
Journal of Web Engineering, Vol. 0, No. 0 (2003) 000–000
c© Rinton Press

Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

Stefano Ceri
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio, 34/5, 20133 Milano, Italy
ceri@elet.polimi.it

Peter Dolog
L3S Research Center, University of Hannover

Expo Plaza 1, 30539 Hannover, Germany
dolog@l3s.de

Maristella Matera
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio, 34/5, 20133 Milano, Italy
matera@elet.polimi.it

Wolfgang Nejdl
L3S Research Center, University of Hannover

Expo Plaza 1, 30539 Hannover, Germany
nejdl@l3s.de

Received (received date)
Revised (revised date)

In this paper, we integrate WebML, a high-level model and technology for building server-side Web
applications, with UML-Guide, a UML-based system that generates client-side guides for the adap-
tation of Web applications. The combination of the two systems is shown at work on an e-Learning
scenario: WebML is the basis of the specification of a generic e-Learning system, collecting a large
number of learning objects, while UML-Guide is used for building company-specific e-Learning cur-
ricula. The resulting system can be considered an “adaptive hypermedia generator” in full strength,
whose potential expressive power goes beyond the experiments reported in this paper.

Keywords: Personalization, UML, WebML Modeling, Web Engineering.

Communicated by: to be filled by the Editorial

1 Introduction

In recent years, the control of Web applications has moved from the client to the server side, leading to
more economical, structured, and well engineered solutions. In particular, the model-driven approach,
as advocated in [1, 2, 3, 4], has proved very effective in extending the classical methods and best prac-
tices of Software Engineering to the Web. Design methods now concentrate on content, navigation,
and presentation design, which are orthogonally developed by means of specialized abstractions and
techniques.

While server-side solutions are dominant, yet bringing some intelligence to the client may be
highly beneficial in some cases [5, 6]. Client-side solutions can be more dynamic, more adaptive, and

1

2 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

protective for sensitive user data. They may be very effective for “remembering” the local context or
being aware of the local peculiarities of the interaction. Also, a clear separation of concerns between
the client and the server may lead to interesting business opportunities and models.

This paper explores the combination of two existing approaches to the engineering of Web appli-
cations. We use the WebML method [1] and its development support environment [7] for generating
the application server-side “backbone”. We then integrate such a backbone with UML-Guide [8], a
client-side personalization engine that dynamically generates additional interfaces and user guides for
personalizing the application’s fruition, by managing user profiles and context-sensitive data at client
side.

The proposed approach capitalizes on the use of two systems that both start from high-level ab-
stractions, and are both capable of automatic deployment of the implementations:

• The WebML method is based on the use of high-level concepts, such as the notions of entity
and relationship to denote content, and of page, unit, and link to denote hypertexts. These
abstractions are automatically turned into implementation artifacts by means of WebRatio, a
tool for the automatic deployment of Web applications [1].

• UML-Guide is based on the use of UML state diagrams, whose nodes and arcs—representing
states and transitions—are turned into XMI specifications. A client-side translator, written in
XSL, turns such specifications into a user interface facilitating the adaptive use of the applica-
tion [8].

Coupling WebML and UML-Guide yields the following advantages:

• The use of high-level WebML abstractions in the context of UML-Guide enables the specifica-
tion of a powerful client-side personalization engine. The resulting application generator can
be considered an “adaptive hypermedia generator” in full strength, whose potential expressive
power goes well beyond the experiment reported in this paper.

• The tools prove to be highly complementary and easily integrated, as it is sufficient to reuse
concepts of WebML inside UML-Guide to provide concept interoperability, and the URL gen-
eration technique of the WebML runtime inside the UML-Guide XSL code to provide systems
interoperability.

• The use of the UML-driven methods in conjunction with WebML is by itself a very interesting
direction of research, aiming at the integration of UML, the most consolidated specification
model (and related technology), with WebML as a representative case of new, hypertext-specific
models and techniques.

1.1 Driving Scenario

In order to exemplify the integration of the two methods, we refer to an e-Learning scenario, in which
a courseware company develops and distributes a vertical application for e-Learning, running on the
company’s server, specified and developed through WebMLa. The vertical incorporates learning objects
in the format of lessons, exercises, tests, definitions and examples for computer science, arranged

aThis scenario is suggested by the ProLearn Network of Excellence, whose main focus is the enhancement of professional
e-Learning methods and technology; seehttp://www.prolearn-project.org .

S. Ceri, P. Dolog, M. Matera, and W. Nejdl3

according to the ACM categoriesb, and learning paths with checkpoints for the learner. Thus, such a
vertical has learning objects as content, and navigation mechanisms, such as guided tours or indexed
accesses to pages based on broad categories, enabling a generic user to access such a content though
predefined navigation paths.

The vertical is used by Small-Medium Enterprises (SMEs) wishing to build personalized e-Learning
curricula, to be used by their employees for focused training activities. We assume that each SME has
a clear instruction goal (for example, teaching its employees how to integrate Java programming into
Oracle 9i), and that it can use UML-Guide to specify it in UML; we assume that UML state diagrams,
together with a vocabulary listing all the learning objects available in the vertical, may be an easy-
to-use interface for the SME designer. UML-Guide specifications select the concepts to be covered
in the learning paths, as well as the workflow driving the student in the learning process. We also
assume that each SME has a clear view of its employees’ competencies, and thus is able to constrain
possibilities in the learning paths by adaptation rules based on such competencies. These rules enable
adaptive content selection from the WebML vertical and also enable to adaptively indicate, show, and
hide links in the learning path, and adaptively customize their targets.

1.2 Paper Organization

The paper is organized as follows. Section 2 introduces the WebML component, by providing an
overview of the WebML method and the WebML-based specification of the vertical e-Learning ap-
plication. Section 3 introduces the UML-Guide method, and the specification of the client-side per-
sonalization for the vertical e-Learning. Section 4 illustrates the integration of the two methods by
means of an architecture where the application server-side code is generated through WebML, while
personalization with respect to specific learning goals is managed at client-side through UML-Guide.
Section 5 then describes the user interface generated for the integrated application. Finally, Section 6
gives an overview of the processes required for designing and customizing e-Learning applications on
the courseware and SME sides. Sections 7 and 8 illustrate some related work and draw our conclusions
and future work.

2 WebML Component

2.1 WebML Component Overview

WebML is a visual language for specifying the content structure of a Web application and the orga-
nization and presentation of contents in one or more hypertexts [1]. The design process based on
WebML starts with the specification of a data schema, expressing the organization of contents by
means of the Entity-Relationship primitives. TheWebML Hypertext Modelallows then describing
how contents, previously specified in the data schema, are published into the application hypertext.

The overall structure of the hypertext is defined in terms ofsite views, areas, pagesandcontent
units. A site viewis a hypertext, designed to address a specific set of requirements. It is composed of
areas, which are the main sections of the hypertext and comprise recursively other sub-areas or pages.
Pagesare the actual containers of information delivered to the user; they are made ofcontent units
that are elementary pieces of information, extracted from the data sources by means of queries and
published within pages. In particular, as described in Table 1, content units denote alternative ways
for displaying one or more entity instances.

bSeehttp://www.acm.org/class/1998/

4 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

Table 1. Some basic WebML content units. The whole set of units is described in [1].

Unit name Visual Notation Description

Data unit

Entity

[Selector]

Data unit

It displays a set of attributes for a single entity in-
stance.

Multidata unit

Multidata unit

Entity

[Selector]

It displays a set of instances for a given entity.

Index unit

Index unit

Entity

[Selector]

It displays a list of properties, also calleddescrip-
tive keys, of a given set of entity instances.

Hierarchical Index unit

HierarchicalIndex

Entity1

[Selector1]

NEST Entity2

[Selector2]

A variant of the index unit, which displays list of
properties of instances selected from multiple enti-
ties, nested in a multi-level tree.

Scroller unit

Scroller unit

Entity

[Selector]

It represents a scrolling mechanism, based on a
block factor, for the elements in a set of instances.

Their specification requires the definition of asource(the name of the entity from which the unit’s
content is extracted) and aselector(a condition, used for retrieving the actual objects of the source
entity that contribute to the unit’s content).

Within site views, links interconnect content units and pages in a variety of configurations yield-
ing to composite navigation mechanisms. Besides representing user navigation, links between units
also specify the transportation of some information (calledcontext) that the destination unit uses for
selecting the data instances to be displayed.

WebML-based development is supported by a CASE tool [7], which offers a visual environment
for drawing the WebML conceptual schemas, and then supports the automatic generation of server-
side code. The generated applications run in a standard runtime framework on top of Java 2 application
servers, and have a flexible, service-based architecture allowing components customization.

2.2 WebML Specification for the Vertical e-Learning

The data schema of the vertical e-Learning application is centered on the concept of Learning Object
(LO). As reported in Figure 1, theLO entity represents descriptions of learning objects, by means of
attributes inspired by the LOM standardc. Among them, the attributetype expresses the different
types of LOs (e.g., lectures, lecture modules, definitions, exercises, tests) published by the vertical ap-
plication. Each LO has associations with other LOs: for example, a lecture module can be associated
with some related definitions, exercises, examples, or tests. The entityContent then represents the
contents (texts, images, files) LOs consist of. In order to facilitate LO access, the schema also includes

chttp://ltsc.ieee.org/

S. Ceri, P. Dolog, M. Matera, and W. Nejdl5

Category

OID
name
description1:N 1:N

1:N

LO

OID
description
language
title
subject
type
author
source
points

1:N

Content

OID
language
title
subject
type
text
image

1:N

1:N

Fig. 1. WebML Data schema for the vertical e-learning application.

the entityCategory : it stores the ACM categories that classify the LOs published by the e-Learning
application.

Figure 2 reports a simplified excerpt of the WebML hypertext schema defined for the vertical
e-Learning application; it refers to pages for selecting a lecture module, and accessing its contents
as well as associated definitions, exercises, tests and examples. The lecture module selection is
operated by means of a navigation chain, in which users progressively select a subject category
(Categories page), then a course referring to the selected category (Courses page), then a lecture
(CourseLectures page), and finally the lecture module they are interested in (LectureModules
page). PagesCategories andLectureModules are marked with an “L” label, which indicates
that they arelandmarkpages. This property represents that the two pages will be reachable from any
other page of the hypertext, by means of landmark links.

Contents of the selected lecture module are shown in pageLectureContent . As represented
by theModule Scroller unit, users can browse lecture modules in aGuided Tournavigation that
allows moving forward and backward in the (ordered) set of modules available for the currently se-
lected lecture. For each module, the data unitModule Title shows the title and a short description
of the learning object, theContents multidata unit shows texts and images that compose the mod-
ule, while theDefinitions hierarchical index shows titles of the definitions associated with the
module and, nested, the corresponding contents. Three index units then show the lists of examples,
tests and exercises available for the current lecture module. The selection of one item from such lists
leads users in a different page where the corresponding contents are displayed.

The presentation of pageLectureContent , as produced by the WebML code generator, can
be seen in the right frame of the Web page depicted in Figure 7.

6 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

CourseLectures
Courses

Subject LO

LO

[Category2LO]

[Type=”Course”]

Lecture Modules

LO

Lecture Name

Categories

Category Index

Category
 Category

Category Details

L

LO

Course description
 Course Lectures

LO

[LO2LO]

[Tipe=”Lecture”]

Lecture Modules

LO

[LO2LO]

[Type=”LectureModule”]

LectureContent

Contents

Content

[LO2Content]

Module Scroller

LO

[LO2LO]

[Type=”LectureModule”]

LO

Module Title

Examples

LO

[LO2LO]

[Type=”Example”]

Tests

LO

[LO2LO]

[Type=”Test”]

To Example Page

To Test Page

Definitions

LO

[LO2LO]

[Type=”Definition”]

NEST Content

[LO2Content]

Excercises

LO

[LO2LO]

[Type=”Exercise"]

To Excercise Page

L

Fig. 2. The WebML specification of the hypertext interface for the vertical e-learning application.

2.3 Authoring Site View

In addition to the site view dedicated to learners, another WebML site view is dedicated to authors;
it includes all the content management operations required in order to enter new learning objects and
their metadata, or to alter and delete them. Content management site views are available in most
Web applications (see e.g. [1] for details). They have a regular hypertext structure with provisions
for indexing each entity’s elements and then for adding, updating, or modifying each of them. In
general, pages of the content management site view enable the management of several related entities,
typically in one-to-many relationship (e.g., lessons and the related exercises).

In the vertical e-Learning, the authoring site view constrains authors to enter the mandatory meta-
data ”before” entering learning objects; meta-data are indeed essential for the composition of learning
objects and the building of curricula. Meta-data themselves can be updated and enriched, by using
specific sections of the authoring site view.

3 UML-Guide Component

3.1 UML-Guide Overview

UML State diagrams [9] are used in UML-Guide for modelling the user navigation in a hypertext.
Eachstaterepresents the production of a given information chunk on the device observed by a user,
and each statetransitionrepresents an event caused by user interaction that leads to the production of
a new chunk of information. State diagrams therefore provide an abstraction ofhypertext trails, where
each trail can be adapted by taking into account the user background, level of knowledge, preferences
and so on [8]. In this way, UML state diagrams are a suitable interface for UML-Guide, whose primary
purpose is to build adaptive hypermedia systems.

Atomic states can be grouped intosuperstates. States usually refer to concepts of an application
domain; thus, they can correspond to the representation of WebML pages or page units, which enable

S. Ceri, P. Dolog, M. Matera, and W. Nejdl7

the viewing of the information entities within the WebML data schema.
Parallel substatesrepresent information chunks to be presented simultaneously.Fork and join

pseudostates are used respectively for splitting and joining computations and enabling parallelism.
TheSyncStatepseudostate is used for synchronizing substates of parallel regions.

Transitionsrepresent active interconnections between information chunks, and usually correspond
to associations in the application domain model (thus, they can correspond to WebML links, that
interconnect pages and units, and in turn depend upon the relationships of the WebML data model).
Eventsraise transitions in a state machine; they include user-generated or system-generated events,
and the latter include time events.Guardscan be used to constrain transitions by adaptation rules.
Usually, they consist of a predicate over user profile attributes or context information.

Actionscan be performed after a transition is raised and before entering a state. Also, transitions
can be associated withside effect actions, whose effect is, for example, the modification of a user
profile, or the choice of presentation styles for a given chunk of information. Actions can also process
parameters used in guards of outgoing part of branches. Side effect actions, as well as adaptation
rules, can be assigned toentry, exit, anddoactions of states.

Tagged valuesare domain-specific properties used to extend the semantics of elements in UML
diagrams. These values can refer, for example, to concepts of the structural model of the application
domain, or to specific terminologies which might be useful to identify additional navigation require-
ments. We will make extensive use of tagged values for linking UML diagrams of UML-Guide to
WebML concepts, as illustrated in Section 4.

3.2 UML-Guide State Diagram for e-Learning

The UML-Guide state diagram of Figure 3 illustrates a personalized learning environment for teach-
ing object-oriented programming in JAVA, borrowed from a well-known Sun tutoriald. The chosen
personalization example focuses on link adaptation; other adaptation aspects are covered in [8].

The tutorial starts with an overview of available lectures, as represented by theOverview state,
which summarizes the available lectures in the tutorial, as specified by theSummary value in the
LearningPresentation tagged value. It also presents the high level tutorial steps (Tutorial
value in theCourseStructure tagged value). Links from the overview point not only to the first
section of the tutorial, but also to the other main sections; all these links, except the first one, are
associated with guard conditions that check that the user has enough knowledge to jump directly to
the respective lectures.

The next step from theOverview is a lecture on theObject Oriented Programming
Concepts . This state is accessible without any prerequisite on background knowledge; it is a com-
posite state, containing five steps, represented by four substates:What is an Object , What is
a Message , What is a Class , Relations to Code , andQuestions . TheRelations
to Code state also shows anentry procedure addressingcontent level adaptation. The proce-
dure applies to a learning step about building programs; it states that if the current user does not have
sufficient knowledge on basic concepts about object-oriented programming procedures, then learning
content on procedures will be added.

The next step from theObject Oriented Programming Concepts is the composite
stateLanguage Basics . The transition between the two states features anext event and a guard.
The guard specifies alink level adaptationrule, saying that the link is recommended when current

dSeehttp://java.sun.com/docs/books/tutorial/java/index.html .

8 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

Overview
{CourseStructure=Tutorial,

LearningPresentation=Summary}

Object Oriented Programming Concepts

What Is an
Object

What Is a
Message

What Is a Class
{CourseStructure=Content,

LearningPresentation=Definition}

Relations To Code

next

next

next

Questions

next

next

Language Basics

Variables Operators

Control FlowExpressions

next

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Oriented Programming Concepts”)>0]

Object Basics and Simple Data Objects

Object Life Cycle
Characters and

Strings

NumbersArrays

next

next

next

next

next [CurrentUser.CurentLOK
 (”Language Basics”)>0]

[CurrentUser.CurrentLOK
 (”Language Basics”)>0]

Classes and Inheritance

Creating
Classes

Managing
Inheritance

Implementing
Nested Classes

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Basics and Simple Data Objects”)>0]

[CurrentUser.CurrentLOK
 (”Object Basics and Simple Data Objects”)>0]

Common
Problems

Interfaces and Packages

Creating
Interfaces

Creating and
Using Packages

nextnext
Problems

[CurrentUser.CurrentLOK
 (”Classes and Inheritance”)>0]

next [CurrentUser.CurrentLOK
 (”Classes and Inheritance”)>0]

next

Finish

Finish

entry/
if(CurrentUser.CurrentLOK
(procedures)<0.5)
show(”procedures“)

exit/ CurrentUser.SetLOK(“Classes and Inheritance“, 0.2,
Content)

Fig. 3. A navigation model for a Java tutorial in the UML state diagram notation.

user level of knowledge is greater then zero. The other learning steps modelled in the state diagram
can be interpreted similarly.

The personalization specification within state diagrams is based on the user model depicted in
Figure 4. It is inspired by the LTSC IEEE 1484.2 Learner Model WG Standard proposal for public
and private information (PAPI) for learneref. The user model is composed of the classesUser and
Performance , plus an association expressing that a learner can have several performance records
based on the acquiredLearningExperience andCompetence .

The Performance class stores the user’s level of knowledge about the concepts described by
the tutorial. This value is the one used for determining if a transition into a new state is appropriate
and must be suggested to a given user. For example, the following condition:

[CurrentUser.CurrentLOK(‘‘Classes and Inheritance’’)>0]

is a guard that in the state diagram determines wether a link can be followed between theClasses
and Inheritance state and theInterfaces and Packages state, based on current user
level of knowledge. ThePerformance class maintains as well the value of competence, recorded

ehttp://ltsc.ieee.org/archive/harvested-2003-10/working_groups/wg2.zip
fFor a more detailed learner profile, used e.g. in EU/IST Elena (http://www.elena-project.org), the reader is
referred to the learner RDF bindings Web site athttp://www.learninglab.de/˜dolog/learnerrdfbindings/ .

S. Ceri, P. Dolog, M. Matera, and W. Nejdl9

+Competence : String
+LearningExperience : String
+RecordedDate : Date
-PerformanceValue : double
+PerformanceMetric : String

Performance

+SetLOK(in competence, in LOK, in learningExperience)
+CurrentLOK(in competence) : double

+Name : String
+Id : String

User

+Has

*

Fig. 4. A user model for the Java tutorial.

date, and metrics used to measure level of competence.
TheUser class provides operations to set and get the acquired level of knowledge or level of com-

petence. These operations are used in guards and actions for adaptivity rules, and for updating learner
profile. For example, in the state diagram of Figure 3, the user level of knowledge about “Classes
and Inheritance” can be acquired either in theObject Oriented Programming Concepts
lecture or in theClasses and Inheritance lecture. Exit procedures of these states indeed
contain similar update operations, as the one which follows:

CurrentUser.SetLOK(‘‘Classes and Inheritance’’,0.2,Content) .

In UML-Guide, state diagrams are used as input for visualizing navigation maps, whose structure
is made of documents (nodes), composite nodes (folders), links (arrows), and parallel regions (dashed
boxes). State diagrams are edited by means of the commercial tool Poseidong. The navigation map is
then generated through a transformation method [8], whose input is the state diagram encoded in XMI
(as produced by Poseidon), and whose output is the map.

4 Integration of WebML and UML-Guide

The integration of WebML with UML-Guide proposed in this paper aims at composing a generic
“vertical e-Learning” WebML application with a UML-Guide that is focused on a specific learning
goal. We offer to the users of the composite system the standard, WebML-generated interface of the
vertical, populated by content spawning a large body of knowledge; but we also offer to the focused
learners a guide, available on an interface that can be opened “aside” the main one, and that points
to pages and contents published by the WebML-generated interface, according to a specific learning
objective and user experience.

The integration is loose and preserves the distinctive features of the two systems. In particu-
lar, some nodes and links in a UML-Guide state diagram point to content that is managed in the
WebML e-Learning vertical; therefore, the integration of UML-Guide with WebML requires UML-
Guide adopting few WebML concepts, such as page identifiers and content identifiers. In this way,
concepts used as state names or as tagged values within UML-Guide are mapped to learning resources
stored in the database generated from the WebML data model.

In the resulting application, the user-specific adaptation occurs in UML-Guide. This separation of
concerns represents an extreme solution, as it is possible to support personalization [10] and adaptivity
[11] directly in WebML. However, the proposed solution is an example of how client-side computa-
tions, specified at high-level in UML, can integrate WebML-designed solutions. As such, this experi-
ment can be replicated for many other applications and the focus on UML-Guide can pursue different

ghttp://www.gentleware.com/

10 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

UMLGuide
User

Interface

TreeView
Manipulation

UML Case
Tool

UMLGuide
Design Models

in XMI

WebML Case
Tool

WebML Run
Time Support

WebML Link

WebML
Formatted
Content

WebML
Executable

Code

WebML Link
Generator

UMLGuide
Code

Generator

WebML
User

Interface

UML Guide XMI
Extended with

WebML Concepts
and Links

WebML Concepts

WebML Code
Generator

WebML Design
Models
in XML

WebML Page and Unit IDs,
Content OIDs

WebML
Specifications

UMLGuide
Specifications

WebML
Content

UML Guide
XSLT

User
Profile Changes

User
Profile

Fig. 5. Architecture of the composed system.

objectives.
Figure 5 describes the system architecture. The high-level WebML and UML-Guide specifica-

tions are mapped into XML-based internal representations, respectively built by the Code Generator
component of WebRatio [7] and by the XMI [12] Generator of Poseidon.

The WebML run-time component runs JSP templates (also embedding SQL), and uses XSL style
sheets for building the application’s presentation. The XMI representation of a UML-Guide drives a
run-time adaptation engine, written in XSLT, which dynamically changes the content of the profile
variables and produces the UML-Guide user interface. The WebML and UML-Guide interfaces are
then composed and presented to the user.

In this architecture, the main integration issue is concerned with the generation of WebML links
“pointing” to the WebML-controlled portion of the application, to be addressed while building the
UML-Guide interface. WebML links take the format:

ApplicationURL/page identifier.do?ParameterList

wherepage identifier denotes a WebML page andParameterList is a list of tag-value
pairs, in the form entity id.attribute=parameter . Thus, UML-Guide state diagrams must
be extended with tagged values to be used as pointers to WebML concepts. This activity must be
performed by UML-Guide designers, typically in the course of the transformations required for “im-
plementing” UML-Guides starting from their high-level descriptions (as illustrated in Figure 3).

It is worth noting that state diagrams augmentation does not require a complete mapping between
UML-Guide components and WebML conceptual primitives. UML-Guide designers just need to spec-
ify IDs of those WebML elements that are used for URL construction, i.e., pages, source entities from
which page contents are extracted, and entity attributes that are used in parametric selectors for re-
trieving page contents.

Figure 6 depicts an excerpt of state diagram extended with tagged values for WebML concepts
needed for computing WebML links.Object Oriented Programming Concepts is a lec-
ture. The corresponding page name isLectureModules from WebML hypertext model. The entity
used to store lectures in the WebML data model isLO. The title used as an attribute to identify the

S. Ceri, P. Dolog, M. Matera, and W. Nejdl11

Object Oriented Programming Concepts
{PageIName=LectureModules, EntityID=LO, Parameter=LO.OID,

LO.Title=“Object Oriented Programming Concepts“}

What Is an Object
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“What Is an Object“}

What Is a Message
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“What Is a

Message“}

What Is a Class
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“What is a Class“}

Relations To Code
{PageName=LectureContent, EntityName=LO,

Parameter=LO.OID, LO.Title=“Relations To Code“}

next next

next

Questions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Questions“}

next

next

Language Basics
{PageName=LectureModules, EntityName=LO, Parameter=LO.OID,

LO.Title=“Language Basics“}

Variables
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“Variables“}

Operators
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Operators“}

Control Flow
{PageName=LectureContent

, EntityName=LO,
Parameter=LO.OID,

LO.Name=“Control Flow“}

Expressions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Expressions“}

next

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Oriented Programming Concepts”)>0]

entry/ if(CurrentUser.CurrentLOK
(procedures)<0.5) show(”LO.Title=Procedures“)

exit/ CurrentUser.SetLOK(“Classes and Inheritance“, 0.2, Content)

Fig. 6. Excerpt of the UML-Guide state diagram extended with tagged values representing WebML concepts.

lecture is the same as the state name. Entry and exit actions are transformed if they send parameters
into WebML links, as it is in the case ofRelations To Code (where the parameter of theshow
method is replaced by the specific WebML parameter&LO.Title=Procedures , used for select-
ing LOs about Java procedures). Although in our example tagged values for page and entity names are
constant values, in more complex cases they can be specified as well as parametric selectors, so as to
automatically retrieve their values from the XML WebML specification based on specific conditions.

Queries for retrieving OID’s of the WebML concepts and content are submitted through a specifi-
cally designed interface to the WebML run-time components. The interface consists of the two func-
tionsGetWebMLConcept(Type, Name) andGetWebMLRecordOID(Entity,Attribute,
Value) .

5 User Interface of the Integrated Application

Figure 7 presents the user interface of the integrated application. The UML-Guide generated map,
obtained as a transformation of the UML state diagram depicted in Figure 3, is on the left; the WebML
application, generated from the specification of Figure 2, is on the right. While the WebML application
has an arbitrary interface, which depends on content composition within pages and on the adopted
presentation style, the UML-Guide interface has a given structure that includes the following elements:

• Folder symbol—represents a composite information fragment composed by other (simple or
composite) information fragments and links. Thecompositionis visually represented by the
plus/minus symbol, for showing/hiding enclosed items, and by the left hand indent of enclosed
items. A content can be associated to each symbol.

• Dashed box symbol—represents a composite information fragment, which has to be presented
concurrently with other composite information fragments (the dashed boxes) depicted on the
same level.

• Document symbol—represents a simple information fragment; only links can be nested under
it.

12 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

Fig. 7. Visualization of the navigation graph for the Java e-lecture.

• Arrow symbol—represents a link to another composite or simple information fragment; the
arrow symbols can be nested under the folder when they represent different alternatives of
suggested links starting from a particular document. Each arrow is associated with a content
and a name of the corresponding target node. Also, the “/next” string is added to names of
arrows representing guidance to the next fragment according to the course sequence.

• Grayed background of nodes—represents the currently presented node, i.e., the position reached
by a user in the navigation map.

Presentation for the adaptive navigation support depends on the generator settings. For example,
according to the traffic light metaphor, adaptive recommendations may be represented through differ-
ent colors (green for nodes appropriate with respect to the current state of the user profile, red for not
appropriate nodes, yellow for other situations—e.g. a node that has been already visited). Also, other
metaphors might show, hide, or sort the nodes.

Profile records are maintained at the client side. When users begin a new session, their profile is
initialized from a client-side XML-based database. The navigation map is manipulated at the client
side as well. Javascript is used to implement the user interface control and user profile manipula-
tion. The events generated by user actions on the user interface invoke profile adaptation actions,
which possibly process and add new values to the user profile. They also trigger regeneration of the
navigation map, according to the newly computed values.

The navigation map responds to changes in user profile by changing recommendation annotations
(e.g., changing colors of nodes or showing/hiding nodes). When specific requirements, for example
those set by conditions in entry actions of states, are met, the WebML vertical adapts delivered content
based on additional parameters that UML-Guide is able to send to the server-side application.

Figure 7 highlights a lecture on “What is an Object”. The UML-Guide panel placed on the left
shows the position of the user reading the material for the module by the shaded background. The
content of the lecture is delivered by the WebML vertical based on the generated link that is assigned
to the document symbol at the “What is an Object” entry. The symbol is generated from the simple
state with the same name depicted in Figure 6. The state has a transition to the next state “What is a
Message”, which in the UML-Guide panel is depicted as an outgoing arrow, under the symbol of the
current lesson. As the user has sufficient background knowledge needed to understand the next step in

S. Ceri, P. Dolog, M. Matera, and W. Nejdl13

SMECourseware Company

Data Modeling

Hypertext Modeling

Presentation Modeling

Generation of eLearning System

Adaptive Guides Modeling

User Modeling

Generation of Adaptive Guides

Learning Object Authoring Requesting New/Modified Learning Object

Fig. 8. Adaptive application design process.

his learning path, the direct next steps are annotated by a green ball. Further rules apply for additional
entries to hide documents and folders which are not relevant to the user’s learning goals.

The simple state “What is an Object” is a substate of the “Object Oriented Programming Concepts”
state, which is rendered as a folder symbol in the navigation map. The constraints and side effect
actions are transformed into conditions and procedure calls in the UML-Guide which dynamically
generates the traffic-light annotations. Other symbols and their grouping under folders are generated
similarly from the state diagram according to the method described in [8].

6 Adaptive Application Design Process

Figure 8 depicts the design process for building adaptive applications intermixing server and client side
design steps; it applies to the scenario described in Section 1.1, and in general shows the relationship
between top-down design on the server side and bottom-up design on the client side. This process is
supported by the WebML method and engine on the courseware company side and the UML guide
method and engine on the SME side.

The courseware company develops its e-Learning vertical according to well defined top-down
steps, as illustrated in [1], consisting in designing the data content first, then the hypertext and finally
the presentation. Such a process can be paired with the use of the WebRatio tool [7], which automati-
cally generates the database for storing learning objects and the hypertext composing site views, Web
pages, and the content chunks presented to the user. Then, of course, the courseware company also
authors the learning objects in particular domains (e.g. modules about ”Programming in Java”). The
authoring consists of adding, changing or excluding learning objects and also managing their meta-
data, like classifying the objects according to topic, title, description, difficulty, background required,
related learning objects and so on.

14 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

The SMEs start the design of the adaptive guide by collecting knowledge and background data of
their employees, and then proceed by selecting bottom-up relevant contents from the body of learning
objects that are made available. The SME designers gather information about the employee’s skills
and needs (e.g., the integration of Java programming and Oracle 9i), and build the adaptive user guides
to be used throughout the SME; then they select personalized portions of such guides and install each
of them on the employee’s client application. This application is able to keep trace of the employees’
progresses into the correspondent user model while they perform learning activities.

If a SME encounters a need for alteration or additions of new learning objects, the request for
that activity is submitted to the courseware company. The courseware company alters/adds the new
learning objects and updates their metadata. The database of the e-Learning vertical is updated at the
courseware side and the curricula developers are notified about the new learning objects. In case the
SMEs’ curricula specifications have to be updated, the generation of user guides is repeated.

7 Related Work

Model-driven development of Web applications has been intensely investigated during last years [2,
13, 3, 4]. WebML has been proposed for the model-driven design of “data-intensive” Web applica-
tions. Its distinguishing feature is that the proposed design method is also supported by XML- and
Java-based technologies, which enable the automatic generation of the application code [7].

During last years, some approaches have been proposed for extending traditional development
methods by means of features enabling one-to-one personalization [14, 15, 4]. The aim is to customize
the applications contents and the hypertext topology and presentation with respect to user preferences
and needs, so as to offer an alternative to the traditional “one-size-fits-all” static approach in the
development of Web systems [14, 16]. Some other proposals cover the adaptivity of Web applications
with respect to dimensions characterizing the context of use (see [17] for a complete survey). WebML
also offers some constructs for personalization. In particular, the application data schema can be
extended through some entities representing user profiles and user access rights over the application
content [10]. Recently, WebML has also been extended with some primitives for modelling context-
aware applications, i.e., mobile, personalized applications that are also able to adapt to the current
situation of use [11]. However, WebML, as well as the majority of Web personalization and adaptivity
approaches so far proposed, manages personalization at server-side, and does not offer the alternative
of managing user profiles and personalization policies at client side.

Conversely, the UML-Guide approach establishes model-driven design for adaptive applications,
by considering link level adaptation and content level adaptation at the client side, where adaptation is
computed according to the UML design specifications. First, requirements are modelled as variation
points with mandatory and optional features in application domain models linked in collaboration dia-
grams [18]. Guard logical expressions and adaptivity actions are used in navigation specifications [8].
A rule based approach has been also employed in more open environment based on semantic Web
models [19].

Although literature proposes works on client-side and server side methods for Web applications
adaptivity, there is a lack of contributions towards the integration of the two approaches. One solution
comparable to the one proposed in this paper is envisioned in [20], where authors propose a modelling
framework in which integrated Web design methods for particular purposes can coexist with the stand
alone ones.

Our integrated method pushes towards separation of concerns, proposing adaptivity design as a

S. Ceri, P. Dolog, M. Matera, and W. Nejdl15

separate dimension with respect to content and hypertext design. Similarly, the e-Learning community
has recognized that the definition of learning paths for navigating within learning objects is orthogonal
to the design of learning object content itself. The efforts to establish IMS Learning Design [21] or
ADL SCORM [22] sequences for provisioning metadata about learning paths through learning objects
also show similar directions although the expensiveness is limited. With respect to this proposals our
approach provides more flexibility, as a user can customize paths independently from the complex
and expensive learning management systems. The method benefits from the UML graphical repre-
sentations, which are easier to use in comparison to metadata authoring. One very interesting idea in
this context would be to transform UML specifications into the metadata formats prescribed by those
standards, to be able to exchange them between e-Learning systems like Blackboardhor CLIXi.

8 Conclusions and Future Work

This paper has shown the integration between WebML and UML-Guide; the proposed approach
demonstrates that server-side and client-side technologies can coexist and that it is possible, for both
of them, to use model-driven code generation techniques starting from high-level requirements, ex-
pressed in graphical form. The proposed application scenario augments an e-Learning vertical so as to
make it adaptable and personalisable. The design process is top-down for server-side, generic learning
objects, and bottom-up for user-specific client-side adaptation.

The combination of the two methods offers several benefits. Among them the most relevant one
is the orthogonality of adaptation design with respect to content and hypertext design. This is partic-
ularly useful in the e-Learning domain where, in order to increase the application effectiveness, the
provision of LOs by courseware companies must be accompanied by the definition of personalized
learning paths or individual curriculum sequences [23], based both on local learning strategies as well
as on specific user competencies. These two requirements are not easy to identify by companies offer-
ing e-Learning services, while they are generally well-contextualized within organizations exploiting
the services. The availability of client-side extensions therefore enables the latter to customize the
application locally, according to their learning goals and the knowledge level of their members. With
this respect, although WebML offers some constructs for specifying personalization of contents and
services, UML-Guide state diagrams constitute an easy to use specification tool, especially due to the
popularity of UML. Also, these diagrams allow defining learning paths and conditions for state transi-
tions without mastering the complexity of the server-side application design, keeping the specification
at a higher level of abstraction.

A further relevant aspect is that moving user dependent functionalities to the client side allows one
to leave to users the full control over user-sensitive data. Users can decide on their own which infor-
mation will be disclosed and which they will deny access to. This however increases the requirements
on client-side tools, that must be able to manage small databases with information about users and
process such data for achieving adaptation and personalization. As client machines are usually less
powerful, this might result in some lacks of performance. We will further investigate and experiment
with this approach in order to find a good balance between client-side and server-side processing. We
are also planning an extension of the WebML CASE tool and of UML-Guide for providing automatic
support to the integration of the two methods.

We regard this work as the first step of a deeper methodological inspection of the interactions be-

hhttp://www.blackboard.com/
i http://www.im-c.de/homepage/index.htm

16 Adding Client-Side Adaptation to the Conceptual Design of e-Learning Web Applications

tween UML and WebML, and more specifically of the possibility of using state diagrams, which best
represent the modeling of dynamic interfaces, for collecting the requirements that can naturally evolve
into WebML specifications. The experiments described in this paper, and specifically the mechanisms
for rendering state transitions as WebML links, will be extended and reused. While in this paper we
focused on UML state diagrams as integration tool, we aim at studying more complex integration
scenarios where interaction will be modeled as well by collaboration and sequence diagrams.

References

1. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera.Designing Data-Intensive Web
Applications. Morgan Kauffmann, 2002.

2. J. Conallen.Building Web Applications with UML. Object Technology Series. Addison Wesley, 2000.
3. F. Garzotto, P. Paolini, and D. Schwabe. HDM - a Model-Based Approach to Hypertext Application Design.

ACM Transactions on Information Systems, 11(1):1–26, January 1993.
4. D. Schwabe, R. Guimaraes, and G. Rossi. Cohesive Design of Personalized Web Applications.IEEE Internet

Computing, 6(2):34–43, March-April 2002.
5. K. Marriott, B. Meyer, and L. Tardif. Fast and Efficient client-Side Adaptivity for SVG. InProc. of WWW

2002, May 2002, Honolulu, Hawaii, USA, pages 496–507. ACM Press, 2002.
6. G. South, A.P. Lenaghan, and R.R. Malyan. Using Reflection for Service Adaptation in Mobile Clients.

Technical report, Kingston University-UK, 2000.
7. S. Ceri, P. Fraternali, A. Bongio, S. Butti, R. Acerbis, M. Tagliasacchi, G. Toffetti, C. Conserva, R. Elli,

F. Ciapessoni, and C. Greppi. Architectural Issues and Solutions in the Development of Data-Intensive Web
Applications. InProceedings of CIDR 2003, January 2003, Asilomar, CA, USA, 2003.

8. P. Dolog and W. Nejdl. Using UML and XMI for Generating Adaptive Navigation Sequences in Web-Based
Systems. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,UML 2003 - The Unified Modeling Lan-
guage. Model Languages and Applications. 6th International Conference, San Francisco, CA, USA, October
2003, Proceedings, volume 2863 ofLNCS, pages 205–219. Springer, 2003.

9. Object Management Group. OMG Unified Modelling Language Specification, version 1.3, March 2000.
Available at http://www.omg.org/. Accessed on June 1, 2001.

10. S. Ceri, P. Fraternali, and S. Paraboschi. Data-Driven One-to-One Web Site Generation for Data-Intensive
Applications. InProceedings of Very Large Data Bases, September 1999, Edinburgh, UK, pages 615–626.
IEEE Computer Society, 1999.

11. S. Ceri, F. Daniel, and M. Matera. Extending WebML for Modeling Multi-Channel Context-Aware Web
Applications. InProceedings of WISE - MMIS’03 Workshop (Mobile Multi-channel Information Systems),
Rome, Italy, December 2003, pages 615–626. IEEE Computer Society, 2003.

12. Object Management Group. OMG XML Metadata Interchange (XMI) Specification, version 1.1, November
2000. Available at http://www.omg.org/. Accessed on June 1, 2002.

13. P. Fraternali. Tools and Approaches for Developing Data-Intensive Web Applications: A survey.ACM Com-
puting Surveys, 31(3):227–263, September 1999.

14. P. Brusilovsky. Adaptive Hypermedia.User Modeling and User-Adapted Interaction, 11(1-2):87–100, 2001.
15. N. Koch and M. Wirsing. The Munich Reference Model for Adaptive Hypermedia Applications. In P. De

Bra, P. Brusilovsky, and R. Conejo, editors,Adaptive Hypermedia and Adaptive Web-Based Systems, Second
International Conference, AH 2002, Malaga, Spain, May 29-31, 2002, Proceedings, volume 2347 ofLecture
Notes in Computer Science. Springer, 2002.

16. P. Brusilovsky and W. Nejdl. Adaptive Hypermedia and Adaptive Web. In Munindar P. Singh, editor,Practical
Handbook of Internet Computing. CRC Press, 2003.

17. G. Kappel, B. Proll, W. Retschitzegger, and W. Schwinger. Customization for Ubiquitous Web Applications
— A Comparison of Approaches.International Journal of Web Engineering and Technology, 11, January
2003.

18. P. Dolog and W. Nejdl. Using UML-based Feature Models and UML Collaboration Diagrams to Information
Modelling for Web-based Applications. InUML 2004 - The Unified Modeling Language. Model Languages

S. Ceri, P. Dolog, M. Matera, and W. Nejdl17

and Applications. 7th International Conference, LNCS. Springer, 2004. To appear.
19. P. Dolog, N. Henze, W. Nejdl, and M. Sintek. Personalization in Distributed e-Learning Environments. In

Proc. of WWW2004 — The Thirteen International World Wide Web Conference, New Yourk, May 2004. ACM
Press.

20. P. Dolog and M. Bielikov́a. Hypermedia Systems Modelling Framework.Computing and Informatics,
21(3):221–239, December 2002.

21. IMS. IMS Learning Design - Information Model. http://www.imsglobal.org/learningdesign/index.html, Jan-
uary 2003.

22. ADL. Sharable Content Object Reference Model (SCORM) 2004. http://www.adlnet.org/, February 2004.
23. G. Weber and P. Brusilovsky. Elm-art: An adaptive Versatile System for Web-Based Instruction.International

Journal of Artificial Intelligence in Education, 12(4):351–384, 2001.

