
Engineering Compensations in Web Service
Environment

Michael Schäfer1, Peter Dolog2, and Wolfgang Nejdl1

1 L3S Research Center, University of Hannover,
Appelstr. 9a, D-30167 Hannover, Germany,

Michael.Schaefer@stud.uni-hannover.de, nejdl@l3s.de
2 Aalborg University, Department of Computer Science,
Fredrik Bajers Vej 7E,DK-9220 Aalborg East, Denmark

dolog@cs.aau.dk

Abstract. Business to business integration has recently been performed
by employing Web service environments. Moreover, such environments
are being provided by major players on the technology markets. Those
environments are based on open specifications for transaction coordi-
nation. When a failure in such an environment occurs, a compensation
can be initiated to recover from the failure. However, current environ-
ments have only limited capabilities for compensations, and are usually
based on backward recovery. In this paper, we introduce an engineer-
ing approach and an environment to deal with advanced compensations
based on forward recovery principles. We extend the existing Web ser-
vice transaction coordination architecture and infrastructure in order to
support flexible compensation operations. A contract-based approach is
being used, which allows the specification of permitted compensations
at runtime. We introduce the abstract service and adapter components
which allow us to separate the compensation logic from the coordination
logic. In this way, we can easily plug in or plug out different compensa-
tion strategies based on a specification language defined on top of basic
compensation activities and complex compensation types. Experiments
with our approach and environment show that such an approach to com-
pensation is feasible and beneficial.

1 Introduction

The Web service environment has become the standard for Web applications
supporting business to business transactions and user services. Processes such
as payroll management or supply chain management are realized through Web
services. In order to ensure that the results of the business transactions are
consistent and valid, Web service coordination and transaction specifications [12,
13, 11] have been proposed. They provide the architecture and protocols that are
required for transaction coordination of Web services.

The transaction compensation [7] is a replacement for an operation that was
invoked but failed for some reason. The operation which replaces the original one
either undoes the results of the original operation, or provides similar capabilities



as the original one. The notion of compensation was introduced for environments
where the isolation property of transactions is relaxed but the atomicity needs
to be maintained. Several protocols have been proposed to control transactional
processes with compensations [20].

Current open specifications for transaction management in Web service en-
vironment provide only limited compensation capabilities [8]. In most cases, the
handling of a service failure is restricted to backward recovery in order to main-
tain consistency, i.e. all running services are aborted, and all already performed
operations are reversed [1]. This approach is very inflexible and can result in
the abortion of many services and transactions. Especially if dependencies be-
tween multiple transactions exist, the failure of one service can lead to cascading
compensations. Furthermore, current approaches do not allow any changes in a
running transaction. If for example erroneous data was used in a part of a trans-
action, then the only possible course of action is to cancel the transaction and
to restart it with correct data.

In this paper, we investigate an engineering approach for advanced compen-
sation operations adopting forward recovery within Web service transactions.
Forward recovery proactively changes the state and structure of a transaction
after a service failure occurred, and thus enables the transaction to finish success-
fully. The main idea is the introduction of a new component called an abstract
service, which functions as a mediator for compensations, and thus hides the
logic behind the introduced compensations. Moreover, it specifies and manages
potential replacements for primary Web services to be used within a transaction.
The compensations are performed according to predefined rules, and are sub-
ject to contracts [14]. We introduce a framework based on the abstract services,
which enables the compensations described in the compensation specifications.

Such a solution has the following advantages:

– Compensation strategies can be defined on both, the service provider and
the client side. They utilize local knowledge (e.g. the provider of a service
knows best if and how his service can be replaced in case of failure) and
preferences, which increases the flexibility and efficiency.

– The environment can handle both, internally and externally triggered com-
pensations.

– The client of a service is informed about complex compensation operations,
which makes it possible to trigger additional compensations. Compensations
can thus consist of multiple operations on different levels, and consistency is
achieved through well defined communication protocols.

– By extending the already adopted Web service specification, it is not neces-
sary to discontinue current practices if compensations are not required.

– The separation of the compensation logic from the coordination logic allows
for a generic definition of compensation strategies, independent from the
coordination specification currently in use. They are therefore more flexible
and can easily be reused in a different context.

The rest of the paper is structured as follows. Section 2 introduces the mo-
tivating scenario, which will be used in the paper in order to exemplify the



concepts. Section 3 introduces the proposed design for an infrastructure that is
able to handle internally and externally triggered compensations without trans-
action aborts, and describes the basic components and compensation specifica-
tions based on compensation activities and compensation types. A prototype
implementation of the design is described in section 4, along with two experi-
ments that use the new compensation capabilities. Section 5 reviews related work
in the area of forward recovery. Section 6 concludes this paper and provides a
direction for future work on this topic.

2 Motivating Scenario

The motivating scenario for this paper is a company’s monthly payroll process-
ing. In order to introduce real-life dependencies, both, the company’s and the
employee’s responsibilities are considered.

Company: In the first step of the payroll processing procedure, the company
has to calculate the salary for each employee, which can depend on a multitude
of factors like overtime hours or bonuses. In the next step, the payment of the
salary is performed, which comprises several operations. First of all, the salary
is transferred from the company’s account to the employee’s account. Then the
company transfers the employee’s income tax to the account of the fiscal author-
ities. Finally, the company prints the payslip and sends it to the employee.

Employee: The employee has only one task which he has to perform each
month in this scenario: He transfers the monthly instalment for his new car to
the car dealer’s account.

The company’s and the employee’s operations are each controlled by a busi-
ness process, and are implemented using Web services from multiple providers.
The two business processes use transactions in order to guarantee a consistent
execution of all required operations. This is depicted in Figure 1. Only the ser-
vices of transaction T1 are shown.

Fig. 1. The motivating scenario

It is obvious that there are multiple dependencies in this simple scenario,
between and within these transactions. Therefore, it is vitally important that no



transactions have to be aborted and compensated in order to avoid cascading
compensations. However, such a situation can become necessary quite easily:

1. It can always happen that a service which participates in a transaction fails.
Here, it could be that the service that handles the transfer of the salary fails
due to an internal error. The transaction inevitably has to be aborted, even
though the error might be easily compensatable by using a different service
that can perform the same operation. Such a replacement is encouraged by
the fact that usually multiple services exist that have the same capabilities.

2. A mistake has been made regarding the input data of an operation. In this
scenario, it could be that the calculation of the salary is inaccurate, and too
much has been transferred to the employee’s account. The flaw is spotted by
an administrator, but the only option is again to abort the complete trans-
action, although it would be very easy to correct the mistake by transferring
the sum that has been paid too much back to the company’s account.

Although it should be possible to handle these situations without the need
to cancel and compensate the transaction(s), current technology does not allow
to do so in a sensible way.

3 Web Service Environment with Transaction
Coordination

We base our work on Web service coordination and transaction specifications
[12, 13, 11]. These transaction specifications provide a conceptual model and ar-
chitecture for environments where business activities performed by Web services
are embedded into transactional contexts.

Fig. 2. Transactional environment for Web services adopted from [1]

Figure 2 depicts an excerpt of such an environment with the main compo-
nents. The client runs business activities A1 to A5, which are embedded in a



transactional context. The transactional context and conversation is maintained
by a transaction coordinator. Client and server stubs are responsible for getting
and registering the activities and calls for Web services in the right context. The
sequence of conversation messages is numbered. For clarity, we only show a con-
versation with a Web service provider that performs business activity A1. The
transaction coordinator is then responsible for running appropriate protocols,
such as two phase commit or some of the distributed protocols for Web service
environments such as [2].

As pointed out above, the compensation capabilities are left to the client
business activities according to the specifications in [12, 13, 11]. We extend the
architecture and the infrastructure based on those specifications, so that it can
handle internally and externally triggered compensations. Figure 3 depicts the
extension to the transaction Web service environment, namely the abstract ser-
vice and the adapter components. This extension does not change the way how
client, transaction coordinators and Web service providers operate. Clients, in-
stead of invoking concrete Web services, invoke abstract services which wrap
several services and compensations for them. The adapter functions as a medi-
ator between transaction coordinator, abstract service and concrete service to
ensure proper transactional context.

Fig. 3. The abstract service and adapter

3.1 Abstract Service

The central element of the extension is the notion of an abstract service. The
client stub communicates with the Web service provider stub through the ab-
stract service. An abstract service does not directly implement any operations,
but rather functions as a management unit, which allows to:



– define a list of Web services which implement the required capabilities,
– invoke a service from the list in order to process requests which are sent to

the abstract service,
– replace a failed service with another one from the list without a failure of

the transaction, and
– process externally triggered compensations on the running transaction.

Distributed applications consisting of collaborating Web services have the
advantage that normally single operations can be performed by multiple services
from different providers. Which service will be chosen depends usually on the
quality of service (QoS) requirements of the distributed application. The abstract
service takes advantages of the existing diversity. To the outside, it provides an
abstract interface and can be used like any other Web service, and uses the same
mechanisms like SOAP [15] and WSDL [4]. On the inside, it manages a list of
Web services (called concrete services) which provide the required capabilities.
When the abstract service receives a request, it chooses one of these services and
invokes it. Interface and data incompatibilities between the abstract interface
and the interfaces of the concrete services are solved by predefined wrappers.

This approach has multiple benefits:

– Usually, a client does not care which specific service handles his requests, as
long as the job will be done successfully and in accordance with the contract.
The abstract service design supports this notion by providing the capabilities
to separate the required abilities from the actual implementation.

– The available list of concrete services enables the abstract service to provide
enhanced compensation possibilities.

– The definition of an abstract service can be done independently from the
business process in which it will be used. It can therefore be reused in mul-
tiple applications without the need for changes. If a specific service imple-
mentation is no longer usable, then the business process does not have to be
changed, as this is being managed in the abstract service.

Figure 3 depicts the basic structure of an abstract service. Four interfaces are
supplied to the outside: The service operations for which the abstract service has
been defined can be accessed via the abstract service interface. A contract can
be exchanged or negotiated by using the contract exchange interface. Execution
events of a service (e.g. a failure) can be signaled via the event interface. Com-
pensations can be triggered from the outside using the compensation interface.

On the inside, the main component is the management unit, which receives
and processes requests, selects and invokes concrete services, and handles com-
pensations. In order to do so, it has several elements at its disposal:

– Concrete service list : Contains the details of all available concrete services.
– Concrete service wrappers: Define the mapping of the generic abstract service

interface to the specific interface of each concrete service.
– Request log : Holds all requests of the current session.
– Compensation rules repository : Manages the rules that control the compen-

sation handling process.
– Contract repository : Contains the existing contracts with the different clients.



3.2 Adapter

Abstract services could be used in conjunction with a wide variety of technolo-
gies. Therefore, it would be preferable if the definition of the abstract service
itself could be generic. However, the participation in a transaction requires ca-
pabilities that are different for each transaction management specification.

That is why the transaction specific requirements are encapsulated in a so-
called adapter (see Figure 3). An abstract service registers at this adapter, which
in turn registers with the transaction coordinator. To the coordinator it looks as
if the abstract service itself has registered and sends the status messages. When
the abstract service invokes a concrete service, it forwards the information about
the adapter, which functions as a coordinator for the service. The service registers
accordingly at the adapter as a participant in the transaction.

As it can be seen, the adapter works as a mediator between the abstract
service, the concrete service, and the transaction coordinator. The adapter re-
ceives all status messages from the concrete service and is thus able to process
them before they reach the actual coordinator. Normal status messages can be
forwarded directly to the coordinator, while the failure messages can initiate the
internal compensation handling through the abstract service.

If the adapter receives such an error message, it informs the abstract service,
which can then assess the possibility of compensation. The adapter will then be
informed about the decision, and can act accordingly. If for example the replace-
ment of a failed concrete service is possible, then the adapter will deregister this
service and wait for the replacement to register. In this case, the failure mes-
sage will not be forwarded to the transaction coordinator. The compensation
assessment could of course also show that a compensation is not possible (or
desirable). In such a case, the adapter will simply forward the failure message to
the coordinator, which will subsequently initiate the abort of the transaction.

3.3 Compensation Specifications

Compensation specifications enable the abstract service to handle both kinds of
compensations: Internally triggered compensations (arising from internal errors)
and externally triggered compensations. An example for an externally triggered
compensation could be the handling of the mistake spotted by an administrator
as described in the motivation scenario section. We distinguish between com-
pensation activities and compensation types in our compensation specifications,
whose interaction are shown in Figure 4.

Basic Compensation Activities are the basic operations which can be used
in a compensation. ServiceReplacement replaces the currently used Web service
with a different one, which can offer the same capabilities and can thus act as a
replacement. LastRequestRepetition resends the last request to the Web service.
PartialRequestRepetition resends the last n requests from the request sequence of
the current session (i.e. within the current transaction) to the Web service, while
AllRequestRepetition resends all requests. CompensationForwarding forwards the



Fig. 4. The compensation types and their included activities

external compensation request to a different component, which will handle it.
AdditionalServiceInvocation invokes an additional (external or internal) service,
which performs some operation that is important for the compensation (e.g.
the invocation of a logging service, which collects data about a specific kind
of compensation). AdditionalRequestGeneration creates and sends an additional
request to the Web service. Such a request is not influenced by the client, and
the result will not be forwarded to the client. ServiceAbortInitiation cancels the
operations on the Web service, i.e. the service aborts and reverses all operations
which have been performed so far. RequestSequenceChange performs changes
in the sequence of requests that have already been sent to the Web service.
ResultResending sends new results for old requests, which have already returned
results.

Compensation Types aggregate multiple compensation activities, and thus
form complex compensation operations, as shown in Figure 4. These types are the
compensation actions which can be used for internal and external compensations,
and which form the basis of the compensation specification language. There are
currently 7 different compensation types.

The most simple type is NoCompensation, which does not perform any op-
eration. If a Web service fails, then this will be signaled to the transaction
coordinator, which will initiate the transaction abort.

The Repetition type is important for the internal error handling, as it repeats
the last request or the last n requests. The last request can for example be resend
to a Web service after a response was not received within a timeout period. A



partial resend of n requests can for instance be necessary if the request which
failed was part of a sequence, which has to be completely repeated after the
failure of the final request. A partial repetition of requests will result in the
resending of results for old requests to the client, which has to be able to process
them.

The compensation type Replacement can be used if a Web service fails com-
pletely. It replaces the current service with a different one, and resends either
all requests, a part of the requests, or only the last one. Resending only the last
request is possible if a different instance of the service that has failed can be used
as replacement, which works on the same local data and can therefore simply
continue with the operations.

Forwarding is special in comparison with the other types, as it only indirectly
uses the available activities. It forwards the handling of the compensation to a
different component, which can potentially use each one of the compensation
activities (which are therefore marked as ”possibly included”) in the process.

In an externally triggered compensation, it is sometimes necessary to invoke
additional services and send additional requeststo the concrete service. For this
purpose, the compensation types AdditionalService and AdditionalRequest exist.

The final compensation type is SessionRestart. This operation is required if
the external compensation request can not be handled without a restart of the
complete session, i.e. the service has to be aborted and subsequently the complete
request sequence has to be resend. The requested change will be realised by a
change in the request sequence prior to the resending.

Compensation Protocol controls the compensation process and its interac-
tion with the different participants. An externally triggered compensation always
has the purpose of changing one particular request that has already been pro-
cessed at the service. More specifically, the compensation request contains the
original request with its data that has to be changed (request1(data1)), and
the new request-data (data2) to which the original request has to be changed
to (request1(data2)). The participants in the protocol are the abstract service,
the client which uses the abstract service in its business process, the initiator
which triggers the external compensation (either the client itself, or any other
authorized source like an administrator), and the transaction coordinator. An
externally triggered compensation can only be performed if the transaction in
which the abstract service participates has not yet finished, as it usually has
consequences for the client due to result resending.

The protocol consists of two stages. The first stage is the compensation as-
sessment : As soon as the abstract service receives a request for a compensation,
it checks whether it is feasible and what the costs would be. To that end, prede-
fined compensation rules are being used, which consist of a compensation con-
dition (defines when a compensation rule can be applied) and a compensation
plan (defines the compensation actions that have to be performed). The second
stage of the protocol is the compensation execution, which performs the actual
compensation according to the plan. Whether this stage is actually reached de-



pends on the initiator: After the assessment has been completed and has come
to a positive conclusion, the initiator, based on this data, has to decide whether
the compensation should be performed or not.

As the client and the initiator of an external compensation can differ, the
protocol contains the means to inform the client about the compensation process.
It also ensures that the transaction coordinator is informed about the status of
the external compensation, because the assessment and the execution stages have
consequences for the abstract service’s status in the transaction. While assessing
the possibilities for a compensation, and while performing it, the abstract service
can not process additional requests (and either has to store the requests in a
queue, or has to reject them with an according error message). Moreover, its
status can change as a result of a successful compensation.

3.4 Application on the Client and Provider Side

The abstract service design can be applied on both, the client and the provider
side. A client which wants to create a new distributed application using services
provided by multiple providers can utilize abstract services in two different ways:

1. The client can include the abstract service from a provider in its new business
process, and can use the added capabilities.

2. The client can define a new abstract service, which manages multiple con-
crete services that can perform the same task.

The main goal of a Web service provider is a successful and stable execution of
the client’s requests in accordance with the contracts. If the service of a provider
fails too often, he might face contractual penalties, or the client might change
the provider. He can use abstract services in order to enhance the reliability
and capability of his services by creating an abstract service which encapsulates
multiple instances or versions of the same service. These can be used in case of
errors to compensate the failure without the need for a transaction abort.

4 Discussion and Experiments

The described design approach has been used in a prototype implementation
based on the scenario in section 2, and we performed two experiments with the
implemented environment.

The four services participating in the payment transaction have been real-
ized as abstract services. The abstract services manage the standard Web services
performing the required operations as concrete services. The implementation has
been done using Apache Tomcat as Web container, and Apache Axis as SOAP
engine. The WS-Transaction specification has been chosen for the transaction
coordination, more specifically the BusinessAgreementWithCoordinatorComple-
tion protocol with the extension for transaction concurrency control that has
been introduced in [2]. It is necessary for externally triggered compensations



that the transaction coordinator is able to adapt to the changes that have to be
performed in the process.

The first experiment was devoted to the evaluation of the compensation of an
internal service error. In this case, a failure of the concrete service on the provider
side is simulated. Figure 5 shows the setup for the transfer salary operation: The
abstract service AS1 on the client side currently uses a concrete service that is
itself an abstract service (AS2 ), which is operated by a service provider. The
abstract service AS2 uses Web Service 1, which performs the required operations.
Figure 5 also depicts the interconnection of the services: AS1 is registered as a
participant at the Transaction Coordinator via Adapter 1, AS2 is registered at
Adapter 1 via Adapter 2, and Web Service 1 is registered at Adapter 2.

Fig. 5. Compensation on the provider side

Now Web Service 1 fails due to an internal error, and is thus not able to
perform all operations required for the salary transfer. Instead of informing the
transaction coordinator, abstract service AS2 is informed, which assesses its
compensation rules, the contract, and the available substitution services, and
decides that a compensation is possible. Web Service 1 is discarded and the
request that failed is send to Web Service 2, which registers at the adapter.
Web Service 2 is another instance of the same service, and can therefore simply
continue with the request as it operates on the same local resources. This scenario
shows that the signal of the service failure can be intercepted and the service
replaced, without the need to cancel the complete transaction.

The second experiment evaluates an externally triggered compensation. Fig-
ure 1 summarizes the operations on the different accounts in the scenario de-
scribed in section 2. In this experiment, an administrator has found an error
in the calculation of the salary: The company transferred 50 units too much
to the account of the employee. The administrator directly sends a compen-
sation request to the abstract service that handles the salary transfer (AS1 ).
The abstract service assesses the request by consulting its compensation rules.
In this scenario, the rules specify that this compensation is only allowed if the



employee’s account would still be in credit after the additional debit operation,
in order to avoid the employee’s account being in debit after the transaction.

Nr. Transaction Company (C) Employee (E) Tax (T) Car Dealer (D)

10.000 0 Y Z

01 T1.debit(C,1.000) 9.000

02 T1.credit(E,1.000) 1.000

03 T1.debit(C,500) 8.500

04 T1.credit(T,500) Y+500

05 T2.debit(E,150) 850

06 T2.credit(D,150) Z+150

8.500 850 Y+500 Z+150
Table 1. The transfer operations on the accounts in the scenario

The result of the assessment is positive, which is reported to the adminis-
trator, who can decide based on this data whether the compensation should be
performed. He decides that the compensation is necessary. The abstract service
compensates operations 01 and 02 from Table 1 by creating an additional debit
and credit operation, as can be seen in Table 2. The operations transfer 50 from
the employee’s account back to the company’s account, which thus compensates
the initial problem. As an additional service, the abstract service initiates a
precautionary phone call, which informs the employee about the change.

Nr. Transaction Company (C) Employee (E) Tax (T) Car Dealer (D)

... ... ... ... ... ...

07 T1.debit(E,50) 800

08 T1.credit(C,50) 8.550

8.550 800 Y+500 Z+150
Table 2. The additional operations on the accounts

Subsequently, the compensation will be reported to the client, who has to
assess whether any other services are affected according to its business process.
It decides that the tax transfer does not have to be changed, while the payslip
has to be updated, as the details of the salary have changed. The business pro-
cess therefore initiates a compensation on the respective service, which handles
this request by printing and mailing a new payslip. This shows that even the
more complex initial problem could be solved without the need to abort the
transaction.

These two experiments have shown that the proposed design is successful
in employing flexible compensation strategies in Web service transactions. It is
thus possible to develop more robust distributed applications, where the abstract



services are able to adapt their compensation rules to the contract they have with
the client. Especially in long-running transactions, this approach helps to avoid
unnecessary transaction aborts, and therefore saves money and time. While it is
of course still possible that the abstract service itself encounters an error, it at
least provides the capabilities to avoid transaction aborts due to concrete service
failures. Moreover, it is possible to mix the new design with existing technology:
The new capabilities can be used, but do not have to be, as an abstract service
can be employed like any other normal Web service.

However, the new functionality of the design with its advanced compensation
abilities has its costs. By introducing additional components like the abstract
services and the adapters, the overall structure of a distributed application be-
comes more complex. The outsourcing of compensation logic to the abstract
services simplifies the business process definitions, but at the same time the dis-
tributed compensation logic can make maintenance more difficult. And finally,
the added components require additional messaging, and therefore the design
increases the total number of messages that have to be sent.

The current implementation is a proof-of-concept of the proposed design ar-
chitecture, and is still limited regarding certain aspects. The prototype of the
abstract service uses only synchronous requests and does not allow parallel re-
quests. Nevertheless, the same principles can be applied in this case, although
additional request queue management will be required. Accordingly, the execu-
tion of compensation actions is currently performed only sequentially.

5 Related Work

Forward recovery can be realized by using dynamic workflow changes, as de-
scribed in [17, 19], which allow the semi-automatic adaptation of a workflow in
case of errors. A change of the workflow process can for example consist of a
deletion or jump instruction, or the insertion of a whole new process segment.
The change can either be done on a running instance, or it can be performed
on the scheme which controls the workflow, and which results in a change in all
running instances. Refer to [18] for details. Although this approach is very pow-
erful, it has two major disadvantages. Firstly, it is in most cases only possible
to perform these adaptations semi-automatically. Changing a workflow requires
a lot of knowledge about the process and the current state it is in, and the
implications a change would have. Therefore, it is often necessary for a human
administrator to specify and control the change. Secondly, these kinds of work-
flow changes require a very strict definition of the process, including for example
data and control links. Ad-hoc changes of business processes with normal or-
chestration languages like WS-BPEL (see [6]) is very difficult [9]. [5] provides
a mechanism to overcome this difficulty through a compensation handler. Our
approach provides a more flexible solution for compensations orthogonal to the
business processes, concrete services, and transaction coordination.

Our compensation approach can be used with the Enterprise Service Bus
(ESB) [3], a powerful messaging infrastructure for business to business inte-



gration with Web services. The abstract service and adapter can be integrated
through the ESB flexible extension mechanism. In this way, ESB can serve as
a platform to exchange extended messages between business process, abstract
services and adapters involved in the compensation conversation. Our approach
can be used independently of ESB, employing ESB on top of the introduced
infrastructure to integrate abstract services with workflow activities.

[16] introduces a notion of compensable Web services by specifying operations
which can revert the execution. In our approach, we allow for a more complex
specification of forward recovery compensations, which can be introduced at the
client side, mediator side, as well as provider side. Two related approaches to
a flexible compensation mechanism for business processes are proposed in [20,
10]. In both cases, the focus is put on backward recovery. The compensation
logic is treated as a part of coordination logic. In our approach, we separate the
coordination from the compensation logic to provide for more flexibility.

6 Conclusions and Further Work

We have described a new design approach for complex compensation strategies in
current transaction standards. Two new components have been described, the
abstract service, which manages replacement services and compensation rules,
and the adapter, which separates the coordination protocol specific functions
from the generic definition of the abstract service. We have also presented the
protocol that handles the assessment and processing of externally triggered com-
pensations. The design and the protocol have been successfully validated in a
prototype implementation.

Regarding future work, we plan to run additional experiments with different
compensation scenarios. Moreover, it will be necessary to further analyze the
impact of the new compensation capabilities on the business process definitions.
At the moment, it is only assumed that the business process is able to adapt to
the signaled compensations. It will be required to analyze possible extensions of
existing orchestration languages like BPEL in order to include the new capabil-
ities. The current implementation will be extended to support the management
of parallel request processing, and the definition of compensation rules will be
adapted accordingly.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services - Concepts,
Architectures and A pplications. Springer, November 2003.

2. M. Alrifai, P. Dolog, and W. Nejdl. Transactions Concurrency Control in Web
Service E nvironment. In ECOWS ’06: Proceedings of the European Conference on
Web Services, pages 109–118, Zurich, Switzerland, December 2006. IEEE.

3. D. A. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.
4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services

Description Language (WSDL) 1.1. W3C note, W3C, March 2001.



5. G. Dobson. Using ws-bpel to implement software fault tolerance for web services. In
EUROMICRO ’06: Proceedings of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 126–133, Washington, DC, USA,
2006. IEEE Computer Society.

6. A. Alves et al. Web Services Business Process Execution L anguage Version 2.0,
2007. Published online at http://docs.oasis- open.org/wsbpel/2.0/CS01/wsbpel-
v2.0-CS01.pdf.

7. J. Gray. The transaction concept: Virtues and limitations. In VLDB 1981: Intl.
Conference on Very Large Data Bases, 1981.

8. P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Compensation is not enough. In 7th
International Enterprise Distributed Object Computing Conference (EDOC 2003),
pages 232–239, Brisbane, Australia, September 2003. IEEE Computer Society.

9. D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and A. P. Buchmann.
Extending bpel for run time adaptability. In Ninth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2005), Enschede, The Nether-
lands.

10. L. Lin and F. Liu. Compensation with dependency in web services composition.
In International Conference on Next Generation Web Services Practices (NWeSP
2005), pages 183–188, Seoul, KOREA, August 2005. IEEE Press.

11. Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., IBM Corpo-
ration, IONA Technologies, and Microsoft Corporation. Web Ser-
vices Business Activity Framework, 2005. Published online at
ftp://www6.software.ibm.com/software/developer/library/WS- BusinessAc-
tivity.pdf.

12. Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., International
Business Machines Corporation, IONA Technologies, and Microsoft Cor-
poration. Web Services Coordination, 2005. Published online at
ftp://www6.software.ibm.com/software/developer/library/WS- Coordination.pdf.

13. Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., International Busi-
ness Machines Corporation, IONA Technologies, and Microsoft Corpora-
tion Inc. Web Services Atomic Transaction, 2005. Published online
at ftp://www6.software.ibm.com/software/developer/library/WS- AtomicTrans-
action.pdf.

14. B. Meyer. Applying ”Design by Contract”. IEEE Computer, 25(10):40–51, 1992.
15. H. F. Nielsen, N. Mendelsohn, J. J. Moreau, M. Gudgin, and M. Hadley. SOAP

version 1.2 part 1: Messaging framework. W3C recommendation, W3C, June 2003.
16. P. F. Pires, M. R.F. Benevides, and M. Mattoso. Building reliable web services

compositions. In Web, Web-Services, and Database Systems: NODe 2002, Web-
and Database-Related Workshops, Erfurt, Germany, October 7-10, 2002. Revised
Papers, Enschede, The Netherlands.

17. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of W
orkflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

18. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive Process Management
with ADEPT2. In ICDE, pages 1113–1114. IEEE, 2005.

19. S. Rinderle, S. Bassil, and M. Reichert. A Framework for Semantic Recovery
Strategies in Case of Process Activity Failures. In Y. Manolopoulos, J. Filipe,
P. Constantopoulos, and J. Cordeiro, editors, ICEIS, pages 136–143, 2006.

20. Z. Yang and C. Liu. Implementing a flexible compensation mechanism for business
processes in web service environment. In ICWS ’06. Intl. Conference on Web
Services, 2006.


