
Transactions Concurrency Control in Web Service Environment

 Peter Dolog Mohammad Alrifai
 Aalborg University,

Department of Computer Science,
L3S and University of Hanover,

 Expo Plaza 1, 30539 Hanover, Germany
 Fredrik Bajers Vej 7, DK-9220 Aalborg Øalrifai@l3s.de
 dolog@cs.aau.dk

L3S and University of Hanover,

Wolfgang Nejdl

 Expo Plaza 1, 30539 Hanover, Germany
nejdl@l3s.de

Abstract

Business transactions in web service environments

run with relaxed isolation and atomicity property. In
such environments, transactions can commit and roll
back independently on each other. Transaction
management has to reflect this issue and address the
problems which result for example from concurrent
access to web service resources and data. In this paper
we propose an extension to the WS-Transaction
Protocol which ensures the consistency of the data
when independent business transactions access the
data concurrently under the relaxed transaction
properties. Our extension is based on transaction
dependency graphs maintained at the service provider
side. We have implemented such a protocol on top of
WS-Transaction. The extension on the web service
provider side is simple to achieve as it can be an
integral part of the service invocation mechanism. It
has also an advantage from an engineering point of
view as it does not change the way consumers or
clients of web services have to be programmed.
Furthermore, it avoids direct communication between
transaction coordinators which preserves security by
keeping the information about business transactions
restricted to the coordinators which are responsible
for them.

1. Introduction

Web services are distributed independent computing
units that provide a Business-to-Business interface
based on standards like SOAP [8] and WSDL [9].
They allow the integration and collaboration of
different business applications running on different
heterogeneous back-end systems. BPEL4WS [10] is a
workflow-like definition language that describes

sophisticated business processes that can orchestrate
web services. Most of the web service-based business
processes are long-running transactional processes.
Traditional protocols like the strict two-phase locking
protocol (2PL) [12] and the two-phase commit
protocol (2PC) [13], which are based on resources
locking mechanisms, are impractical in such
environments. For instance, a web service provider
would not accept to lock its local resources for a long
time by the web service consumers. Thus, traditional
ACID (Atomicity, Consistency, Isolation and
Durability) properties of a transaction management
system have to be relaxed for web services-based
transactions. In particular, atomicity and isolation
properties are usually relaxed in existing proposals for
transaction protocols in the web service environment;
i.e. some activities in a transaction can commit their
results before the whole transaction commits and the
results of some activities can be seen before the whole
transaction completes. However, several problems
arise because of the relaxation of the ACID properties
such that a readdressing of the transaction management
problem for web services environment is required.

Figure 1 shows a conceptual view of the problem.
Several transactional business processes (T1 and T2)
concurrently invoke web services (WSi) from different
providers (P1 and P2). Transactional support is
required in order to reach a mutually agreed upon
outcome for the whole web services within one
transaction from the client's viewpoint, as well as to
ensure that the outcome of all transactions are
consistent from the provider's viewpoint.

A web service, which has already completed its task
and returned the outcome to its invoking business
process, may later need to undo its job in case of the
failure of another web service within the same
transaction. Therefore, support for recovery

mechanisms is required for web services. And because
of the Isolation-relaxation property, completion
dependency relations occur between concurrent
transactions that access shared resources, therefore, a
dependent transaction should not commit before its
preceding one does. To handle such dependencies,
support for a concurrency control mechanism is
needed.

Previous proposals for transactional management
support in web service environment either address one
part of the problem, the recovery problem [1, 2, 3, 4
and 5] or they involve several independent transaction
coordinators communicating with each other [6, 7] to
achieve the concurrency control.

While these approaches are important first steps,
they neglect that by sharing the dependencies
information possibly mission-critical information is
disclosed to parties which should not have access to
them. In these cases, direct communication between
transactions should definitively be avoided, which of
course raises the question, how we can achieve
globally correct execution without communication
among transactions.

In this paper we therefore propose a protocol for
addressing the concurrency control problem in a way
that does not require any direct communication
between transactions as an extension to the WS-
Transaction and WS-Coordination Protocols. The
protocol has the following advantages:
• Transaction dependencies are maintained at the

service provider side avoiding direct
communication between third party transactions.

• As dependent transactions will be informed (by the
common participant) as soon as the relevant web
service commits or rolls back, they do not have to
wait until the dominant transaction either
completely commits or completely aborts.

The rest of the paper is structured as follows:
Section 2 reviews some related work and in Section 3
we describe a motivating scenario for the problem. In
Section 4 we discuss the WS-Coordination and WS-
Transaction specifications and their shortcoming for
addressing this problem. In Section 5 we define the
concurrency control problem for web services and in
Section 6 we describe our approach to provide
concurrency control for web services by building on
top of the existing standards. In Section 7 we discuss
our proposed solution and in Section 8 we describe our
prototyping implementation to validate the proposed
protocol. Section 9 concludes this paper and gives an
outlook to future work.

2. Related Work

Existing solutions (WS-Transaction/WS-
Coordination [1, 2, and 3], BTP [4] and WS-CAF [5])
address the recovery problem by supporting the
coordination of the so-called distributed open-nested
transactions. An open nested transaction is a tree (of
arbitrary height) of “sub-transactions”. The sub-
transactions may commit independently of each other
without having to wait for the root transaction to
commit. This relaxes the isolation part of the ACID
properties. In case of a sub-transaction failure, the
client who is driving this business process may decide
whether the overall transaction should abort or simply
ignore the failed sub-transaction. For example, an
ordering system that chooses the cheapest supplier
might still be able to commit successfully if only one
of the suppliers fails during the transaction (atomicity
relaxation). Typically, sub-transactions are matched to
the transactions already supported by Web services
(e.g., transactional booking offered by a service).

The problem of concurrency control was addressed
by [6] and [7]. In [6] the proposed solution is made as
an extension to the WS-Transaction Protocol, whereas
[7] proposes a completely new protocol based on a
decentralized serialization graph test protocol. Both
solutions share the same idea: globally correct
execution is achieved by direct communication among
coordinators of dependent transactions. We argue that
such direct communication between transactions
should be avoided, as the exchanged dependency
information can be interpreted as mission-critical
information such as confidential contracts between
organizations.

Transactional
Business
Process

WS
Provider

P1

WS1

T1 T2

Back-end DBMS

WS2

WS3

P2

WS5

WS4 WS6

Figure 1. Conceptual View over the Transaction
Problems in Web Service Environment

3. Motivating Scenario

An airline company offers 10 tickets to a travel
agency to sell to its customers. This offer is restricted
to a certain type of airplane. A customer is requesting
several flight tickets through a tourist agency. This
creates a business transaction which consists of
request, selection, confirmation, payment and getting
the ticket. The agency requests those seats from an
airline company by contacting its reservation service.
At the time of the request, the tickets are available. The
agency provides the tickets to the customer. The user
selects them and tries to book them.

In the meantime, the offer from the airline company
cannot be fulfilled as another third party transaction
made changes in the flight offerings. Therefore, the
user request cannot be committed and has to be rolled
back or compensated. This scenario includes a
dependency between 2 independent business
transactions. The dependencies between such
transactions occur dynamically and independently
from running services. They are long running
processes. Locking would not be therefore acceptable
for the company businesses. In long run, many parties
can join such business transaction dependencies, where
each transaction is coordinated by independent
coordinators. So from practical and privacy point of
view it would be more desirable to avoid a
communication between the transaction coordinators to
resolve these dependencies. For instance in our
example scenario, it is not the duty of the (business
transaction running by the) customer to contact the
transactional business process of the airways company
to resolve the dependency relation between them
because of their concurrent access to the resources held
by the travel agency. Instead, such communication can
be introduced at the service provider level (the travel
agency) where providers maintain the dependency data
as inherent part of the web service invocation
mechanism which is not supported by current web
service transactional management protocols standards.

4. WS-Coordination and WS-Transaction
Protocols

Unlike the OASIS Business Transaction Protocol
(BTP) [4], which is aimed to representing and
seamlessly managing complex business-to-business
transactions over the Internet, both WS-Coordination
[3] and WS-Transaction [1, 2] specifications (from

IBM, Microsoft, BEA and others in the industry) are
intended solely for the Web services environment and
as such leverage existing and evolving standards, such
as WSDL, WS- Addressing, Web Services Security,
and WS-Policy.

4.1. WS-Coordination

The WS-Coordination specification [3] defines a
framework that is aimed at reaching an agreement on
the final outcome of a web services-based transactional
process, regardless of the specific transaction protocol
being used for this purpose. It defines two key
concepts: 1) the Coordinator, which is an entity that
resides on the client side and is responsible for
reaching a globally agreed upon outcome of the
transaction from the client’s point of view, 2) the
Participant, which is an entity that resides on the web
service provider side and is responsible for
communicating with the Coordinator according to the
protocol on behalf of the web service (Figure 2).

Web Services-
based

Transactional
Process
(Client)

Web
Service

(provider)

Coordinator
Participant

Business logic
 interactions

Coordination
Messages

Figure 2. WS-Coordination Architecture

4.2. WS-Transaction

The WS-Transaction specification [1, 2] plugs into
the WS-Coordination and describes two transaction
protocol models to support the semantics of two kinds
of business-to-business interaction: AtomicTransaction
(AT), which is similar to the traditional ACID
transactions and intended for short-duration
interactions, and BusinessActivity (BA), which is
intended for long-duration, ACID-relaxed transactions
among loosely-coupled systems where exclusively
locking resources is impossible or impractical [1, 2].

Under the scope of an AtomicTransaction, the
coordinator directs all participants either to all commit
or all cancel, whereas under the scope of a
BusinessActivity, the director may direct each
participant individually. In this paper we consider the
BusinessActivity model where parallel transactions can
have concurrent access to local resources of a given
provider through its web services and the need for
concurrency control arises because of the Isolation-
relaxation property of this model.

4.3. WS-BusinessActivity

This specification defines two specific agreement
coordination protocols for the BusinessActivity
transaction model that can be used with the extensible
coordination framework WS-Coordination:
BusinessAgreementWithCoordinatorCompletion, and
BusinessAgreementWithParticipantCompletion. In the
former one, the participants rely on the coordinator to
inform them when they have received all requests to
perform work within the business activity, whereas in
the latter one, the participants themselves know when
they has completed all requests and should inform the
coordinator about that. Figure 3 shows the abstract
state diagram for a participant of the
BusinessAgreementWithCoordinatorCompletion protocol.
Upon the receipt of the complete message, the
participant knows that it will not receive any new
requests or tasks from this transaction so it finalizes its
work and makes the results in a way such that it can
later either be durably stored or compensated based on
the next command received from the coordinator: close
(commit) or compensate.

From the provider point of view, the participant
may be in conflict with another one from another
transaction, i.e. it uses some resource that has been
previously updated by another (dominant) participant
within different transaction. In such case, the final
outcome of the dependent participant depends on the

final outcome of the dominant one. Therefore, the
dependent participant should not close (commit) before
the dominant one does, and should inform its
coordinator as a reply to the complete message it has
received so that it waits until the dominant participant
reaches its final state. And in case that the dominant
participant fails or compensates, the dependent one
must compensate its work and inform its coordinator
about this. The current specifications does not support
such functionalities at all, therefore there is a need to
extend the specifications to provide a mechanism for
supporting the concurrency control.

5. Transaction Completion Dependencies

Our protocol is a variant of the Distributed
Serialization (Conflict) Graph Testing protocol [11] to
describe the directed graph, which contains all
dependencies that can be seen from the provider’s
point of view. The protocol operates on transaction
schedules, which are processed by the providers. A
transaction schedule is a set of transactions in partial
order where some of the transactions may be executed
concurrently. Two operations O1 and O2 are in conflict
in a transaction schedule if they are invoked by two
different transactions T1 and T2 respectively, and
access the same resource held by a common provider
and at least one of them is influencing the result of the
other operation (for example by writing a data item
used to compute the output of the other one). We say
that there is a completion dependency relation between
T1 and T2, i.e. the outcome of the dependent transaction
is based on the outcome of the dominant one.

A serialization graph is a directed graph consisting
of transactions as nodes and edges representing
completion dependencies between them such that the
edge points from the dependent transaction to the
dominant one.

To maintain consistency, a dependent transaction
must delay its completion until all its dominant
transactions complete (either commit or abort). In case
that a dominant transaction aborts (i.e. the relevant
Web Service rolls back), a dependent transaction needs
to roll back its affected Web Service. This approach
ensures that the concurrent transactions at the end will
have consistent outcomes. On the other hand, in case
of a cyclic serialization graph this may lead to having
some transactions waiting for each other forever.
Therefore it is necessary to take this case into account
and any transaction management system for web
services should be able to handle the following two
key issues: How can circular waiting be detected; and
if detected, how can it be resolved?

Active Completed Completing Closing Ended

Exiting

Canceling

Complete Completed Close Closed

Exit Exited

Cancel Canceled

Compensating

Fault

Compencate

Faulted

Faulting

Coordinator generated Participant generated

Figure 3. Abstract State Diagram of
BusinessAgreementWithCoordinatorCompletion

Compencated

6. A Support for Concurrency Control for
Web Services

6.1. Transaction Dependencies Management

The transaction aware web service environment
consists of a set of service providers and a set of
service consumers. Each service provider provides one
or more operations as web services. A client may
initiate transactional processes with web services
residing on several servers. When a transaction is
initiated it is assigned to a coordinator according to the
WS-Coordination specification [3], which ensures that
a final mutually agreed-upon outcome will be reached
by all the involved web services.

Due to relaxed atomicity and isolation properties,
operations from different transactions can run into
conflicts. Each service provider maintains information
about all completion dependencies between the
concurrent transactions and information about the state
of each web service with respect to the completion of
its invoking transaction. Service providers ensure that
all clients will reach a final globally correct state.

6.2. Participants Manager

We introduce the concept of a Participants
Manager: an entity which resides on the web services
provider side and is responsible for managing the
participants of the different concurrent transactions so
that it ensures a consistent outcome for all of them.
The Participants Manager maintains the conflict
matrix, which is built at design time and provided to
the Participants Manager as an input to be used to
detect any dependency relation between the concurrent

transactions at run time. The conflict matrix is a N x N
matrix, where N is the total number of the web service
operations that can be accessed via the provider. There
is a conflict between two operations Oi and Oj if the
field Fij in the conflict matrix is set to 1. So, a
dependency relation between two concurrent (and still
not committed) transactions T1 and T2 is detected if T1
invokes Oi after T2 has invoked Oj.

The Participants Manager maintains the dependency
graph based on the information it gets from the
participants that are involved in the running
transactions. After each operation invocation, the
participant, which represents the invoked operation,
informs the Participants Manager about this action.
The Participants Manager in turn, checks the conflict
matrix and updates the dependency graph accordingly.
Figure 4 depicts the components of a transaction aware
web service environment.

Whenever a participant receives the complete
message from its coordinator, it firstly asks the
Participants Manager whether there is any dependency
relation with other transactions. According to the
response it receives from the Participants Manager, it
responds to the coordinator either by a completed or a
wait message. If a participant receives a
close/compensate message (as a response to a
previously sent completed message) it
commits/compensates its job and informs the
Participants Manager. The Participants Manager in
turn removes the corresponding transaction from the
dependency graph and informs all the participants of
the dependent transactions so that any waiting
participant can either safely commit or compensate and
inform its coordinator about its final outcome (by
sending either completed or compensated message
respectively).

Activation
service

Coordination
service

Registration
service

P1
Coordinator P2 P3

Participants Manager

Participants

Dependency
Graph

T3 T2 T1

Web services

Business
 logic layer

Transaction
Management

layer

Conflict
Matrix

Transaction

xx
x

Server-side Client-side

Figure 4. Components of a Transaction-aware Web Service Environment

6.3. The Protocol

A dependency is detected when a transaction
invokes an operation which is in conflict with
operations invoked by already running transactions.
The dependency information is stored at the service
provider side. Algorithm 1 describes the main
execution thread at the provider side. The coordinator
of the dependent transaction is informed about the
completion dependency by sending a wait message.
Algorithm 2 describes how the completing phase is
performed at the provider side. If a close message is
received from the dominant transaction, it is
propagated to the dependent transaction. If a
compensate message is received, the operation is
compensated and the provider informs all dependent
transactions about this.

Figure 5 depicts two transaction coordinators
coordinating two independent transactional processes.
The dependencies are detected between T1 and T2
based on WS1 and WS2. P12 detects a dependency
relation between WS1 from T1 and WS2 from T2. P12
informs the transaction coordinator (C1) of the
dependant transaction T1 that it is waiting by sending a
waiting message. The coordinator (C1) of the
dependant transaction (T1) now knows that it should
wait for the Web Service in conflict (WS1), which is
held by P12 and can inform other participants of T1
about this if needed. P12 waits until it receives a
finishing message from the coordinator C2 of the
dominant transaction T2: either close message for
committing or compensate. If P12 receives a close
message from T2 (for WS2), it informs T1 by sending
closed message (for WS1). If P12 receives a
compensate* message from T2 (for WS2), it
compensates WS2, and then compensates WS1 and
informs T1 by sending a compensated message
(therefore a new transition from the newly created state
waiting to the compensating state is needed to be
added into the state diagram).

Figure 6 depicts a state diagram with possible web
service state and transitions generated either by a
transaction coordinator or service provider.

Algorithm 1 Service Provider
 SG = {} (local serialization graph)
O = {o1,…,oi} (operations at provider)
M = Conflict Matrix
(body of the service provider program)

 activate(oi);
check M and addToSerializationGraph(ti, oi);

 wait for next message from coordinator of ti ;
 When message m from coordinator received
 switch message type of m do
 case m is cancel
 roll back;
 deleteFromSerializationGraph(ti, oi);
 send message CANCELED
 case m is complete
 complete(); // see algorithm 2
 case m is close
 commit();
 deleteFromSerializationGraph(ti, oi);
 send message CLOSED;
 case m is compensate
 compansate();
 send message COMPENSATED;
 case m is exited
 deleteFromSerializationGraph(ti, oi);
 END;
 case m is faulted
 roll back;
 deleteFromSerializationGraph(ti, oi);
 END;
 end switch
 Exception When Fault
 send message FAULT;

Active Completed Completing Closing Ended

Exiting

Canceling

Complete Completed Close Closed

Exit Exited

Cancel Canceled

Faulting

Compensating
Faulted

Fault

Compencate

Coordinator generated Participant generated

Figure 6. Abstract State Diagram of
BusinessAgreementWithCoordinatorCompletion

Waiting
Wait

Completed

Compencate*

Compencated

C1

T
WS2 WS1

T1

C2

P

2

 WS1 WS2 12

Figure 5. Two Dependent Transactions

WS: Web Service
P: Participants Manager
T: Transactional Process
C: WS Coordinator

6.4. Cycle Detection

As shown on Figure 7.a the three transactional
processes are running into conflict. The dependencies
are detected between T1 and T2 based on WS1 and WS2,
T2 and T3 based on WS3 and WS4, and between T1 and
T3 based on WS5 and WS6. In the worst case, the
dependencies will form a cycle, which cannot be seen
locally by the providers. Let's assume that T2 is a
dominant transaction of T1 and T3 is a dominant of T2
and T1 is a dominant transaction of T3. If T1 starts its
completion phase at some point of the time, its
Coordinator C1 will send a complete message to all of
its participants including the (participant of) WS1.
According to our protocol, WS1 will get the
dependency information from the Participants Manager
P12 and will send a wait message to C1. The same
holds for T2 and T3, hence it will turn out that all
coordinators will run into a waiting cycle since C2 is
waiting for C3 and C3 is waiting for C1, which is
waiting for C2.

To solve this problem, we need a mechanism to
detect such cycles and to resolve them, so that all
involved transactions can safely complete. A naive
approach would be to inform the coordinators of each
transaction about the cycle and to make to make them
communicate with each other to detect the cycle as
soon as possible and start resolving it. However, we
think that direct communication between transactions
should be avoided. The exchanged dependency
information can be interpreted as mission-critical
information such as confidential contracts between
organizations and therefore not to be provided to other
independent transactions of third parties. Therefore we
propose another mechanism that solves the problem
without such kind of communications between the

independent transactions. When a participant is in a
waiting state it starts a so-called WaitingCycleCheck
procedure to detect any potential cycles. In waiting
state, the provider asks coordinators of the dominant
transactions to detect cycles. The cycles determine
circular waitings of transactions. Algorithm 3 deals
with cycles between transactions.

The local dependency graphs are used by the
Participants Managers to detect the cycles. A
WaitingCycleCheck token is sent to the coordinators
of the dominant transactions. If a coordinator of the
dominant transaction does not have any waiting web

Algorithm 2 complete()
 execute service oi for transaction ti;
 switch service results of r do
 case r is cancel
 roll back;
 deleteFromSerializationGraph(ti, oi);
 send message CANCEL
 case r is exit
 send message EXIT;
 case r is completed
 prepare commit;
 check dependencies in SG
 if (ti has at least one dominant transaction td)
 do
 send message WAIT;
 CycleCheck(); // see algorithm 3
 od
 else send message COMPLETED
end switch
wait for the next message from coordinator;

 Exception When Fault
 send message FAULT;
 wait for the next message from coordinator;

 WS1
WS2

P12 P34

P56

WS5WS3WS2WS1WS6

T2T1
WS4

T3

C2 C3C1

WS5
WS6

WS3
WS4

token
1

WS5WS3WS2WS1WS6

T2T1
WS

C3C2

4

T

C1

P12 P34

P56

2
3 45

6

3

Figure 7. a) Three Transactions Running into a Waiting Cycle
 b) Using a WaitingCycleToken to Detect the Cycle

a b

services, he sends back a NoWaitingCycle token.
Otherwise, it propagates the WaitingCycleCheck token
to all of its waiting web services and so on.

A cycle is detected when the issuing provider has
received back his own WaitingCycleCheck token from
the coordinator, who originally started the completion
phase (Figure 7.b). Once a waiting cycle was detected,
the Participants Manager can safely resolve this cycle
by confirming the readiness to complete so that the
coordinator, who started the completion procedure, can
close its participant and as a result of this, its
dependent coordinator will be able to lose as well.
Applying this to our example scenario in Figure 7.b,
will lead to having (the participant of) WS1 sending a
completed message to its coordinator C1 (which
initially started the completion procedure which
triggered the waiting cycle check). C1 then will commit
T1 and (the participant of) WS6 will inform its
Participants Manager P56, which in turn will remove it
from its local dependency graph and inform all its
dependents (WS5). WS5 will then inform C3 about its
readiness to close, which will enable the completion of
C3. By closing T3, WS3 will be informed via P23. At this
point C2 will have no more dominant transactions, so it
can commit safely as well.

7. Implementation

We implemented part of the WS-Coordination and
the WS-Transaction protocol, focusing on the
BusinessActivityWithCoordinatorCompletion, and
extended it with our protocol as basis for our prototype
and evaluation. On the web service provider side
(server-side), we implemented the Participants
Manager component and extended the participant’s
functions to be able to communicate with it. On the
client-side, we extended the coordinator’s functions to
be able to handle the new participant state, i.e. the
waiting state and to respond to a CheckWaitingCycle
message. In addition to the standard message from the
original WS-Coordination/WS-Transaction protocols,
the coordinator can now receive one extra message
from the participant: a wait message. Different from
the current standard (a compensated message can only
be received as a response to a compensate command),
a dependent coordinator can now receive a
compensated message from a waiting participant, if the
dominant coordinator rolled back. It also can receive a
CheckWaitingCycle message from a Participants
Manager and respond either by forwarding the
message to all its waiting participants or by sending a
NoWaitingCycle. The coordinator should also be able
to forward a NoWaitingCycle message back to the
Participants Manager which originally sent the
CheckWaitingCycle message; therefore a coordinator
must be able to map the received tokens to the original
senders. Figure 8 shows the WSDL description of both
the Coordinator and the Participants Manager
interfaces.

For prototyping we used 3 machines representing
three different web service providers. Every machine
was equipped with Apache Tomcat 5.5 as an
application server and Apache Axis 1.2 as a SOAP
engine. We implemented the provider part in our
proposed protocol on each machine. Each server
provides 2 web services, which simulate the functions
of crediting and debiting a user account. A user
account is represented by a text file which holds the
current status of the account. Each web service was
provided with a compensation operation that can be
invoked to undo the job done by the primary operation.

For our experiment we ran 3 transactions on 3 client
machines. Each transaction transfers money from one
account to another one by invoking 2 web services
from 2 different providers. We distributed the web
services among the transactions such that there is a
dependency relation between every 2 transactions.
Table 1 summarizes our experiment by comparing the
final outcome of two runs: without and with

Algorithm 3 CheckCycle()
 TD = {}; //dominant transaction
 TD getDominantTransactions(ti; oi);
 for all ti є TD do
 send CycleCheck(ti, oi) token to ci є
Coord_of(ti);
 wait for message from ci or UNTIL timeout;
 end for
 When Message from a coordinator received
 switch message type of m do
 case m is CycleCheck(ti, oi)
 if (own token received) do
 prepare commit;
 send message COMPLETED to ci of ti;
 od
 else forward token to all ti є TD
 case m is NoCycle(ti, oi)
 wait;
 case m is timeout
 compensate();
 send message COMPENSATED;
 end switch

concurrency control mechanism. In the latter case, the
dependent transactions of a failed dominant transaction
were informed and were able to compensate. In the
case of a failure-free execution the 3 transactions ran
into a waiting cycle and the Participants Managers

were able to detect, report and resolve the waiting
cycle without the need to any direct communication
between different transactions, nor between different
providers.

8. Discussion

Our approach for supporting concurrency control in
web services environment can be built on top of well
established standards, namely the WS-Coordination
and WS-Transaction Protocols. In our approach we
delegate the concurrency control management to the
service provider instead of adding more
responsibilities and duties to the coordinator of the
transaction on the client side. We believe that the
coordination of a set of web services in a transactional
process must be conducted by the client who is
running this process and benefiting from it. While, on
the other hand, the management of concurrent access
to local resources of a service provider by different
independent transactions is a task that has to be done
by the server itself, since it has the required knowledge
about the possible conflicts and can keep track of all
web service invocation requests from the remote
transactions coordinators. The use of the concept of a
Participants Manager enabled us to achieve a globally
correct execution without the need to direct
communications between independent transactions,
which (more likely) are executed by different parties
and may involve some mission-critical information.

However, this approach has its cost. Compared to
other approaches that rely on such direct

communications between the transactions coordinators,
our approach requires 2 times the number of
exchanged messages to reach globally correct
execution. The reason is that we replace each single
direct message between two coordinators C1 and C2 by

two messages: one message from C1 to the common
provider P12, and another message from P12 to C1. It is
a trade-off relation between the cost in terms of the
number of exchanged messages and the security and
privacy properties that can be ensured using our
approach.

9. Conclusion and Further Work

We have described an extension to the WS-
Transaction Protocol for concurrency control in
transactional web services environments. The protocol
ensures consistency of data when independent business
transactions access the data concurrently under the
relaxed transaction properties. The protocol is based on
transaction dependency graphs maintained at the
service provider side. We have shown several
algorithms implementing the protocol. We have
implemented such a protocol on top the current web
service transactions standard [1, 2]. Such an extension
on the web service provider side is simple to achieve
as it can be implemented as an integral part of the
service invocation mechanism. It has also an advantage
from an engineering point of view as it does not
change the way consumers or clients of web services
have to be programmed. In addition, it avoids direct
communication between transaction coordinators and
thus preserves security by keeping the information
about business transactions restricted to the
coordinator responsible for these transactions.

In future work we plan to run further experiments
with the proposed protocol and evaluate how it

Table 1: Experiment Results

performs with regard to throughput and reliability in
case of many commits. We also plan to investigate
different commit strategies in such an environment, as
well as error recovery and compensation strategies.

10. References

[1] Arjuna Technologies, BEA Systems, Hitachi Ltd., IBM,
IONA Technologies, and Microsoft, Web services atomic
transaction, 2005, published at
ftp://www6.software.ibm.com/software/developer/-
library/WS-AtomicTransaction.pdf

[2] Arjuna Technologies, BEA Systems, Hitachi Ltd., IBM,
IONA Technologies, and Microsoft, Web services business
activity framework transaction , 2005, published at
ftp://www6.software.ibm.com/software/
developer/library/WS-BusinessActivity.pdf.

[3] Arjuna Technologies, BEA Systems, Hitachi Ltd., IBM,
IONA Technologies, and Microsoft Corporation. Web
services coordination 2005, published at
ftp://www6.software.ibm.com/software/developer/library/W
S-Coordination.pdf.

[4] OASIS Business transaction protocol, 2004, published at
http://www.oasis-
open.org/committees/documents.php?wg_abbrev=business-
transaction.

[5] Arjuna Technologies, BEA Systems, Hitachi Ltd., IBM,
IONA Technologies, and Microsoft.
Web services composite application framework (ws-caf),
2003, published at
http://developers.sun.com/techtopics/webservices/wscaf.

[6] S. Choi, H. Jang, H. Kim, J. Kim, S. Kim, J. Song, and Y.
Lee. Maintaining consistency under isolation relaxation of
web services transactions.
In Proc. of WISE 2005, New York, USA, Nov. 2005.

[7] K. Haller, H. Schuldt, and C. Türker. Decentralized
coordination of transactional processes in peer to peer
environments. ACM Press, in Proc. of the 14th ACM Intl.
Conference on Information and Knowledge Management
(CIKM 2005), pages 36--43, Bremen, Germany, Nov. 2005.

[8] W3C Simple object access protocol (soap) 1.2, 2003.
W3C Note, http://www.w3.org/TR/soap12-part1/.

[9] W3C Web service description language (wsdl) 1.1, 2001.
W3C Note, http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.

[10] F. Curbera, Y. Goland, J. Klein, F. Leyman, D. Roller,
S. Thatte, and S. Weerawarana. Business process execution
language for web services (bpel4ws) 1.0, August 2002.
W3C Note, http://www.ibm.com/developerworks/library/ws-
bpel.

[11] G.Weikum and G.Vossen, Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control. Morgan Kaufmann, 2001.

[12] Bernstein, P.A., Hadzilacos, V., Goodman, N.,
Concurrency Control and Recovery in Database Systems,
Addison-Wesley (1987)

[13] Özsu, M.T., Valduriez, P., Principles of Distributed
Database Systems, 2nd Edition, Prentice Hall (1999)

	1. Introduction
	2. Related Work
	3. Motivating Scenario
	4. WS-Coordination and WS-Transaction Protocols
	4.1. WS-Coordination
	4.2. WS-Transaction
	4.3. WS-BusinessActivity

	5. Transaction Completion Dependencies
	6. A Support for Concurrency Control for Web Services
	6.1. Transaction Dependencies Management
	6.2. Participants Manager
	6.3. The Protocol
	6.4. Cycle Detection

	7. Implementation
	8. Discussion
	9. Conclusion and Further Work
	10. References

