
III
SQL Standardization and Beyond

23 Evaluating the Completeness of TSQL2
24 Notions of Upward Compatibility of Temporal

Query Languages
25 Transitioning Temporal Support in TSQL2 to SQL3

26 Adding Valid Time to SQL/Temporal
27 Adding Transaction Time to SQL/Temporal

28 Temporal Statement Modifiers

The process that led to the TSQL2 language involved eighteen database specialists
and lasted little more that one year. TSQL2 arguably remains the most comprehen-
sively documented and most feature-rich temporal query language yet to be seen.
Following its completion, it was time to subject the language to closer scrutiny than
the hectic time schedule of the design process had permitted. Chapter 23 identifies
several deficiencies in TSQL2: The language fails to satisfy two notions of com-
pleteness, and aspects of the language related to duplicates and nested queries are
unsatisfactory.

Chapter 24 delves further into the properties that should be satisfied by a tem-
porally extended query language and proposes the property of temporal upward
compatibility that, together with conventional upward compatibility, aims to ensure
that the temporal query language is legacy software friendly. Since most existing
database applications manage temporal data and are prime candidates for bene-
fitting from built-in temporal support in the database management system, these
are important requirements. The chapter also reveals that no existing temporally
extended SQL fully supports upward compatibility and temporal upward compati-
bility.

These insights set the stage for a consolidated temporal query language, and
indeed, the remaining four chapters describe not one, but two such extended query

563



564 SQL STANDARDIZATION AND BEYOND

languages. The two languages started out as one and took their outset in these
insights and in the realization that introducing so-called statement modifiers into
TSQL2, while also carefully designing the defaults in the language, might yield a
language that would satisfy all the major properties identified. The two languages
grew to gradually become quite different. Substantial parts of both languages have
been implemented.

The first language is covered in Chapters 25–27 and proposes the addition of
built-in temporal support to the part of the SQL3 standard termed SQL/Temporal.
This language represents an effort to increase the impact on practice of temporal
query languages research. Chapter 25 provides an overview of the language, and
Chapters 26 and 27 are the actual expert contributions, also termed change propos-
als, submitted to the ANSI and ISO standards bodies; they propose the inclusion
of built-in valid-time support and transaction-time support into SQL/Temporal, re-
spectively. The proposals were unanimously accepted by ANSI and were then for-
warded to ISO, where it is unlikely that they will be voted on in time to be included
into SQL3.

The second language, ATSQL, is described in Chapter 28. This language
extends SQL–92 rather than SQL3 and is unaffected by the compromises that nat-
urally accompany a standardization process. Rather, ATSQL aims to demonstrate
concisely and precisely how the notion of temporal statement modifiers may be em-
ployed to define a temporally extended query language. As a result, the focus is on
core functionality, and many of the advanced features of TSQL2, including aspects
such as indeterminacy, schema versioning, and vacuuming, are not addressed. In
addition, a set-based framework is assumed. The use of temporal statement mod-
ifiers, leads to a categorization of query language statements into three types, so-
called temporally upward compatible, non-sequenced, and sequenced statements.
It is attractive to be able to formulate as many statements as possible as sequenced
statements because these statements offer the most built-in support for formulat-
ing statements; ATSQL offers a wider range of sequenced statements than does its
sibling.


