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Probabilistic bisimulation for Markov chains (MCs), introduced by Larsen and Skou [19], is
widely considered a key concept for reasoning about the equivalence of probabilistic systems.
This concept is intimately related to that of lumpability by Kemeny and Snell [15] and has been
efficiently applied in state space reduction techniques for probabilistic systems [7]. Computing
the bisimilarity quotient of a Markov chain (a.k.a. the optimal state-space lumping) yields
the smallest Markov chain that behaves exactly as the original chain. The optimal lumping
quotient has a (typically much) smaller state space, nevertheless, it may be still too large to
yield significant computational improvements. This is a well known problem that state-of-the-
art probabilistic model-checking tools [18, 14, 12] strive to overcome.

The main reason for this phenomenon arises from the fact that probabilistic bisimilarity is
a notion of equivalence that is too “exact” for many purposes as it only relates processes with
identical bahaviors. In a number of applications, such as systems biology [4], games [5] and
machine learning [13], one is interested in knowing whether two probabilistic systems that may
differ by a small amount in the real-valued parameters have “sufficiently” similar behaviours.

This motivated the study of behavioral metrics for Markov chains, initiated by Desharnais
et al. [8] and greately developed in the last decade [20, 6, 1, 2]. The idea consists in using
distances (more precisely, 1-bounded pseudometrics) to measure the behavioral dissimilarities
of two MCs, that is, the farther two states are the more distinguishable their behaviors are. In
this respect, bisimilar states are at distance zero with each other, while two states that have no
significant similarity are at distance 1.

Analogously, also the concept of lumpability has been relaxed by considering partitioning
of the state space whose elements are at most ε-apart from each other [9]. Thus, by suitably
choosing the value of ε, one can significantly reduce the size of the resulting lumping at the cost
of loosing in precision. However, the value of ε only bounds the relative distance between two
given states in the original MC, whereas the distance between the original MC and its ε-lumping
is (typically much) greater than ε. Generally, it is difficult to obtain a good tradeoff between
the size and the precision of the resulting ε-lumping, and that often requires ad hoc adjustments
based on a deep knowledge of the problem domain where the original MC originates.

These issues were also pointed out in [9], leaving open the following problem. Given a finite
MC M and a positive integer k, what is its “best” k-state approximation? Here by “best” we
mean a k-state MC of minimal distance to the original. In this paper we address the above
question, that we call the Markov chain Approximation problem (MCA). The MCA problem is
defined as the following optimization problem

min {δ(M,N ) | N ∈ F(k)} , (MCA problem)

where F(k) denotes the class of all the MCs with at most k ∈ N states. If an instance of the
MCA problem admits an optimal solution, say N ∗, it represents a (suitably small) MC that
best approximates the behavior of M, and the optimal value δ(M,N ∗) certifies its quality.

Obviously, for values of k greater than or equal to the cardinality of the bisimilarity quotient,
the MCA problem reduces to constructing the optimal lumping quotient of M which can be
solved in O(n logm) where n is the number of states and m is the number of transitions [7].
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As one may expect, the MCA problem is in general non-trivial to solve, moreover it seems
unlikely that it can be solved efficiently. We formalize this conjecture by studying the com-
putational complexity of its corresponding decision problem, namely, the the Threshold MCA
problem. The Threshold MCA problem is defined as follows. Given k ∈ N, a finite MC M and
ε ∈ Q ∩ [0, 1], decide whether min {δ(M,N ) | N ∈ F(k)} ≤ ε.

Theorem 1. The Threshold MCA problem is NP-hard.

The above complexity lower-bound follows from a stronger result on a specialized version
of the Threshold MCA problem, called the Qualitative MCA problem.

Formally, the Qualitative MCA problem is defined as follows. Given k ∈ N and a finite MC
M, decide whether min {δ(M,N ) | N ∈ F(k)} < 1. Recall that, two MCs are at distance 1
from each other when no significant similarity can be observed between their behaviors. In this
respect, the Qualitative MCA problem corresponds to the question “Is it worth searching for a
k-states approximation of M?”.

Theorem 2. The Qualitative MCA problem is NP-complete.

The NP-hardness of the Qualitative MCA problem is obtained by means of a polynomial-
time many-one reduction from vertex cover. Interestingly, the same reduction can be easily
adapted to prove the NP-hardness of the Thresold MCA problem w.r.t. the total variation
distance (a.k.a. trace distance) or w.r.t. any multi-step bisimilarity distance as defined in [2].

Theorem 2 provides tight complexity bounds for the Qualitative MCA problem, however,
for generic error bound ε, the Threshold MCA problem appears to be much harder to solve.

Theorem 3. The Threshold MCA problem is in PSPACE.

The above complexity upper-bound has been obtained by reducing the Threshold MCA
problem to checking the validity of a formula in the existential theory of reals [3].

Notably, our reduction involves only conjunctions of bilinear constraints, therefore their
feasibility may be more efficiently checked viewing them as bilinear matrix inequalities (BMIs)
for which general algorithms [11, 10] and tools [17, 16] have been developed.

The fact that the MCA problem can be reduced to an optimization problem with bilinear
matrix inequalities makes us hope for the possibility to adapt well studied non linear optimiza-
tion methods to efficiently construct good locally optimal solutions for the MCA problem.
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