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Abstract. Currently, implementations of the Collaborative Filtering (CF) 
algorithm are mostly centralized. Hence, information about the users, for 
example, product ratings, is concentrated in a single location. In this work we 
propose a novel approach to overcome the inherent limitations of CF (sparsity 
of data and cold start) by exploiting multiple distributed information 
repositories. These may belong to a single domain or to different domains. To 
facilitate our approach, we used LoudVoice, a multi-agent communication 
infrastructure that can connect similar information repositories into a single 
virtual structure called "implicit organization". Repositories are partitioned 
between such organizations according to geographical or topical criteria. We 
employ CF to generate user-personalized recommendations over different data 
distribution policies. Experimental results demonstrate that topical distribution 
outperforms geographical distribution. We also show that in geographical 
distribution using filtering based on social characteristics of the users improves 
the quality of recommendations. 

1   Introduction 

Collaborative Filtering (CF) [5] is commonly used in many E-Commerce 
recommender systems to support users selecting music CDs, movies, and more [17]. 
CF is based on the assumption that people with similar tastes prefer the same items. In 
order to generate a recommendation, CF initially creates a neighborhood of users with 
the highest similarity to the user whose preferences are to be predicted. It then 
generates a prediction by calculating the normalized and weighted average of the 
ratings of the users in the neighborhood.  

The input for the CF algorithm is a model of the user, i.e., information describing 
the user’s preferences (interests, habits, and so on) in the form of a feature vector. 
This vector is matched against all other users' vectors, and k most similar users are 
selected to generate a recommendation. State of the art CF systems usually collect 
user models by tracking the users’ past interactions with the systems, and storing this 
information in their local repositories. CF systems are known to suffer from two 
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inherent drawbacks [3]: sparsity (lack of sufficient information about the users) and 
cold-start (no information about a new user or item recently added to the system).  

In real life conditions, information about the users is naturally distributed among 
many data repositories, in a variety of domains. When integrated, these repositories 
could provide a recommendation, while a CF based on a single repository may fail to 
do so. In this work we discuss the details of operating CF over a distributed setting of 
data repositories and compare different distribution approaches. We facilitated the 
development of the above ideas using LoudVoice infrastructure. LoudVoice supports 
group communication in multi-agent systems, where similar service-providing agents 
are connected into a single virtual structure called "implicit organization" [1].  

To evaluate the feasibility of our approach, we conducted several experiments. We 
measured the impact of different data distribution scenarios on the quality of 
recommendations. We compared two types of distribution representing possible real-
life conditions:  
• Geographical distribution - imitates a situation where information about a 

particular user is available only in his close vicinity. In this scenario, each 
LoudVoice organization represents a limited geographical area.  

• Topical distribution – imitates a situation where each repository stores information 
related to a limited number of topics (objects types).  

Experimental results show that the topical criterion is superior to the geographical 
criterion. Additional experiments demonstrate that applying CF using social 
distinction considerations (such as age, occupation and gender) improves the quality 
of recommendations. 

The rest of the paper is organized as follows. Section 2 reviews the related works 
on distributed Collaborative Filtering and discusses the details of LoudVoice 
communication infrastructure. Section 3 discusses the possible policies of data 
distribution and the details of CF over the distributed environments. Section 4 
presents the details of distributed CF implementation over LoudVoice. Section 5 
presents experimental results. Finally, we conclude and present the directions of 
future research. 

2   Distributed Collaborative Filtering 

Collaborative filtering is probably the most familiar, most widely implemented, and 
most mature recommendation technique. It relies on the idea that people who agreed 
in the past will also agree in the future [18].  

The input for the CF recommender system is a matrix of user ratings for items, 
where each row represents the ratings of a single user and each column represents the 
ratings for a single item. CF aggregates ratings of items to recognize similarities 
between users, and generates a new recommendation of an item by weighting the 
ratings of similar users for the same item [4]. The main advantage of CF is that it is 
completely independent of any item representation. Thus items can be recommended 
regardless of their contents. 
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2.1   Related Works 

Implementing the CF algorithm in a decentralized way was initially proposed in [19]. 
It presents a Peer-to-Peer architecture supporting product recommendations for 
mobile customers represented by software agents. The communication between the 
deployed agents used an expensive routing mechanism based on network flooding 
that increased the communication overhead. An improved mechanism was proposed 
in [11]; however, it reduced the efficiency of the neighborhood formation phase. The 
work in [16] elaborated on the discussion of distributed CF. It developed a detailed 
taxonomy of distributed CF in recommender systems and presented different 
implementation frameworks for different domains of Electronic Commerce. Most of 
these studies did not include thorough experimentation and did not analyze the 
different factors that might affect the quality of the generated recommendations. 

The PocketLens project [10] implemented and compared five distributed 
architectures for CF. It was found that no architecture is perfect, but the performance 
of a content-addressable mechanism [15] is close to that of a centralized CF 
algorithm, while the encrypted communication protocol [2] can add the essential 
dimension of security.  

Privacy is an inherently related to the issue of decentralized distribution. In a 
decentralized setting the information resides on the client-side. Thus individual users 
might restrict access to the information by deciding which other users are authorized 
to receive their personal information. P3P privacy policies [13], and also the work 
reported in [8], address the privacy issue. It is suggested that access to the information 
repositories should be restricted, decreasing the likelihood of information concerning 
a given user being overheard by undesired parties.  

Other works propose a multi-agent approach to control, and filter access to the 
data, depending on the user role [7], to improve privacy preservation by forming user 
communities. These communities acquire an encrypted aggregate user profile, 
representing the group as whole and not individual users [2], and employ randomized 
perturbation to obfuscate sensitive information about the users [14] and to minimize 
the possibility of acquiring such information through malicious attacks. 

2.2   Self-Organized Communication Platform  

In this work we employ CF over a set of distributed data repositories, where each 
repository acts as an independent agent. In order to minimize communication 
overheads, we require a platform that supports a method of communication between 
the relevant agents only.  

LoudVoice is an efficient multi-agent communication platform based on the 
concept of channeled multicast [1]. Messages are sent on a channel and received by 
all agents that “tune” into it. Channeled multicast reduces the amount of 
communication needed when more than two agents are involved in a task, and allows 
overhearing, i.e., the ability to listen to messages addressed to others. Overhearing, in 
turn, enables functionality such as the collection of contextual information, pro-active 
assistance, and monitoring without interfering with the existing protocols. 
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LoudVoice has been designed to support the notion of implicit organizations. An 
implicit organization is a group of agents playing the same role on a given channel 
and willing to coordinate their actions for the sake of delivering a service. The term 
“implicit” highlights the fact that there is no need for a group formation phase, since 
joining an organization is a matter of tuning into a channel. By definition, implicit 
organizations are formed by agents able to play the same role. LoudVoice allows 
senders to address messages either to specific agents or to all agents that offer a 
certain service on a channel, for example providers of a particular type of information. 

3 Distribution of Repositories 

The neighborhood formation phase in CF finds a set of users who are similar to the 
user whose prediction is generated (the active user). Traditional centralized 
implementations typically require computing similarity between the active user and 
every other user in the system for the purpose of finding the set of the K most similar 
users. In a distributed environment, information about users is partitioned among 
different repositories. Computing similarity between users requires information stored 
in different and remote repositories to be combined.  

In the following sub-sections we analyze two conceptually different policies for 
partitioning the data between the various repositories, and discuss the implications 
with regard to the phase neighborhood formation. 

3.1 Geographical Distribution 

A natural form of data distribution is “geographical distribution”, where 
information about users is available only in their physical vicinity. For example, the 
reading preferences of a user are usually found in his/her local (and only local) library 
or bookstore. We can assume that the set of items rated by all users, in different 
geographical locations, is roughly similar. As each repository contains the ratings of a 
subset of users, geographical distribution is virtually a horizontal partitioning of the 
ratings matrix. Thus, the phase of neighborhood formation must comprise a search for 
similar users in all the repositories.  

In this distribution, the set of rated items (by all users) in different repositories is 
fundamentally identical, and all information about a particular user is concentrated in 
a single repository. Therefore, to compute the similarity, the set of all the rated items 
of the active user should be sent to the remote repositories. Each remote repository 
locally computes the similarity between the active user and each of the locally stored 
users, and returns a “local” neighborhood. Thus, a “global” neighborhood for the 
active user is generated by combining all the sets of previously formed “local” 
neighborhoods and re-ranking the resulting set according to the users’ similarity to the 
active user.  

Comparing to a centralized CF algorithm, forming the neighborhood over 
geographical distribution of data repositories spreads computational load between the 
repositories. This occurs as each repository locally “eliminates” a portion of globally 
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dissimilar users, thus reducing the computational complexity of the combination of 
“local” neighborhoods.  

In addition, geographical distribution enhances the privacy of CF, as the ratings of 
the users (except those of the active user) are exposed only within the boundaries of 
the repository (that is assumed to be more secure). Instead of all the ratings, only 
similarity values are transferred over the network. 

3.2 Topical Distribution 

A different form of data repository distribution is achieved by considering the 
variety of diverse domains of items (books, music, movies, and so on). This is 
referred to as “topical distribution” and can be considered as a vertical partitioning of 
the rating matrix. Each repository stores the ratings for items related to one particular 
domain. Thus, sets of items stored in different repositories do not completely overlap. 
Relying on a single domain for finding similar users might prove insufficient and 
might require constructing a global view of a user’s ratings by combining information 
from the remote repositories.  

In topical distribution, sets of rated items in various repositories may be different 
and the information about a particular user is divided among multiple repositories. 
Thus, there is no sense in sending the ratings of the active user items to the remote 
repositories, as these items might not be found there. Therefore, we base the 
neighborhood formation phase on the globally unique identifier (called user-id) of the 
active user (assuming that the user registers into different systems with this unique 
identifier only, and that the remote repository may have served the user in previous 
sessions). 

To find the set of similar users, the active user’s user-id is transferred over the 
network to the remote repositories. Each repository computes the “local” 
neighborhood according to ratings of its own stored items, and returns user-ids of 
potentially similar users. Similarity between the active user and the users, whose user-
ids were returned by the remote repositories, is computed locally in the repository that 
initiated the recommendation process. Finally, K most similar users form the 
neighborhood. This type of neighborhood formation is based on the observation that 
the most similar users are similar in many domains and thus in a number of data 
repositories. 

Topical distribution also enhances the privacy aspects of CF algorithm, as only 
local ratings are needed to compute similarity. No ratings (even those of the active 
user) are transferred over the network, only the users-ids. 

3.3 Social Pre-Filtering 

In addition to applying various data distribution policies, other factors could be 
considered for both generating a smaller neighborhood and achieving a more accurate 
prediction. Such considerations are based on social factors. For example, forming a 
“local” neighborhood in geographical distribution might limit the similarity 
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computations to the subset of users that match the active user in one of the social 
criteria, such as age, occupation, social status, and so on. 

Such approximation methods pose a tradeoff. On the one hand, they pre-filter 
potentially similar users and decrease the amount of available users for the 
neighborhood formation phase, thus increasing the influence of possible noise in the 
data. On the other hand, they might improve the accuracy of the CF, as they tend to 
limit the set of potentially similar users to the set of candidate users whose values for 
important properties are similar to those of the active user. This is actually coincides 
with the general notion of CF, the basis of which is a search of similar users for the 
purposes of building an accurate prediction. 

4 Implementation details 

We implemented both the topical and geographical data partitions according to the 
approaches presented in the previous section. We chose LoudVoice [1] to serve as an 
underlying communication platform. LoudVoice is an appropriate platform due to its 
channeled multicast capability, discussed earlier in section 2.2. This capability 
allowed us to handle distribution of data repositories easily, to base the distributed 
implementation of CF on a standardized API, and to minimize the communication 
overheads tied to the distribution. 

Each LoudVoice channel (communication line) potentially contains a set of data 
repositories of either the same domain or close geographical vicinity. These data 
repositories are considered as an “implicit organization” of repositories. Each data 
repository is represented on a channel by a designated agent, whose role is to allow 
communication with the other agents on the channel. Organization of data sources is 
achieved by assigning each agent to a set of relevant LoudVoice channels, reflecting 
the type of the partitioning. 

In addition to the agents representing data repositories, one arbitrary agent is 
connected to each channel and serves as a “mediator” vis a vis the other channels. 
This agent is connected both to his original channel and to the inter-organization 
communication channel. The mediators transfer requests and responses between 
different channels. For example, consider the structure of two LoudVoice channels 
“channel A” and “channel B” as illustrated in figure 1. 

 

mediators

  
inter-organization   channel channel 

 communication channel       A B 

repositories repositories 
 

Figure 1, System Architecture over LoudVoice  
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5 Experimental Results 

Experiments were conducted using the publicly available “1 Million Ratings” 
MovieLens data set [12]. It contains over one million ratings of more than 6000 
different users for approximately 4000 different movies.  

The first experiment aims at testing the effect of partitioning the data among 
multiple repositories on the quality of produced recommendations. The data was 
partitioned both according to geographical distribution (thus, the set of rated items in 
each repository is identical), and topical distribution (thus, the set of rated items might 
be different in different repositories).  

The MovieLens dataset was partitioned among a gradually increasing number of 
repositories. For each number of repositories a 90% subset of the available movie 
ratings was chosen to be the training set of the CF, and predictions were generated for 
the remaining 10% of the ratings. The accuracy of the prediction was measured by 
comparing the generated prediction with the real ratings found in the data set. The 
metrics for the accuracy of the prediction was Mean Average Error (MAE) [6] that 
was computed by: 

1
| |N

i ii
p r

MAE
N

=
−

= ∑ , 

where N denotes the total number of the predicted items, pi is the predicted, and ri is 
the real rating on item i. To obtain statistic significance, the experiments were 
repeated 10 times for each number of repositories. Figure 2 illustrates the average 
values of MAE as a function of the number of data repositories. 
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Figure 2, MAE vs. the number of repositories 
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The figure shows the MAE as a function of the number of repositories for both 
geographical (left column) and topical (right column) distributions. The MAE values 
are relatively low, approximately 0.14 – 0.18, implying that generated predictions are 
close to the real ratings and that the MAE values are roughly indifferent to the number 
of repositories. The MAE values measured in the experiments are similar to those 
obtained in previous studies using the MovieLens dataset (initially presented in [4], 
and recently compared in [9]). 

A comparison of the two above types of distribution shows that for any given 
number of repositories topical distribution slightly outperforms geographical 
distribution. This indicates that when the similarity is computed based only on a 
smaller set of relevant items, the resulting neighborhood is “closer”, and as a result, 
the generated prediction is more accurate. 

The goal of the second experiment was to measure the gains in accuracy achieved 
by applying social pre-filtering in addition to the geographical distribution policy. In 
each experiment social pre-filtering was based on one of the following social 
characteristics of the users: age, occupation, or gender. This information was 
extracted from the basic social data of the users, provided by the MovieLens dataset. 

We partitioned the MovieLens dataset among a gradually increasing number of 
repositories. For each number, we operated each time one of the above social pre-
filtering criteria: age, occupation, or gender. In this experiment also a 90% subset of 
the available movie ratings was chosen to be the training set of the CF, and the 
predictions were generated for the remaining 10% of the ratings. The list of 
potentially similar users was filtered by computing the similarity only for the users 
that matched the active user in the relevant social criterion. Accuracy of the prediction 
was computed using the MAE metrics. Figure 3 illustrates the MAE results as a 
function of the number of repositories. 
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 Figure 3, MAE vs. the number of repositories 
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Figure 3 shows that using social pre-filtering improves the MAE values, in 
comparison to the regular geographical distribution, although not drastically. When 
using the age or occupation criterion, the remaining sets of potentially similar users 
are relatively small. This magnifies the possible influence of noise in the data. We 
noticed that gender-based social pre-filtering does not act in a consistent way. Thus, 
experimental evidence shows that social pre-filtering generally improves prediction 
accuracy. However, we could not currently identify a single most contributing 
criterion. 

 

6 Conclusions and Future Research 

This work demonstrates the possibility of performing collaborative filtering (CF) over 
a distributed set of data repositories in order to resolve CF’s sparsity and cold-start 
problems. We propose and analyze different policies for the distribution of 
repositories (topical and geographical partitioning). We also discuss the 
implementation details for each form of distribution. We suggest that preliminary 
filtering, based on the users’ social characteristics, should be applied to improve the 
accuracy of the distributed CF. Though this work does not directly deal with privacy 
enhancement of the CF process, the proposed method of data distribution inherently 
contributes to solving some of the privacy issues. 

The experimental results show that the accuracy of the prediction obtained from 
distributed CF is similar to the accuracy of state-of-the-art centralized CF systems. A 
comparison of two distribution policies shows that topical distribution slightly 
outperforms geographical distribution (regardless of the number of repositories). 
When the CF is preceded by social pre-filtering, the prediction accuracy increases.  

A major issue that is not in the scope of this work is possible commercial 
competition in the E-Commerce realm. This could hamper performance by limiting 
cooperation and data sharing between various repositories. In the future, we plan to 
develop a generic model for users’ cooperation and information trading.  

In addition, several issues need to be addressed, such as the assumption that users’ 
similarity remains across different organizations, and the fact that even within the 
same organizations terminology used by different service providers and users might 
differ and some kind of translation mechanism might be needed. 
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