
V
Implementation Techniques

34 Efficient Evaluation of the Valid-Time Natural Join
35 Efficient Differential Timeslice Computation

36 R-Tree Based Indexing of Now-Relative Bitemporal
Data

37 Light-Weight Indexing of General Bitemporal Data
38 Layered Temporal DBMS’s—Concepts and

Techniques
39 Stratum Approaches to Temporal DBMS

Implementation
40 Effective Timestamping in Databases

Previous parts focus on enhancing our understanding of the temporal aspects of
data and on the provision of additional built-in DBMS support for managing tem-
poral data, covering database manipulation as well as database design. The present
part takes a next logical step, that of providing new techniques—where existing
techniques fall short—for implementing parts of the proposed temporal support.

Common to the implementation techniques, each aims to realize some data-
base functionality. But it is instructive to make an analytical distinction between
three more specific,possible goals of implementation techniques. A technique may
simply aim to constructively demonstrate that some perceived functionality can be
implemented. This is a typical goal of a proof-of-concept implementation. Another
more ambitious objective of a technique is to offer an efficient implementation. In
this situation, other implementations may possibly exist, and performance studies
are typically conducted that explore the performance of the implementation and
perhaps compare it to the performance of alternative techniques. The last goal of an
implementation technique is that of being an effective technique: in this case, it is

1103



1104 IMPLEMENTATION TECHNIQUES

the ease with which the technique permits us to realize a certain functionality that
is the point of focus. An easy means of realizing a certain functionality is clearly
preferable to a more difficult one.

A separate distinction useful for characterizing implementation techniques is
the DBMS architecture assumedby the techniques—we distinguish between two.
Techniques that depend on the ability to customize various components of the
DBMS in which they are to be embedded, we say assume anintegrated architec-
ture. For example, an implementation technique may depend on a certain behavior
of the data manager component of the DBMS and is thus dependent on the abil-
ity to customize the data manager. An integrated architecture may be the one that
most readily leans itself towards efficient implementations, but it may also not be
an effective architecture. Perhaps most importantly, the dependence on an inte-
grated architecture of an implementation technique makes the techniques relevant
only to those with access to the source code of pre-existing DBMSs. Thelayered
and extensible-system architecturesrepresent a natural opposite to the integrated
architecture. Implementation techniques that assume these types of architectures
for their enhancements to the functionality of a DBMS assume that the DBMS is a
black box and attempt to reuse the services of the DBMS for their benefit. In this
case, the implementation technique may be seen as an advanced application that
runs “on-top” of the DBMS or “inside” the DBMS, depending on the extensibility
features offered by the DBMS. This general type of architecture may lend itself to
more effective implementation of functionality, but its inherently reduced flexibility
may also hinder efficient implementation.

The implementation techniques presented in this part provide good coverage
of this three-by-two space, with objective and assumed architecture as the dimen-
sions.

The conventional join operation is important because of its frequent use, be-
cause of its inherentO(n2) worst-case complexity, enforced by the size of the result
of the operation, and because the operation can frequently be computed with higher
efficiency than that of the brute-force, nested-loop approach. Temporal-join oper-
ations not only involve equality predicates, for which existing techniques are opti-
mized, but typically also involve inequality predicates on the time attributes, e.g., to
implement an overlap predicate. Inequality predicates typically invalidate existing,
advanced non-temporal join techniques, creating a need for special temporal-join
techniques.

Chapter 34 introduces atemporal-join algorithmbased on tuple partitioning.
This algorithm avoids the quadratic cost of nested-loop evaluation methods; it also
avoids sorting. Performance comparisons between the partition-based algorithm
and other evaluation methods are provided. The join algorithm aims to achieve an
efficient implementation of an operation for which other implementations exist; and
an integrated architecture is assumed.



1105

Chapter 35 proceeds to offer an efficient technique for part of the computation
of another fundamental temporal-database operation, namely thetimeslice opera-
tion, which retrieves the state, or timeslice, that was was current at a specific point
in time from a relation with transaction-time support. Data is stored as a log of data-
base changes, and timeslices are computed by traversing the log, using previously
computed and cached timeslices as outsets. When computing a new timeslice, the
cache will contain two candidate outsets: an earlier outset and a later outset. The
new timeslice can be computed by either incrementally updating the earlier outset
or decrementally “down-dating” the later outset using the log. The chapter provides
an efficient algorithm that uses a new data structure, the Pointer-Less Insertion Tree,
for determining which outset is the most efficient one to use.

The new algorithm aims to offer a more efficient solution than has so far
been available, and in doing so assumes an integrated architecture. Specifically, the
algorithm make quite strong assumptions about the data storage layouts, which are
difficult to satisfy without the control offered by an integrated architecture. The
chapter reports on the performance characteristics of the algorithm and includes
relevant comparisons.

The two previous chapters presented techniques intended for valid-time and
transaction-time databases, respectively. The following two chapters occurs in the
context of bitemporal databases, where both the valid time and transaction time
of the data are recorded. The two chapters offer different techniques for indexing
the bitemporal extents of data, thus offering competing foundations for the efficient
evaluation of predicates that involve the valid and transaction time of data.

Like spatial data, bitemporal data thus has associated two-dimensional re-
gions. Such data is in part naturally now-relative: some data is currently true in
the mini-world or is part of the current database state. So, unlike for spatial data,
the regions of now-relative bitemporal data grow continuously. Existing indices,
including commercially available indices such as B+- and R-trees, do not contend
well with even small amounts of now-relative bitemporal data.

Chapter 36 proposes two extended R∗-trees that are capable of indexing the
possibly growing two-dimensional regions associated with bitemporal data, by also
letting the internal bounding regions grow. Internal bounding regions may be tri-
angular as well as rectangular. New heuristics for the algorithms that govern the
index structure are provided. As a result, dead space and overlap, now also func-
tions of time, are reduced. This chapter’s focus is on efficiency, and performance
studies indicate that the best extended index is typically significantly faster than the
existing R-tree based indices. Although an integrated architecture is assumed, a
continuation of this work has resulted in a prototype implementation applicable to
an extensible DBMS architecture. However, further improvements of the existing
extensible architectures are necessary before this research is practically applicable
beyond integrated architectures.



1106 IMPLEMENTATION TECHNIQUES

Chapter 37 proposes a new indexing technique that eliminates the different
kinds of growing data regions by means of transformations and then indexes the
resulting stationary data regions with four R∗-trees; and queries on the original
data are correspondingly transformed to queries on the transformed data. Extensive
performance studies are reported that provide insight into the characteristics and
behavior of the four trees storing differently-shaped regions, and they indicate that
the new technique yields a performance that is competitive with the best existing
index from the previous chapter; and unlike this existing index, the new technique
is readily applicable in a layered architecture.

The next three chapters differ from the previous ones in several respects. They
do not consider individual, isolated operations, but rather adopt a holistic view and
consider the general challenges that occur when attempting to implement a tem-
poral SQL. The traditional approach has been to assume an integrated architecture
for implementing a temporal SQL: it has been assumed that a temporal DBMS
must be built from scratch, utilizing new technologies for storage, indexing, query
optimization, concurrency control, and recovery. (This was also assumed in Chap-
ters 20 and 21.) In contrast these three chapters assume a layered architecture,
and their main emphasis is on effective implementation rather than on efficient im-
plementation, although the latter remains a concern. In addition, the last chapter
addresses the problems of simply ensuring a correct implementation under the re-
strictions imposed by a layered architecture.

Chapter 38 introduces and explores the concepts and techniques involved in
implementing a temporally enhanced SQL while maximally reusing the facilities of
an existing SQL implementation. The topics covered span the choice of an adequate
timestamp domain that includes the variablenow, a query processing architectures,
and transaction processing.

Chapter 39 proceeds to identify three layered, or stratum, meta-architectures,
each with several specific architectures. Based on a new set of evaluation crite-
ria, advantages and disadvantages of the specific architectures are identified. The
chapter also classifies all existing temporal DBMS implementations according to
the specific architectures they employ. It is concluded that a stratum architecture
is the best short, medium, and perhaps even long-term approach to implementing a
temporal DBMS.

Chapter 40 delves into a challenge faced by all proposals for associating time-
stamp values, denoting valid and transaction time, with data. With few exceptions,
the assignment of timestamp values has been considered only in the context of
individual modification statements. This chapter goes further and considers time-
stamping in the context of transactions, and in a layered architecture. The chap-
ter initially identifies and analyzes several problems with straightforward time-
stamping, then proceeds to propose techniques aimed at solving these problems.
Timestamping the results of a transaction with the commit time of the transaction



1107

is a promising approach, and a spectrum of techniques for how to do this are ex-
plored. Next, although many database facts are valid until the current time,now, this
value is absent from the existing time data types. Techniques using different substi-
tute values are explored, and the performance of the different proposed techniques
are studied. The result is a comprehensive approach that provides application pro-
grammers with simple, consistent, and efficient support for modifying bitemporal
databases in the context of user transactions.


