
Building Open Systems Using Edutella —
Edutella framework and integration possibilities?

Peter Dolog

Learning Lab Lower Saxony
dolog@learninglab.de,

http://www.learninglab.de/~dolog

Abstract. In this report I reflect the current state of Edutella provider
and consumer interface to provide description for other applications or
systems how to become a peer in Edutella network, and how to query
for metadata distributed in Edutella network.

1 Introduction

Internet as an open environment provides us with the opportunity to share and
reuse resources already available. Heterogeneity of users and resources in the web
stresses the importance of customized (personalized) delivery of the resources.

Edutella [5, 6] framework allow us to connect the resource providers and
provide their metadata for queriing to other connected peers.

Edutella allow us to connect also systems which provide a metadata about
learners and users and thus to allow to query the provision of learner features
to other systems as well.

We proposed an architecture in [2], which takes availability of the user model
in the network into account and utilize it for adaptation purposes or personali-
sation services. The architecture is depicted in the figure 1.

Circles represents simple providers without reasoning capabilities. Rectan-
gles represent peers, which are able to perform programs. Multiple rectangle
symbols represent metadata. Learning resources are provided through resource
provider peers. Resources can be referenced by courses which represent simple
learning services. Courses can be personalized by adaptation services provided
by personalization peers. Courses and resources can be recommended by rec-
ommendation services or can be filtered by filtering services. Personal learning
assistants support learners or user to use the network.

We discussed possibilities how to adapt course provision which is composed
from resources described by metadata in RDF bindings of LOM in [1].

This paper explaines how to integrate external systems (content or resource
providers) with Edutella framework, introduce QEL language used for query

? This report was done in the context of ELENA project (http://www.elena-
project.org) and part of this report have appeared in several ELENA project de-
liverables.

2 P. Dolog

Fig. 1. ELENA architecture for personalization services. The personalisation services
might be generic adaptive functionalities provided and described in common language,
e.g. first order logic (see [4] for details). The generic parsonalisation services can be
then reused in several cources and/or queries. The example of such generic personal-
isation service would be recommendation of particular course fragment based on its
prerequisites what can be defined independently from topics and fragments available
in the course.

Edutella and introduce interfaces for provision and query services provided ba
edutella infrastructure.

The rest of the paper is structured as folows. Section 2 describes several points
of view to components which are available in the network. Section 3 briefly intro-
duce edutella framework and query language used in Edutella. Section 5 privide
several possibilities how to integrate existing systems into Edutella network to
provide their resources. Section 6 provides a description about interfaces which
are needed to implement in Systems which want to take a part in the Edutella
network.

2 Components in network

There are four main views of artefacts in a smart learning space discussed in
this document:

– Software components
– Metadata components
– Resource/learning object components
– Systems

Building Open Systems Using Edutella 3

Software components realize access and provision of resource and metadata
artefacts. These artefacts can be described from two points of view:

– Which technical services they provide (provision, learning, evaluation)
– Which kind of artefact they provide (resource/content, metadata, educa-

tional services)

The metadata and resource components are subjects of authoring and are
changing. It means that they are related to a specific provider of software com-
ponent, which supports the authoring and managing of these resources, services
and metadata about them.

The systems point of view considers which systems as metadata and resource
providers are connected to the ELENA network.

3 Edutella Framework

3.1 The JXTA P2P Framework

JXTA is an Open Source project [3] (or visit web page: http://www.jxta.org/)
supported and managed by Sun Microsystems. In essence, JXTA is a set of
XML based protocols to cover typical P2P functionality. It provides a Java
binding offering a layered approach for creating P2P applications (core, services,
applications, see Figure 2, reproduced from [3]). In addition to remote service
access (such as offered by SOAP), JXTA provides additional P2P protocols and
services, including peer discovery, peer groups, peer pipes, and peer monitors.
Therefore JXTA is a very useful framework for prototyping and developing P2P
applications.

This layered approach fits very nicely into our application scenarios defined
for Edutella: Edutella Services (In the future described in web service languages
like DAML-S or WSDL, etc.) complement the Jxta Service Layer, building upon
the JXTA Core Layer, and Edutella Applications/Front-ends (Services are also
part of peers) live on the Application Layer, using the functionality provided by
these Edutella services as well as possibly other JXTA services. On the Edutella
Service layer, we define data exchange formats and protocols (how to exchange
queries, query results and other metadata between Edutella Peers), as well as
APIs for advanced functionality in a library-like manner. Applications like reposi-
tories, annotation tools or GUI interfaces connected to and accessing the Edutella
network are implemented on the application layer.

Educational Context Every single university usually already has a large pool
of educational resources distributed over its institutions. These are under con-
trol of the single entities or individuals, and it is unlikely that these entities
will give up their control, which explains why all approaches for the distribution
of educational media based on central repositories have failed so far. Further-
more, setting up and maintaining central servers is costly. The costs are hardly
justifiable, since a server distributing educational material would not directly

4 P. Dolog

Fig. 2. JXTA layers

benefit the sponsoring university. We believe that, in order to really facilitate
the exchange of educational media, approaches based on metadata-enhanced
peer-to-peer (P2P) networks are necessary.

In a typical P2P-based e-learning scenario, each university acts not only as
a content provider but also as a content consumer, including local annotation of
resources produced at other sites. As content provider in a P2P network they will
not lose their control over their learning resources but still provide them for use
within the network. As a content consumer both, teachers and students, benefit
from having access not only to a local repository, but to a whole network, using
queries over the metadata distributed within the network to retrieve required re-
sources. P2P networks have already been quite successful for exchanging data in
heterogeneous environments, and have been brought into focus with services like
Napster and Gnutella, providing access to distributed resources like MP3 coded
audio data. However, pure Napster and Gnutella like approaches are not suitable
for the exchange of educational media. For example, the metadata in Gnutella is
limited to a file name and a path. While this might work for files with titles like
Madonna - Like a Virgin, it certainly does not work for Introduction to Alge-
bra - Lecture 23. Furthermore, these special purpose services lead to fragmented
communities, which use special purpose clients to access their service. The ed-
ucational domain is in need of a much richer metadata markup of resources, a
markup that is often highly domain and resource type specific. In order to facili-
tate interoperability and reusability of educational resources, we need to build a

Building Open Systems Using Edutella 5

system supporting a wide range of such resources. This places high demands on
the interchange protocols and metadata schemata used in such a system, as well
as on the overall technical structure. Also, we do not want to create yet another
special purpose solution which is outdated as soon as metadata requirements
and definitions change.

Our metadata based peer-to-peer system therefore has to be able to integrate
heterogeneous peers (using different repositories, query languages and function-
alities) as well as different kinds of metadata schemas. We find common grounds
in the essential assumption that all resources maintained in the Edutella net-
work can be described in RDF, and all functionality in the Edutella network
is mediated through RDF statements and queries on them. For the local user,
the Edutella network transparently provides access to distributed information
resources, and different clients/peers can be used to access these resources. Each
peer will be required to offer a number of basic services and may offer additional
advanced services.

3.2 Edutella Services

Edutella connects highly heterogeneous peers (heterogeneous in their uptime,
performance, storage size, functionality, number of users etc.). However, each
Edutella peer can make its metadata information available as a set of RDF
statements. Our goal is to make the distributed nature of the individual RDF
peers connected to the Edutella network completely transparent by specifying
and implementing a set of Edutella services. Each peer will be characterized by
the set of services it offers.

Query Service Peers register the queries they may be asked through the query
service (i.e., by specifying supported metadata schemas (e.g., this peer provides
metadata according to the LOM 6.1 or DCMI standards) or by specifying in-
dividual properties or even values for these properties (e.g., “this peer provides
metadata of the form dc title(X,Y) or this peer provides metadata of the
form dc title(X,Artificial Intelligence)”). Queries are sent through the
Edutella network to the subset of peers who have registered with the service to
be interested in this kind of query. The resulting RDF statements are sent back
to the requesting peer.

Edutella Replication This service is complementing local storage by replicat-
ing data in additional peers to achieve data persistence / availability and work-
load balancing while maintaining data integrity and consistency. Since Edutella
is mainly concerned with metadata, replication of metadata is our initial focus.
Replication of data might be an additional possibility (though this complicates
synchronization of updates). This service is not implemented yet.

6 P. Dolog

Edutella Mapping, Mediation, Clustering While groups of peers will usu-
ally agree on using a common schema (e.g., SCORM or IMS/LOM for educa-
tional resources), extensions or variations might be needed in some locations.
The Edutella Mapping service will be able to manage mappings between differ-
ent schemata and use these mappings to translate queries over one schema X
to queries over another schema Y. Mapping services will also provide interop-
eration between RDF- and XML-based repositories. Mediation services actively
mediate access between different services, clustering services use semantic infor-
mation to set up semantic routing and semantic clusters. These services are not
implemented yet.

RDF-QEL-i Language Levels In the definition of the Edutella query ex-
change language, several important design criteria have been formulated:

– Standard Semantics of query exchange language, as well as a sound RDF
serialization. Simple and standard semantics of the query exchangelanguage
is important, as transformations to and from this language have to be per-
formed within the Edutella peer wrappers, which have to preserve the se-
mantics of the query in the original query language. Additionally, a sound
encoding of the queries in RDF to be shipped around between Edutella peers
has to be provided.

– Expressiveness of the language. We want to interface with both simple graph
based query engines as well as SQL query engines and even with inference
engines. It is important that the language allows expressing simple queries
in a form that simple query providers can directly use, while allowing for
advanced peers to fully use their expressiveness.

– Adaptability to different formalisms. The query language has to be neutral
to different representation semantics, it should be able to use any predi-
cates with predefined semantics (like rdfs:subclassOf), but not have their
semantics built in, in order to be applicable to different semantic formalisms
used in the Edutella peers. It should be as easily connected to simple RDFS
repositories as to relational databases or object-relation ones, and inference
systems, which all have different base semantics and capabilities.

– Transformability of the query language. The basic query exchange language
model must be easy to translate into many different query languages (both
for importing and exporting), allowing easy implementation of Edutella peer
wrappers.

Edutella follows a layered approach for defining the query exchange language.
Currently we have defined language levels RDF-QEL-1, -2, -3, -4 and -5, differing
in expressivity. The simplest language (RDF-QEL-1) can be expressed as unrei-
fied RDF graph, the more complex ones are more expressive than RDF itself
and therefore have to be expressed using reified RDF statements. All language
levels can be represented through the same internal data model [5].

Currently, Edutella providers support RDF-QEL-3 language.

Building Open Systems Using Edutella 7

RDF-QEL-1. The RDF-QEL-1 syntax design is driven by its simplicity and
readability: Following a QBE (Query By Example) paradigm queries are rep-
resented using ordinary RDF graphs having exactly the same structure as the
answer graph, with additional annotations to denote variables and constraints
on them. Any RDF graph query can be interpreted as a logical (conjunctive)
formula that is to be proven from a knowledge base.

Fig. 3. Example Query in RDF-QEL-1, Unreified Format

Since disjunction cannot be expressed in RDF-QEL-1 our example query has
to be split into two separate sub queries (Figure 3).

<edu:QEL1Query rdf:ID="AI_Query_1">

<edu:hasVariable rdf:resource="#X"/>

</edu:QEL1Query>

<edu:Variable rdf:ID="X" rdfs:label="X">

<rdf:type rdf:resource="http://www.lit.edu/types#AIBook"/>

</edu:Variable>

<edu:QEL1Query rdf:ID="AI_Query_2">

<edu:hasVariable rdf:resource="#Y"/>

</edu:QEL1Query>

<edu:Variable rdf:ID="Y" rdfs:label="X">

8 P. Dolog

<rdf:type rdf:resource="http://www.lit.edu/types#Book"/>

<dc:title>Artificial Intelligence</dc:title>

</edu:Variable>

RDF-QEL-2. Extending RDF-QEL-1 with disjunction leads to RDF-QEL-2. As
this language is no longer purely assertional, it cannot be expressed directly
in RDF without talking about RDF triples in order to combine them logically.
For this purpose, we utilize the RDF construct called reification. Reifying an
RDF statement involves creating a model of the RDF triple in the form of an
RDF resource of type Statement. This resource has as properties the subject,
the predicate and the object of the modeled RDF triple. Such reified statements
are the building blocks for each query and can, in RDF-QEL-2, linked together
by an AND-OR tree. In RDF-QEL-2 the example query reads like

<edu:Variable rdf:about="#X" rdfs:label="X"/>

<edu:And rdf:about="#andbagID">

<rdf:_2 rdf:resource="#st2"/>

<rdf:_1 rdf:resource="#st3"/>

</edu:And>

<edu:Or rdf:about="#orbagID">

<rdf:_1 rdf:resource="#andbagID"/>

<rdf:_2 rdf:resource="#st1"/>

</edu:Or>

<edu:QueryStatement rdf:about="#st1">

<rdf:subject rdf:resource="#X"/>

<rdf:object rdf:resource="http://www.lit.edu/types#AIBook"/>

<rdf:predicate rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>

</edu:QueryStatement>

<edu:QueryStatement rdf:about="#st2">

<rdf:subject rdf:resource="#X"/>

<rdf:object rdf:resource="http://www.lit.edu/types#Book"/>

<rdf:predicate rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>

</edu:QueryStatement>

<edu:QueryStatement rdf:about="#st3">

<rdf:object>Artificial Intelligence</rdf:object>

<rdf:subject rdf:resource="#X"/>

<rdf:predicate rdf:resource="http://purl.org/dc/elements/1.1/title"/>

</edu:QueryStatement>

The advantage of the RDF-QEL-2 form is that queries can easily be visual-
ized using a query graph. The Conzilla query interface [7] is based on a subset
of UML, using the UML specialization relationship for logical OR and the UML
aggregation relationship for logical AND. As shown in figure A.2, our current
prototype uses a graph-view, which is displayed as ordinary RDF with the ex-
ception that the triplets searched for (which are reified in RDF-QEL-i, where

Building Open Systems Using Edutella 9

n > 1) are displayed as dashed arrows indicating that they are searched for. The
logical view is displayed as a parse tree. This is the logical combination of the
primitive statements, showing which combinations that should be matched at
the same time in order for the query to succeed. The connections between the
different views are displayed by highlighting the corresponding parts.

Figure A.2 Edutella Graph Query Interface Queries can be stored and reused
later, thus we can work with a library of queries that can be combined to new
queries. Those queries can either be used as is or as templates, where sub-strings,
numerical values, etc are filled in. Details of sub-queries can be suppressed by
hiding them in detailed maps that can be presented hierarchically.

RDF-QEL-3. Going a step further, we might actually choose to skip RDF-QEL-
2 in favor of RDF-QEL-3, which allows conjunction, disjunction and negation of
literals. RDF-QEL-3 is essentially Datalog. Hence, the query is a set of Datalog
rules, which can be encoded easily using reified statements (as for RDF-QEL-
2), introducing additional constructs for negation and implication. As long as
queries are non-recursive this approach is relationally complete. The example
query expressed in RDF-QEL-3 resembles the internal Datalog model described
above.

<edu:QEL3Query rdf:ID="AI_Book_Query">

<edu:hasQueryLiteral rdf:resource="st0"/>

<edu:hasRule rdf:resource="r1"/>

<edu:hasRule rdf:resource="r2"/>

</edu:QEL3Query>

<edu:Variable rdf:ID="X" rdfs:label="X"/>

<edu:Rule rdf:ID="r1">

<edu:hasHead rdf:resource="st0"/>

<edu:hasBody rdf:resource="st2"/>

<edu:hasBody rdf:resource="st3"/>

</edu:Rule>

<edu:Rule rdf:ID="r2">

<edu:hasHead rdf:resource="st0"/>

<edu:hasBody rdf:resource="st1"/>

</edu:Rule>

<edu:QueryStatement rdf:ID="st0">

<edu:predicate rdf:resource="aibook"/>

<edu:arguments>

<rdf:Seq>

<rdf:_1 rdf:resource="#X"/>

</rdf:Seq>

</edu:arguments>

</edu:QueryStatement>

10 P. Dolog

<edu:QueryStatement rdf:ID="st1">

<rdf:subject rdf:resource="#X"/>

<rdf:object rdf:resource="http://www.lit.edu/types#AIBook"/>

<rdf:predicate rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>

</edu:QueryStatement>

<edu:QueryStatement rdf:ID="st2">

<rdf:subject rdf:resource="#X"/>

<rdf:object rdf:resource="http://www.lit.edu/types#Book"/>

<rdf:predicate rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"/>

</edu:QueryStatement>

<edu:QueryStatement rdf:ID="st3">

<rdf:object>Artificial Intelligence</rdf:object>

<rdf:subject rdf:resource="#X"/>

<rdf:predicate rdf:resource="http://purl.org/dc/elements/1.1/title"/>

</edu:QueryStatement>

Further RDF-QEL-i Levels.

– RDF-QEL-4: RDF-QEL-4 allows recursion to express transitive closure and
linear recursive query definitions, compatible with the SQL3 capabilities. So
a relational query engine with full conformance to the SQL3 standard will
be able to support the RDF-QEL-4 query level.

– RDF-QEL-5: Further levels allow arbitrary recursive definitions in stratified
or dynamically stratified Datalog, guaranteeing one single minimal model
and thus unambiguous query results ([8]).

RDF-QEL-i-A: Support for the usual aggregation functions as defined by
SQL2 (e.g. COUNT, AVG, MIN, MAX) will be denoted by appending “-A” to
the query language level, i.e. RDF-QEL-1-A, RDF-QEL-2-A, etc. RDF-QEL-
i-A includes these aggregation functions as edu:count, edu:avg, edu:min, etc.
Additional “foreign” functions like edu:substring etc. to be used in conditions
might be useful as well, but have not been included yet in RDF-QEL-i-A.

4 Providers

Following providers are available in Edutella:

– File-based metadata
– Relational database which supports nested queries
– ConceptBase

The file-based provider provides access to RDF files. This provider is able to
handle several files. It constructs one RDF model in main memory from files. It is
implemented by the JENA semantic web toolkit (see http://www.hpl.hp.com/semweb/jena-
top.html for details). A relational database provider provides access to metadata,
which are stored in a relational database. The metadata have to be stored in

Building Open Systems Using Edutella 11

one table. If they are stored in multiple tables, a view of RDF triples is needed.
The provider assumes that the database supports nested queries. A Concept-
Base provider provides access to ConceptBase. ConceptBase is a multi-user de-
ductive object manager mainly intended for conceptual modelling and coordi-
nation in design environments. The system implements O-Telos, a dialect of
Telos which amalgamates properties of deductive and object-oriented languages
(see http://www-i5.informatik.rwth-aachen.de/CBdoc/cbflyer.html for details).
Edutella providers accept RDF based queries in RDF-QEL-3. Until now, there
is only a library of functions, which can be used in an external programming
environment to access the functionality of an Edutella peer.

5 Scenarious for Integration

There are three possible scenarious for integration:

– Embedding Edutella query service and provider interface into an educational
node

– Invoking Edutella query service from an educational node
– Implementing a wrapper for accessing the metadata repository of an educa-

tional node

Fig. 4. Embedding Edutella query service and provider interface into an educational
node

12 P. Dolog

A schema for the first integration scenario Embedding Edutella query service
and provider interface into an educational node is depicted in fig. 4. This scenario
assumes that the program code of Edutella will be added to the program code
of the educational node. The Edutella services thus extend services provided by
the educational node. This scenario can be taken into account for educational
nodes, which:

– are programmed in JAVA
– provide JAVA interfaces to their repositories and
– enable to customise their source codes.

As we discussed in the previous section, file-based and relational database
providers are already implemented and can be considered as the most natu-
ral choice for accessing metadata repositories of an educational node. If the
educational node provides a different type of metadata repository from those
mentioned, a transformation procedure has to be implemented. The procedure
transforms metadata from an educational node metadata repository schema to
an appropriate schema for querying by Edutella.

Fig. 5. Providing and querying in the Edutella network from an external educational
node (invocation mechanism is not implemented yet)

Figure 5 depicts a schema for the second scenario invoking Edutella query
service from an educational node. This scenario assumes a stand-alone Edutella
peer and an educational node. The query service is provided through some kind

Building Open Systems Using Edutella 13

of invoking mechanism (e.g. web service). If educational node metadata provision
is needed, synchronization between the metadata repository of the educational
node and the metadata repository of the Edutella peer must be provided. This
scenario can be considered for educational nodes, which:

– Are programmed in a different language than JAVA
– Do not allow to customize its program code or
– Do not allow for extending the program code.

For the mentioned synchronization mechanism, an appropriate time interval
for synchronization has to be assigned. If the educational node metadata repos-
itory schema is different from RDF, the transformation procedure has to be
provided together with synchronization. The up-to-dateness of metadata at the
Edutella peer should also be considered regarding the appropriate time interval
for and between synchronization.

Fig. 6. Wrapper access to the educational node

Figure 6 depicts a schema for the third integration scenario implementing
a wrapper for accessing the metadata repository of an educational node. This
scenario assumes a stand-alone educational node and Edutella peer. The Edutella
query service is provided to a user through an appropriate user interface. The
metadata provision is realized through a wrapper to the metadata repository
of the educational node. This scenario can be considered for educational nodes,
which:

14 P. Dolog

– Provide their metadata repository schema specification
– Provide metadata repository access programming interface appropriate for

the JAVA programming language, or
– Do not allow to customize the educational node program code.

If the educational node metadata repository schema is different from RDF,
a transformation procedure has to be part of the wrapper.

6 Interfaces

Figure 7 depicts a schema for one Educational Peer from the software component
point of view.

Fig. 7. High level component architecture of educational peer in smart learning space

There are three high level components depicted in fig. 7:

– Educational Node (EN) — any existing or possibly future system, which
provides content and metadata,

– Edutella Peer Provider — standard Edutella provider, and
– Service Provider — optional (not implemented yet) component, which pro-

vides integrated services of Edutella peer and content management system.

EN will provide interface to its content and metadata. The MetaData Ac-
cess interface is used by Edutella Peer component. This interface comprises the

Building Open Systems Using Edutella 15

metadata query interface and the metadata results interface. The SQL or file
based access to metadata is preferred. If there is another interface, the wrapper
should be implemented as an implementation of ProviderConnection interface.
The Edutella Peer provides Find Peers interface, Query Results interface and
Query Service interface. They can also be used outside of the educational peer.
The Edutella Peer can stand as a metadata provider (can be queried) or con-
sumer (consumes query results from broadcasted query to other peers Broadcast
query to other peers interface). The Service Provider component can be devel-
oped, which will provide access to a service portfolio. This interface can also be
used outside of the educational peer. The Service Provider component accesses
the Query Service and Query Results interfaces to be able to compose the ser-
vice portfolio. It also uses the Resource Access interface to be able to provide
resources within the educational service. The integration scenarious discussed in
previous section are possible realizations of usage relationships (dashed arrows).

6.1 Simple Edutella consumer and provider

This chapter describes a simple implementation of an Edutella consumer and
provider. This is work in progress and thus subject to changes. The structural
model of implementation for a simple Edutella provider is depicted in fig. 8.

An Edutella peer component provides a query service interface and query
results interface. The query interface is used by the service provider, but can be
exported directly to a user. The query interface can also be used by an LMS as
user interface provider. In the current implementation of QueryService interface
the query results are expressed in RDF. The generation of appropriate results
for a user will be the aim of the user interface providers (LMS). Structural model
of a simple implementation of the QueryService interface is depicted in fig. 9.

The interface for peers searching and for broadcasting query need not to be
provided; it could be and it is now internal functionality of Edutella provider.
Query results interface can be used by LMS and by service provider. Query
results are provided in RDF. Apendix C: Interface specification for Edutella
provider and consumer The ProviderConnection interface specification:

public interface ProviderConnection extends PooledConnection {

/**

* returns a provider description

*

* @return human readable description of the provider

*/

public String getDescription();

/**

* calculates a result for a query.

*

* @param query the query to process

* @return result set containing the result(s)

*/

16 P. Dolog

public EduResultSet executeQuery(EduQuery eduquery);// handle query

/**

* initializes the connection.

*

*/

public void init();

/**

* closes the connection.

*

*/

public void close();

/**

* tests the connection.

*

* @return true, if connection is still usable

*/

public boolean validate();

}

The QueryService interface specification:

public interface QueryService {

/**

* distributes a query to all discovered providers.

* Results are sent to the ResultListener

* provided by the caller.

*

* @param query the query to execute

* @param listener results are sent to this ResultListener

*/

public void executeQuery(EduQuery query, ResultListener listener);

/**

* distributes a query to a specific provider. Results are sent

* to the ResultListener provided by the caller.

*

* @param query the query to execute

* @param listener results are sent to this ResultListener

* @param service information on the peer to be queried

*/

public void executeQuery(

EduQuery query,

ResultListener listener,

ServiceInfo service);

/**

Building Open Systems Using Edutella 17

* cancels the query which was posed using this listener.

* @param listener

*/

public void cancelQuery(ResultListener listener);

/**

* returns a list of all available services

*

*/

public Iterator getServices();

/**

* checks if a specific service is still available

*/

public boolean isAvailable(ServiceInfo svc);

}

.

References

[1] Peter Dolog, Rita Gavriloaie, Wolfgang Nejdl, and Jan Brase. Integrating adap-
tive hypermedia techniques and open rdf-based environments. In Proc. of 12th
International World Wide Web Conference, Budapest, Hungary, May 2003.

[2] Peter Dolog and Wolfgang Nejdl. Challenges and benefits of the semantic web for
user modelling. In In Proc. of AH2003 — Workshop on Adaptive Hypermedia and
Adaptive Web-Based Systems, User Modelling Conference 2003, Pittsburgh, PA,
June 2003.

[3] L. Gong. Project jxta: A technology overview. Technical report, SUN Microsystems.
http://www.jxta.org/project/www/docs/TechOverview.pdf. Accessed on October
25, 2002.

[4] Nicola Henze and Wolfgang Nejdl. Logically characterizing adaptive educational
hypermedia systems. In Proc. of the AH’2003 - Workshop on Adaptive Hypermedia
and Adaptive Web-Based Systems, Budapest, Hungary, May 2003.

[5] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmr,
and T. Risch. EDUTELLA: a P2P Networking Infrastructure based on RDF. In
In Proc. of 11th World Wide Web Conference, Hawaii, USA, May 2002.

[6] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Christoph Schmitz, Mario
Schlosser, Ingo Brunkhorst, and Alexander Lser. Super-peer-based routing and
clustering strategies for rdf-based peer-to-peer networks. In Proc. of 12th Interna-
tional World Wide Web Conference, Budapest, Hungary, May 2003.

[7] Mikael Nilson and Matthias Palmer. Conzilla — towards a concept browser. Tech-
nical Report CID-53, TRITA-NA-D9911, Department of Numerical Analysis and
Computing Science, KTH, Stockholm, 1999., 1999.

[8] R.C.Przymusinski. Every logic program has a natural stratification and an iterated
least fixed-point model. In Proceedings of the ACM Symposium on Principle of
Database Systems (PODS), pages 11–21, 1998.

18 P. Dolog

Fig. 8. Class diagram of simple implementation of QueryService interface

Building Open Systems Using Edutella 19

Fig. 9. Class diagram of implementation of ProviderConnection interface.

