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Abstract: The World Wide Web is a popular platform for providing eLearning applications to a 
wide spectrum of users. However – as users differ in their preferences, background, requirements, 
and goals – applications should provide personalization mechanisms. In the Web context, user 
models used by such adaptive applications are often partial fragments of an overall user model. The 
fragments have then to be collected and merged into a global user profile. In this paper we 
investigate and present algorithms able to cope with distributed, fragmented user models – based on 
Bayesian Networks – in the context of Web-based eLearning platforms. The scenario we are 
tackling assumes learners who use several systems over time, which are able to create partial 
Bayesian Networks for user models based on the local system context. In particular, we focus on 
how to merge these partial user models. Our merge mechanism efficiently combines distributed 
learner models without the need to exchange internal structure of local Bayesian networks, nor 
local evidence between the involved platforms. 

 
 
Introduction 
 

Obviously users differ in their preferences, background, requirements, and goals they have when exploring 
instructional materials. This challenges the application to appropriately handle different users and situations. 
Personalization of information is a possible solution for handling these diverse needs, and quite a few adaptive 
applications have been developed in areas like eCommerce (Ardissono et al. 2000), eLearning (Dolog et al. 2004, 
Dolog et al. 2004a), or office applications (Oliver et al. 2005). 

 
In eLearning, cognitive models can characterize the learner's ability to process information in a certain way 

and classify them to certain categories with respect to their information processing abilities and preferences. The 
cognitive model is used to adjust navigation guidance for a learner in the learning path proposed by the eLearning 
platform. 

 
In the Web context, user models, constructed and used in adaptive applications, are often partial fragments 

of a overall user model. For example, let us imagine that Katia is a student interested in several domains. Katia 
attends several on-line courses provided by different Learning Management Systems (LMS’s). Each LMS comes 
with its own user model and therefore has a different “view” on Katia's characteristics. To combine the observations 
and to make personalization more effective, we need to integrate the conclusions about Katia's learner characteristics 
and preferences from several systems. 

 
Bayesian Networks are particularly suited for model integration. In our setting we therefore investigate the 

integration of distributed, fragmented user models by means on Bayesian Networks. Each Bayesian Network is 
created by a different application, yet using a common vocabulary regarding learning characteristics and 
preferences. Our model does not require the exchange of detailed user information like user logs. 

 
The rest of the paper is structured as follows. The first section presents some works in the field of learning 

modeling and introduces the Dunn & Dunn model. The second section describes Bayesian Networks and their 
implementation in the context of the Virtual Campus project. The third section introduces the methodology we 
employ to merge learners’ models. The fourth section discusses some related work about merging of Bayesian 
Network models. Finally, the last section draws some conclusions. 

 



Modeling users’ preferences -- Learning Styles 
 
Given the same conditions and resources for learning, individuals perform differently and achieve different 

learning outcomes. This is mainly ascribed to unequal previous knowledge, motivation and intellectual properties. 
Several learning models are based on the concept of cognitive style. 

 
The construct of cognitive styles relies on the assumption that styles of information processing (i.e. 

perceiving, attention, generating hypotheses in problem solving) are stable across various situations and can not be 
attributed to intelligence only. Thus, cognitive styles are an important part of a learner's personality (Oerter 71). 
They result from schematizing effective strategies of learning and problem solving. They are stable individual 
preferences for information processing, derived from generalizing effective strategies (Seel 2003). 

 
There is no definite set of cognitive styles agreed on in psychology. Klix distinguishes global strategies 

from local strategies in problem solving (Klix 71). The local strategy is to produce partial solutions, testing them 
sequentially. The global strategy descends from the solution and solves the problem effectively. Witkin and 
Goodenough (Witkin et al. 81) distinguish field-dependent from field-independent cognitive styles. Field-dependent 
learners tend to accept facts and issues as presented. They find it hard to localize information in a complex 
environment and appreciate guidance and social interaction. Field-independent learners tend to reorganize and 
restructure information on their own. They need less guidance and are less geared to social interaction. 
 

Messnick (Messnick 94) distinguishes several constructs relevant in learning and information processing: 
cognitive style (relevant in perceiving and thinking), learning style (preferences with regard to learning strategies), 
expressive style (relevant in communication), reactive style (self-reflection), defensive style (managing conflicts and 
anxiety), styles of cognitive control (metacognition). 

 
Weinstein (Weinstein et al. 86) lists strategies of elaboration (relating the new to the previously learned by 

using examples, analogies, visualization techniques etc., and strategies of organizing new information (semantic 
classifying, using diagrams, etc.) 

 
It is important to note that such models are scientific constructs. It is neither possible to directly measure 

and observe a cognitive style nor it is possible to deduce explicit consequences. The task to identify a cognitive style 
raises crucial questions. There are several inventories available, though there is no evidence whether they actually 
measure the construct of cognitive styles. 

 
In this paper we borrow from the Dunn & Dunn model of Learning Styles (Dunn & Dunn, 78). The model 

focuses on instructional and environmental preferences. In particular, Dunn defines a learning style as “the way in 
which each learner begins to concentrate on, process, and retain new and difficult information”. The model 
comprises five major categories called stimuli: Environmental, Emotional, Sociological, Physical, Psychological. 
Within these five major categories are 21 different elements that influence our learning, for example learning in 
pairs or from peers in the sociological category, or perceptual strengths in the physical category. 

 
We assume that the adaptive system can deduce learning style characteristics from user interaction with the 

system, e.g. from observations about solved exercises, number of chat messages, number of comments for learner 
portfolios, and so on. 

 
Bayesian User Models 
 

Several techniques can be exploited to model users' preferences. Logics, Fuzzy Logic, Neural Networks, 
and statistical models represent some examples. Statistical models fit very well to the problem of modeling users, 
since they allow us to represent the intrinsic uncertainty inevitably related to any effort to model human 
characteristics. Bayesian Networks (BNs) in particular provide us with a simple yet effective approach to construct 
and handle statistical models (Pearl 88). Bayesian Networks have been employed to derive learner characteristics in 
several systems already (Sbattella et al. 2004), or to infer user goals (Horvitz et al. 98). 

 



Bayesian Networks 
 

BNs allow for a simple graphical representation of a multi-dimensional joint distribution P(A1, A2,… An). 
The model is a digraph composed of nodes, oriented arcs, and conditional probability distributions. Nodes represent 
stochastic variables that encode events. As usual, each variable takes values in a set defining the admissible states of 
the related event. An arc coming from node A and entering node B states that A is a direct cause of B (and node A is 
then said to be a parent or B). Each node which has at least one parent is associated with a conditional probability 
distribution (CPD) which encodes the probabilistic dependence P(A | parents(A)). Each node R with no parents (root 
nodes) is associated with its prior probability distribution P(R). Thanks to the fact that only direct causes need to be 
explicitly encoded by CPDs, BNs represent joint probability distribution in a concise and efficient way. If variables 
are discrete, distributions reduce to conditional probability tables (CPTs), and prior probability tables. 

 
In a typical BN, a subset of the nodes represents observable events, i.e. events that can be collected from 

the environment and assigned to nodes as new evidence (or fact). The inference algorithm, starting from observed 
evidence, calculates the probability related to all non-observed nodes. In particular, leaf nodes are often used to 
collect events, while root nodes represent the causes. This is called diagnostic reasoning: From facts, we reconstruct 
the probability of causes.  

 
Fig. 1 depicts the “laboratory session” example, in which we use discrete variables that take values in the 

{True, False} set. The variables represent probability about the following statements: “the learner likes laboratory 
sessions” (the Laboratory variable), “the learner tends to work with peers during laboratory sessions” (the peerS 
variable), “the learner prefers hands-on sessions” (the pErceptual variable), and “the learner sends several chat 
messages to the same person” (the ChatMsg variable). For example, the prior probability table associated to 
Laboratory states that the probability for a given learner to like laboratory sessions is 60%. This value comes from 
a-priori knowledge we suppose to have, about the distribution of the event we model by means of the stochastic 
variable Laboratory.  

 
CPTs encode dependencies. For example, CPT associated to ChatMsg states that the probability for a given 

learner to send several messages to the same person, given that she/he likes to work in a group and does not like 
hand-on sessions, is 70%. 

 
The tables can be filled by an expert or can be learned by means of a training algorithm. Given the model, 

suppose that, at run-time, we know that learner L exchanged a lot of messages during the laboratory session. We 
assign “T” to the ChatMsg node. The inference algorithm updates the distribution of Laboratory and build 
distributions for peers and perceptual. These are called posterior probabilities (see Fig. 1, on the right). 
 

As a final remark, notice that only root nodes can be assigned with prior probabilities. However it can be 
the case that we have a-priori knowledge on the distribution of some non-root node. In this case, a well-known 
technique called soft evidence can be exploited to simulate prior probabilities on non-root nodes. In the following we 
assume the use of this soft-evidence technique whenever we need to assign prior probabilities to non-root nodes. 
 

 
Fig. 1 - The "laboratory session" example 



Virtual Campus Bayesian User Models 
 
Our Virtual Campus Project implements a recommendation system based on the aforementioned 

techniques. Virtual Campus is a LMS developed at Politecnico di Milano, described in more detail in (Cesarini et al. 
2004). In this context we implemented a Profile Engine (PEngine), which exploits the BN paradigm using discrete 
variables that take values in {Low, Medium, High}. 

 
As users change their behavior over time, PEngine extends the BN model exploiting techniques from 

Dynamic BNs (Norvig & Russell 95). Whenever a learning activity ends, new evidence is asserted on observable 
nodes and posterior probabilities are calculated. These posterior probabilities become the new prior probabilities, for 
the same BN, when a new learning activity begins. 

 
Fig. 2 depicts a simplified architecture of PEngine. Data is collected from Virtual Campus application logs. 

Since PEngine exploits a discrete BN, data must be discretized by means of a clustering algorithm. Then, new 
(discrete) evidence enters the BN, as well as new prior probability values coming from the previous evaluation 
cycle. The resulting new posterior probability values represent the new state of the user model. The Virtual Campus 
Tutoring Module exploits the model to generate personalized advice. 

 

 
Fig. 2 - PEngine architecture 

 
Distributed User Models 

 
In our scenario, users use different eLearning platforms, each one with its own user model. If we do not 

make any assumptions on these user models, it is impossible to exchange knowledge the systems have gained about 
their users, due to both differences in standard and modeling techniques, and unsolved issues in model composition. 

 
Bayesian Network Chains 

 
In this paper we assume all the involved system to adopt a BN-based user model, exploiting discrete 

variables. We also assume that all BNs use a common vocabulary for learner characteristics, given by a learning 
style model such as the one sketched earlier in this paper.  We can then investigate model composition: How to 
reuse partial knowledge about users to build a consistent global user model. 

 
In our scenario, Katia attends on-line courses provided through different LMS’s, switching from one to 

another whenever she does not find the instructional material she is looking for. Fig. 3 depicts three of these systems 
(called LMS1, LMS2, and LMS3), each one coming with its own fragment of Katia's user model. 
 

The BNs in our example implement a small subset of the D&D model elements. Leaf nodes represent 
information gathered by the system from learner activities, upper nodes implement the D&D elements. CPTs encode 



the effects of these elements on learner actions.  The standard BN inference algorithm will compute the probability 
of D&D elements starting from collected data 

 

 
Fig. 3 - Three partial models about Katia 

 
To merge user model fragments, we have to extend the PEngine model depicted so far. We will assume that 

different BNs could have different structures, CPTs, prior probability values, and even different structure. As a 
result we obtain a chain of different BNs: A BN for each different platform involved in modeling the user. Fig. 4 
depicts an example in which three LMS’s, and therefore three different user model fragments, are involved. During 
this instructional path, the learner accesses LMS’s in the following order: LMS1, LMS2, LMS3, and again LMS1. 

 
Dashed arcs represent prior probabilities, while dotted arcs represent posterior probability. Posterior 

probability calculated for shared nodes (i.e. nodes that share the same semantics) are passed among the platforms. 
For example, LMS2 receives Peers and Perceptual from LMS1. In particular, as Peers and Perceptual are not root 
nodes in the LMS2 BN, the probabilities are assigned as soft evidence. Root nodes that are private (i.e. they do not 
share the same semantics) are assigned a default prior probability value of (1/3, 1/3, 1/3). The main advantage of this 
approach is that there is no need to build a globally shared network. Instead, each LMS still evaluates only its own 
BN and does not have to share or send any evidence/CPTs to other LMS’s. The algorithm performed by LMSi at 
time Tj is sketched here: 

 
Gather message MTj-1 coming from LMSk,Tj-1
For each node X of LMSi,Tj BN: 

If X ∈ MTj-1 Then 
Extract P(X) from MTj-1   
If X is root node on LMSi,Tj BN Then  

Assert P(X) as prior probability  
Else  

Assert P(X) as soft evidence 
   Endif 

Else 
If X is not root node on LMSi,Tj BN Then  

Assert (1/3, 1/3, 1/3) as prior probability 
   Endif 
  Endif 

Endfor 
Assert hard evidence on observed nodes of LMSi,Tj BN and compute new posteriors 
 



 
Fig. 4 – A chain of Bayesian Networks 

 
An example -- The Katia’s learning path 
 

In our example, Katia begins her learning path exploiting on LMS1, attending a collaborative laboratory 
session on programming languages. The BN tries to derive Katia's preferences about team-based vs. individual 
learning (node Peers) and visual/auditory materials vs. kinesthetic involvement (node Perceptual). The intended 
meaning is that if Peers is High, Katia is likely to prefer team-based learning style; if Perceptual is High, Katia 
tends to prefer activities that involve making things (i.e., science projects, storybooks, diaries, model building, etc). 
At the end of the laboratory session the system, relying on the number of software bugs solved by Katia during the 
session, updates the probability distribution for Peers and Perceptual. 
 

Then, Katia leaves LMS1 and enters a collaborative session on modern art on LMS2. LMS2 has some 
knowledge about Peers and Perceptual coming from LMS1, and exploits it asserting soft evidence on related nodes 
in its BN. At the end of activity on LMS2, the system, relying on the number of chat messages exchanged during the 
session, updates Peers, Perceptual, and Laboratory. Now our belief about Katia's abilities is changed. Moreover, we 
know another of Katia's characteristics: Laboratory (i.e. the ability of Katia to take advantage of laboratory 
sessions). Notice that Laboratory is not actually part of the D&D model: It represents a further learner characteristic, 
built upon the standard D&D elements. 

 
As Fig. 4 depicts, Katia selects another collaborative learning experience, hosted on LMS3. Node Pair is 

High if Katia tends to work with one other student, as opposed to be part of a larger group, while exploiting 
collaborative instructional materials. Node Persistence indicates Katia's ability to “stay on task” (preference for a 
single thread of discussion at a time). Notice that prior probability values of BN root nodes remain at initialization 
values, as their semantics do not match with the meaning of other already-computed nodes. At the end of fruition on 
LMS3, the system, relying on the number of chat messages sent during the lesson, evaluates posterior probability 
values for Pair and Persistence and we have knowledge about two additional Katia’s characteristics. 

 
As a final step Katia returns to LMS1 and enters another collaborative laboratory session. The BN nodes are 

given with prior probability coming from LMS2. At the end of activity on LMS1, the system, relying on the number 
of solved bugs, updates posterior probability values for Peers and Perceptual. 
 

As a final comment, notice that neither information about structure and CPTs of local BNs, nor local 
evidence has been exchanged among the LMS’s. This way, we avoid sharing sensible information about both the 
system and the learner. Moreover, we minimize the exchange of data. 

 



Related Work 
 

Some work can be found focusing on evaluation of a unique Bayesian Network shared among several 
systems. The network is partitioned into several subnetworks and each system is in charge of evaluating a specific 
subset of root nodes. Whenever a given system needs to compute its root nodes, the algorithm start in all the 
involved systems and calculates results from scratch. In the following we discuss some approaches. 

 
The problem of calculation of root nodes, relying on local evidence and as few as possible evidence from 

other agents, is investigated in (Shen et al. 2002). The goal of the paper is to provide a technique able to reach a 
given confidence level, minimizing communications of evidence.  The solution is based on the fact that, knowing 
CPTs, it is possible to calculate P(unknown_evidence | known_evidence).  The solution is refined further in (Shen et 
al. 2003), using a Decentralized Markov Decision Process (DMPD) to calculate the best communication strategy.  
Both papers assume a simple, two-level BN. Structure and CPTs are supposed to be common knowledge.  

 
A different scenario is faced in (Paskin et al. 2004): The network structure and CPTs are no longer common 

knowledge. The network structure is again a two-layer BN, and CPTs can be exchanged among agents. The paper 
proposes a distributed version of the well-known message-passing algorithm, which takes into account possible loss 
of data during the message-passing phase. 

 
All the aforementioned papers start from a unique BN and, in different ways, try to evaluate it in a 

distributed manner. These approaches need several messages to be exchanged among the involved systems, 
communicating data during the distributed evaluation process. Moreover, these approaches work efficiently with 
simple two-layer BNs. 

 
Instead, our approach starts from several different BNs, connect them as a chain and reuse posterior 

probability, coming from the previous BN, as prior probability for the current BN. This way, only minimal 
information need to be exchanged among the involved systems. Moreover, our approach works efficiently with 
multi-layer BNs. 

 
Conclusions and Future Work 

 
Providing personalization capabilities to eLearning applications promises increased user satisfaction and 

system effectiveness. Appropriate user models can be inferred from user interactions with LMS’s. In most cases, the 
user interacts with several systems in different ways, and the user models in these systems can then be considered 
fragments of a larger complete user model. 

 
In this paper, we discussed how to represent user models based on learning style models (such as the D&D 

pedagogical model) as well as the inference of the relevant user characteristics from user interactions as Bayesian 
Networks. We then provided an algorithm to merge distributed user model fragments represented as Bayesian 
Networks, without the need to exchange details of local models nor local evidences. Our approach makes merging 
these models both efficient and, as much as possible, privacy-preserving. 

 
One interesting issue we want to focus on in future work is to investigate scenarios where communication 

failures can occur between the systems providing the distributed user model fragments, making approximation of 
unknown values necessary. Second, we will investigate the use of ontology mapping techniques to cope with more 
than one vocabulary used for the distributed user model fragments. 
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