
Using UML-Based Feature Models and UML
Collaboration Diagrams to Information Modelling for

Web-Based Applications

Peter Dolog and Wolfgang Nejdl

L3S Research Center
University of Hannover

Expo Plaza 1, 30539 Hannover, Germany,
{dolog, nejdl }@l3s.de

Abstract. Web oriented software technology has provided access to informa-
tion serving environments for a broad audience. This situation requires web-
based software applications which satisfy increasing variety of requirements of
the broad audience. Such variability can be found in requirements for informa-
tion but also for environment which is serving the information. In this paper, we
discuss a method which utilizes the UML-based feature modelling to support the
need to model the variability. The information and environment configurations
are modelled as common and variable features of application domain and en-
vironment concepts. Separation of feature models into application domain and
environment allows us to select several configurations of environments to deliver
particular information. The UML collaboration diagrams model collaborations
between the application domain and environment concept and feature instances
as an abstraction for presented information fragments in a web application.

Keywords: Feature modelling, information modelling, web-based application, UML
collaboration diagrams

Copyright by Springer Verlag. This paper is going to appear in the proceedings
of the UML 2004 Conference, Lisbon, 2004, published by Springer Verlag in the
Lecture Notes for Computer Science collection
(see http://www.springer.de/comp/lncs/index.html).

1 Introduction

Open environments such as Internet provide us with possibility to serve information to
users with different goals, background, interests and so on. To build applications for
such an environment requires to focus on diversity of features user of the applications
can require in case of information provided and also in case of how the provided infor-
mation is re-/presented.

Explicit information about a purpose of already authored content and the purpose of
the information being described by the content can help requirements analyst, designer
or author of the content to compare existing material with the diverse requirements of

users and to say whether the content can be reused or new content should be provided.
Current established modelling methods for web based applications do not provide suf-
ficient mechanisms to express such information.

This paper explores an approach to information modelling which is based on the
idea of information product line and is inspired by domain engineering approaches
for building software systems like generative programming [6] or product line prac-
tices [23] where feature models play an important role. Our method is also based on the
idea that an information is communicated usually using several concepts to a user. We
use the UML collaboration diagrams to model such a design view where information
features collaborate together to fulfill a main information goal. This extends our pre-
vious work on feature modelling for the domain engineering approach for hypermedia
engineering (DEAHE) [7]. Our approach is based on:

– Two views on information: domain and environment;
– Feature models which model common and variable features of concepts and varia-

tion points in both views;
– Collaboration diagrams which refine and integrate feature models of both views.

Feature modelling allows us to capture common and variable features of concepts
being covered by an application. Common and variable features reflect diverse require-
ments of different current and possibly future users of particular application for the
information and also environment through which it is served. Collaborations between
different features are determined by roles. The roles reflect the context in which infor-
mation can be used and presented in an environment component.

The feature and collaboration models allow us to specify conditions in which fea-
tures from two separate models can be used. The conditions determine which combi-
nations of features provide us with meaningful information. Different configurations of
features and roles represent possible web based applications which form an application
family. Such an approach provides us with following advantages:

– The separation of the domain and information/environment models allows us to
provide information about concepts in different environment and vice versa;

– Mandatory and optional features together with variation points in both models al-
low us to maintain information which reflect different successful implementations
of web-based application;

– Instance roles and their collaborations allow us to maintain information how do-
main features collaborated in information serving environments installed at a cus-
tomer site.

1.1 Motivating Scenario

To illustrate our approach, we refer to a scenario where a training company needs to
be able to configure a training suite where, besides other courses, Java course is pro-
vided. The suite will be provided for a group of people with a background in electrical
engineering —tutorial. They would like to gain an overview of the Java language and
possibly ideas where they can use it.

On the other hand, the company needs to configure the training suite for a group
of people from a software company which just acquired a project where Java language
was chosen as a programming language —detailed course.

In addition, in both cases the training material has to be provided with different
environments as it is needed to support mobile learners and also learners in offices.

The company’s vision is that similar situation can happen in the future. Due to
this they decide to document design models in a way which is suitable for the varying
requirements.

As this situation shows, information about the same concepts has to be presented in
a different way according to whether a detailed presentation is needed or just overview.
In both cases the information is articulated by several concepts playing different roles.
For example, to give an introduction to Java objects in a simple Java tutorial, object
state and object behavior concepts are needed. This can be called the smallest mean-
ingful set of concepts to present the Java object in any content configured for the Java
lecture. Additional concepts might be suited to describe other aspects of the object state
for example. Information modelling framework has to provide tools for modelling the
concept configurations by means of mandatory and optional features of the concept and
configuration dependencies between them.

As the information can be delivered by different environments, the domain con-
cepts which are used to model information have to be separated form the environment
concepts used to model the environment. On the other hand, interconnections between
domain concepts and the environment concepts have to be modelled to document suc-
cessful cases of training suite applications. The information modelling framework has
to provide means for modelling such collaboration interconnections between several
roles the concepts and features play in the environment.

1.2 Paper Structure

The rest of the paper is structured as follows. Section2 provides a brief overview of
an approach and its context in web-based application development. Section3 describes
UML-based feature modelling for information and environment. Section4 discusses
collaboration model and its refinements. A short summary of application and experi-
ences with this approach is given in Sec.5. Section6 discusses our approach in the
context of related work. The paper concludes with some remarks and proposals for
further work (Sec.7).

2 Overview of a Modelling Framework

Figure1 depicts a framework for engineering web-based information intensive product
lines [7]. This paper focuses mainly on the shaded areas in Fig.1. In this paper we
discuss a method where:

– Domain and information conceptual modelsare used to model concepts and their
mutual relationships;

– Domain and information/environment feature modelsare used to maintain common
and variable features of concepts and their dependencies as companies’ experience
in how different concepts can help in presenting another concept;

– Collaboration modelsrefine the feature models and are used to express how fea-
tures from domain and information/environment feature models collaborate to-
gether to achieve a main information goal.

Domain Engineering for
Web-Based Information
Intensive Applications

Application System
Engineering

Define Conceptual Model
- Domain
- Information/Environment

Define Feature Model
- Domain
- Information/Environment

Define Domain Architecture
- Information
- Navigation
- Presentation
- User
- Environment
- Adaptation

Implement Domain
- Reusable Components
- Tools
- Reuse Infrastructure
- Domain Specific Languages

Analyse Requirements of Stakeholders

Perform Selection of Reusable
Components

Define and Scope Requirements not
Covered by Reusable Components

Do Design of Custom Components

Specialise and Integrate Resusable and
Custom Components

Consider Variability and Reuse at Reuse
Time and at Bind Time

Fig. 1. Domain engineering based approach for engineering web-based information in-
tensive product lines

The purpose of the conceptual models is to document domain and environment
vocabulary used in all other models. As the domain/content presented in a training suite
in case of Java lecture from our example scenario, the domain conceptual model will
refer to concepts from Java programming language. As the environment mentioned in
the scenario is a course, the course structure and some other concepts will depict in the
environment conceptual model.

The purpose of the feature models is to document presentation relations of all con-
cepts from the conceptual models to other concepts in that model; i.e. which other
concepts are used to articulate particular concept, e.g. on Java objects.

The purpose of the collaboration models is to connect the instances from the two
models according to a selection performed by a designer. In addition, the purpose of the
collaboration models is to model messages needed to be sent between the roles of those
instances depicted in the models when an interaction with particular role instance was
requested by a user.

The process of such information modelling can be summarized in the following
steps:

1. Define a conceptual model for a domain and environment (e.g. concepts used to
teach Java programming language served in a course as an environment);

2. Define a feature model for all concepts from the domain and environment concep-
tual models being used in the application;

3. Refine domain feature models into the domain collaboration model based on fea-
tures selected for final application;

4. Refine the domain collaboration models
(a) Introduce collaborations with information/environment features in place of se-

lected collaboration links from the domain collaboration models;
(b) Introduce messages being sent between the participants in the collaborations

and constraints for determination which message applies in a specific situation;
5. Update conceptual and feature models of domain and environment if new concepts

and/or features have been developed.

3 Commonalities and Variabilities in Domain and Environment

Conceptual Models. Let us recall our application scenario. The company has an expe-
rience with serving a Java tutorial. Information usually exposes one or more concepts
from a domain where general conceptual models, taxonomies or ontologies can already
exist. For example Java tutorial serves an information which belongs to computer sci-
ence domain. There are several taxonomies which are used for example to classify com-
puter science literature (ACM CCS1) or to describe a computing body of knowledge and
curricula2. Companies use also their own conceptual models to communicate terminol-
ogy used in their information systems.

Figure2 depicts an excerpt of such adomain conceptual modelmodelled by the
UML class diagram with basic object-oriented programming concepts (annotated by
theConcept stereotype) and their mutual relationships. The figure expresses a com-
pany’s general view on relationships betweenObject , Class , object’sState and
Behaviour usingMethods andVariables .

«Concept»
Object

«Concept»
State

«Concept»
Behaviour

«Concept»
Method

«Concept»
Instance Method

«Concept»
Class Method

«Concept»
Class

«Concept»
Variables

+isDefinedBy

*
+has*

+belongsTo+classifies

*+has

*

+isDefinedBy

*

Fig. 2.An excerpt of conceptual application domain model

As the training suite is provided with several possible virtual environments, a com-
pany needs to communicate how the environments are structured. The example of
such an environment suitable for the Java tutorial can be a virtual course. Concepts
such asCourse , Lectures , Modules , Learning Object , Lecturer , and

1 http://www.acm.org/class/1998/
2 http://www.computer.org/education/cc2001/

Provider would then appear in a similar UML class diagram forenvironment con-
ceptual model(Fig. 3).

«Concept»
Course

«Concept»
LearningResource

«Concept»
Lecture

«Concept»
Module

«Concept»
LearningObject

1

+hasPart

*

«Concept»
Person

* +Garant*

*

+Lecturer

*

* +Provider *

Fig. 3.An excerpt of conceptual environment/information model

Feature Models. According to our scenario, the company needs two different con-
figurations of a content and several configurations of environment for two different
audiences. Some features are common for both configurations and some vary.

As scenario pointed, the content is intended to be served through different environ-
ments which is selected according to requirements. Feature models have to be created
for both views. The main elements in feature models areconcepts, features, variation
points, andrelationshipsbetween them. Aconceptin feature models represents:

– in a domain model— an information, which is of the main purpose (main informa-
tion goal) of the content which author had when authored the content,

– in an environment/information model— a main structural unit of a content in par-
ticular web-based application (different representations are modelled by different
concepts).

A feature model has to be maintained for all concepts from conceptual model which
are going to be depicted as main information entities in an environment. Figure4depicts
an excerpt of such a feature model for theObject concept.

«Concept»
Object

«MandatoryFeature»
State

«MandatoryFeature»
Behaviour

«OptionalFeature»
Encapsulation

«VariationPoint»
AND

«MandatoryFeature»
Methods

«OptionalFeature»
Instance

«OptionalFeature»
InformationHiding

«OptionalFeature»
Instance Method

«OptionalFeature»
Class Method

«OptionalFeature»
Object-Oriented Design

«OptionalFeature»
Modularity

«OptionalFeature»
BehaviourResults

«OptionalFeature»
Class

«MandatoryFeature»
Variables

Fig. 4.An excerpt ofObjectfeature model

Other concepts needed to communicate the main information goal represented by
a concept in a feature model are selected and transformed tofeaturesof the concept.
According to our scenario for example, theObject concept is usually described with
the help of the concept of itsState andBehaviour . Both appear as concepts in the
conceptual model in Fig.2. They appear as theObject -s features in Fig.4.

All other concepts from the conceptual model (Fig.2) have usually such feature
models if they are communicated to learners as available in the application. For space
limitation we do not show them here. Note also that the models depicted in our examples
are not intended to provide a one and only solution, but just to exemplify how to create
own feature models which report on best practices for information being served in web
based applications.

The fact that there are some features which are common to all configurations and
some vary has to be also reflected in the model. According to that we consider (in both,
domain and information/environment models):

– mandatory features— form common or core features for all considered situations
which will be covered in our applications (application family), and

– optional features— form variable features needed only in specific context.

In our example scenario from Fig.4, theState andBehaviour are considered
as mandatory features (annotated withMandatoryFature stereotype). The concepts
annotated byOptionalFeature stereotype do not appear in all applications (e.g.,
Object-Oriented Design , Encapsulation , Class , andInstance).

Sometimes some features need to be presented together with other information fea-
tures to provide sufficient explanations to understand presented information. Some other
information features cannot be presented together because they could confuse a learner.
In some cases the combination of features is not so relevant. For this purposevariabil-
ity relationshipshave been introduced between features and they are usually denoted as
variation points[22] or variations[9]. The variation point can define:

– mutually exclusive variants,
– mutually required features, and
– mutually inclusive features.

Figure 4 depicts a variation point shown forMethods mandatory feature. The
model defines that theMethods have to be described also onInstance Method
andClass Method .

Similarly, a feature model is needed for the information/environment concepts. Fig-
ure 5 depicts an excerpt of such a feature model of a virtual environment from our
example scenario for theCourse concept. Usually, information feature model for one
virtual environment consists just of one feature model for the most general concept.
The Course has to have aProvider and also aGarant (modelled by so called
mandatory features). Then, according to requirements of a customer, theCourse can
consist of eitherLectures where some of them can be encapsulated into thematic
Modules or just fromLectures (this is reflected by theORvariation point of the
Course). TheLecture can have aLecturer provided who plays a role of a tutor
when somebody needs to consult something related to the lecture. Both,Lectures
andModules , refer to learning objects.

«Concept»
Course

«MandatoryFeature»
Lectures

«OptionalFeature»
Modules

«VariationPoint»
OR

«MandatoryFeature»
LearningObjects

«MandatoryFeature»
Garant

«OptionalFeature»
Lecturer

«MandatoryFeature»
Provider

Fig. 5.An excerpt ofCoursefeature model

4 Information Collaboration Modelling

In this section we will show just a collaboration model made according to a selection
of features for the simple Java tutorial from our example scenario.

The Java tutorial provides a small lecture on introduction to the Java objects, which
are introduced by it’s state and behaviour. The features which are needed to communi-
cate this introduction are depicted in Fig.4. At runtime, the feature instances collaborate
to create a content. The idea of collaboration is based on the notion of active learning
objects which provide a defined interface to access their content and presentation. With
this idea in mind, dependencies from the domain feature models can be transformed into
collaboration links. The collaboration models are created as refinements of the feature
models. The refinement consists of:

– Instantiating concepts and features from feature model;
– Identifying roles of the instances in collaborations;
– Transforming associations between features and concept in feature models into col-

laboration links.

Roles are used to model different purposes of a particular feature or concept in an
environment/information component. We use the following notation:

O/R : P :: C

where O is a Classifier or Feature instance,
R is a Classifier or Feature role,
P (optional) is a Package name where Feature or Classifier belongs to, and
C is a Classifier or a Feature.

Roles terminology can form a complex structures. The UML class diagram can be
employed to model such a structure [1]. This model can be used similarly to the domain
and environment/information conceptual models; i.e. as a mean for communicating the
roles terminology to be used in the web-based training suite.

Domain features collaborations. The first refinement of the feature models is refine-
ment into domain features collaborations. The refinement is based on defining concept
and featureinstances and rolesand links between them as instances of associations
between the concept and features.

Instances and Roles.Figure6 depicts an excerpt of a collaboration model of features
from theObject feature model (the feature model depicted in Fig.4). Roles of domain
features used in the collaborations aredefinition, example, exercise, description, and so
on. TheDefinition andExample roles played by theObject concept instances
are used to model a situation where a termJavaObject is defined and then showed
on the example. The termJavaObject is defined using theJavaObjectState
andJavaObjectBehaviour definitions. TheVariable definition is used define
the state variables.

«Concept»
JavaObject/Definition : Object

«MandatoryFeature»
JavaObjectState/Definition : State

state

«MandatoryFeature»
JavaObjectBehaviour/Definition : Behaviour

be
ha

vi
ou

r

«MandatoryFeature»
Variable/Definition : Variables

«MandatoryFeature»
JavaMethod/Definition : Methods

«OptionalFeature»
JavaInstanceMethod/Description : Instance Method

«MandatoryFeature»
JavaClassMethod/Description : Class Methods

«Concept»
JavaObject/Example : Object

«MandatoryFeature»
JavaClassMethod/Comparison : Class Methods

Fig. 6.An excerpt of a collaboration model showing features fromObjectfeature model

TheJavaObjectBehaviour collaborates with theJavaMethod definition, as
the behavior of an object is exposed by its methods. TheJavaInstanceMethod and
JavaClassMethod descriptions are provided as two alternatives for the Java meth-
ods (they play a description role in collaboration with theJavaMethod definition). In
addition, a comparison of the class method and instance method is provided to improve
an understanding of the difference between these kinds of methods. This is reflected
by additional comparison role of theJavaClassMethod in collaboration with the
JavaInstanceMethod .

Links. The collaboration links are defined mostly as straitforward mappings from as-
sociations in the feature model. Special attention has to be paid in case of several
instances and roles of the domain features in the model. A designer has to decide
which roles and instances will be linked together. In our example, two instances of
theObject concept appear in the collaboration model. We created a link just between
the Definition roles of theJavaObject and theJavaObjectBehaviour .
The Example role of theJavaObject contributes just to the collaboration with
Definition role of theJavaObject role in our example application, so the link
to theJavaObjectBehaviour is not created. Similarly, theANDvariation point in
the feature model from Fig.4 was resolved as several links between the participating
feature instance roles.

Names of the links are suppressed in the model except of thestate link be-
tweenJavaObject and JavaObjectState and thebehaviour link between
JavaObject andJavaObjectBehaviour , which we will use for the purpose of
description later.

«MandatoryFeature»
JavaObject/NarrativeText : LearningObjects

«Concept»
JavaObject/Definition : Object

«MandatoryFeature»
JavaObjectState/Definition : State

«MandatoryFeature»
JavaObjectBehaviour/Definition : Behaviour

«MandatoryFeature»
Variable/Definition : Variables

«MandatoryFeature»
JavaMethod/Definition : Methods

«OptionalFeature»
JavaInstanceMethod/Description : Instance Method

«MandatoryFeature»
JavaClassMethod/Description : Class Methods

«Concept»
JavaObject/Example : Object

2.
1:

 S
ho

w
()

«MandatoryFeature»
ObjectState/NarrativeText : LearningObjects

3.2: S
how

()

3.1: Show()

«MandatoryFeature»
ObjectBehaviour/NarrativeText : LearningObjects

4.
1:

 S
ho

w
()

4.2: Show()

4.
3:

 S
ho

w
()

4.4.2.1 [UserKnowledge>ReqValue]: Hide()
4.4.1 [else]: Show()

«MandatoryFeature»
OOConcepts/Instruction : Lectures

2: GetObject(UserKnowledge, Topic)

3: G
etO

bject(UserKnowledge, Topic)

4:
 G

et
O

bj
ec

t(U
se

rK
no

w
le

dg
e,

 T
op

ic
)

2.2.1 [UserKnowledge>ReqValue]: Show()
2.2.2 [else]: Animate()

«MandatoryFeature»
JavaClassMethod/Comparison : Class Methods

4.4.2.2: Show()

JavaTutorial::Learner

1: Access(LearnerProfile)

Fig. 7. An excerpt of a collaboration between feature fromCourseandObjectfeature
model

Collaborations of domain features with information/environment features. Second
refinement of the abstract feature models which follows the domain feature collabora-
tions described above is the refinement into so calledinformation components. By infor-
mation components we mean accessible environment components which are accessed
through their interfaces and are able to deliver concrete information about particular
domain concepts.

This is achieved by linking the instances of the domain features to the instances of
the environment/information features. The refinement extends above described collab-
oration models with:

– Instance roles of environment/information featuresto model mainly pedagogical
style and purpose of the information component;

– Linksbetween instance roles of environment/information features and domain fea-
tures instance roles which replaces some of the links between domain feature roles
(collaboration is being delegated to the information components);

– Messagesbeing sent between environment/information feature roles and domain
feature roles when a user performs an act of interaction.

Instance Roles of Environment/Information Features.Roles of information features in
collaborations with domain features are usuallycontainer, provider, or more domain
specific likenarrative text, simulation, problem statement, instruction, and so on. Some
of the roles are suitable just for higher level information objects like lecture or module.
This is, for example, theinstruction role which refers to the learning theory used to
construct an information component. Similar concepts are used in the learning object
metadata standard [12].

Figure7 depicts an excerpt of such a collaboration model which links environment
features to domain features.NarativeText role is introduced for theJavaObject ,
theObjectState , and theObjectBehaviour instances ofLearningObjects .
The learning objects can be accessed through theOOConcepts instruction which is
an instance role of theLectures . In a final training suite this lecture of Java tutorial
collaborates with other lectures.

Additional Links — Collaboration Delegation.The three learning objects introduced
in the Fig. 7 are linked to the corresponding domain features and/or concepts. The
JavaObject is linked to theDefinition role of theJavaObject . TheObject-
State is linked to theDefinition role of theJavaObjectState . TheDefini-
tion role of theJavaObjectBehaviour is linked to theObjectBehaviour .
Note that these domain features are connected by thestate and thebehaviour
links in the Fig.6. These links are replaced by introduced environment feature in-
stance roles and the collaborations are delegated to information feature roles acces-
sible by a user (in this case theOOConcept/Instruction). Remaining links be-
tween domain features are derived from the Fig.6. The collaboration links between
environment/information features are created as instances of the associations in envi-
ronment/information feature models. Similarly as in case of the domain features col-
laborations, collaboration links have to be resolved by a designer when several roles
and instances of one feature or concept appear in the collaboration model and when
variation point has to be transformed.

Messages.In addition, links are annotated by messages which are sent between the
roles. User interaction generates theAccess(...) message to theOOConcepts
lecture. TheOOConcepts lecture generates severalGetObject(...) messages
which are sent to the learning objects. Those learning objects request a content from the
domain feature instance roles likeJavaObject by sending for example theShow()
messages. A content is propagated to the user as the result of interaction between the
instance roles.

TheLearnerProfile parameter of theAccess(...) message is propagated
by severalGetObject(...) messages to domain features instance roles. Just frag-
ments of the profile relevant to prerequisite competencies and/or topics of the learning
objects are transferred by theGetObject(...) messages. These fragments are used
to determine which presentation options are valid for a learner with particular level
of knowledge, e.g. the two conditionally constrained messages at the link between the
Definition andExample roles of theJavaObject . TheUserKnowledge pa-
rameter is used to determine whether the example is just statically shown (Show()

message) or animated (Animate() message). TheReqValue is a predefined con-
stant which sets which level of knowledge is required to switch between the presentation
options. The conditionally constrained messages at the link betweenJavaMethod and
JavaInstanceMethod can be interpreted similarly.

5 Applications and Experiences

Figure8 depicts an example of the lesson or lecture from Java tutorial with some con-
cepts used in our modelling approach.

Concept in
domain

Features in
domain

Roles

Concept and
feature in

environment

Fig. 8.Modelling concepts of our approach highligted at a web-based Sun Java tutorial

The collaborations are presented as a web page showing content about several fea-
tures we modeled in our models. There are two roles highlighted: the definition and
example modeled for the Object concept in our feature model. Object-oriented design,
behavior, state, methods and variables are similarly highlighted as the features from the
domain. The lesson and course are also highlighted as environment features.

This information modelling approach resulted from several experiences with mod-
elling and developing learning oriented web-based systems. First of all, it served as an
underlying information modelling for the applications generated by the UML-Guide [8]
where a very basic environment considered was environment of web pages.

In another EU/IST project — Elena3 — we gained experiences in information mod-
elling for information sources connected to a network and accessed through applications

3 www.elena-project.org

making use of services such as recommendation, booking, and delivery. The informa-
tion sources have been connected by Edutella [15], a p2p infrastructure for the seman-
tic web. Resource Description Format (RDF) [13] was employed as the physical data
model for metadata about information being served by the Edutella peers. The physical
model for accessing the content varied. The metadata have been structured into two sep-
arated models, domain and information/environment. A subset of the ACM CCS system
was used as concept ontology. Applications developed on top of the information provi-
sion infrastructure used defined interfaces encapsulating queries to application services
and to the information provision infrastructure to provide tutorials, course, or learning
resources through environments defined in the network.

6 Related Work

Recently, role oriented modelling was applied as a promising modelling approach for
design and development of software applications [21,20] or databases [10]. The notion
of role is used to identify different purposes of classes and objects in collaborations
with different classes and objects available in a design framework. The importance of
roles in modelling is apparent from the work on topic maps standard [16]. The concept
of role is used in the topic map similarly to our approach: a topic plays particular role
in association to other topics. Knowledge modelling community also reflects on notion
of roles for example in [19]. There, the structural types can be associated to each other
through roles the types play in the associations.

Feature modelling is another modelling technique which has been successfully ap-
plied in reuse oriented community [22,6,23,9]. The main idea is to explicitly represent
information about different possible combinations of features a concept can have in
software system for different purposes.

Our approach extended and integrated the ideas from the role oriented and feature
oriented approaches for purposes of information modelling of information intensive
web-based applications.

Tropos approach [4] relates to our work by considering variation of goals as a main
concept which drives its requirements engineering phase. The goal oriented early re-
quirements analysis can be suitable as a pre-step to feature modelling in our approach,
as it is intended to provide a broader view for all interacting actors. Our approach also
emphasizes on a conceptual model which is used as a vocabulary for the feature models
documenting suitable configurations of information being provided in different envi-
ronments. Refining technique of goal models into sequence diagrams in Tropos relates
to our refinements from feature models into collaboration diagrams.

The information models in web applications modelling approaches usually reflect
either an application domain point of view or environment point of view. OOHDM [18],
W2000 [3], UWE [11], WebML [5], and UML extension for web engineering [14]
model information from application domain perspective. ADM [2] concentrates on log-
ical model of a web site where E-R model is used to specify data to be used in sites
and page schema is used to specify pages. The work [17] relates to our approach by
employed application domain.

Our approach introduces several new models, separating domain from environment
modelling. Feature and collaboration models which are not considered in the mentioned
approaches are used to represent additional design views needed in cases similar to our
example scenario. This of course brings additional overhead arisen from creation and
maintenance of those additional models. Therefore, our approach is beneficial when
there is a knowledge or assumption that the models will help in other projects to reuse
content and implementation from previous projects.

The approach introduced in this paper is highly complemental to those approaches
introduced in recent web application design methods and can be integrated with them.
The integration as pointed above have to be justified by the need to ease the future
development projects.

7 Conclusions and Further Work

We discussed the UML-based feature modelling with the UML collaboration diagrams
for information modelling for web-based applications in this paper. The core features
of the approach are:

– Separation of domain and information/environment models;
– Making use of feature models in both design views to communicate best practices

in information product line;
– Making use of the UML collaboration diagrams to configure a web-based informa-

tion provision application with a specific virtual environment.

The models provide a designer of a web-based application with necessary informa-
tion about which feature configurations make sense, what are important features to be
considered and how their roles determine their use in provided environments.

In our further work we would like to investigate possibilities to automate some of
the steps which now have to be performed by a designer. We also would like to further
investigate how to improve a tool support for such information modelling described
here. This comprises especially domain specific query language for more effective se-
lection of features when building the collaboration models.

Acknowledgement.We would like to thank anonymous reviewers whose comments
helped to improve the work presented in this paper. This work is partially supported by
EU/IST ELENA project IST-2001-37264.

References

1. Heidrun Allert, Peter Dolog, Wolfgang Nejdl, Wolf Siberski, and Friedrich Steimann. Role-
oriented models for hypermedia construction — conceptual modeling for the semantic web.
Technical Report. Learninglab Lower Saxony, University of Hannover, February 2003.

2. Paolo Atzeni and Alessio Parente. Specification of web applications with adm-2. In Patrick
van Bommel, editor,Information Modelling for Internet Applications, pages 127–143. Idea
Group Publishing, 2002.

3. Luciano Baresi, Franca Garzotto, and Paolo Paolini. Extending UML for modeling web
applications. InProc. of 34th Anual Hawaii International Conference on System Sciences
(HICSS’34), Maui, Hawai, January 2001. IEEE Press.

4. Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven informa-
tion systems engineering: the Tropos project.Information Systems, 27(6):365–389, Septem-
ber 2002.

5. Stefano Ceri, Piero Fraternali, and Maristella Matera. Conceptual modeling of data-intensive
web applications.IEEE Internet Computing, 6(4), August 2002.

6. Krysztof Czarnecki and Ulrich Eisenecker.Generative Programing: Principles, Techniques,
and Tools. Addison Wesley, 2000.

7. Peter Dolog and Ḿaria Bielikov́a. Towards variability modelling for reuse in hyperme-
dia engineering. In Yannis Manolopoulos and Pavol Návrat, editors,Proc. of Advances
in Databases and Information Systems : 6th East European Conference, ADBIS 2002,
Bratislava, Slovakia, September 8-11, 2002., vol. 2435 ofLNCS, pages 388–400. Springer.

8. Peter Dolog and Wolfgang Nejdl. Using UML and XMI for generating adaptive navigation
sequences in web-based systems. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,
Proc. of UML 2003 - The Unified Modeling Language. Model Languages and Applications.
6th International Conference, San Francisco, CA, USA, October 2003,, vol. 2863 ofLNCS,
pages 205–219. Springer.

9. Martin L. Griss, John Favaro, and Massimo d’ Alessandro. Integrating feature modeling with
the RSEB. In P. Devanbu and J. Poulin, editors,Proc. of 5th International Conference on
Software Reuse, pages 76–85, Victoria, Canada, June 1998. IEEE Computer Society Press.

10. Terry Halpin.Information Modeling and Relational Databases: From Conceptual Analysis
to Logical Design. Morgan Kaufmann, 2001.

11. Rolf Hennicker and Nora Koch. A UML-based methodology for hypermedia design. In
S. Stuart A. Evans and B. Selic, editors,Proc. of UML 2000 Conference, York, England,
October 2000, vol. 1939 ofLNCS. Springer.

12. IEEE Learning Technology Standards Committee. IEEE standard for learning object meta-
data (IEEE 1484.12.1–2002). http://ltsc.ieee.org/, July 2002.

13. O. Lassila and R. Swick. W3C Resource Description framework (RDF) Model and Syntax
Specification, 2001.http://www.w3.org/TR/REC-rdf-syntax/ .

14. David Lowe, Brian Henderson-Sellers, and Alice Gu. Web extensions to UML: Using the
MVC triad. In S. Spaccapietra, S.T. March, and Y. Kambayashi, editors,Proceedings of
21nd International Conference on Conceptual Modeling, pages 105–119, Tampere, Finland,
October 2002, vol. 2503 ofLNCS. Springer.

15. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmr, and
T. Risch. EDUTELLA: a P2P Networking Infrastructure based on RDF. InIn Proc. of
11th World Wide Web Conference, Hawaii, USA, May 2002.

16. Steven R. Newcomb, Sam Hunting, and Jan Algermissen. Reference model for ISO 13250
topic maps (RM4TM) v. 1.0, 2002.http://www.isotopicmaps.org/rm4tm/ .

17. Joerg Pleumann and Stefan Haustein. A model-driven runtime environment for web appli-
cations. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,Proc. of UML 2003
- The Unified Modeling Language. Model Languages and Applications. 6th International
Conference, San Francisco, CA, USA, October 2003,, vol. 2863 ofLNCS, pages 190–204.
Springer.

18. Daniel Schwabe and Gustavo Rossi. An object-oriented approach to web-based application
design. Theory and Practise of Object Systems (TAPOS), Special Issue on the Internet,
4(4):207–225, October 1998.

19. John F. Sowa.Knowledge Representation: Logical, Philosophical and Computational Foun-
dations. Brooks/Cole, 2000.

http://www.w3.org/TR/REC-rdf-syntax/�
http://www.isotopicmaps.org/rm4tm/�

20. Friedrich Steimann. On the representation of roles in object-oriented and conceptual mod-
elling. Data and Knowledge Engineering, 35(1):83–106, 2000.

21. Trygve Reenskau with P. Wold and O.A. Lehne.Working with objects The OOram Software
Engineering Method. Manning/Prentice Hall, 1996.

22. James V. Withey. Implementing model based software engineering in your organization:
An approach to domain engineering, 1994. CMU/SEI-94-TR-01, see alsohttp://www.
sei.cmu.edu/mbse/index.html .

23. James V. Withey. Investment analysis of software assets for product lines, 1996. CMU/SEI-
96-TR-010.

http://www.sei.cmu.edu/mbse/index.html�
http://www.sei.cmu.edu/mbse/index.html�

