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Abstract. This paper describes ULAP, a framework for scrutable modeling and 
prediction of people’s locations and activities, based upon a diverse collection 
of sensors, with varying reliability. It supports transformation and aggregation 
of sensor data, using this to build individual user models of location and 
activity. We propose an approach to indicate the certainty of predictions about 
users based upon unobtrusive data for location: it can be provided to 
applications and also serves as a form of explanation to users. We use this to 
report experiments involving 32 users, each with varying amounts of historic 
sensor data for machine activity, formal schedule and Bluetooth device 
detections. This is combined with group membership.  

1   Introduction 

Intelligent environments with ubiquitous computing need to exploit the large amounts 
of data from many, diverse sensors to build user models so that these can serve 
personalized applications. There are several approaches to modeling user location, for 
example Active Badge [1], BlueStar [2] and Lancaster Guide [3]. There has also been 
some recent work in machine learning to predict a user’s future location, such as the 
Assisted Cognition project [4]. Corresponding work on modeling user’s activity has 
had less attention, although there was early work by Orwant [5] and more recent work 
by Koile et al. [6]. We would like to go beyond these, combining sensor information 
about location and activity to model and predict both at the time of a request and into 
the future.  

We explain our motivation in terms of the Boris’s Smart Office Door Scenario; it 
was introduced in [7]. Boris is an academic, who always carries a Bluetooth enabled 
PDA. Natasha, a student, comes to his office to meet him. Unfortunately, he is not 
there. However, his smart door provides an interface which enables Natasha to 
request help in meeting him. The interface responds, according to Boris’s context. 
Example responses include: Boris is nearby and interruptible so Boris’s Smart Office 
Door sends him a message and he comes back to his office to talk with her; Boris is at 
a seminar and not interruptible but normally returns to his office after seminars so 
Boris’s Smart Office Door tells Natasha he is likely to be here in 20 minutes (after the 
seminar); Boris is at home so Boris’s Smart Office Door tells Natasha he is 
unavailable today. 
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We have determined the following requirements for a framework to support 
applications like Boris’s Smart Office Door. It should: support modeling and 
prediction of location and activity over time, with flexibility in the time granularity of 
modeling; support multiple applications; make use of multiple, heterogeneous 
sensors; be easy to manage new, lost or altered sensors; support scrutability, meaning 
that it can explain its reasoning; protect the user’s privacy through a permission 
system; make use of data for individuals and groups. 

Section 2 gives an overview of ULAP and Section 3 describes our approach to 
representing certainty. We use this in the Section 4 report of evaluation. Section 5 has 
related work Section 6 has conclusions and future work.  

2   ULAP Framework 

The ULAP (User Location and Prediction) framework is shown in Figure 1. Its design 
has been influenced by the architecture of systems like Doppelganger [5], Web Guide 
[8], and MyPlace [7]. ULAP has three core components: the environment; the core of 
ULAP; and the applications which use it.  

 

 
Fig. 1. ULAP Framework 

The environment, shown at the left of Figure 1, can include arbitrary numbers of 
heterogeneous devices/sensors. In our implementation, there were six different types 
of sensors. These sensors and their purpose are summarized in Table 1. To ensure 
decoupling of the sensors from the ULAP core, we use publish/subscribe messaging 
to transmit data from the sensor to the central framework, as was done in MyPlace 
[7], although that work integrated just two sensors types. The ULAP approach enables 
sensors to collect data which is forwarded to all applications with subscriptions at the 
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server. The sensor software does not need to know about those applications, 
decoupling the sensors, and hence, the environment, from the core framework.  

Table 1. Summary of the different types of sensors  

Sensor Type Description/Purpose 
BSpy A Bluetooth based indoor positioning system. Determines location by querying 

all the Bluetooth enabled devices in range of its sensors. 
BlueStar Uses a combination of indoor and outdoor positioning systems to determine a 

person’s location. The indoor positioning systems used Bluetooth technology.  
Windows Activity Focused on collecting information on the processes and machine a user was 

using at regular time intervals. Determined if a user was active at the machine 
or not through analyzing the times between keyboard and mouse events.  

Login Sensor Aimed at tracking a user’s machine sessions on a network. It records a user’s 
session information as well as the machine they are logged onto. This 
information can then be used to determine the location of the user.  

Finger Sensor This sensor collected location and activity information through the use of the 
who and finger commands. Location was determined based on the machine 
name, and activity by the value of the idle field from the finger command.  

PDA Enables a user to log activities and whether interruptible or not.  
We now describe the elements of the ULAP core. Leftmost in Figure 1 is the data 

converter/filter. This must deal with two tasks: aggregation of data from multiple 
sensors and the conversion of data to a form suitable for the user models. 

First consider aggregation. Each sensor can record different types of data and can 
represent the same data in different ways. For example, the BSpy sensor represents a 
location using the MAC address of the sensor (00:01:0E0:41:E0:10), while the login 
sensor represents the location as the machine name (pg-g62-1). In such cases, data 
from the two sensors cannot be merged directly to give the correct symbolic location1. 
ULAP must map from the raw values from each sensor to consistent symbolic values.  

The importance of this issue may not immediately be obvious: much of this 
functionality could be handled inside the user modeling component or by an 
application using the user model. However, this is impossible where sensors have 
different ways to identify users. The data converter/filter component must ensure data 
is added to the correct user model. It maps the user ID for each sensor to the internal 
representation used by the ULAP framework. 

A similar problem relates to handling multiple devices for the same user. For 
example, the BSpy sensor identifies users by the MAC address of their device. Where 
a user carries two devices, a phone and a PDA, both must map to the same symbolic 
value.  

The implementation of this process is based on an approach similar to that of 
XSLT transformations of XML documents. It builds an internal representation of the 
XML formatted conversion file. Using this representation it attempts to find an 
appropriate mapping and apply the conversion. If no mapping is found the original 
raw value is used.  

As data is collected, it must be stored and modeled. This component of the ULAP 
core uses PersonisLite, a light weight version of Personis [9]. The user model has two 
contexts, one for the modeled components of location and the other for components of 
the user’s activities. This part of the framework supports group modelling, by 

                                                           
1 Symbolic location refers to the human representation of a location eg. the name of a room  
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dynamically generating required group models at runtime, based upon the individual 
models for each member of the group.    

The next part of the ULAP core is the resolvers: these are responsible for 
interpreting sensor evidence within the user models. Resolvers are selected, at runtime 
by the application. Different resolvers provide variable granularity of location and 
activity prediction, as needed for the different subcases of the scenario.  

 

 

 
Fig. 2. Example of the ULAP generic interface supporting user scrutiny of results. 

ULAP predictions of the user’s future location and activity are  based upon 
Markov Chain models, a choice based on its simplicity and the potential for intuitive 
explanations of the system operation. This means that ULAP can enable users to 
scrutinize the user modeling processes. Each location/activity pair is represented as a 
node and possible path in the chain.  

The rightmost part of the ULAP core shown in Figure 1 is the interface support 
enabling the user to see the user model. The Markov model gives a natural 
visualization of the system’s reasoning on the person’s movement between locations 
and activities. An example of a model visualization is shown at the bottom of Figure 
2. ULAP supports variable length models. The figure also shows the interface that 
enables a user to dynamically iterate through the models to see how predictions were 
determined and to explore additional predictions into the future.  

The last main part of the ULAP architecture is the applications, such as Boris’s 
Smart Office Door. Shown at the right of Figure 1, three applications we have built to 
evaluate ULAP are: first, ULAP Modeler, for individual users; second, Group 
Modeler; and third, Last Location/Last Activity, which query the user’s current or last 
known location and activity (as a basis for prediction into the future as in the scenario 
where Boris was at a seminar).  

The framework has been implementated in a combination of Perl and Python 
scripts which interact with and manipulate the data stored in the user models. Through 
the use of system hooks it was possible to monitor mouse and keyboard events to 
ensure accuracy in the assumptions made by the activity sensors  for the activity 
sensors. The scrutable interface is a Perl based web interface which uses dot [10]. 
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3   Modeling Certainty and accuracy 

Ideally, we would have had a set of gold standard training and test data: then we could 
have used various resolvers to query the user models and then compare the results 
with the known correct result. Indeed, we built tools to collect such data, based upon 
users maintaining a log of their actual location/activity. Various paper schemes as 
well as a PDA application were tried. It is unsurprising that people found it too 
difficult to remember to keep the record (or too irritating to be reminded).  

Accordingly, we decided that a different approach was needed. Our approach was 
partly motivated by our goal of scrutability: we wanted to be able to inform both users 
and applications of the certainty of a prediction. We identified two elements of this: 

• The consistency of the available evidence; 

• The nature of the evidence available. 
To determine a consistency value for a prediction, ULAP calculates {wi}, a set of 

weights, where each wi is the weight of the evidence for the i-th location/activity 
supported by any of the evidence. ULAP then determines max{wi}, meaning that i is 
the value with the highest weight. This value is the result of the query. Its consistency 
is calculated as max{wi}/sum{wi}. If there is no evidence for a query, we return a 
consistency value is 0. With one piece of evidence, it is 1.0.  

This can be calculated at the time of the user model query. Then, ULAP applies the 
appropriate location/activity granularity. So, for example, if an application asks if the 
user is interruptible or not, there are two values and each piece of evidence is 
interpreted to contribute to the weight of support for one. If, on the other hand, a 
query specifies a resolver with several location/activity values, ULAP calculates the 
total evidence weight for each of these. There are many ways to calculate the weights. 
A review of a range of such algorithms has been described for ubiquitous computing 
[11]; any of these could be applied within ULAP. Notably, since we want to deal with 
multiple sensors of varying reliability, an algorithm can exploit knowledge to adjust 
the weight according to sensor reliability. 

To illustrate the process, suppose 180 pieces of evidence support location A and 20 
support location B. An algorithm that treats all evidence equally returns the value A, 
with consistency 90%. Taking another example, if there are 10 equal-weight pieces of 
evidence for each of 20 different location/activity values, each is equally likely. The 
resolver returns one of them, with accuracy 5%. 

Clearly, there are serious limitations to this consistency measure. The second 
element of certainty relates to the nature of the evidence and has to help deal with 
this. For example, consider the case in the paragraph above for locations A and B. 
One very simple indication is the total number of pieces of evidence. This measure is 
what we have used. 

In summary, in lieu of an accuracy measure we use consistency and the amount of 
evidence. This is clearly inferior to a measure of true accuracy, calculated by 
comparing a ULAP prediction against a known correct result. However, in our 
experiments, that was unavailable. Moreover, in general, it will be important for user 
modeling predictions for ubiquitous applications to include a prediction of the 
accuracy of the result [12]. So, it is important to define a practical way to indicate the 
certainty of a prediction, as our approach does.  
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4   Evaluation 

Our evaluation tested the effectiveness of the ULAP framework by implementing it 
and then using it to build a range of models. We now report its use in: 

• modeling individual users, based upon a variety of sensors for location and 
activity, with historic data used to support predictions and comparing the effect on 
certainty from the evidence of additional sensors;  

• modeling groups by aggregating individual models, comparing the effect on 
certainty of predictions, where this had the potential to provide predictions for 
individuals even when no sensor data was available for them but there was data for 
people in the same group. 

As already discussed, individual model certainty is based upon consistency and the 
amount of evidence for predictions. This section summarizes results for multiple 
heterogeneous sensors, individual and group modeling. For fuller results as well as 
scalability experiments, see [13]. 

Our experiments have been based upon data for 32 users. A summary of the data 
for four of the more interesting users is summarized in Table 2. Data was collected 
over 4 months for the BlueStar (Bluetooth) sensor types, and 6 weeks for the other 
sensor types. This is of a similar order to much of the published work, such as the 
Assisted Cognition project [4, 14-17] which had 6 months of a single data type, GPS, 
to model an individual’s movements around a large city. We used this to build 
individual models. 

Table 2. Details sensor readings or detections for 7 users with relatively rich collections.  

Number of detections recorded User 
BSpy BlueStar Login Activity Finger PDA Timetable 

A1 4,819 - 285 5,717 5,111 250 YES 
B1 6,464 - 0 - 10,939 - - 
E1 - - 159 5987 131 - YES 
H1 - 163,392 0 - 0 - - 

 
Figure 3 shows the contrasting levels of consistency in two extreme cases. The 

graph on the left is for User H1 and is built from 163,392 pieces of BlueStar data 
collected over four months, covering every hour of each day of the week. Consistency 
values less than 1.0 are due to detection of H1 by multiple sensors at different 
locations. This graph on the right is for User A1, based upon 16,182 pieces of sensor 
evidence, representing data collected over each hour of the week.  The zero points 
occurred when there was no data for the user. A comparison of these graphs shows 
that both return similar consistency readings, even though in the right hand graph we 
have increased the number and type of sensors used, as well as increasing the number 
of possible of combinations a user can be detected in a single hour through the 
observation of activity in addition to location.   
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BlueStar Certainty
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Fig. 3. The graph on the left shows the consistency of models based on 4 months of BlueStar 
data. Compare this with the graph on the right, which shows consistency of 6 weeks of data 
collected from multiple heterogeneous sensors.  

Figure 4 indicates the relative effect of activity sensors in addition to multiple 
location sensors. The left graph, for user A1’s location alone tends to have 
consistency around 50% for each of the 5 days of the week and no other data. The 
right graph is for the same user with activity sensors as well. This visually gives a 
higher consistency. There are many reasons for these differences: the types of sensors, 
activity sensors usually have a finer location granularity; and the use of additional 
data captured by these sensors when determining certainty.  
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Fig. 4. The graph on the left shows consistency with multiple location sensors. That on the right 
also has activity sensor data.  

In this evaluation, models were constructed for a range of groups of people. Using 
this calculation time periods where the user mainly performs one event will clearly 
stand out through a certainty close to one. This can then be compared to those times 
when many different events have been observed over the user, in this case the 
certainty will be lower dependent on the number of different events seen and how 
often each event was observed.  We now look at two of those profiles in detail with 
those being: the profile of a university academic; and that of honors students teaching 
various courses. 

Figure 5 shows the consistency graph for User B1, a university academic. As 
shown in Table 2, their model is based on substantial data sets from two sources, 
BSpy and Finger. This person also tends to keep a fairly consistent schedule over the 
four months: for example the very consistent period around hour 70 of the week is 
their research group weekly seminar and other meetings. When shown this graph, B1 
could identify their various regular activities in the week. 
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Academic Staff Member
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Fig. 5. Prediction consistency for B1 

Comparison of Similar Users with Varying Data
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Fig. 6. Consistency for A1 compared with E1. 

Figure 6 shows consistency measures for two Honours students, A1 in broken lines 
and E1 in solid lines. Both have similar schedules but, as can be seen from Table 2, 
A1 had six sources of sensor evidence where E1 had just four. Notably, A1 had Bspy 
data but E1 did not. E1, with limited data has consistency values around 0.4 and the 
five days of the week can be seen clearly. These trends are quite strong, taking 
account of the 6 week period that provides them. For A1, there are many more periods 
where predictions have higher consistency, including periods on weekends and nights.  

The similarity of the two users of Figure 6 suggests the potential value of 
exploiting group membership or user similarity to support predictions even for users 
for whom we have no data. We performed group modeling experiments; these are 
similar to communities described in Doppelganger [5] although this work does not 
report results of user experiments as we do below. The group modeling functionality 
allows a person to be associated with every relevant group. So, for example, an 
Honours student who tutors and has a desk in Lab 1 can be assigned to multiple 
groups: Honours which includes people in many labs, tutors which overlaps the 
Honours group and includes others, Lab 1 group which includes students and research 
staff in that lab. Table 3 shows the groups identified for experiments. 

Table 3. Number of detections per group from each sensor.  

Number of detections recorded Type Group 
BSpy BlueStar Login Activity Finger PDA Timetable 

Honours 4819 0 20223 17873 11428 250 2 Hons 
Hons Group 1 4819 0 1633 16341 5788 250 2 

Tutors 10903 0 10009 16341 10564 250 2 Tutors 
Tutors 

SOFT2001 
4819 0 586 11704 5413 250 2 

As seen in the left hand graph of Figure 7 a substantial confidence improvement 
was obtained for most time periods, as the number of conflicts or possible locations 
for each time period had been reduced. However, through the modeling of tutors for 
one particular course no substantial certainty improvement could be gained, nor any 
conclusive prediction be made about this group because of the group diversity. The 
certainty results can be seen in the right hand graph of Figure 7.  

To identify useful groupings, we created group models which systematically 
explored each grouping. We then used the consistency measure as a basis for 
selecting useful groupings. This identified groupings that were unhelpful, such as that 
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of tutors, where different people are allocated to different classes, meaning that data 
for one person is generally not consistent with data for others in the group. 

Honours Evaluation
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Fig. 7. In the Left graph shows use of subgrouping consistency. In the right graph, this 
approach was not successful because of subgroup diversity.  

4   Related Work 

Two projects were particularly important for the design of ULAP. Doppelganger 
[5] also aimed for a general framework for gathering and processing heterogeneous 
sensor data and community modeling, but had a different architecture and did not 
report results of experiments for long term user data. The more recent Assisted 
Cognition Project [4] models movement paths to assist the mentally disabled. One of 
its prototype systems, the Activity Compass [14], uses PDA and GPS location 
sensors. A second project is an application, called Opportunity Knocks [16], designed 
to run on a mobile phone,  models a person’s path in a city based on GPS data. There 
has been some work in using activity sensors, such as Activity Zones [6] and 
considerable work on location sensing, such as Active Badge [1], Lancaster Guide 
[3], Web Guide Project [8] and Multiple User Detection [18]. ULAP has explored a 
different dimension of the problem of modeling user location and activity, with a 
focus on far more heterogeneity of sensors than is the case in these projects. Several 
others have also explored the use of Markov models, for example, Assisted Cognition 
[4], Multiple User Detection [18] and Doppelganger. And there has been work on 
other learning approaches, for example Web Guide Project [8], Assisted Cognition [4] 
as well as Doppelganger. Importantly, at this stage in the area of location and activity 
modeling much of the evaluation has been based upon synthetic data or special test 
data. Other work that has collected authentic sensor data for normal or near normal 
users has been done in projects like MyPlace [7], Doppelganger [5], Activity Zones 
[6], Assisted Cognition [4] and Multiple User Detection [18]. The scale, diversity and 
time period of our sensor data is broader than these projects. 

5   Conclusion 

This report has described a framework for modeling location and activity based 
ondata collected from ubiquitous environments. We demonstrated the effectiveness of 
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this framework through its implementation and analysis of the models generated by it. 
We have reported consistency results demonstrating ULAP’s ability to refine its 
model by using multiple heterogeneous sensors and the modeling of groups.  

This work provided an initial investigation into the modeling and prediction of 
location and activity information for an individual and group. The implementation 
and evaluation of a framework is the first step to the development and support of 
personalized applications for the user and their environments.  
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