

1

Using Software Engineering Approaches
to Model Dynamics in Interactive Soft-
ware Systems
Mikael B. Skov and Jan Stage
Laboratory of Human-Computer Interaction, Department of Computer Science
Aalborg University
Fredrik Bajers Vej 122
9220 Aalborg Øst, Denmark
{mskov, jans}@intermedia.auc.dk

1. Introduction

Software engineering comprises all aspects of designing and implementing com-
puter-based systems. Pressman (1992) defines software engineering as the estab-
lishment and use of sound engineering principles in order to obtain economically
software that is reliable and works efficiently on real machines. Tradition has
formed a classical life cycle for software engineering to consist of systems engi-
neering, analysis, design, code, testing, and maintenance, cf. (Pressman, 1992;
Sommerville, 1992). Modelling and constructing the future computer-based system
take primarily place in the analysis, design, and coding phases where the objective
is to describe the future computer-based systems in terms of software components.
Various methodologies have proposed specific solutions to these three phases like
recent object-oriented methodologies, cf. (Booch ,1994; Coad and Yourdon , 1991a;
Coad and Yourdon, 1991b; Jacobson et.al., 1992; Martin and Odell, 1993; Rum-
baugh et.al., 1991; Shlaer and Mellor, 1988; Shlaer and Mellor. 1992; Wirfs-Brock
et.al., 1990). These methodologies have primarily been designed and created upon
experiences from the development of traditional computer-based systems, e.g.
administrative systems such as a bank account system.
With the evolvement of hardware technologies, new types of computer-based sys-
tems have emerged during the last years. One of them being multimedia systems.
Multimedia systems share many similarities with other kinds of computer-based
systems. Yet there are also fundamental differences. Compared to typical software
systems, multimedia systems are often more interactive and involve a considerable
amount of elements that produced in other ways. These elements provide content
in the multimedia system, and examples are graphics, sound, video clips etc. They
are often denoted as the assets of a multimedia system. A high level of interaction
between the user and the system is characteristic to most multimedia systems. The
system process and presents a large amount of information to the user by means of
several media, and the user is expected to continuously respond to that informa-
tion. It has been suggested that multimedia system development should start by
defining the fundamental requirements to the system in question. After this initial
phase, development should then proceed in two parallel tracks, where the first
track deals with development of software, and the second track with production of

2

assets. Finally, the last phase should involve integration of assets into the software
system.
The development of multimedia systems can be viewed from different design per-
spectives, e.g. moviemaking, storytelling, or as a software engineering design
process (Eriksen, Skov and Stage, 2000). In this chapter we hold the latter view.
Research within multimedia systems development shows that contemporary mul-
timedia systems are designed and created primarily by intuition and, thereby,
lacking method support and systematic approaches to work practices, cf. (Sutcliffe
and Faraday, 1994; Sutcliffe and Faraday, 1997). A fundamental lesson learned
through many studies and experiments in software engineering is that improve-
ments in design and quality assurance processes require systematic work practices
that involve well-founded methods Sommerville (1992).
In this chapter, we focus specifically on the software aspect of multimedia system
development. Skov and Stage (1996) state that software designers who employ
software engineering techniques and notations during the modelling process are
able to gain and express a fundamental understanding by means of static, struc-
tural diagrams, but at the same time they face a key challenge: it is difficult to un-
derstand and design the dynamic collection of objects that are collaborating during
the execution of a software system and what properties the system as a whole will
possess. In the development of software systems with a strong element of interac-
tion, like multimedia systems, this challenge becomes a key characteristic of the
design activity. A high level of interaction increases the dynamic nature of the col-
lection of objects and their collaboration. Probably the design and implementation
of multimedia systems is a fundamental challenging process with a particular fo-
cus on the dynamics of the interaction. For these reasons we have set up two ques-
tions to be answered in this chapter:
• What are the key characteristics and challenges of designing multimedia systems?
• How does experienced software designers work with the task of designing the dynamic

element of an interactive software system?

In the first question, we will address the characteristics and complexities imposed
by the development of multimedia systems in order to set up an experiment,
which addresses the second questions. The chapter provides qualitative interpreta-
tions from an empirical study of three software designers. Section 2 addresses the
first question by discussing key characteristics of typical multimedia systems. The
next section provides an overview of the empirical study; the complete documen-
tation is available on the WWW (Skov and Stage 1995). The results are presented
in the following four sections where each section presents a key observation that in
part answers the second question raised above. Finally, the last section summa-
rizes the lessons learned from this limited study and points out avenues for further
research.

2. Designing Multimedia Systems

Multimedia systems can be compared with traditional software systems in order to
emphasise similarities and differences. Two key differences that emerge from such
a comparison are that multimedia systems generally impel the user's senses more
intensively and involve a higher degree of interaction. Below, these two aspects
are illustrated by three examples.

3

The first example of a multimedia system is used by people who are learning to
drive a car for training them in certain kinds of traffic behaviour (Bergman and
Møller 1998). Thus the purpose of this system is education and training. The sys-
tem presents the user with videoclips or animated sketches of realistic traffic situa-
tions, and the user must act to handle the situations that arise. The output from the
system is video and sound that presents a traffic situation to the user. The input
may take different forms; in a simple version, the user may select an action among
a set of options that are presented by a kind of menu, whereas in a more elaborate
version the user may be able to operate devices similar to the wheel and pedals of
a real car. Other examples of this category are systems for training and evaluating
decision-makers in an organisation or umpires in a sailing match, cf. Eriksen, Skov,
and Stage (2000). This example illustrates how multimedia systems are impelling
the user's senses much stronger than traditional software systems. The use of
graphics, animations, and video transcends the potentials of traditional screen-
based output, and the combined use of sound adds a completely new dimension.
The second example is a game where the user moves around in a virtual world
that is created by exposing the user to different images and sound (Andersen and
Callesen 2000). Thus the purpose of this system is entertainment. The user controls
a certain character or a group of characters by means of an input device and
thereby acts in the virtual world. The action of the controlled character often re-
quires considerable input from the user. This example illustrates how a multime-
dia system requires a high degree of interaction with the user. If the user wants to
stay in the game, it is necessary to continuously respond to the changes that are
displayed on the screen, and this response clearly influences the further develop-
ment of the game.
The third example is a system for teaching children about wildlife (Hansen et al.
1999). The purpose of this system is edutainment, i.e. simultaneous education and
entertainment. Thus the system was developed as a prototype for a zoo in order to
illustrate how multimedia technology could be used to teach children between five
and ten years of age about the animals in the zoo. The system enables the user to
view photos, drawings, and videoclips of animals and obtain various information
about them. Moreover, users can exercise their knowledge by answering quiz-like
questions on the animals.
The basic characteristics of these and other multimedia systems are summarised in
this definition (inspired by Eriksen and Skov, 1998): A multimedia system is a com-
puter-based system that integrates a multitude of assets to facilitate user immersion and
activity in a virtual situation. The assets are representing fragments of the virtual situa-
tion and are based on modalities such as text, graphics, pictures, video, animations, sound,
tactile information, and motion. The activity involves interaction with objects in the vir-
tual situation and it is limited by certain temporal and spatial structures. The development
of the virtual situation is defined by a plot. This definition emphasises the main chal-
lenges of designing multimedia systems. First, the plot, the virtual world, and the
limitations imposed by temporal and spatial structures must be created and de-
scribed. The result is a design of the story that provides the foundation of the sys-
tem. Second, a large amount of assets must be specified, typically in detail. Third,
the software system that integrates the assets, handles their interplay, and enables
interaction with the user must be designed.
This design task requires both a static and a dynamic conception. The static con-
ception is necessary in order to identify objects and their properties. In software
design, this process of identifying basic elements is referred to as abstraction
(Booch 1994). The behavior of the system as a whole can be designed by describing

4

how objects are created and disposed, and how they interact with each other. This
process requires a dynamic conception where the focus is on the collection of ob-
jects and their interplay. Many of the existing software development methods pro-
vide considerable support to the design and understanding of the static aspects;
for example, this applies to the object-oriented methods that were referenced
above in the introduction. Even though different traditions emphasise and employ
different concepts, they share a strong focus on static aspects. The existing meth-
ods provide much less support the dynamic aspect of software design. Due to the
dynamic nature of multimedia systems, the limitations of the existing concepts and
notations reduce the advantage of using a software development method. This
fundamental problem leaves us with two different research approaches.
One approach is to employ a more experimental approach. In the design of McPie,
the developers engaged in a number of cycles where different prototypes of the
system were developed and evaluated Horn, Svendsen, and Madsen (2000). A sec-
ond approach is to employ either concepts or notations. In the design of a training
and evaluation multimedia system, the developers produced descriptions that
were inspired by storytelling and movie production (Eriksen, Skov and Stage
2000).
Our aim with this chapter is to contribute to the second option. In the following
sections, we focus on an empirical study of three software designers. The aim of
this study was to identify the basic concepts that the designers used to design and
understand the dynamic aspects of a software system and their usefulness in that
design process. The details of this study are described in the following section.

3. Empirical Study

The empirical study reported in this chapter was designed to explore the second
question raised in the introduction. The question is of a qualitative nature since no
variables are defined a priori. The study can be characterized as being a descrip-
tive, in vitro qualitative case study based on observation of an individual designer
Basili (1996). The detailed design of the study was inspired by an earlier, more
general experiment by Guindon et.al. (1987). A complete description of our study
is publicly available on the WWW Skov and Stage (1995). Three different software
engineering design approaches were chosen for the study representing different
design perspectives and abstractions. The three approaches were an object-
oriented approach, an operating systems approach, and a mathematical-logical
approach. The first is primarily founded as a practical approach widely used in the
systems development industry, while the two others are more formal approaches
building on strict semantic deifintions and notations. The study involved three
designers with the following personal characteristics:
• OO Designer (object-oriented): He has a Ph.D. in Computer Science; more than

10 years of experience with research, teaching, and software development with
emphasis on programming, programming languages, and programming envi-
ronments.

He applied no specific method and used only an informal notation inspired by
Smalltalk Goldberg and Robson (1989) and Beta Madsen et.al. (1993). Small-
talk and Beta are based on traditional object-oriented concepts such as modu-
larity, information hiding etc. and objects constitutes a natural medium for
analyzing and describing concurrent processes.

5

• OS Designer (operating system): He has a Ph.D. in Computer Science; more than

20 years of experience with research, teaching, and software development with
emphasis on operating systems and distributed systems.

He applied the Phase Web notation Manthey (1988), Manthey (1994) that is in-
spired by the Actor model Satoh and Tokoro (1992). The Phase Web notation is
a method for analyzing and describing concurrent and communicating pro-
cesses. The Phase Web notation uses entities called sensors in the description
of different states of the entire system. The Phase Web notation is highly
based on aspects of synchronization and co-exclusion.

• ML Designer (mathematical-logical): He is a Ph.D. student in Computer Science;

about 3 years of experience with research and application of formal methods
related to protocol design and verification.

He applied the Calculus for Communicating Systems (CCS). CCS is a general
calculus or theory for analyzing and describing concurrent and communicat-
ing processes. However, CCS is not only applicable for describing concurrency
and communication, but can also be applied for studying machines, architec-
tures, programming methods and languages in general Milner (1989).

Each designer was given the task of designing the process architecture for a inter-
active software system controlling a set of elevators in a building. In solving this
classical standard problem from software specification and software requirements
research Guindon et.al. (1987), they were required only to use their "own" para-
digm as a development methodology.

The lift control problem.

An N-elevator system is to be installed in a building with M
floors. Your assignment is to design the process architecture for a software system which
controls the movement of the elevators. The processors can described as follows:

• There is one processor at each of the N elevators. This processor controls the engine,

the doors, and reads the pushbuttons and sensors associated with every elevator.
• There is one processor at each of the M floors which reads the push buttons associ-

ated with that floor.
• There is one processor, which is able to control all requests from all pushbuttons.

It is your choice whether you want to design a centralized or a decentralized solution to
the problem. The design has to be elaborated according to the following rules:

1. Each lift has a set of buttons with 1 button for each floor. These illuminate when

pressed and cause the lift to visit the corresponding floor. The illumination is can-
celled when the corresponding floor is visited (i.e., stopped at) by the lift.

2. Each floor has 2 buttons (except ground and top), one to request an up-lift and one to
request a down-lift. These buttons illuminate when pressed. The buttons are cancelled
when a lift visits the floor either while travelling in the desired direction, or having no
requests outstanding. In the latter case, if both floor request buttons are illuminated,
only 1 should be cancelled. The algorithm used to decide which of these requests to
service first should minimize the waiting time for both of them.

6

3. When a lift has no requests to service, it should remain at its last destination with its
doors closed and await further requests (or model a ``holding'' floor).

4. All requests for lifts from floors must be serviced eventually, with all floors given
equal priority (can this be proved or demonstrated?).

5. All requests for floors within lifts must be serviced eventually, with floors being ser-
viced sequentially in the direction of travel (can this be proved or demonstrated?).

6. Each lift has an emergency button. When pressed, it causes a warning signal to be
sent to the site manager. The lift is then deemed ``out of service''. Each lift has a
mechanism to cancel its ``out of service'' status.

It is a requirement that the task is solved using object-orientation, Phase Web, or CCS. A
final solution shall be delivered. It shall be possible for another person to evaluate this
solution.

None of the three designers knew the problem in advance. They were given two
hours to solve it and they were required to produce a solution that could be
handed over to another person for later evaluation.
The designers were instructed to think aloud during their design process. During
the whole session, they only used pencil and paper. All three design sessions were
videotaped and the paper-sheets produced were enumerated to enable later identi-
fication and relation to the video recordings.
In the data analysis, the videotapes were examined with the purpose of describing
each designer's process as a sequence of activities where a change from one activ-
ity to another was identified as a situation in which the designer broke the on-
going line of reasoning Guindon et.al. (1987). Furthermore, the activities were
characterized in terms of the problem considered, the concepts used to analyze
and solve this problem, and the approach taken by the designer. This procedure
was developed because of the highly dense and complex nature of video material
as a documentation medium. For each of the three sessions, this transcript was
elicited by viewing the videotape five to six times, and it amounts to approxi-
mately six pages of text. These transcripts are available on the web, see Skov and
Stage (1995).
The second part of the data analysis focussed only on the solutions produced by
the three designers. Their solutions were evaluated by two independent reviewers
who were both associate professors in computer science and had many years of
experience in areas related to the focus of the experiment. The documentation pro-
duced by the three designers was examined and evaluated in about an hour by
each of these reviewers. To summarize their evaluation, they were also asked to
mark the three solutions with a grade representing how well the assignment had
been solved. These reviews are also available on the web, see Skov and Stage
(1995).

3. Conceptual Basis

The first observation focusses on the concepts that were used by the three design-
ers throughout the process architecture design.

The OO Designer uses a broad variety of different concepts with unclear mutual
relations. In several situations, the same aspect of the problem is characterized in
terms of two or three concepts with almost the same meaning.

7

The OS Designer and the ML Designer both use a limited set of well-defined con-
cepts with clear mutual relations.

The OO Designer used a broad variety of different concepts during his design of
the process architecture. To analyze this in detail, we distinguish between the three
levels of using concepts that are specified in Table 1.
Table 1 shows that the OO Designer used a total of 25 different concepts during
the design process. Level 3 include concepts that were used to analyze the problem
or express a solution in an explicit manner and were consistent with the notation
he used. We have attributed 11 of the concepts to this level. Level 2 include con-
cepts that were stated explicitly and used to characterize the problem or evaluate
alternatives but they were not used to express a solution. We have attributed 10
concepts to this level. Finally, level 1 includes concepts that were used in thinking
about the problem but not used explicitly in analyzing the problem or expressing a
solution. We have attributed 4 concepts to this level. It is characteristic that the OO
Designer has less than half of the concepts on level 3. A total of 14 concepts are on
level 1 or 2 which indicate a more shallow use of these concepts, and one sixth of
the total number of concepts used are only on level 1.

Level

Description

Legend

OO
Designer

OS
Designer

ML
Designer

3

The concept was used as an
integrated element of the para-
digm

•••

11

9

6

2

The concept was stated explic-
itly during the process

••

10

7

7

1

The concept was not stated, but
was used implicitly in the pro-
cess

•

4

2

1

 Total 25 18 14
Table 1. The number of concepts used during process architecture design

Table 2 shows the distribution of the concepts that were used by the OO Designer
on a selection of essential issues in process architecture design. These issues have
been used by either of the three designers or serve as a key concept in a major ob-
ject-oriented analysis and design methods. These issues have then been organized
under the three overall concepts that are indicated in the table. The table shows
only 15 out of the total of 25 concepts that were applied. Ten concepts, including
robustness, time aspects, and independence, have been left out for brevity. The
bullets in the table refer to the three levels of use that are shown in Table 1. A pa-
renthesis indicates that the concept was only used upon request of the observer.
Table 2 emphasizes three important characteristics. First, it shows that the OO De-
signer focussed primarily on communication issues. Communication between ob-
jects was analyzed and specified explicitly. There are fewer concepts on
concurrency and synchronization and about half of these have only been intro-
duced on behalf of the observer. Second, it shows that three of the essential con-
cepts are used only on level 1. Some of these concepts embody aspects that are
critical to the success of the solution. Third, it shows that synchronization received
least attention. Only the overall concept was used on level 3 whereas the concepts
reflecting more specific aspects of this issue were at most treated on level 2. This
include concepts like deadlock, starvation, etc. These concepts played only a mi-

8

nor role in the design process since the OO Designer did not employ them for sys-
tematic reflection.
The multitude of concepts used by the OO Designer were characterized by unclear
mutual relations. In several cases, he did not define the concepts he used, nor did
he express their semantics clearly. For example, he did not make clear what active
objects versus processes meant to him:

OO Designer: I view all elevator objects as active objects ...

there may be introduced some processes later on, but I will

not treat such aspects on this design level.

The OO Designer also used different concepts with almost the same

meaning to describe the same aspect of the problem. For example,

he did not distinguish between process, processor, and active object

in his solution:

OO Designer: I do not make a distinction between processes

and processors at this design level.

 OO Designer OS Designer ML Designer

Concurrency ••• ••• •••
- Parallelism (•) •••
- Active Objects (•••)
- Process ••• ••• •••
- Processor (••) •• ••
- Multitasking ••
Communication ••• ••• •••
- Message • •
- Broadcast •• • ••
- Interrupt •• ••
- Polling ••• ••
Synchronization ••• (•••) •••
- Mutual Exclusion •••
- Starvation (••) (••) (••)
- Deadlock (••)
- Rendezvous ••
- Race Condition •

9

Table 2. The specific concepts used during process architecture design

In fact, the three concepts were used interchangeably. In the beginning, he used
the concept of processor for the entities in his solution. Later on, he began to use
the concept of process for the same entities and, finally, he mentioned that all these
processes could be compared to active objects. In all three cases, he did not pro-
vide an explicit definition, nor did he consider how it might affect his solution.
The OS Designer and the ML Designer both used considerably fewer concepts
than the OO Designer. Table 1 shows that the OS Designer used a total of 18 con-
cepts of which 9 were on level 3. The ML Designer used a total of 14 concepts of
which 6 were on level 3. Compared to the OO Designer, they also have signifi-
cantly fewer concepts attributed to level 1.
The use of specific concepts is shown in Table 2. The overall concepts,
concurrency, communication, and synchronization, are used actively by both de-
signers. These concepts served as natural and well-defined components of their
design processes. However, both designers seemed to emphasize concurrency and
communication more than synchronization.
Another characteristic of the two paradigms is that the key concepts have gener-
ally accepted definitions and their mutual relations are usually clear. For instance,
the concept of process has a well-defined meaning in both paradigms. This was
very apparent in the study since none of these two designers switched randomly
between different concepts in their description of a certain aspect.

5 Abstraction and Complexity

The second observation focusses on on the role of abstraction in the whole design
process and the extent to which the descriptions made reflected their intuitive un-
derstanding of the problem.

The OO Designer changes rapidly and unsystematically between differ-
ent aspects of the problem and between different levels of abstraction. In
this sense, his approach is controlled by the nature of the problem. The
description made is closely related to his intuitive understanding of the
problem.

The OS Designer and the ML Designer both approach the problem sys-
tematically, often working continuously with the same problem and on
the same level of abstraction. In this sense, their approaches are con-
trolled by the nature of their paradigms. They are forced to introduce in-
expedient reductions because the complexity of their descriptions is
growing dramatically with the size of the task.

The entire approach employed by the OO Designer reflects frequent and unsys-
tematic changes between different aspects of the problem. Typically, he immedi-
ately began to perform a test once he had specified a certain aspect of the problem.
During the execution of these tests, he often discovered a related problem in his

10

solution. This initiated an attempt to design a modified solution that also handled
the new problem. The following scenario illustrates approximately fifteen minutes
of the design process: (1) he specifies the static aspects of an elevator object; (2) he
begins to test whether an elevator moving in one direction is able to satisfy a re-
quest in the opposite direction; (3) he tries to describe the various states of an ele-
vator; (4) he realizes that there may be a potential problem with the pushbuttons in
the elevator; and (5) he starts to specify actions for the pushbuttons. While coding
the solution, he still returned to further specification and experimentation with the
solutions that were expressed in the code.
In the early analysis, it was characteristic that the OO Designer relied only to a
very limited extent on specific object-oriented concepts. For example, he had
worked for fifteen minutes before he introduced even the first object-oriented con-
cept; this happened when he turned his focus to definition of processes and ob-
jects. Similarly, his overall design choices were governed more by his general
knowledge and intuitive understanding than by specific object-oriented concepts
or perspectives.
Two additional characteristics contribute to the impression that his approach was
controlled by the nature of the problem rather than the nature of his paradigm.
First, it seemed random when he turned from specifying to simulation. Sometimes
this change was triggered by a recognition of a potential problem or an aspect he
could not describe clearly. In several cases, the latter was caused by the inherent
concurrency of the problem. Second, after testing a partial solution he often re-
turned to a different problem.

While working with the task, the OO Designer was able to specify on

a level of detail that was appropriate for his momentary intentions.

During his first analysis, the OO Designer tried to obtain a general

overview of the elevator problem by drawing a sketch of a building

with a number of floors and a number of elevators. He defined ele-

vator and floor objects without describing them in greater detail.

Thereby, he obtained a first intuitive understanding of the problem at

hand. Later on, elevators and floors constituted the objects upon

which he specified more detailed aspect and evaluated potential so-

lutions. This was possible because the object-oriented concepts do

not require description at a specific level of detail. The adding of de-

tails can be done continuously during the design phase. Moreover,

his intuitive model resembled the real world complexity when con-

sidering objects and static relations.

The OS Designer and the ML Designer both began their design pro-

cess by drawing a sketch of a building with a number of floors and

elevators. Once this frame for an intuitive understanding was estab-

lished, they changed to a mode of operation that was far more ra-

tional than the experimental process conducted by the OO Designer.

In some situations, they did test partial solutions, implying that they

11

changed from the rational mode in which they were specifying in

terms of their paradigm to a more experimental mode where they

were testing partial solutions. But it was on a much smaller scale,

and they never switched randomly between different issues or levels

of abstraction. Both designers spent significantly more time specify-

ing the actions for the solution, and the majority of their effort was

spent on systematic work that was carried out in a mostly sequential

order. The paradigms seemed to force the focus of the designers in

certain directions and maintain this focus for longer periods of time.

The OS Designer and the ML Designer both faced severe problems

with complexity as their descriptions grew radically with the size of

the task. This lead them to reduce the task considerably by imposing

restrictions on the number of elevators and floors. The ML Designer

chose to restrict the task to three floors and only one elevator. The

OS Designer initially reduced the problem to three floors and three

elevators and, later on, he considered to reduce the task further by

dealing only with two floors and two elevators:

OS Designer: Normally I would not solve such a task with

three floors. I would only involve two floors in order to re-

duce complexity.

This problem was emphasized by Reviewer R2 who stated that the

solutions made by both the OS Designer and the ML Designer were

characterized by an enormous complexity. The problem was that the

design of a solution is described by a set of rules that are expressed

in the notations defined by the paradigms. These rules are not in-

tended for manual execution by people, but have been made to sup-

port automated processing. The OS Designer stated it this way:

OS Designer: Solutions made with the Phase Web paradigm

quickly become complex and enormous because of the

many actions.

The OS Designer was very familiar with his paradigm. Thus he was

able to foresee problems that would emerge in a solution as a con-

sequence of certain design choices. For example, he had no problem

envisioning the actions needed to move an elevator from one floor to

another. Due to more limited experience with the paradigm, the ML

Designer had a less clear relation between his thinking and the nota-

12

tion used for expressing it. Nevertheless, he never seemed to have

problems that were comparable to the OO Designer.

Despite the fact that both the OS Designer and the ML Designer had

to restrict the task in order to reduce complexity, it seemed that

they used the relevant concepts and their notations coherently. Both

designers were able to think of the problem in terms of their re-

spective paradigms. In this sense, there was no leap or semantic gap

between their thinking and notation. They were able to use the nota-

tion in accordance with their thinking, once the problem had been

reduced to a size that was practical compared to the capability of the

notation.

A more severe leap occurred in the relation between the descrip-

tions and solutions on the one hand, and an intuitive understanding of

the real world problem on the other hand. The task was reduced

considerably at an early point in time. The restrictions that followed

from this reduction gradually narrowed the scope of the designers'

work and in the end, both designers turned out to have solved a very

limited problem. This was expressed very clearly by Reviewer R2

who claimed that the intuitive understanding of the actions in the

paradigms was not clear to him:

Reviewer R2: It easily becomes signs and strange actions,

where you cannot associate anything with these widgets. A

semantic gap is introduced between your intuitive under-

standing of the problem and the actions in the paradigm.

This statement illustrates the problems that arise when a paradigm

forces designers to reduce the task inexpediently. The reduction is

necessary due to complexity of the descriptions made but it seems

to imply that the semantic contents of these descriptions contradicts

an intuitive understanding of the problem. The reduction introduces a

leap between the intuitive understanding and the descriptions made.

6 Identifying the Problem

The third observation focusses on the part of the design process in

which the designers identified whether concurrency was an issue

and the nature of this potential issue.

13

The OO Designer identifies the inherent concurrency of the

problem through experiments and simulations. In this way,

he uses a considerable amount of time obtaining a clear

understanding of the nature of the concurrency involved.

The OS Designer and the ML Designer both identify the in-

herent concurrency of the problem in terms of mechanisms

from their paradigms. In this way, they quickly achieve a

sufficient understanding of the nature of the concurrency in-

volved.

One of the major difficulties during process architecture design is

the identification of potential sources of concurrency Jacobson et.al.

(1992). Early in the design process, the OO Designer was able to

identify that the elevator problem involved inherent concurrency.

However, this identification was not based on a systematic and me-

thodical analysis but rather on an intuitive understanding of the

problem. Moreover, he was unable to indicate where concurrency

could turn out to be a problem and what consequences it would imply

for his solution.

The process conducted by the OO Designer was characterized by

frequent and random changes between specifying and simulation.

Now and then he was specifying actual code of his solution; now and

then he was testing a partial solution by performing simulations.

Typically, he was working approximately ten minutes on specifying

and then about five minutes on testing. During the entire design pro-

cess, he made this kind of change between specifying and testing six

or seven times.

This approach to identification of concurrency can be characterized

as being highly experimental. Potential problems caused by the in-

herent concurrency were discovered through execution of simula-

tions on partial solutions. Another example of this occurred when he

performed minor simulations on his solution in order to determine

whether an elevator was able to satisfy an up-request when it was

going down. He also simulated what would happen when an elevator

was waiting for requests. A consequence of this approach was that

he used a considerable amount of time on the identification of con-

currency in order to gain the necessary overview. In fact, aspects of

concurrency were identified and handled every now and then during

14

the entire design process. For example, after having made his first

overall design choice, he spent six to seven minutes trying to appre-

hend a very minor and simple concurrency problem. Thus the overall

impression is a very ineffective and irrational mode of operation.

The OO Designer also faced problems when he attempted to evaluate

the consequences of his design choices. At first, he chose a central-

ized unit for coordination of requests. Through simulations, he later

realized that this centralized unit was a problem because the eleva-

tor had to delete a request when it arrived at a floor. Instead, he be-

gan to design a decentralized solution:

OO Designer: A decentralized solution attracts me because it

is more robust. Such a system (the lift control system) is of

course subject to breakdowns.

This redesign caused other problems as he could no longer guaran-

tee that only one elevator would service a request from a floor:

OO Designer: I have some problems with the concurrency

involved here, but I will rather have two elevators trying to

service a request from a floor than none.

This approach to identification of concurrency indicates that the OO

Designer never became totally certain whether the problem was fully

understood or whether important concurrency issues still had to be

addressed in order to design a satisfactory solution.

Both the OS Designer and the ML Designer quickly identified the key

problem of the task. They benefited from their paradigms which re-

spectively enabled them to identify and describe the inherent con-

currency in terms of the mechanisms that were provided by the

paradigms that they applied.

Both paradigms represent a long tradition of dealing with concur-

rency and related issues concepts, and they have been designed

specifically to handle such aspects. As a result, the OS Designer and

the ML Designer could avoid dealing explicitly with many detailed

aspects of the concurrency involved. All they had to do was to

specify the conditions that have to hold during the execution of the

system. In fact, it was often hard to see that they addressed the

15

problem at all since their paradigms handled the concurrency:

ML Designer: It is a formalism where you can put things in

parallel for free. Communication and concurrency have been

built into the language.

The two designers with backgrounds in classical concurrency para-

digms employed a conception of concurrency that is very different

from the view held by the OO Designer. Their identification of sour-

ces of concurrency were more systematic because their paradigms

imposed a sequential order on the issues they had to deal with. Both

paradigms can be seen as media for capturing and describing con-

currency aspects and this enables users of the paradigms to invest a

very modest effort but still achieve a sufficient understanding of the

concurrency involved.

7 Expressing the Solution

The fourth observation focusses on the part of the design process in

the designers developed and expressed their solution to the problem.

The OO Designer has difficulties describing how communi-

cation and synchronization are handled because he lacks a

notation to describe the dynamic behaviour of objects on an

overall level.

The OS Designer and the ML Designer both describe com-

munication and synchronization without any severe problems

as they simply express themselves in terms of the mecha-

nisms that are available in their paradigms.

When the OO Designer started drawing a sketch of the real world

situation, his focus was primarily on objects and their dynamic be-

haviour. For instance, he thought of and described the dynamic be-
haviour of an elevator: what happens when it reaches a specific floor, what hap-
pens when it awaits requests, etc. This lead him to determine the heart of the lift
control problem as being the design of a good algorithm to control the behaviour
of the lifts:

OO Designer: ... all rules in the problem statement imply that the algor-
ithm for the elevators has to be rational ... the design of the algorithm is

16

the core of this task.

His attempts to map this behaviour into an object-oriented description caused fun-
damental problems. He tried to express the dynamic behaviour of the whole system
as procedural code in the abstract classes of the objects involved. After having
spent only 31 minutes on the task, he started coding both essential and unessential
aspects on a very detailed level. His third and fourth sheet of paper already
contains program statements; for example, he specifies a constructor function that
initializes an elevator object to be generated on floor 1. He worried about such
details even though he still lacked a coherent overall understanding of the problem.
He gave the following reason for specifying with code:

OO Designer: It is easier for me to see how the objects interact when I
specify them with actual code.

This statement can, however, be questioned since, later on, he had difficulties de-
scribing certain aspects of the dynamic interaction between objects. For example,
he had to incorporate additional attributes to represent the motion of an elevator
going up or down and this in turn introduced difficulties in realizing whether his
solution would be able to service the various request from pushbuttons in the ele-
vators and on the floors.

The heart of the difficulty he faced was simply caused by the lack of an overall
notation for analyzing and designing solutions in terms of specific objects and on a
relevant level of detailing. Instead, he became burdened with isolated and

unessential issues that occurred only because he had to express

himself in detailed code belonging to the individual classes. As he

gained new insight and wanted to modify his design on the overall

level, he had to express these changes in several different fragments

of code. This also implied that he modified the same part of the code

several times.

To circumvent the lack of a suitable means of expression, he tried to

employ concrete knowledge about the hardware and software that

would be available on the underlying implementation platform. In de-

signing the experiment, we had anticipated this problem. The prob-

lem statement of this study was originally taken from Guindon et.al.

(1987). Yet this description lacks specific information about the fa-

cilities of the technical platform. In order to support the designers in

developing an appropriate solution, we had extended the original

problem statement with a detailed specification of the available

hardware. However, two contradicting characteristics illustrate that

this description was of very limited value to the OO Designer. On

17

the one hand, he did not distinguish between processors and pro-

cesses, cf. the first observation on conceptual basis. This indicates

that he relied on the assumption that it would be a simple task to

map the processes he designed onto the processors that constituted

the technical platform. By making this assumption, he was able to

refrain from solving a key problem of the process architecture de-

sign and this in turn allowed him to ignore the information about the

available hardware that was provided in the problem statement. On

the other hand, he faced several situations in which he requested

even more specific and detailed information about the features of the

platform:

OO Designer: I assume that this is handled by interrupts, but

I cannot specify it in more detail without additional know-

ledge of the underlying hardware.

The lack of a specific platform with a distinct semantics was obvi-

ously a problem to the OO Designer. He virtually chose to ignore the

problems of describing how communication and synchronization

should be handled. In Table 2, this is illustrated by his limited focus

on concepts like broadcast, interrupts, starvation, deadlock, race

conditions, etc. These issues were only treated marginally during the

design process even though some of them may significantly influence

the success of the final solution. Later on, he realized that a problem

could arise with his solution when an elevator was trying to service a

request. The problem was that an elevator could move to a floor in

vain because another elevator had already serviced the same re-

quest:

OO Designer: Some of the elevators may move in vain ... this

is a synchronization problem ... some communication is, of

course, taking place between the processors, but I need

more information of the hardware to specify such aspects.

These characteristics clearly emphasize that the object-oriented

paradigm lacks means to express overall aspects of communication

and synchronization. Instead, users of the paradigm are forced to

deal with the actual features of the underlying hardware and soft-

ware.

The paradigms employed by the OS Designer and the ML Designer

18

have been built deliberately to handle key aspects of communication

and synchronization. Of course, this influenced the experiment. Both

designers were able to describe and express aspects of communica-

tion and synchronization in terms of the notations provided by their

paradigms. This was clearly in contrast to the work of the OO De-

signer because he had to deal explicitly with these topics.

None of the two designers made any use of the information that was

given in the problem statement about the available technical plat-

form. Instead, they made assumptions about features that had to be

available:

OS Designer: I assume that features of the underlying hard-

ware make it possible for me to turn off the lights in the

pushbuttons when a request has been serviced.

Both designers expressed that problems concerning communication

and synchronization played a very minor role in their designs be-

cause their paradigms would take care of such aspects:

OS Designer: I know you might think that I am getting over

the problem easily, but I am sitting on a synchronization ma-

chine which solves a lot of my problems. All I have to do is

to write down the synchronization conditions that have to

hold.

The ML Designer described the key aspects of synchronization by

means of labels on his entities. In order to synchronize an elevator

and a floor, he could specify a specific action on each of the entities

involved. The actual synchronization of the two would then be han-

dled by the paradigm.

8 Conclusion

This chapter has explored how three experienced designers worked

with a realistic and complex problem related to designing the dy-

namic element of a software system. The preceding sections have

expressed the results of this exploratory approach in terms of four

observations that are summarized in Table 3.

19

 OO Designer OS and ML Designers
Conceptual

Basis
– Many similar concepts with

unclear mutual relations
+ Few well-defined concepts

with clear mutual relations
– Rapid changes between dif-

ferent aspects of the problem
and different levels of ab-
straction

+/– Continuous but un-
reflected work on the same
aspect of the problem and
on the same level of ab-
straction

Abstraction
and

Complexity

+ Close relation between de-
scription and intuitive un-
derstanding

– Reduced description due to
dramatic growth in com-
plexity

Identifying
the Problem

– Unstructured and experi-
mental approach, slowly
accomplished

+ Structured and systematic
approach, quickly accom-
plished

Expressing
the Solution

– No abstract notation for
specifying communication
and synchronization

+ Simple, abstract mecha-
nisms for specifying com-
munication and synchroni-
zation

Table 3. Summary of observations

The OO Designer faced several situations in which he needed

stronger conceptual or methodical support. His design process con-

veyed four essential deficiencies. First, he wasted much effort be-

cause he lacked a coherent conceptual framework and a related set

of methodological guidelines to support the design process. Second,

a notation for relating the dynamic behaviour of objects to the static

definitions of classes would have improved his design process and

solution significantly. Third, his design suffered from the lack of an

abstract machine that served as the underlying technical platform of

a design solution. Fourth, his solution describes the structuring of

processes but the overall design is largely missing.

These observations are based on a small experiment with only one

object-oriented designer and a comparison with two other designers;

and all three designers represent fundamentally different and very

heterogeneous paradigms. Thus our experiment cannot form the ba-

sis of quantitative and statistically valid conclusions concerning all

object-oriented designers. The advantage of this limited experiment

is that it has facilitated a rich, qualitative insight into the problems

and breakdowns faced by each individual designer and the reasons

why they occurred (Basili 1996). Video observation and exhaustive,

qualitative data analysis of a large number of designers is practically

impossible. The qualitative exploration is a first step towards a bet-

20

ter understanding of object-oriented process architecture design.

Later on, the four observations can be examined quantitatively in a

more ambitious study that involves more designers and a varied se-

lection of process architecture problems.

This exploratory approach also opens other avenues for further re-

search. A related effort would be to study the extent to which spe-

cific object-oriented methods support the process architecture de-

sign activity. Finally, it could be investigated how the process archi-

tecture has been designed in a number of complex software systems.

All of these efforts would contribute to improve the work practices

of software designers dealing with realistic concurrency problems.

9 Acknowledgements

The research behind this article has received financial support from

the Danish Natural Science Research Council under grant No.

9400911. We owe a special thank to the five participants of the ex-

periment: Kasper Østerbye, Michael J. Manthey, Kaare J. Kristoffer-

sen, Arne Skou, and Bent Bruun Kristensen. Without their participa-

tion, the experiment would not have been possible. We are also

grateful to Lars Mathiassen. Peter Axel Nielsen, Dan Sletten, and

Heinz Züllighoven for their comments and suggestions to different

versions of this article.

References

Andersen, P. B. and Callesen, J. (2000). Agents as Actors. (in this

volume)

Basili, V. (1996) The Role of experimentation in software engineer-

ing: Past, current, and future. In Proceedings of the 18th Interna-

tional Conference on Software Engineering, pages 442-449.

Booch, G. (1994) Object-Oriented Analysis and Design with Applica-

tions. Benjamin/ Cummings, Redwood City, California.

Booch, G, Jacobson, I., and Rumbaugh, I. (1997) The Unified Model-

ing Language Version 1.0. Rational Software Corporation, Santa

Clara, California.

Coad, P. and Yourdon, E. (1991a) Object-Oriented Analysis. 2nd edi-

tion, Prentice-Hall, Englewood Cliffs, New Jersey.

21

Coad, P. and Yourdon, E. (1991b) Object-Oriented Design. Prentice-

Hall, Englewood Cliffs, New Jersey.

Eriksen, L.B., and Skov, M. (1998). A Critical Look at OOA&D in

Multimedia Systems Development. In proceedings of the 21th In-

formation Systems research seminar In Scandinavia. 8 - 11 Au-

gust, Sæby, Denmark

Eriksen, L. B., Skov, M., and Stage, J. (1998b). A Multimedia System

Development Project: Documentation. Available through the WWW

at the following URL: http://www.cs.auc.dk/~dubois/manager/

Eriksen, L. B., Skov, M., and Stage, J. (2000 Multimedia Systems De-

velopment Methodologies: Experiences and Requirements. Sub-

mitted for publication.

Goldberg, A. and Robson, D. (1989) Smalltalk-80. The Language.

Addison-Wesley, Reading, Massachussetts.

Guindon, R., Krasner, H., and Curtis, B. (1987). Breakdowns and

Processes during the early Activities of Software Design by Pro-

fessionals. In DeMarco, T. and Lister, T. (eds) Software State-of-

the-art: Selected Papers. Dorset House Publishing, New York, pp.

455 - 475.

Hansen, K. K., Harbøll, B., Høegh, R. T., Lorentzen, K. H., Madsen, R.

Ø., and Pedersen, M. S. (1999). Zoomedia. A Multimedia System

Developed for Aalborg Zoo (in Danish). Aalborg University.

Horn, G, Svendsen, E.H., and Madsen, K.H. (2000) Experimental De-

sign of Multimedia. (in this volume)

Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1992).

Object-Oriented Software Engineering. Addison-Wesley, Woking-

ham.

Jackson, M. (1983). Systems Developmentoftware. Prentice-Hall,

New Jersey.

Madsen, O.L. and Møller-Pedersen, B. (1993) Object-Oriented Pro-

gramming in the Beta Programming Language. Addison-Wesley,

Reading, Massachussetts.

Manthey, M., Andersen, L.U., Arent, J., Christiansen, H., Nielsen,

T.K., Simonsen, J., and Sørensen, T.B. (1994) A topsy example.

Aalborg University, Denmark

Manthey, M (1988) Maskinel II. Technical report. Aalborg University,

Denmark

Milner, R. (1989) Communication and Concurrency. Prentice-Hall.

22

Pressman, R. S. (1992). Software Engineering: A Practitioners Ap-

proach. McGraw Hill.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, S., and Lorensen W.

(1991). Object-Oriented Modelling and Design. Prentice-Hall,

Engelwood Cliffs, New Jersey.

Satoh, I. and Tokoro, M. (1992) A Formalism for Real-time Concur-

rent Object-Oriented Computing. ACM Sigplan Notices: OOPSLA.

27(10), October, pp. 315 - 326

Shlaer, S. and Mellor, S. J. (1988) Object-Oriented Systems Analysis:

Modeling the World in Data. Yourdon Press, Englewood Cliffs,

New Jersey

Skov, M. and Stage, J. (1995) Object-Oriented Design of Process Ar-

chitecture: An Exploratory Study - Documentation. Available

through the WWW at the following URL:

http://www.cs.auc.dk/~jans/procarch/

Skov, M. and Stage, J. (1996) Object-Oriented Design of Process Ar-

chitecture: An Exploratory Study. In Proceedings of the 19th In-

formation Systems research seminar In Scandinavia. 10 - 13 Au-

gust, Lökeberg, Sweden, pp. 975-1000

Sommerville, I. (1992). Software Engineering. 4th edition. Addison-

Wesley, Workingham.

Sutcliffe, A.G. and Faraday, P. (1994). Designing Presentation in

Multimedia Interfaces. In: Adelson, B., Dumais, and Olson, J.

(Eds.), Proceedings of Computer-Human Interaction Conference

‘ 94. 92-98.

Sutcliffe, A.G. and Faraday, P. (1997). Designing Effective Multi-

media Presentations. In: Ware, C. and Wixon, D. (Eds.), Proceed-

ings of Computer-Human Interaction Conference ‘ 97.

Wirfs-Brock, R., Wilkerson, B., and Wiener, L. (1990) Designing Ob-

ject-Oriented Software. Prentice Hall, Englewood Cliffs, New Jer-

sey

