions of abstractly incorrect
rule and abstract uncovered element.

Definition 5.3.2 Let P be a program, R a rule and e,Sα ∈ A.
R is abstractly incorrect w.r.t. Sα if PαJ{R}KSα � Sα.
e is an uncovered element w.r.t. Sα if e ≤ Sα and e ∧ PαJP KSα = ⊥ 2.

Informally, R is abstractly incorrect if it derives a wrong abstract element from the in-
tended semantics. e is uncovered if there are no rules deriving it from the intended seman-
tics. It is worth noting that checking these conditions requires one application of PαJP K
to Sα, while the standard detection based on symptoms would require the construction of
α(F JP K) and therefore a fixpoint computation.

It is worth noting that correctness and completeness are defined in terms of α(FαJP K),
i.e., in terms of abstraction of the concrete semantics. On the other hand, abstractly
incorrect rules and abstract uncovered elements are defined directly in terms of abstract
computations (the abstract immediate consequence operator PαJP K). In this section, we
are left with the problem of formally establishing the relation between the two concepts.

Theorem 5.3.3 If there are no abstractly incorrect rules in P , then P is partially correct
w.r.t. Sα.

Proof.
By hypothesis ∀r ∈ P . PαJ{r}KSα ≤ Sα. Hence PαJP KSα ≤ Sα, i.e., Sα is a pre-fixpoint of
PαJP K. Since α(F JP K) ≤ FαJP K = lfp PαJP K, by Knaster-Tarski’s Theorem α(F JP K) ≤
FαJP K ≤ Sα. The thesis follows by Point 1 of Definition 5.3.1.

Theorem 5.3.4 Let P be partially correct w.r.t. Sα. If P has abstract uncovered elements
then P is not complete.

Proof.
By construction α ◦ P JP K ◦ γ ≤ PαJP K, hence α ◦ P JP K ◦ γ ◦ α ≤ PαJP K ◦ α. Since
id v γ ◦ α, it holds that α ◦ P JP K ≤ α ◦ P JP K ◦ γ ◦ α and α ◦ P JP K ≤ PαJP K ◦ α. Hence,

α(F JP K) = [ since F JP K is a fixpoint ]

α(P JP KF JP K) ≤ [ by α ◦ P JP K ≤ PαJP K ◦ α ]

PαJP Kα(F JP K) ≤ [ since PαJP K is monotone and P is partially correct ]

PαJP KSα

Now, if P has an abstract uncovered element e i.e., e ≤ Sα and e ∧ PαJP KSα = ⊥, then
e ∧ α(F JP K) = ⊥ and Sα � α(F JP K). The thesis follows from Point 2 of Definition 5.3.1.

2Note that e ∧ PαJP KSα = ⊥ implies e � PαJP KSα , but the converse is not true. Thus this definition
is meant to detect “atomic” uncovered elements.



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.
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Abstract incorrect rules are in general just a warning about a possible source of errors.
Because of the approximation, it can happen that a (concretely) correct rule is abstractly
incorrect.

However, as shown by the following theorems, all concrete errors — that are “visible”3

in the abstract domain — are detected as they lead to an abstract incorrectness or abstract
uncovered.

Theorem 5.3.5 Let r be a rule, S a concrete specification. If P J{r}KS 6v S and α(P J{r}KS ) �
α(S ) then r is abstractly incorrect w.r.t. α(S ).

Proof.

Since S v γ ◦ α(S ), by monotonicity of α and the correctness of PαJ{r}K, it holds that
α(P J{r}KS ) ≤ α(P J{r}Kγ◦α(S )) ≤ PαJ{r}Kα(S ). By hypothesis α(P J{r}KS ) � α(S ), there-
fore PαJ{r}Kα(S ) � α(S ), since α(P J{r}KS ) ≤ PαJ{r}Kα(S ). The thesis holds by Defini-
tion 5.3.2.

Theorem 5.3.6 Let S be a concrete specification. If there exists an abstract uncovered
element a w.r.t. α(S ), such that γ(a) v S and γ(⊥) = ⊥, then there exists a concrete
uncovered element e w.r.t. S (i.e., e v S and e u P JP KS = ⊥).

Proof.

By hypothesis a ≤ α(S ) and a ∧ PαJP Kα(S ) = ⊥. Hence, since γ(⊥) = ⊥ and γ preserves
greatest lower bounds, γ(a)u γ(PαJP Kα(S )) = ⊥. By construction PαJP K = α ◦P JP K ◦ γ,
thus γ(a) u γ(α(P JP Kγ(α(S )))) = ⊥. Since id v γ ◦ α and by monotonicity of P JP K,
γ(a) ∧ P JP KS = ⊥. By hypothesis γ(a) v S hence γ(a) is a concrete uncovered element.

The diagnosis w.r.t. approximate properties over Noetherian domains is always effec-
tive, because the abstract specification is finite. However, as one can expect, the results
may be weaker than those that can be achieved on concrete domains just because of
approximation. Namely,

• absence of abstractly incorrect rules implies partial correctness,

• every incorrectness error is identified by an abstractly incorrect rule. However an
abstractly incorrect rule does not always correspond to a bug.

• every uncovered is identified by an abstract uncovered. However an abstract uncov-
ered does not always correspond to a bug.

• there exists no sufficient condition for completeness.

It is important to note that our method, since it has been derived by (properly)
applying abstract interpretation techniques, is correct by construction.

Another property of our proposal, which is particularly useful for application, is that

3A concrete symptom is visible if its abstraction is different from the abstraction of correct answers.
For example if we abstract to the length of lists, an incorrect rule producing wrong lists of the same length
of the correct ones is not visible.
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• it can be used with partial specifications,

• it can be used with partial programs.

Obviously one cannot detect errors in rules involving functions which have not been spec-
ified. But for the rules that involve only functions that have a specification the check can
be made, even if the whole program has not been written yet. This includes the possibility
of applying our “local” method to all parts of a program not involving constructs which we
cannot handle (yet). With other “global” approaches such programs could not be checked
at all.

We now show the depth(k) instance of our methodology to provide a demonstrative
application of our abstract diagnosis framework. It shows some encouraging results. Thus
it will be interesting in the future to experiment also with other possible instances over
more sophisticated domains.

5.4 Case Studies

Now we show how we can derive an efficacious debugger by choosing suitable instances of
the general framework described in Chapter 4.

In Sections 5.4.1 and 5.4.2 we consider the groundness dependencies and the depth(k)
abstractions of Sections 4.2.1 and 4.2.2 respectively.

5.4.1 Abstract diagnosis on POS

In this subsection we consider as abstract property the groundness abstraction αΓ intro-
duced in Subsection 4.2.1.

Example 5.4.1

Consider the program P obtained adding to the program P+ of Example 2.2.13 the fol-
lowing buggy rule.

R: isZero x = x =:= (y + x) where y free

where the sub-call y + x should have been x + y to be correct w.r.t. the intended ground-
ness behavior

Sgr :=


x+ y . % 7→ x ∧ (% ↔ y)

x =:= y . % 7→ % ∧ x↔ y

isZero(x) . % 7→ x ∧ %

We detect that the rule R is abstractly incorrect since

Pgr J{R}KSgr =
{

isZero(x) . % 7→ % 6≤ Sgr

Example 5.4.2

Consider the program
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data Tree a = EmptyTree | Node a (Tree a) (Tree a)

R: lookup k (Node (k’,val) l r) =

if k == k’

then val

else (lookup k l) ? (lookup k r)

which nondeterministically searches the values in a tree associated to a given key k. This
program is correct w.r.t. the intended specification

Sgr :=


x ? y . % 7→ (x ∧ y)→ %

if c then x else y . % 7→ c ∧ (% → (x ∨ y)) ∧ ((x ∧ y)→ %)

x == y . % 7→ x ∧ y ∧ %
lookup(k, t) . % 7→ k ∧ (t→ %)

but the rule R is abstractly incorrect, since

Pgr J{R}KSgr =
{

lookup(k, t) . % 7→ true 6≤ Sgr

Example 5.4.2 shows the weakness of the diagnosis w.r.t. POS abstraction. Indeed, due
to the level of approximation, the amount of false positives (i.e., abstract errors not cor-
responding to concrete ones) is not negligible.

Example 5.4.3
Consider the program boyer taken from the NOFIB-Buggy collection4. The program
contains the following buggy piece of code

find vid [] = (False , error)

R: find vid1 ((vid2 ,val2):bs) =

if vid1 == vid2

then (True , val2)

else find vid2 ((vid1 ,val2):bs)

since the sub-call find vid2 ((vid1,val2):bs) in R should have been find vid1 bs to
be correct. Providing as intended semantics on POS the specification

Sgr :=


error . % 7→ %

if c then x else y . % 7→ c ∧ (% → (x ∨ y)) ∧ ((x ∧ y)→ %)

x == y . % 7→ x ∧ y ∧ %
find(v, xs) . % 7→ (v ∨ xs) ∧ (xs→ %)

we detect that R is abstractly correct, since

Pgr J{R}KSgr =
{

find(v, xs) . % 7→ (v ∨ xs) ∧ (xs→ %) ≤ Sgr

This happens because the concrete incorrectness symptoms caused by the bug do not affect
the groundness behavior of the program5.

4Available at http://einstein.dsic.upv.es/nofib-buggy.
5In Example 5.4.7 we will see that with the depth(k) abstraction we can tackle this bug.

http://einstein.dsic.upv.es/nofib-buggy
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5.4.2 Abstract diagnosis on depth(k)

In this section we consider the depth(k) abstraction κ introduced in Subsection 4.2.2. Note
that, depth(k) partial computed results that do not contain variables belonging to V̂ are
concrete partial computed results. An additional benefit w.r.t. the general outcomes is
that errors exhibiting symptoms without cut variables are concrete (hence, real) errors
(see Theorem 5.3.5).

Example 5.4.4
Consider the buggy program for from (proposed in [17]) with ruleR : from n = n : from n

and as intended specification Sκ the fixpoint from Example 4.2.5 obtained with k = 3.
We detect that rule R is abstractly incorrect since

PκJ{R}KSκ =
{

from(n) 7→ {ε � %–n : n : x̂1 : x̂2} 6≤ Sκ

Example 5.4.5
Consider the buggy program Pbug

main = C (h (f x)) x

h (S x) = Z

R: f (S x) = S Z

where rule R should have been f x = S (h x) to be correct w.r.t. the intended semantics
on depth(k), with k > 2,

Sκ =


f (x) 7→ {ε � %–S(%1), {x/S(x′)} � S(Z)}
h(x) 7→ {ε � %, {x/S(x′)} � Z}
main 7→ {ε � %–C(Z, x)}

This error preserves the computed result behavior both for h and f , but not for main. In
fact, main evaluates to ε · C(Z, S(x′)). Rule R is abstractly incorrect, since

PκJ{R}KSκ =
{

f (x) 7→ {ε � %, {x/S(x′)} � S(%1)–S(Z)} 6≤ Sκ

Note that the diagnosis method of [19, 17] does not report incorrectness errors (as
there are no incorrectness symptoms) while it reports the missing answer ε · C(Z,Z).

Example 5.4.6
Consider the following buggy program for double w.r.t. the depth(2) specification Sκ.

R1: double Z = S Z

R2: double (S x) = S (double x)

Sκ :=

{
double(x) 7→

{
ε � %, {x/Z} � Z, {x/S(x′)} � S(%1)–S(S(ŷ)),

{x/S(Z)} � S(S(ŷ)), {x/S(S(ŷ1))} � S(S(ŷ2))

}
We can detect that both R1 and R2 are abstractly incorrect, since

PκJ{R1}KSκ(double(x)) = {ε � %, {x/Z} � S(%1)–S(Z)}
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PκJ{R2}KSκ(double(x)) =

{
ε � %, {x/S(x′)} � S(%1), {x/S(Z)} � S(Z),

{x/S(S(ŷ1))} � S(S(ŷ2))

}

However the debugger in [4] is not able to determine for k = 2 that rule R2 is incorrect.
This is because the errors in both the rules interfere with each other, making the goal
double (S Z) asymptomatic.

Example 5.4.7

Consider the buggy program boyer of Example 5.4.3 and as intended depth(4) specification
Sκ defined by



error 7→ {ε � %–Error}
if c then x else y 7→ {ε � %, {c/True} � x, {c/False} � y}

x == y . % 7→

{
ε � %, {x/A, y/A} � True, {x/B, y/B} � True,

{x/A, y/B} � False, {x/B, y/A} � False

}

find(v, xs) . % 7→



ε � %, {xs/[]} � (%1, %2)–(False, Error),

{v/A, xs/(A, x) : xs′} � (%1, %2)–(True, x),

{v/B, xs/(B, x) : xs′} � (%1, %2)–(True, x),

{v/A, xs/(B, x) : []} � (%1, %2)–(False, Error),

{v/B, xs/(A, x) : []} � (%1, %2)–(False, Error),

{v/A, xs/(B, x1) : (A, x2) : xs′} � (%1, %2)–(True, x2),

{v/B, xs/(A, x1) : (B, x2) : xs′} � (%1, %2)–(True, x2),

{v/A, xs/(B, x1) : (B, x2) : []} � (%1, %2)–(False, Error),

{v/B, xs/(A, x1) : (A, x2) : []} � (%1, %2)–(False, Error),

{v/A, xs/(B, x1) : (B, x2) : (ŷ1, ŷ2) : x′s} � (%1, %2)–(True, x3),

{v/B, xs/(A, x1) : (A, x2) : (ŷ1, ŷ2) : x′s} � (%1, %2)–(True, x3),

{v/A, xs/(B, x1) : (B, x2) : (ŷ1, ŷ2) : []} � (%1, %2)–(False, Error),

{v/B, xs/(A, x1) : (A, x2) : (ŷ1, ŷ2) : []} � (%1, %2)–(False, Error),

{v/A, xs/(B, x1) : (B, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(True, x4),

{v/B, xs/(A, x1) : (A, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(True, x4),

{v/A, xs/(B, x1) : (B, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(False, Error),

{v/B, xs/(A, x1) : (A, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(False, Error)


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In contrast to Example 5.4.3, using the depth(k) abstraction we find that rule R is ab-
stractly incorrect since PκJ{R}KSκ(find(v, xs)) is

ε � %, {v/A, xs/(A, x) : xs′} � (%1, %2)–(True, x),

{v/B, xs/(B, x) : xs′} � (%1, %2)–(True, x),

{v/A, xs/(B, x) : []} � (%1, %2)–(False, Error),

{v/B, xs/(A, x) : []} � (%1, %2)–(False, Error),

{v/B, xs/(A, x1) : (B, x2) : []} � (%1, %2)–(False, Error),

{v/A, xs/(B, x1) : (A, x2) : []} � (%1, %2)–(False, Error),

{v/B, xs/(A, x1) : (B, x2) : (ŷ1, ŷ2) : xs′} � (%1, %2)–(True, x3),

{v/A, xs/(B, x1) : (A, x2) : (ŷ1, ŷ2) : xs′} � (%1, %2)–(True, x3),

{v/B, xs/(A, x1) : (B, x2) : (ŷ1, ŷ2) : []} � (%1, %2)–(False, Error),

{v/A, xs/(B, x1) : (A, x2) : (ŷ1, ŷ2) : []} � (%1, %2)–(False, Error),

{v/B, xs/(A, x1) : (B, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(True, x4),

{v/A, xs/(B, x1) : (A, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(True, x4),

{v/B, xs/(A, x1) : (B, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(False, Error),

{v/A, xs/(B, x1) : (A, x2) : (ŷ1, ŷ2) : ŷ3 : ŷ4} � (%1, %2)–(False, Error)


This example is particularly interesting, because the bug introduces non-termination, thus
preventing declarative debuggers to be applied. Our methodology is not affected by this
kind of problems because it does not compute fixpoints, and does not need any symptom
in advance.

Example 5.4.8
The Haskell program clausify taken from the NOFIB-Buggy collection, contains the
following buggy piece of code

data Formula = Sym Char | Not Formula

| Dis Formula Formula | Con Formula Formula

| Imp Formula Formula | Eqv Formula Formula

R1: conjunct (Con p q) = True

R2: conjunct p = True

Rule R should have been conjunct p = False to be correct w.r.t. the depth(1) specifi-
cation

Sκ :=

conjunct(x) 7→


ε � %, {x/Con(p, q)} � True, {x/Sym(c)} � False,

{x/Not(p)} � False, {x/Imp(p, q)} � False,

{x/Dis(p, q)} � False, {x/Eqv(p, q)} � False


Using the conversion algorithm of Section 3.2 we obtain the semantically equivalent Curry
program



Tesi di dottorato di Giovanni Bacci, discussa presso l’Università degli Studi di Udine.
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D0: conjunct (Con p q) = True

D1: conjunct (Sym c) = True

D2: conjunct (Not p) = True

D3: conjunct (Dis p q) = True

D4: conjunct (Imp p q) = True

D5: conjunct (Eqv p q) = True

where rule D0 has been generated from rule R1, whereas rules D1, . . . , D5 from rule R2.
Trivially, rules D1, . . . , D5 are abstractly incorrect w.r.t. Sκ, whereas D0 is the only

abstractly correct one. Thus we can deduce that rule R2 is abstractly incorrect.

We run our prototype on the possible benchmarks from the NOFIB-Buggy collection
available at http://einstein.dsic.upv.es/nofib-buggy. Not all benchmarks can be checked
yet since errors are in rules using higher-order or I/O or arithmetical features, which our
semantic framework can not handle. However, since our methodology processes each rule
independently, we can anyway find errors in the first-order rules of general programs,
giving a partial specification. Indeed we discovered the incorrect rule in boyer at depth-4
(see Example 5.4.7); we detected at depth-1 the incorrect rules of clausify, knights and
lift6; we found some uncovered elements for pretty, sorting and fluid7 at depth-8,
depth-3 and depth-2, respectively.

The case of boyer is particularly interesting, because the error introduces non-termination
and prevents declarative debuggers to be applied. Our methodology is not concerned by
this kind of errors because it does not compute fixpoints.

The selection of the appropriate depth for the abstraction is a sensitive point of this
instance, since the abstraction might not be precise enough. For example if we consider
k = 2 in Example 5.4.4 we do not detect the incorrectness. The question of whether an
optimal depth exists such that no additional errors are detected by considering deeper
cuts is an interesting open problem which we plan to investigate as further work.

It is important to note that the resulting abstract diagnosis encompasses some limita-
tions of other works on declarative diagnosis:

• Symptoms involving infinite answers cannot be directly tackled by [19, 17], while, if
the error manifests in the first part of the infinite answer we detect it (Example 5.4.4).

• If we just compare the actual and the intended semantics of a program some incor-
rectness bugs can be “hidden” because of an incompleteness bug. Our technique
does not suffer of error interference (Examples 5.4.5 and 5.4.6), as each possible
source of error is checked in isolation. Moreover we detect all errors simultaneously.

• It can be applied on partial programs.

5.5 Applicability of the framework

Depending on the chosen abstract domain very different scenarios arise about the prag-
matic feasibility of our proposal. The main difference depends on the size of the abstract
domain.

Small domains Specifications are small (and thus it is quite practical for the user to
write them directly). However, due to the great amount in approximation,

6We exploited the conversion algorithm of Section 3.2 in order to simulate Haskell selection rule.
7Minor changes has been done to replace arithmetic operations with Peano’s notation.

http://einstein.dsic.upv.es/nofib-buggy
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126 5. Abstract Diagnosis

• the number of false positives (abstract errors not corresponding to concrete
ones) increases;

• the number of not visible concrete errors increases.

For the former issue it is possible to adapt a multi-domain approach that uses, in
addition to the first, other more concrete abstract domains. For all abstract incorrect
rules detected with the first abstract domain the user can be asked to write a (partial)
more concrete specification limited to the functions involved in the abstract incorrect
rules. The overhead of giving a more concrete specification is just localized by need.

We have made some experiments on a small domain, namely the domain POS for
groundness dependencies analysis. This experiments showed that manually writ-
ing the specification is certainly affordable in this case. However, as expected, the
resulting instance it is not very powerful in detecting errors.

Big domains Due to the good precision of these domains, we can detect errors more
precisely. However in these cases it is unreasonable to provide the whole specification
manually. One possible solution to this issue is to compute the fixpoint of the buggy
program and then present the user with the actual semantics so he can inspect it
and just modify the results that he does not expect. All the explicit information
given directly by the user can be saved (within the code itself) and then reused in
successive sessions.

The pragmatical choice of an abstract domain is thus a tradeoff between the precision of
errors that can be detected and the effort in providing the specification.

As a final remark about applicability of the current proposal beyond the first order
fragment, let us note that we can tackle higher-order features and primitive operations
of functional (logic) languages in the same way proposed by [52]: by using the technique
known as “defunctionalization” and by approximating, very roughly, calls to primitive
operations, that are not explicitly defined by rewrite rules, just with variables over V̂.

5.6 Related Work

In particular we have considered the depth(k) abstraction as a case study. depth(k) is an
interesting finite abstraction of an infinite set of constructor terms are sets of terms up to
a particular depth k, which has already been used in call-pattern analysis for functional
logic programs [52], the abstract diagnosis of functional programs [4] and logic programs
[27] or in the abstraction of term rewriting systems [11] (with k = 1).

It is worth noting that the resulting abstract diagnosis encompasses some limitations
of previous works

• The interference of two (or more) errors can be asymptomatic. The classical case is
when we have an incompleteness error (something missing) and an incorrectness error
that uses erroneously the missing part. Hence, until the incompleteness error is not
fixed, there won’t be any incorrectness symptom and declarative diagnosis cannot
even start. Abstract diagnosis does not suffer of error interference, as each possible
source of error is checked in isolation. Moreover it detects all errors simultaneously.
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• Another relevant feature is the applicability in case of non-terminating programs.
Frequently the error introduces non-termination and prevents declarative debuggers
to be applied. Our methodology is not concerned by this kind of errors because it
does not compute fixpoints and can indeed reveal the bug.

• “Real” Curry programs may contain higher-order, I/O and arithmetical features,
which our semantic framework can not handle. However, since our methodology
processes each rule independently, we can anyway find errors in the first-order rules
of general programs, giving a partial specification. This is why we could anyway run
our prototype on almost all benchmarks from the NOFIB-Buggy collection and we
found most of the errors (actually all that do depend on first-order features).

• Symptoms involving infinite computed results cannot be directly tackled by declar-
ative diagnosis, while, if the error manifests in the first part of the infinite computed
result we detect it.

5.7 Discussion of the results

We formulated an efficacious generic scheme for the declarative debugging of functional
logic programs based on approximating the P JP K operator by means of an abstract PαJP K
operator obtained by abstract interpretation. Our approach is based on the ideas of [4, 27]
which we apply to the diagnosis of functional logic programs. The framework of abstract
diagnosis [27] comes from the idea of considering the abstract versions of Park’s Induction
Principle [80]8.

We showed that, given the intended abstract specification Sα of the semantics of a
program P , we can determine all the rules which are wrong w.r.t. the considered abstract
property by a single application of PαJP K to Sα. In the general case, diagnosing w.r.t.
abstract program properties relieves the user from having to specify in excessive detail the
program behavior (which could be more error-prone than the coding itself).

There are some features of this application that benefit from the basic semantics we
have proposed in this thesis. Namely, it can be used both with partial specifications and
partial programs.

For future work, we intend to derive the instances of the framework for the reduced
products between depth(k) and several domains typical of program analysis, like POS,
sharing, types, etc.. This could provide better tradeoffs between precision and size of
specifications.

We also plan to develop abstract diagnosis on a more concrete base semantics, like the
small-step semantics of Chapter 3, which can model “functional dependencies” (in order
to tackle pre-post conditions) that could be employed to define abstract verification [24]
for functional logic programs.

8a concept of formal verification that is undecidable in general
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6
Automatic Synthesis of Specifications

Abstract

This chapter presents a technique to automatically infer algebraic property-oriented
specifications from first-order Curry programs. Our technique statically infers from
the source code of a Curry program a specification which consists of a set of semantic
properties that the program operations satisfy. These properties are given by means of
equations relating (nested) operation calls that have the same behavior. Our method
relies on the semantics of Section 3.1 for achieving, to some extent, the correctness of
the inferred specification, as opposed to other similar tools based on testing.

We will present the inference approach emphasizing the difficulties addressed for
the case of the Curry language.

6.1 Introduction

Specifications have been widely used for several purposes: they can be used to aid (for-
mal) verification, validation or testing, to instrument software development, as summaries
in program understanding, as documentation of programs, to discover components in li-
braries or services in a network context, etc. [5, 83, 22, 54, 43, 96, 76, 42]. Depending
on the context and the use of specifications, they can be defined, either manually or au-
tomatically, before coding (e.g. for validation purposes), during the program coding (e.g.
for testing or understanding purposes), or after the code has been written (for verification
or documentation). We can find several proposals of (automatic) inference of high-level
specifications from an executable or the source code of a system, like [5, 22, 54, 42], which
have proven to be very helpful.

There are many classifications in the literature depending on the characteristics of
specifications [58]. It is common to distinguish between property-oriented specifications
and model-oriented or functional specifications. Property-oriented specifications are of
higher description level than other kinds of specifications; they consists in an indirect
definition of the system’s behavior by means of stating a set of properties, usually in the
form of axioms that the system must satisfy [95, 94]. In other words, a specification does
not represent the functionality of the program (the output of the system) but its properties
in terms of relations among the operations that can be invoked in the program (i.e.,
different calls that have the same behavior when executed). This kind of specifications
is particularly well suited for program understanding: the user can realize non-evident
information about the behavior of a given function by observing its relation to other
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functions. Moreover, the inferred properties can manifest potential symptoms of program
errors which can be used as input for (formal) validation and verification purposes.

The task of automatically inferring program specifications has shown to be very com-
plex. There exists a large number of different proposals and, due to the complexity of the
problem, it becomes natural to impose some restrictions on the general case. Many aspects
vary from one solution to another: the restriction of the considered programming language,
the kind of specifications that are computed (model-oriented vs. property-oriented speci-
fications), the kind of programs considered, etc.

We can identify two main stream approaches for the inference of specifications: glass-
box and black-box. The glass-box approach [5, 22] assumes that the source code of the
program is available. In this context, the goal of inferring a specification is mainly applied
to document the code, or to understand it [22]. Therefore, the specification must be
more succinct and comprehensible than the source code itself. The inferred specification
can also be used to automatize the testing process of the program [22] or to verify that
a given property holds [5]. The black-box approach [54, 42] works only by running the
executable. This means that the only information used during the inference process is the
input-output behavior of the program. In this setting, the inferred specification is often
used to discover the functionality of the system (or services in a network) [42]. Although
black-box approaches work without any restriction on the considered language—which is
rarely the case in a glass-box approach—in general, they cannot guarantee the correctness
of the results (whereas indeed semantics-based glass-box approaches can).

For this work, we took inspiration from QuickSpec [22], which is a black-box approach
based on testing defined to infer algebraic property-oriented specifications from Haskell
programs [82]. However, in our proposal

• we aim to infer correct (algebraic) property-oriented specifications. So we propose a
glass-box semantic-based approach.

• we consider the functional logic language Curry [53, 51]. Curry is a multi-paradigm
programming language that combines functional and logic programming. Because
of all its very high-level features, the problem of inferring specifications for this kind
of languages poses several additional problems w.r.t. other paradigms. We discuss
these issues in Section 6.2.

In the rest of the chapter, we first introduce the problem of generating useful specifi-
cations for the functional logic paradigm. We illustrate the kind of specification that we
compute and the problems that we have to address in our setting by means of a guid-
ing example. Thereafter, we explain how the specifications are computed in detail. We
also show some examples of specifications computed by the prototype implementing the
technique and, finally, we conclude.

6.2 Property-oriented Specifications for Curry

Like QuickSpec [22], we are interested in automatically inferring program specifications as
a set of equations of the form e1 = e2 where e1, e2 are generic program expressions that
have the same computational behavior. Several theoretical (and pragmatical) questions
immediately arise:
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• What is the exact meaning of the equality symbol1?

• Which equations can we obtain?

• Are they useful for the user? Are they easy to understand?

• Which expressions should we consider?

• How can we ensure termination of the inference?

We will answer these questions throughout the chapter, but let us start first by introducing
an illustrative example, which will be used both to clarify the aspects of the problem and
thereafter to demonstrate the proposed technique.

Example 6.2.1 (The illustrative Queue example)
The following Curry program implements a two-sided queue where it is possible to insert
or delete elements on both left and right sides:

data Queue a = Q [a] [a]

new = Q [] []

inl x (Q xs ys) = Q (x:xs) ys

inr x (Q xs ys) = Q xs (x:ys)

outl (Q [] ys) = Q (tail (reverse ys)) []

outl (Q (_:xs) ys) = Q xs ys

outr (Q xs []) = Q [] (tail (reverse xs))

outr (Q xs (_:ys)) = Q xs ys

null (Q [] []) = True

null (Q (_:_) _) = False

null (Q [] (_:_)) = False

The queue is implemented as two lists where the first list corresponds to the first part of
the queue and the second list is the second part of the queue reversed. The inl function
adds the new element to the head of the first list, whereas the inr function adds the new
element to the head of the second list (the last element of the queue). The outl (outr)
function drops one element from the left (right) list, unless the list is empty, in which case
it reverses the other list and then swaps the two lists before removal.

Note that a Haskell programmer would write a different definition for the null function,
using just one rule for the false case, namely null _ = False. This is wrong in Curry
since, because of non-determinism, we would always have a False computed result in
addition to the possible True.

In order to be useful, the specification must be concise enough, avoiding redundancies.
With a comprehensible specification the user can easily learn the properties of the program
from the equations, and also detect when some property is missing.

For the Queue program, one could expect a property-oriented specification with equa-
tions like

null new = True (6.2.1)

1Different notions of computational behavior can be used.
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inl y (inr x q) = inr x (inl y q) (6.2.2)

outr (inr x q) = outl (inl x q) (6.2.3)

null (inl x q) = False (6.2.4)

outl (inl x q) = q (6.2.5)

Equation (6.2.2) states that inl and inr are in some sense commutative; Equation (6.2.4)
says that, after inserting an element, the queue is not null; Equation (6.2.5) states that,
if we execute an outl after an inl, we get the original queue back.

These equations, of the form e1 = e2, can be read as

all possible outcomes for e1 are also outcomes for e2, and vice versa. (6.2.6)

In the following, we call this equivalence computed result equivalence and we denote it by
=CR.

Actually, Equations (6.2.1), (6.2.2) and (6.2.3) are literally valid in this sense since, in
Curry, free variables are admitted in expressions, and the mentioned equations are valid as
they are. This is quite different from the purely functional case where equations have to
be interpreted as properties that hold for any ground instance of the variables occurring
in the equation.

On the contrary, Equations (6.2.4) and (6.2.5) are not literally valid because null (inl x q)

computes {q/Q xs ys} · False 2 instead of just {} · False, and outl (inl x q) computes
{q/Q xs ys} · Q xs ys, instead of just {} · q. Note however that, because there is only one
data constructor Q of type Queue a, there is no pragmatical difference between a variable
q (of type Queue a) and Q xs ys, where xs, ys are free variables (all ground/non-ground
instances of both expressions are the same). Indeed, expression null (inl x (Q xs ys))

computes {} · False and expression outl (inl x (Q xs ys)) computes {} · Q xs ys.
So, if we denote with q:nonvar the term Q xs ys, then the following equations, slight
variations of Equations (6.2.4) and (6.2.5), now can be stated.

null (inl x q:nonvar) = False (6.2.7)

outl (inl x q:nonvar) = q:nonvar (6.2.8)

We think that also this kind of equations can be nevertheless interesting for the user
so, in addition to the previous “strict” notion of variable in equations, we also compute
equations employing this “weaker” notion. In general, the notation q:nonvar will denote
the instantiation of variable q to a term constructed by applying the data constructors (of
the right type) to free distinct variables. For brevity, we call this instance non-variable free
instantiation (which is unique, up to renaming). An equality involving :nonvar marked
variables will denote an equality which holds if we replace the variable q by the non-variable
free instantiation.

Because of the presence of logical variables there is another very relevant difference
w.r.t. the purely functional case, concerned with contextual equivalence: given a valid
equation e1 = e2, is it true that, for any context C, the equation C[e1] = C[e2] still
holds? This may seem a nonsensical question in purely functional languages, which are

2The expression {q/Q xs ys} · False denotes that the data value False has been reached with computed
answer substitution {q/Q xs ys}.
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referentially transparent ([91]) by language definition3. However, Curry is not referentially
transparent w.r.t. its operational behavior, i.e., an expression can produce different com-
puted results when it is embedded in a context that binds its free variables (as shown by
the following example).

Example 6.2.2
Given a program with the following rules

g x = C (h x)

h A = A

g’ A = C A

f (C x) B = B

the expressions g x and g’ x compute the same result, namely {x/A} · C A. However, the
expression f (g x) x computes one result, namely {x/B} · B, while expression f (g’ x) x

computes none.

Thus, in the Curry case, it is (much) more appropriate to additionally ask in (6.2.6) that
the outcomes must be equal also when the two terms are embedded within any context. We
call this equivalence contextual equivalence and we denote it by =C . Actually, Equations
(6.2.1), (6.2.2), (6.2.3), (6.2.7) and (6.2.8) are valid also in this sense.

Since =C is (obviously) stronger than =CR, there may be equations produced by =CR

but not produced by =C that can be nevertheless interesting for the user. So, in the
following, we use both notions.

6.2.1 Our Property-oriented Specifications

Besides =C and =CR, there are also even weaker forms of equality that we are interested
in. In this section, we formally present all the kinds of term equivalence notions that are
used to compute equations of the specification. We need first to introduce some basic
formal notions that are used throughout the chapter.

We say that a first order Curry program is a set of rules P built over a signature Σ
partitioned in C, the constructor symbols, and D, the defined symbols. V denotes a (fixed)
countably infinite set of variables and T (Σ,V) denotes the terms built over signature Σ and
variables V. We partition V into two sets Vn and Vnv of normal variables and variables
representing non-variable freely instantiated values. A fresh variable is a variable that
appears nowhere else.

We evaluate first order Curry programs on the condensed, goal-independent semantics
defined in Section 3.1 for functional logic programs. We do not use the traditional Curry
semantics, namely the operational and the I/O semantics, because they do not fulfill
referential transparency, so they are not an appropriate base semantics for computing
specifications w.r.t. =C . The (more elaborated) semantics of Section 3.1 instead fulfills
referential transparency. Moreover, this semantics has another pragmatical property which
makes it a very appropriate base semantics for our purposes: it is condensed, meaning that
denotations are, to some extent, the smallest possible (between all those semantics which
are fully abstract).

The denotation F JP K of a program P is the least fixed-point of an immediate conse-
quences operator P JP K, which is based on a term evaluation function E JtK which, for any

3The concept of referential transparency of a language can be stated in terms of a formal semantics as:
the semantics equivalence of two expressions e, e′ implies the semantics equivalence of e and e′ when used
within any context C[·]. Namely, ∀e, e′, C. JeK = Je′K =⇒ JC[e]K = JC[e′]K.
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term t ∈ T (Σ,V), gives the semantics of t as E JtKF JP K . Intuitively, the evaluation E JtKF JP K
computes a set of intervals of the form σ � s–s′ which collects the “relevant history” of the
computation of all computed results of t, abstracting from function calls and focusing only
on the way in which the result is built. In particular, every interval σ � s–v such that v
is a data value represents a normal form of the initial term. An interval is a triple of
the form σ � s–s′ where σ is a substitution binding variables of the initial expression with
linear constructor terms, and s, s′ are partial results, i.e., terms in T(C,V ∪ V%) that may
contain special variables (%0, %1, . . . ∈ V% , a set which is disjoint from V) indicating a
non-completed evaluation (see Section 3.1). Intervals σ � s–v whose ending term s do not
contain such variables induce a computed result σ · v. We will denote as cr(S) the set of
computed results of the semantic set S, namely cr(S) := {σ · v |σ � s–v ∈ S, v ∈ T(C,V)}.

Example 6.2.3
Consider the program P of Example 6.2.1. The semantics of function outr in F JP K is

outr(q) 7→



ε � %, {q/Q(xs, y : ys)} �Q(%1, %2)–Q(xs, ys),

{q/Q(xs, [])} �Q(%1, %2)–Q([], %2), {q/Q([x1], [])} �Q([], []),

{q/Q([x1, x2], [])} �Q([], %1 : %2)–Q([], [x2]),

...

{q/Q([x1, . . . , xn], [])} �Q([], %1 : %2)–Q([], [x2, . . . , xn]),

...


Formally, the (algebraic) specifications S which we infer are sets of (sequences of) equa-

tions of the form t1 =K t2 =K . . . =K tn, with K ∈ {C,CR,CBI ,G} and t1, t2, . . . , tn ∈
T (Σ,V). K distinguishes the kinds of computational equalities that we handle, which we
now present formally.

Contextual Equivalence =C . States that two terms t1 and t2 are equivalent if C[t1]
and C[t2] have the same behavior for any context C[·]. This is the most difficult
equivalence to be established, but the use of the semantics F JP K eases the task since
it is fully abstract w.r.t. the contextual program behavior equivalence. Therefore,
two terms t1 and t2 are related by the contextual relation =C if their semantics
coincide, namely

t1 =C t2 ⇐⇒ E Jt1KF JP K = E Jt2KF JP K

Intuitively, due to the definition of this semantics, this means that all the ways in
which these two terms reach their computed results coincide. Note that =C does
not capture termination properties, which is out of our current scope. However, the
technique that we are now proposing can work even if we have a non-terminating
function, a situation in which black-box approaches cannot work.

Computed-result equivalence =CR. This equivalence states that two terms are equiv-
alent when the outcomes of their evaluation are the same. Therefore, this notion
abstracts from the way in which the results evolve during computation.
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The =CR equivalence is coarser than =C (=C ⊆ =CR) as shown by Example 6.2.2.

It is important to note that we can determine =CR just by collecting computed results
induced by E JeKF JP K . Namely

t1 =CR t2 ⇐⇒ cr(E Jt1KF JP K) = cr(E Jt2KF JP K)

Constructor Based Instances Equivalence =CBI . It states that two terms are equiv-
alent if, for all possible instances of the variables with constructor terms T (C,V),
which compute the empty substitution, the computed values are the same.

This notion equalizes non-deterministic operations which produce computed results
that are subsumed by other computed results of the same operation, with operations
which produce just the most general results. This equivalence is coarser than =CR.

It is worth noting that we can determine =CBI from the computed results collected
so far, just by filtering out from them all the computed results which are not the
most general one, namely

t1 =CBI t2 ⇐⇒ cbi ◦ cr(E Jt1KF JP K) = cbi ◦ cr(E Jt2KF JP K)

where cbi(Scr ) := {α ∈ Scr | ∀β ∈ (Scr \ {α}).@ϑ ∈ CSubsts. βϑ ' α}.

Ground Equivalence =G. This equivalence states that two terms are equivalent if all
possible ground instances have the same outcomes. Equivalence =G is coarser than
=CBI .

The last equivalence is the easiest equivalence to be established. Note that it is the only
sensible notion in the purely functional paradigm. This fact allows one to have an intuition
of the reason why the problem of specification synthesis is more complex in the functional
logic paradigm.

To summarize, we have =C ⊆ =CR ⊆ =CBI ⊆ =G and only =C is referentially trans-
parent (i.e., a congruence w.r.t. contextual embedding).

6.3 Deriving Specifications from Programs

Now we are ready to describe the process of inferring specifications. The input of the
process consists of the Curry program to be analyzed and two additional parameters: a
relevant API, Σr, and a maximum term size, max size. The relevant API allows the user
to choose the operations in the program that will be present in the inferred specification,
whereas the maximum term size limits the size of the terms in the specification. As a
consequence, these two parameters tune the granularity of the specification, both making
the process terminating and allowing the user to keep the specification concise and easy
to understand.

The inference process consists of three phases, as depicted in Figure 6.1. In the follow-
ing we explain in detail the phases of the inference process by referring to the pseudocode
given in Algorithm 1. For the sake of comprehension, we present an untyped version of
the algorithm. The actual one is a straightforward modification conformant w.r.t. types.
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Inference Process

Compute
(abstract)
Semantics

Generation
of =C

classification

Equations
generation

Transformation
of the

Semantics

Specification

Curry
Program

API: Σr

max size

Figure 6.1: A general view of the inference process.

Computation of the abstract semantics (and initial classification). The first
phase of the algorithm, Lines 1 to 2 (in Algorithm 1), is the computation of the initial
classification that is needed to compute the classification w.r.t. =C . It is based on the
computation of an approximation of the semantics of the program (abstract semantics).
The semantics of a program is in general infinite, therefore, something has to be done
in order to have a terminating method. We use the depth(k) abstract semantics of Sub-
section 4.2.2 in order to achieve termination by giving up precision of the results. We
discuss this issue and, in particular, how and when we can ensure correctness at the end
of the section. To improve readability, now we describe the process based on the concrete
semantics of the language.

Terms are classified by their semantics into a data structure, which we call partition,
consisting of a set of equivalence classes ec formed by

• sem(ec): the semantics of (all) the terms in that class

• rep(ec): the representative term of the class, which is defined as the smallest term
in the class (w.r.t. the function size), and

• terms(ec): the set of terms belonging to that equivalence class.

The representative term is used in order to avoid much redundancy in the generation of
equations. Instead of using every term in an equivalence class to build terms of greater
size, we use only the representative term.

With the program’s semantics the initial part function can build the initial partition
which contains:

• the classes 〈E JtKF JP K , t, {t}〉, for all t = f(x1, . . . , xn);

• one class for a free (logical) variable 〈E JxK, x, {x}〉;

• one class for a non-variable freely instantiated value q:nonvar for each user-defined
data type;

• the classes for any built-in or user-defined constructor.
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Algorithm 1 Inference of an algebraic specification

Require: Program P ; Program’s relevant API Σr; Maximum term size max size
1. Compute F JP K : the (abstract) semantics of P
2. part ← initial part(F JP K)
3. repeat
4. part ′ ← part
5. for all f/n ∈ Σr do
6. for all ec1, . . . , ecn ∈ part do
7. t← f(rep(ec1), . . . , rep(ecn)) where the rep(eci) are renamed apart
8. if t not in part and size(t) ≤ max size then
9. s← E JtKF JP K : Compute the (abstract) semantics of term t

10. add to partition(t, s, part ′)
11. end if
12. end for
13. end for
14. until part ′ 6= part
15. specification ← ∅; add equations(specification, part)
16. for all kind ∈ [CR,CBI,G] do
17. part ← transform semantics(kind , part)
18. add equations(specification, part)
19. end for
20. return specification

Generation of =C classification. The second phase of the algorithm, Lines 3 to 14,
is the computation of the classification of terms w.r.t. =C . As we have said before, this is
also the basis for the generation of the other kinds of equivalence classes.

We iteratively select all symbols f/n of the relevant API Σr (Line 5) 5 and n equivalence
classes ec1, . . . , ecn from the current partition (Line 6). We build the term t = f(t1, . . . , tn),
where each ti is the representative term of eci, rep(ti); compute the semantics s = E JtKF JP K
and update the current partition part ′ with add to partition(t, s, part ′) (Lines 7 to 11).
Thanks to the compositionality of the semantics, and since the semantics si for the terms
ti are already stored in eci, i.e., si = sem(eci), the computation of the semantics of t
can be done in an efficient way, just by nesting the semantics si into the semantics of
f(x1, . . . , xn) (this semantics nesting operation is the core of the E operation). Namely,
E JtKF JP K = nest(E Jf(x1, . . . , xn)KF JP K , sem(ec1), . . . , sem(ecn)).

The add to partition(t, s, part) function looks for an equivalence class ec in part whose
semantics coincides with s. Then, the term t is added to the set of terms in ec. If no
equivalence class is found with that semantics s, then a new equivalence class 〈s, t, {t}〉
is created.

If we have produced some changes in the partition, then we iterate. This phase is
doomed to terminate because at each iteration we consider, by construction, terms which
are different from those already existing in the partition and whose size is strictly greater
than the size of its subterms (but the size is bounded by max size).

Let us show an example:

5Following the standard notation from the functional and logic paradigms, f/n denotes a function f of
arity n.
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Example 6.3.1

Let us recall the program of Example 6.2.1 and choose as relevant API the functions
new, inl, outl and null.

During the first iteration, one of the terms which is built is the term t0 = inl x q:nonvar

(starting from x and q:nonvar of the initial partition). Since it has a “new” semantics, it
is classified by itself. We also build term t1 = null (q:nonvar) whose semantics results
to be equivalent to that of term the False, which is already stored in an equivalence class,
let us call it ec1, of the initial partition; Therefore, t1 is added to the set of terms of ec1.
Later this generates Equation (6.2.7).

During the second iteration, we build the term t2 = outl t0, whose semantics results
to be equivalent to that of q:nonvar, already stored in an equivalence class of the initial
partition, let us call it ec2; Thus, t2 is included in the set of terms of ec2. This generates
Equation (6.2.8) later.

From now on the term t2 will not be used in the construction of new terms, since it
belongs to terms(ec2) but is not rep(ec2).

Although the overall strategy has been organized in order to avoid much redundancy in
equations, there is one additional issue that may introduce a small amount of redundancy.
Let us discuss this with an artificial example. In the second iteration we build the terms
inl x (outl q), which generates a new class, and outl (inl x q), which for the sake
of this discussion we assume it generates equation outl (inl x q) =C q. Then, in the
third iteration we build the term outl (inl x (outl q)), whose semantics is the same
of outl q, thus the equation outl (inl x (outl q)) =C outl q is generated. However,
this equation is redundant because it is an instance of outl (inl x q) =C q.

Nevertheless, we note that these redundant equations are not common (actually, the ex-
ample above is not a real one, since in our example the generated equation is q:nonvar =C

outl (inl x q:nonvar)). Moreover, the eventual presence of these bad equations does
not propagate to other equations.

Generation of the specification. The third phase of the algorithm (Lines 15 to 19)
constructs the specification for the provided Curry program. First, Line 15 computes the
=C equations from the current partition. Since we have avoided much redundancy thanks
to the strategy used to generate the equivalence classes, the add equations function needs
only to take each equivalence class with more than one term and generate equations for
these terms. This function generates also a side effect on the equivalence classes that is
needed in the successive steps. Namely, it replaces the (non-singleton) set of terms with a
singleton set containing just the representative term.

Then, Lines 16 to 19 compute the equations corresponding to the rest of equivalence
notions defined in Section 6.2.1. Let us explain in detail the case for the computed result
equations (kind CR). As already noted, from the semantics S in the equivalence classes
computed during the second phase of the algorithm, it is possible to construct (by losing
the internal structure and collecting just the computed results cr(S)) the semantics that
models the computed result behavior. Therefore, we apply this transformation to the se-
mantic values of each equivalence class. After the transformation, some of the equivalence
classes which had different semantic values may now collapse into the same class. This
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transformation and reclassification is performed by the transform semantics function. The
resulting (coarser) partition is then used to produce the =CR equations by an application
of add equations.

Thanks to the fact that add equations ends with a partition made of just singleton
term sets, we cannot generate (again) equations t1 =CR t2 when an equation t1 =C t2 had
been already released.

Let us clarify this phase by an example.

Example 6.3.2
Assume we have a partition consisting of three equivalence classes with semantics s1,

s2 and s3 and representative terms t11, t22 and t31:

ec1 = 〈s1, t11, {t11, t12, t13}〉 ec2 = 〈s2, t22, {t21, t22}〉 ec3 = 〈s3, t31, {t31}〉

The add equations procedure adds equations {t11 =C t12 =C t13, t21 =C t22} and the
partition becomes

ec1 = 〈s1, t11, {t11}〉 ec2 = 〈s2, t22, {t22}〉 ec3 = 〈s3, t31, {t31}〉

Now, assume that cr(s1) = x0 and cr(s2) = cr(s3) = x1. Then, after applying transform semantics,
we obtain the new partition

ec4 = 〈x0, t11, {t11}〉 ec5 = 〈x1, t22, {t22, t31}〉

Hence, the only new equation is t22 =CR t31. Indeed, equation t11 =CR t12 is uninteresting,
since we already know t11 =C t12 and equation t21 =CR t31 is redundant (because t21 =C t22

and t22 =CR t31).

In summary, if t1 =C t2 holds, then t1 ={CR,CBI ,G} t2 are not present in the specification.
The same strategy is used to generate the other two kinds of equations. Intuitively,

the semantics are transformed by removing further internal structure to compute the
constructor-based and ground versions. Since these relations are less precise than the
previous ones, again classes may collapse and new equations (w.r.t. a different equivalence
notion) are generated.

Effectivity/Efficiency considerations. In a semantic-based approach, one of the main
problems to be tackled is effectiveness. The semantics of a program is in general infinite and
thus we use abstract interpretation [29] in order to have a terminating method. Namely,
we use the depth(k) abstraction defined in Subsection 4.2.2. In the case of the depth(k)
abstraction, terms are “cut” at depth k by replacing them with cut variables, distinct from
program variables. Thanks to this structure depth(k) semantics is technically an over ap-
proximation of the semantics, but simultaneously it contains also an under approximation,
because terms which do not contain cut variables belong to the concrete semantics.

Thus, equations coming from equivalence classes whose depth(k) semantics does not
contain cut variables are correct equations, while for the others we don’t know (yet). If we
use a bigger k, the latter can definitively become valid or not. Thus, equations involving
approximation are equations that have not been falsified up to that point, analogously to
what happens in the testing-based approach. We call these unfalsified equations.
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The main advantage of our proposal w.r.t. the testing-based approaches is the fact
that we are able to distinguish when an equation certainly holds, and when it just can
hold.

Since the overall construction is (almost) independent upon the actual structure of
the abstract semantics, it would be possible in the future to use other abstract domains
to reach different compromises between efficiency of the computation and accuracy of the
specifications.

6.4 The prototype in practice

The AbsSpec 1.0 prototype is a component of a suite of tools written in Haskell which we
describe in Chapter 7. On top of the shared suite components which compute the abstract
semantics, the interface module implements some functions that allow the user both
to check if a specific set of equations hold, or to get the whole specification. It is worth
noting that, although in the presentation we considered as input only Curry programs, the
prototype also accepts programs written in (the first order fragment of) Haskell (which are
automatically converted by means of the orthogonalization into Curry equivalent programs
described in Section 3.2).

Let us now discuss the results for two program examples. For the Queue program of
Example 6.2.1, an extract of the computed specification is the following one:

null new =C True (6.4.1)

new =C outl (inl x new) =C outr (inr x new)

=C outr (inl x new) =C outl (inr x new) (6.4.2)

outr (inl x new) =C outl (inr x new) (6.4.3)

inl y new =C outl (inr y (inr x new)) (6.4.4)

inr y new =C outr (inl y (inl x new)) (6.4.5)

outl (inl x q) =C outr (inr x q) (6.4.6)

q:nonvar =C outl (inl x q:nonvar) =C outr (inr x q:nonvar) (6.4.7)

inl x (outl (inl y q)) =C outr (inl x (inr y q)) (6.4.8)

outl (inl x (outl q)) =C outl (outl (inl x q)) (6.4.9)

outr (outl (inl x q)) =C outl (inl x (outr q)) (6.4.10)

null (inl x new) =C null (inr x new) =C

=C null (inl x q:nonvar) =C False (6.4.11)

outr new =CR outl new =CR outl q:nonvar (6.4.12)

Equations (6.4.1), (6.4.6), (6.4.7) and (6.4.11) are (or contain) Equations (6.2.1),
(6.2.3), (6.2.8) and (6.2.7), respectively. Equation (6.2.2) does not show up because we do
not handle yet semantics equivalence up to permutation of variables in the initial goals (x
and y in this case).

Equation (6.4.2) , together with Equation (6.4.3), state that if we have an empty
queue, adding and removing one element produces always the same result independently
from the side in which we add and remove it. Equations (6.4.4) and (6.4.5) state that two
successive insertions on one side of an empty queue and a deletion on the opposite side,
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corresponds to an insertion of the second element on the opposite side. Equation (6.4.8)
shows a sort of restricted commutativity between functions.

The =CR equations of (6.4.12) show up because all these terms have no computed
results.

The second considered program example, written in Haskell, transforms a propositional
formula to its conjunctive normal form implementing the classic axioms. Let us show an
excerpt of the program:

data Sentence = Conn Sentence Conn Sentence

| Not Sentence | Proposition String

data Conn = And | Or | Imply

toCNF , elimImpl , distAndOverOr :: Sentence -> Sentence

toCNF s = distAndOverOr (moveNotInw (elimImpl s))

elimImpl (Conn s1 Imply s2) =

Conn (Not (elimImpl s1)) Or (elimImpl s2)

distAndOverOr (Conn (Conn s1 And s2) Or s3) =

distAndOverOr (Conn (Conn (distrAndOverOr s1) Or

(distrAndOverOr s3)) And...

Our prototype computes equations like

toCNF (toCNF x) =C toCNF (elimImpl x) =C toCNF (distAndOverOr x)

=C moveNotInw (toCNF x) =C toCNF x

moveNotInw (moveNotInw x) =CR moveNotInw x

...

which allows the user to see that, for instance, the function moveNotInw does not affect
the results when applied to toCNF, or that it is idempotent. One can also see that the
behavior of elimImpl and distAndOverOr is subsumed by the behavior of toCNF.

Our preliminary experiments show that many interesting properties hold with a low
k in depth(k) (we run the prototype with depth 4 by default). Moreover, although it is
almost unfeasible to have more than 3 nested calls (caused by the exponential explosion
of all possible combinations) the computed equations involving much nested calls tend to
be little comprehensible for the user, thus they are rarely needed.

Termination and quality of correct equations strongly depends on the structure of the
program. We are currently studying possible clever strategies, possibly depending on the
program, that would check “more promising” terms first.

6.5 Related Work

To the best of our knowledge, in the functional logic setting there are currently no proposals
for specification synthesis. There is a testing tool, EasyCheck [21], in which specifications
are used as the input for the testing process. Given the properties, EasyCheck executes
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ground tests in order to check whether the property holds. This tool could be used as a
companion tool of ours in order to check the unfalsified equations.

The mentioned QuickSpec [22] computes an algebraic specification for Haskell programs
by means of (almost black-box) testing. Its inferred specifications are complete up to a cer-
tain depth of the analyzed terms because of its exhaustiveness. However, the specification
may be incorrect due to the use of testing for the equation generation. Instead, we follow a
(glass-box) semantic-based approach that allows us to compute specifications as complete
as those of QuickSpec, but with correctness guarantees on part of them (depending on the
abstraction).

6.6 Discussion on the results

We presented a method to automatically infer high-level, property-oriented (algebraic)
specifications in a functional logic setting. The specification represents relations that hold
between operations (nested calls) in the program.

The method computes a concise specification of program properties from the source
code of the program. We hope to have convinced the reader that we reached our main
goal, that is to get a concise and clear specification that is useful for the programmer in
order to detect possible errors, or to check that the program corresponds to the intended
behavior.

The computed specification is particularly well suited for program understanding since
it allows to discover non-evident behaviors, and also to be combined with testing. In the
context of (formal) verification, the specification can be used to ease the verification tasks,
for example by using the correct equations as annotations, or unfalsified equations as
candidate axioms to be proven.

The approach relies on the computation of the semantics. Therefore, to achieve ef-
fectiveness and good performance results, we use a a suitable abstract semantics instead
of the concrete one. This means that we may not guarantee correctness of all the equa-
tions in the specification, but we can nevertheless infer correct equations thanks to a good
compromise between correctness and efficiency.

We have developed a prototype that implements the basic functionality of the ap-
proach. We are working on the inclusion of all the functionality described in this chaper.

As future work, we plan to add another notion of equivalence class. More specifically,
when dealing with a user-defined data type, the user may have defined a specific notion
of equivalence by means of an “equality” function. In this context, some interesting
equations could show up. For instance, in the Queue example, a possible equality may
identify queues which contain the same elements. Then, we would have the equation
inl x new = inr x new. Note that, although the internal structure of the queue differs,
the content coincides. These equivalence classes would depend on how the user defines
the equality notion, thus we will surely need some assumptions (to ensure that indeed the
user-defined function induces an equality relation) in order to get useful specifications.
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Implementation

In this chapter we describe the overall architecture of the proof of concept prototype that
some members of the research group have developed so far. It is written in Haskell and
developed with GHC. I will describe the whole project and then highlight the components
I have developed personally.

The architecture has been planned for a long term implementation project that is
able to allot various tools for abstract diagnosis, abstract verification, analysis, abstract
specification synthesis and (in the future) even more.

The experience of the senior group member has shown that in the development of
former prototypes of abstract semantics-based program manipulation tools there are large
parts of code that tend to be very similar. So they came up with the idea to have a unique
collection of tools which could share all common parts, gaining all the typical benefits of
such architecture (especially in term of maintainability, scalability, etc.).

In Figure 7.1 we can see a picture of the current system which will help for the following
description.

7.1 Parser Suite description

All the (pure) declarative languages which we consider have a high variety of concrete
syntax constructs, but most of them are syntactic sugar for a small core of constructs.
Like in the construction of suite of parsers (e.g. GCC), we have identified an Intermediate
Common Language which constitutes the input abstract syntax of the abstract seman-
tics engines. Then for each different (pure) declarative languages we have a translator
that converts the abstract syntax generated by the language parser to the Intermediate
Common Language.

7.1.1 Intermediate Common Language

By taking inspiration from the GHC’s Core Language and MCC’s Intermediate Language
and by analyzing the abstract syntax produced by the GHC and MCC parsers we have
determined our Intermediate Common Language as a compromise between

• ability to translate comfortably the concrete syntax of

– Curry;

– Haskell;

http://haskell.org/
http://www.haskell.org/ghc/
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType
http://danae.uni-muenster.de/~lux/curry/
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Figure 7.1: Tool Suite Layout

– Term Rewriting Systems, both in TPDB format and OBJ format (which is also
compatible with the Maude syntax);

– Maude

• minimality of the constructs to reduce the implementation effort for the abstract
semantics computations.

7.1.2 Haskell/Curry Parse Suite

Given the extreme similarity of Haskell and Curry concrete syntax, in the Haskell/Curry
Parse Suite we share a (minor modification) of the GHC internal parser which allows free
variable declarations for Curry and recognizes different built-ins names.

After the translation into Intermediate Common Language, in case we are handling an
Haskell source, we additionally perform the orthogonalization described in Subsection 3.2.1.

This part consists of about 4000 lines of code (in addition to the patched sources of
the GHC parser).

7.1.3 TPDB TRS Parser

This module (at the moment) parses a TRS written in TPDB format and then converts
it into the Intermediate Common Language.

This part consists of about 2000 lines of code.

http://www.lri.fr/~marche/tpdb/format.html
http://maude.cs.uiuc.edu/
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7.2 Abstract Semantics Engine

This part is the core infrastructure to compute over abstract domains which is used by all
the tools of the suite. It is composed by a domain independent part, which is a collection of
functions that implement abstract semantics evaluation functions EαJtK, PαJP K, FαJP K,
by using abstract domain primitive operations which are realized by suitable abstract
domain modules. In detail

domain independent engine This part is essentially a large set of Class declarations
layered into different levels of abstraction (e.g. interpretation level, single interpreta-
tion binding level, domain level) with all the code that defines the default methods
relying on lower level functions. For instance, the evaluation function EαJtK, having
as input an expression of the Intermediate Common Language syntax, is defined at
the domain independent interpretation level and its definition (for the base cases of
the syntax) depends on the domain specific primitive for a variable evaluation and
the primitive for domain embedding.

Thanks to this structure we have factorized in a unique definition the code in common
with all abstract computations, but is nevertheless possible to “bypass” a default
(generic) realization with a domain specific version (this in view of future extensions).

This part consists of about 6000 lines of code.

abstract domain modules These modules have to implement the structure and opera-
tion of an abstract domain (equivalence, comparison, meet, join, renaming applica-
tion, variable restriction, etc.).

Each module provides also a parser for the abstract domain elements which is used
by the abstract diagnosis engine to acquire the programs’ intended abstract specifi-
cation.

Note thath also concrete domains can be instancies of abstract domain modules, but
clearly one cannot expect (full) semantics computations to terminate.

Up to now the only abstract domain module which is fully completed is the one for
the evolving result tree ERT concrete domain. The other implemented modules are still
incomplete, but provide nethertheless some of the required functionalities which can give
outputs for some test (toy) programs that we have used to validate the complete suite.

The (partially) implemented modules are

ERT module
)

This module has been implemented to validate the evolving result tree
semantics of Subsection 3.1.1 and to validate the complete suite. However, it can
also be used to provide a quick implementation of a depth(k) abstraction of evolving
result tree semantics by a depth(k) cut of the result of ERT operations.

This module consists of about 2000 lines of code.

GR module
)

The implementation of the abstract domain GR of Subsection 4.2.1 has
been made using Reduced Binary Decision Diagrams (ROBDDs)1, since in the lit-
erature this is reported as one of the most efficient ways for managing symbolic
boolean formulas. The advantages in using this data structure are the compact

1See [15] for more details on how to manipulate boolean functions by means of ROBDDs.
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representation for positive formulas and the efficient operations available for their
manipulations. ROBBDs have been implemented following [20], but we also have
developed and implemented some efficient variants for manipulation and definition
of the specific positive formulas which are built by the Pgr JP K operator.

This module consists of about 1000 lines of code.

WERS module
)

This module is at an in embryo stage. At the moment it is used just
to validate some operations needed for implementing the weak evolving result set
semantics of Subsection 3.1.3.

depth(k) (over WERS) module
)

Up to now, this is just a quick implementation of a
depth(k) abstraction of weak evolving result set semantics by a depth(k) cut of the
result currently implemented WERS operations.

I have personally developed the ERT, GR and WERS modules and have substantially
contributed to the domain independent engine.

7.3 Abstract Diagnosis Engine

This part implements the core functionality described in Chapter 5, in particular, the
part for the detection of abstract incorrect rules2. It is essentially a Class declaration
which defines the general interface of the diagnosis framework. Most of the methods
are defined at the domain independent interpretation level. For instance, the detection
of abstract incorrect rules, having as input a program P of the Intermediate Common
Language and an abstract domain instance α (with its associated parser), depends on
the domain specific primitives for parsing a user defined specification, computing the
immediate consequences of the specification w.r.t. the input program, and comparing the
result with the specification.

So far, we have used the abstract domain instance GR for testing purposes.

The instance over depth(k) is lacking the parser, thus, at the moment, it has to be
invoked manually.

7.4 Abstract Specification Synthesis Tool

The core of the AbsSpec 1.0 prototype consists of about 1500 lines of code implementing
the tasks of generating and classifying terms. On top of the core part of the prototype,
the interface module implements some functions that allow the user both to check if a
specific set of equations hold, or to get the whole specification.

7.5 Analysis Tool

This tool computes iterates of PαJP K until a fixpoint is reached, thus it is terminating
for instances over Noetherian domains (e.g. GR and depth(k)). Otherwise, it should be

2The detection of abstract uncovered elements has been developed but have still to be tested on an
actual abstract domain instance.
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stopped after a finite number of iterations, but in such a case it does not necessarily
provide a correct (over) approximation.

We plan to extend it with narrowing and widening operators, two typical constructions
of the abstract interpretation setting, which are mainly used to achieve termination for
non-Noetherian domains, but are also frequently used to speedup convergence for Noethe-
rian “big” domains (like depth(k)).

Up to now, we are able to analyze the groundness behaviour of Curry programs by
using the GR module.
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Conclusions

In this thesis (Chapter 3) we have developed a semantics (the weak evolving result set
semantics Fν ) which models the computed result behaviour of programs of first order
fragment of Curry. Denotations of Fν consist in a collection of weak evolving result sets
which describe how partial computed results evolve one constructor symbol at a time. Fν
fulfills the all (our) desired requirements:

• is fully abstract w.r.t. the ≈uscr behaviour,

• has a goal-independent definition,

• is the fixpoint of a bottom-up construction, and

• is as condensed as possible.

Fν has been obtained by abstraction of a concrete bottom-up fixpoint semantics which we
showed to be fully abstract w.r.t. the small-step behavior of first order fragment of Curry.
This methodology has served both to design the Fν semantics and to relate it with the
small-step operational semantics in a formal way.

Furthermore, we introduced a method to automatically convert a well typed first order
Haskell program into a semantic equivalent inductively sequential Curry program. We
investigated on the adequateness of this transformation both w.r.t. the small-step and the
big-step behaviour. As a consequence, our semantics can be used to handle well typed
first order Haskell programs as well.

Among all other proposals, the weak evolving result set semantics is the first one
which achieves, at the same time, goal-independency, full abstraction and condensedness.
These properties are particularly helpful for the development of efficacious semantics-
based program manipulation tools, e.g. automatic program analyzers, debuggers, etc.. To
support this we have developed four applications of Fν semantics.

• Groundness dependencies of computed results.

• Abstract diagnosis over POS and depth(k) domains.

• Automatic synthesis of property-oriented specifications over depth(k) domain.

The applications are based on a parametric abstraction scheme for the systematic
derivation, from the Fν semantics, of goal-independent bottom-up fixpoint (approximate)
abstract semantics (Chapter 4). In particular we have shown two specific instances of this
framework which model interesting properties of the computed result behavior of Curry
programs, such as the groundness behavior of computed results (Subsection 4.2.1), and the
depth(k) abstraction of computed results (Subsection 4.2.2). To the best of our knowledge,
the abstract semantics of Subsection 4.2.1 is the first attempt of groundness analysis of
computed results for lazy functional logic languages.

With this abstraction framework we formulated two other applicative frameworks
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Abstract diagnosis for FLP framework, an efficacious parametric scheme for the declar-
ative debugging of functional logic programs, based on the abstract PαJP K operators
obtained by the abstraction framework (Chapter 5).

This approach is based on the ideas of [27, 4] which we apply to the diagnosis of
functional logic programs. The framework of abstract diagnosis [27] comes from the
idea of considering the abstract versions of Park’s Induction Principle [80].

We showed that, given the intended abstract specification Sα of the semantics of a
program P , we can determine all the rules which are wrong w.r.t. the considered
abstract property by a single application of PαJP K to Sα. In the general case,
diagnosing w.r.t. abstract program properties relieves the user from having to specify
in excessive detail the program behavior (which could be more error-prone than the
coding itself).

The most interesting feature of this proposal, differently from other proposals based
on declarative debugging [19, 17, 18, 14], is that it can be used both with partial
specifications and partial programs and works even with non-terminating programs.
Moreover it does not require the user to provide error symptoms in advance and it
detects multiple errors simultaneously.

Automatic synthesis of property-oriented specifications framework, a method to
automatically infer high-level, property-oriented (algebraic) specifications of func-
tional logic programs, which is parametric w.r.t. an abstract domain of computation
(Chapter 6). The specifications are given by means of equations which represent
behavioral relations over nested program calls.

The method computes a concise specification of program properties from the source
code of the program.

Differently from other approaches based on testing, our approach relies on the com-
putation of an approximate abstract semantics (to achieve effectiveness and good
performance results). This means that, in general, we may not guarantee correctness
of all the equations in the specification, but with suitable domains (like depth(k))
we can nevertheless infer correct equations thanks to a good compromise between
correctness and efficiency.

We have proposed some instancies (case studies) of the applicative frameworks to
give tangible examples. Moreover we have implemented in Haskell four proof of concept
prototypes that work on the case studies of the applicative frameworks.

Groundness dependencies of computed results. A static analyzer for groundness
dependencies. Due to both the high level of abstraction of the modeled property
and the use of efficient data structures for the representation of the semantic deno-
tations (i.e., positive formulas) we expect that the analysis will scale well with the
size of the programs.

Abstract diagnosis over POS and depth(k) domains. We have considered the depth(k)
and the POS abstractions as case studies, showing, my means of several examples,
that the resulting abstract diagnosis encompasses some limitations of previous works.
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Automatic synthesis of property-oriented specifications over depth(k) domain.
The use of the depth(k) domain permits to have a terminating synthesis where some
of the equations are provably correct (those that do not involve cut variables in the
abstract semantics).

In the future, on the semantics side, we are interested in extending our results to all
the features of Curry: equational constraints (i.e., strict equality), residuation (in order
to tackle strict primitive arithmetic operations) and higher-order. To do so, we think it
would be profitable to formalize the partial computed results as elements of a cylindric
constraint system ([86]) and, once the semantics has been reformulated in such terms, then
extend the constraint system with strict equality and arithmetic primitives. Furthermore,
cylindric constraint systems go particularly well with abstract interpretation techniques,
as good abstractions can be obtained by abstracting only the constraint system while
keeping the overlying structure.

On the abstraction side we intend to derive the instances of the framework for the
reduced products between depth(k) and several domain typical of program analysis, like
POS, sharing, types, etc.. This could provide better tradeoffs between precision and size
of (extensional) specifications. In particular, for the applications in abstract diagnosis,
we hope that these domains will detect the same errors of depth(k) but at a smaller k,
which could make feasible the use of an extensional intended specification in place of other
intensional versions.

Clearly in this framework we cannot handle properties like termination or observations
over call patterns, namely properties which are not an abstraction of weak evolving result
sets. To this end we need more concrete semantics, which could be developed by (more
concrete than ν) abstractions of the small-step semantics introduced in Section 2.2. Note
that, if a direct construction of Fν were adopted, then a different base semantics should
be designed from scratch.

In the future, we want to develop (by abstraction of small-step trees, along the lines
of the construction for the evolving result tree semantics) a semantics which can model
“functional dependencies”. Such a semantics is needed to tackle pre-post conditions and
will be employed to define the homologous of abstract verification for logic programs [24]
in the functional logic paradigm.
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