
9
A TSQL2 Tutorial

R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford,
C. E. Dyreson, R. Elmasri, F. Grandi, C. S. Jensen,
W. Käfer, N. Kline, K. Kulkarni, T. Y. C. Leung,

N. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo, and
S. M. Sripada

1 Introduction

This tutorial presents the primary constructs of the consensus temporal query lan-
guage TSQL2 via a media planning scenario.Media planningis a series of deci-
sions involved in the delivery of a promotional message via mass media.

We will follow the planning of a particular advertising campaign. We intro-
duce the scenario by identifying the marketing objective. The media plan involves
placing commercials, and is recorded in a temporal database. The media plan must
then be evaluated; we show how TSQL2 can be used to derive information from the
stored data. We then give examples that illustrate storing and querying indetermi-
nate information, comparing multiple versions of the media plan, accommodating
changes to the schema, and vacuuming a temporal database of old data.

2 The Context

When Miller Brewing Company introduced Lite Beer, it revolutionized the beer in-
dustry. Once thought of as weak and feminine, low-calorie beer became the drink
of choice for many consumers in the most lucrative market—males who drink large
quantities of beer1. Not to miss a profitable opportunity, Anheuser-Busch intro-
duced Bud Light, which had fewer calories than its regular beer, Budweiser. The

1Miller’s commercials, involving various sports celebrities arguing “Less Filling” versus “Tastes Great,”
were critical in achieving this positioning.

321

322 THE TSQL2 QUERY LANGUAGE

new beer was intended to compete with Lite Beer from Miller2.

From a promotional standpoint, there were two major tasks: to link the new
brand to the established image of its flagship brand, Budweiser, and to differentiate
Bud Light from Lite Beer from Miller.

Anheuser-Busch was committed to giving Bud Light the support necessary
to become a leading contender in the light beer category. But to compete with the
phenomenonally successful Lite Beer, it would be necessary to achieve high brand
awareness, and quickly. This would require the promotional media plan to achieve
broad reach and high impact3.

Commercials during the Super Bowl (the professional U.S. football champi-
onship game) met these requirements admirably. The Super Bowl is among the
most watched television events of each year4.

To ensure high impact, the commercials mirror the football game. A team
composed of bottles of Budweiser “competes” against a team composed of bottles
of Bud Light, with one commercial each quarter of the game. It was hoped that the
series of four commercials would be highly memorable and generate high excite-
ment, and would help to link the Bud Light brand to Budweiser in the consumers’
minds. Another benefit was its potential for promotional tie-ins.

Anheuser-Busch faced the challenge of integrating the Super Bowl commer-
cials for Bud Light with ongoing promotion for both Budweiser and for Bud Light,
which involved heavy TV coverage. This would involve generating a comprehen-
sive media plan.

A media planis a set of specific media objectives (in this case, increase brand
awareness of Bud Light), and specific media strategies that determine which spots
should be shown when and on which vehicles5. While media planning involves all
media, including radio, print, in-store promotions, etc., this scenario only concerns
television. We show how the development of a media plan for Bud Light marketing
can be supported by TSQL2.

2You may recall the TV commercials. A person walks up to a bar and asks for a “light.” Instead of getting
a beer, he gets a spotlight, or a candle, or a match, making a pun on the word “light.” In another series of
commercials, the original ‘party animal,’ Spuds MacKenzie, was created to personify the attitude of the Bud
Light drinker.

3Reachis the percentage of the target market that is exposed to the message. A broad reach is a high reach
across a large, undifferentiated target market.

4The Super Bowl has been the occasion for several highly memorable ads, which many believe was ini-
tiated by Apple Corporation’s “1984” ad on the Apple II computer, recently voted the best ad of the decade,
and the subsequent “Lemmings” commercial of 1985 introducing the Apple MacIntosh computer. The Mas-
terLock ad in which a rifle bullet is shot into a lock is aired only one time a year, during the Super Bowl, yet
many people still recall seeing that ad.

5A vehiclerefers a specific carrier within a medium category, such as a specific TV show; “Star Trek: The
Next Generation” is a television vehicle.

A TSQL2 TUTORIAL 323

3 Recording the Media Plan in a Temporal Database

Most of the tables needed for media planning will be time-varying tables. One table
will record the costs of commercials.

CREATE TABLE NBCShows
(ShowName CHARACTER (30) NOT NULL,
InsertionLength INTERVAL SECOND,
Cost INTEGER)

AS VALID STATE YEAR (2) TO NBCSeason ;

ShowNameis the name of a program on NBC (NBC is a television network).In-
sertionLength is the duration of a commercial (termed aninsertion) shown
during the program, andCost is the price in dollars of the advertisement.

This statement differs from an SQL-92 statement in theAS VALID clause.
This construct identifies theNBCShowstable as avalid-time state table, recording
information that changes in reality. Such tables contain rows that are timestamped
by valid-time elements, which are sets ofperiods, which are themselves anchored
durations of time. We’ll give an example shortly of the contents of this table.

This statement mentions threegranularities, which are partitionings of the
time line. SECONDandYEARare two granularities available in SQL-92.NBC-
Season partitions each year into 3 distinct seasons, which start at different times in
different years6. TSQL2 allows the database administrator to define newcalendars,
which provide one or more granularities. Calendars can also be made available by
the DBMS vendor or a third party.

Each period (interval, datetime) has an associatedrange, the maximum time
that can be represented, and an underlying granularity. Here we specify that the
granularity beNBCSeason. We specify a range of 100 years, via the syntax “YEAR
(2) ”, which indicates 102 years. At three seasons a year, periods can be repre-
sented in a 32-bit word.

Commercials in the media plan are recorded in the table.

INSERT INTO NBCShows
VALUES (’Roseanne’, INTERVAL ’30’ SECOND, 251000)
VALID TIMESTAMP ’Spring Season 1994’ ;

For the row that is inserted, the value of theInsertionLength is 30 sec-
onds7. The timestamp is specified as a single season. Note that this literal is in-
terpreted by a calendar, in this case, theNBC_calendar . TSQL2 permits limited

6Networks choose the start of each season very carefully. Some start early, to give their new shows more
prominence; others delay the start believing that audiences are larger later in the year.

7For the purpose of this tutorial, we assume thatRoseanneis on NBC (it is an ABC show).Roseanneis
one of the most expensive shows on which to advertise, at over half a million dollars a minute. In comparison,
the CBS show60 minutescosts $314,000 a minute, CBS’sLate Show with David Lettermancosts $64,000 a
minute, and CNN prime time costs only $2,400 a minute.

324 THE TSQL2 QUERY LANGUAGE

extensibility, in terms of user-defined calendars and granularities. Presumably NBC
provided this calendar, for use in media-planning activities.

The literalINTERVAL ’30’ SECOND, which has an underlying granular-
ity of SECOND, is interpreted by theSQL92 calendar, which is provided for con-
formity with the SQL-92 standard.

Figure 1 shows a portion of the rows of this table.

ShowName InsertionLength Cost Valid Time
’Roseanne’ ’30’ SECOND 251000 ’Spring Season 1994’
’Super Bowl’ ’60’ SECOND 1800000 ’Spring Season 1994’

Figure 1: Two Rows of theNBCShowsTable

The media plan itself specifies a collection of commercials (insertions) into
each vehicle over a period of time, and may also include specific individual inser-
tions.

CREATE TABLE NBC_FB_Insertion
(GameName CHARACTER (30),
InsertionWindow INTERVAL FootballSegment,
InsertionLength INTERVAL SECOND (3, 0),
CommercialID CHARACTER (30))

AS VALID EVENT YEAR (2) TO HOUR AND TRANSACTION ;

This table records a particular insertion purchase, for a particular football game
broadcast in a particular hour on NBC. Commercials for football games are of-
ten sold for particular game quarters8. The InsertionWindow specifies which
quarter the commercial is to appear in, and is relative to the start of the game. For
this, we use another user-defined granularity, specific to the kind of game, rather
than the network (there might be other granularities for games with halves, such
as basketball, or games with commercials only at the half, such as soccer). Here,
the InsertionLength has an underlying granularity ofSECOND, and a range
of 103 = 1000 seconds.

TheASclause indicates that this is abitemporal event table, with both valid-
time support (the timestamp indicates which day the show airs) and transaction-time
support. TheEVENTreserved word indicates that rows are timestamped with sets
of datetimes (specifically,DATEs), rather than periods, as in the previous example.
Here the timestamps are to the underlying granularity ofHOUR, with a range of

8The Super Bowl is sold in terms of the four quarters, as well as the pregame, half-time, and postgame
shows. Ironically, pricing is not determined by quarters. Advertisers generally prefer the first quarter, as
the audience is most attentive then, but those slots are grabbed early by big advertisers. Recently, NBC sold
overtime options, which were to be used only if the game went into overtime. The reasoning of the advertisers
is that the viewers will be maximally attentive during that time, though there is also the probability that the
commercial will not run.

A TSQL2 TUTORIAL 325

100 years (requiring only one 32-bit word). Thetransaction timeis the time the
fact is stored in the database. In this case, the table supports multiple versions of
the media plan. The DBMS supplies the range and underlying granularities for
transaction timestamps.

Anheuser-Busch purchased four one-minute commercials for the 1994 Super
Bowl, at $1,800,000 each, as well as a short commercial for Bud Ice Draft, for a
total cost of $7,650,000, see Figure 2.

GameName InsertionWindow InsertionLength . . .

’Super Bowl’ ’First Quarter’ ’60’ SECOND
’Super Bowl’ ’Second Quarter’ ’60’ SECOND
’Super Bowl’ ’Third Quarter’ ’60’ SECOND . . .
’Super Bowl’ ’Fourth Quarter’ ’60’ SECOND
’Super Bowl’ ’Third Quarter’ ’15’ SECOND

. . . CommercialID Valid Time

’Naked reverse good for TD’ ’1994-01-30 13’
’Basher is ejected’ ’1994-01-30 13’

. . . ’Wind reverses Light pass’ ’1994-01-30 13’
’Blimps move Bud Bowl to bar’ ’1994-01-30 13’
’Frosty Bottle’ ’1994-01-30 13’

Figure 2: TheNBC_FB_InsertionTable

Thefootball calendar interprets the literalINTERVAL ’Second Quar-
ter’ ; the datetime literal’1994-01-30 13’ is interpreted by theSQL92 cal-
endar. The DBMS supplies the transaction time when rows are inserted or updated.
The transaction time is not shown in the table, due to lack of space.

4 Evaluating the Media Plan

Once a media plan is in place, it must be evaluated. We provide some representa-
tive queries, chosen to illustrate novel features of TSQL2 which are useful in this
application.

One question that arises is how well the media plans for the two beer brands
have been integrated. Too many commercials in a single show does not increase the
effective reach (although it does increase frequency, which is linked to memorabil-
ity).

Example 1 List those football games broadcast by NBC that have two or more
commercials.

SELECT N.GameName
FROM NBC_FB_Insertion AS N N2

326 THE TSQL2 QUERY LANGUAGE

WHERE N.GameName = N2.GameName AND
N.CommercialID <> N2.CommercialID

While this appears to be a straightforward SQL-92 query, in fact it is a temporal
query, evaluated over a bitemporal event relation, with the result being a valid-time
event relation.

Two correlation names are defined,NandN2, and an implicit join is requested.
Since the transaction time is not mentioned in the where clause, the information as
best known now is retrieved. Erroneously stored information that was later cor-
rected will not be retrieved.

The query also performs an implicitvalid-time selection, requiring that rows
associated withNandN2 be valid at the same time.

Finally, the query performs an implicitvalid-time projection. The games that
are returned will be associated with particular days, those days in which there were
NandN2 rows that were concurrently valid. 2

We might want to advertise on long-running shows. Hence, we may want to
know how long a show has been running. This information can be extracted from
the temporal database.

Example 2 How long has the Roseanne show run?

SELECT SNAPSHOT ShowName,
CAST(VALID(N) TO INTERVAL DAY)

FROM NBCShows(ShowName) AS N
WHERE N.ShowName = ’Roseanne’

This query has three interesting constructs. TheSNAPSHOTreserved word indi-
cates that even though the query is defined on a time-varying table, the result is to be
a conventional table. The(ShowName) found in the from clause requests that the
underlying table,NBCShows, becoalescedon theShowNameattribute. Coalesc-
ing is similar to conventional projection. Like projection, coalescing makes only the
specified columns available; unlike projection, it combines the row timestamps into
a single timestamp. Only theShowNamecolumn is considered; the timestamps
for all rows with identical values for that column (termedvalue-equivalentrows)
are combined into a single temporal element (set of periods). TheCASTwill then
convert this set into a singleINTERVAL of a granularity ofDAY. This requires the
NBCcalendar to cast each period into a period ofDAYs; then the DBMS determines
the duration, the number of days, in the period. The durations of all of the periods
are then totaled. 2

Queries involving contiguous periods are very common. For example, we
may want to determine the well-established shows.

Example 3 List all shows broadcast by NBC that ran continuously for at least two
years, and indicate the day that they began that run.

A TSQL2 TUTORIAL 327

SELECT ShowName
VALID CAST(BEGIN(VALID(A) AS DAY))
FROM NBCShows(ShowName)(PERIOD) AS A
WHERE CAST(VALID(A) AS INTERVAL YEAR) >=

INTERVAL ’2’ YEAR

Here, the from clause coalesces on theShowNamecolumn, but also specifiesparti-
tioning into maximal periods (via the(PERIOD) syntax). The valid-time element
timestamp is partitioned into possibly many timestamps, each a single period, and
the query is applied to each. Only those rows associated with periods of duration of
at least two years are selected.

TheVALID(A) construct will in this case return a single period. The start-
ing instant is extracted by theBEGIN operator (there is also anENDoperator, and
several other constructors), then that timestamp, at an underlying granularity of
NBCSeason, is cast by theNBCcalendar to a particularDAY, depending on when
that season started.

The result is a valid-time event relation, with each row timestamped with an
event set. Resulting rows are coalesced if the values of the columns are identical. If
a particular show ran for two years, then was cancelled, then subsequently returned
and ran again for at least two years, its timestamp will contain two events, the start
of its first run and the start of its second run. 2

Coalescing can be combined in various ways with partitioning.

Example 4 How long has the Roseanne show run, and how long did the cost remain
constant?

SELECT SNAPSHOT ShowName,
CAST(VALID(N) TO INTERVAL DAY),
CAST(VALID(B) AS INTERVAL DAY)

FROM NBCShows(ShowName) AS N,
N(Cost)(PERIOD) AS B

WHERE N.ShowName = ’Roseanne’

In this query, we define a correlation nameB that iscoupledwith N. It inherits all of
the coalescing columns ofN, specificallyShowName, and adds another one,Cost .
Additionally, B is partitioned into maximal (contiguous) periods.

SinceB is defined in terms ofN, it has the same values asN for those columns
in common. Conceptually,B iterates over the costs of a particular show identified
by N. SinceB is partitioned into maximal periods, this correlation name identifies
each period of constant cost for the particular show. 2

An important consideration in media planning is ensuring that the media bud-
get is distributed properly over the media vehicles. Here, we examine how the
budget distribution for commercials on football games on the three major networks

328 THE TSQL2 QUERY LANGUAGE

varies over time, specifically the amount spent each month on each network. To
compute this, we sum over all the insertions for a particular network, looking up
the cost for the season the game resides in.

Example 5 Give the monthly distribution over vehicles.
The corresponding TSQL2 query is displayed in Figure 3. The result will be

a table with three dollar amounts per month.

SELECT SUM(NBCShows.Cost), SUM(ABCShows.Cost),
SUM(CBSShows.Cost)

FROM NBC_FB_Insertion AS N, NBCShows,
ABC_FB_Insertion AS A, ABCShows,
CBS_FB_Insertion AS C, CBSShows

WHERE N.GameName = NBCShows.ShowName AND
A.GameName = ABCShows.ShowName AND
C.GameName = CBSShows.ShowName AND
N.InsertionLength = NBCShows.InsertionLength AND
A.InsertionLength = ABCShows.InsertionLength AND
C.InsertionLength = CBSShows.InsertionLength

GROUP BY VALID(N) USING MONTH

Figure 3: Monthly Distribution Over Vehicles

This query uses tables for the networks ABC and CBS that are analogous to
those introduced earlier for NBC. TablesABC_FB_Insertion andCBS_FB_In-
sertion are to the granularity of anHOUR, theABCShowstable is to the gran-
ularity of ABCSeason, and theCBSShowsis to the granularity ofCBSSeason.
The associated calendars determine which days these seasons overlap, to determine
which cost to use in computing the cost of a particular football insertion; the costs
are then aggregated over each month, as specified by the group by clause, with
the SQL92 calendar determining in which month each day occurs. The default
transaction-time selection is to retrieve the known information, that is, the current
media plan, rather than some previous version. 2

5 Support for Indeterminacy

Often the marketing department will hear about the possible changes to the strate-
gies of competitors, such as the impending introduction of a new light beer. Analy-
ses then need to take this information into account.

The following table records the projected budgets of competing brands.

A TSQL2 TUTORIAL 329

CREATE TABLE TVBudget
(Company CHARACTER (30) NOT NULL,
Brand CHARACTER (30),
Network CHARACTER (4),
AggregateBudget INTEGER)

VALID STATE NONSTANDARD INDETERMINATE
YEAR(2) TO MONTH ;

Since the marketing department cannot be sure when a competitor’s marketing cam-
paign will commence, theTVBudget state table is specified asindeterminate.
Valid-time indeterminacy is “don’t know when” indeterminacy. The table thus is
specified as anINDETERMINATEtable; theNONSTANDARDreserved word speci-
fies that various distributions other than the standard one may be needed.

Let’s assume hypothetically that the intelligence from the field indicates that
Jamaican Brewing is planning a big market introduction of a light beer, with a
budget of $3 million, but it is not clear when it will start.

INSERT INTO TVBudget
VALUES (’Jamaican Brewing’, ’Lowinbrew’, ’NBC’, 3000000)
VALID ’1995-01 ∼ 1995-04 - 1995-06’

WITH DISTRIBUTION PROBABLY_EARLY ;

Literals express an indeterminate period by indicating the beginning and end-
ing instants, either of which may be indeterminate. The literal specified for the
timestamp of the inserted row specifies that the campaign may start as early as Jan-
uary, 1995, or as late as April 1995. Once the campaign begins, it will continue
through June, 1995. ThePROBABLY_EARLYdistribution is also specified; this
distribution was previously defined by the data base administrator. In this distribu-
tion, earlier instants are more likely than later ones.

The underlying granularity is aMONTH; the range is 100 years. Such period
timestamps, which can be stored in three 32-bit words, contain the range of dates
and a probability distribution identifier for both delimiting events.

Queries on indeterminate periods take the indeterminate portion and the prob-
ability distribution into account when evaluating predicates. Such a capability is
critical when making decisions based on incomplete data.

Example 6 Which football insertions on NBC will likely come after the Lowin-
brew product introduction?

SELECT I.*
VALID VALID(I)
FROM NBC_FB_Insertion AS I, TVBudget AS T
WHERE T.Network = ’NBC’ AND T.Brand = ’Lowinbrew’ AND

VALID(T) PRECEDES VALID(I) WITH PLAUSIBILITY 90

330 THE TSQL2 QUERY LANGUAGE

Since the query involves several underlying tables, but requests only particular in-
sertions, the valid clause ensures that the data will be coupled with the appropriate
timestamps.

The WITH PLAUSIBILITY construct reflects the request of “likely came
after.” The plausibility ranges from 1 (even remotely possibly) to 100 (definitely).2

6 Querying Multiple Versions

Recall that theNBC_FB_Insertion table has associated valid and transaction
times. To this point, the transaction time has been implicitly assumed to benow,
that is, the most up-to-date media plan. As previous versions are available, they can
be queried, and compared with each other.

Previous versions are accessed by specifying predicates on their transaction
time.

Example 7 How did our monthly budget on NBC football games for the current
media plan compare with that of the media plan prepared two weeks ago, which
didn’t take this new product introduction into account?

SELECT SUM(N.Cost), SUM(N2.Cost)
VALID VALID(NI)
FROM NBC_FB_Insertion AS NI NI2, NBCShows AS N N2
WHERE NI.GameName = N.ShowName AND

VALID(NI) OVERLAPS VALID(N) AND
NI2.GameName = NS2.ShowName AND
VALID(NI2) OVERLAPS VALID(N2) AND
TRANSACTION(NI2) OVERLAPS DATE ’now - 14 days’ AND
TRANSACTION(N2) OVERLAPS DATE ’now - 14 days’

GROUP BY VALID(NI) USING MONTH

Figure 4: Comparison of Monthly Budgets Between Media Plan Versions

The corresponding TSQL2 query is displayed in Figure 4. This query com-
pares the cost of the current media plan with that of two weeks ago, on a month-to-
month basis. Both media plans involve insertions over valid time.

This query also usesnow-relative times, specificallyDATE ’now - 14
days’ . Such values can appear within a query, as here, and can also be stored in
a table as a column value or as a valid time. During query evaluation, now-relative
times areboundto specific times by substituting the current time and performing
the indicated interval addition or subtraction. 2

A TSQL2 TUTORIAL 331

7 Changing the Schema

Schema evolution interacts with transaction time support. To illustrate how, assume
that theNBC_FB_Insertion table was defined on February 17, 1983, using the
create table statement in Section 3, then modified on June 21, 1994 as follows.

ALTER TABLE NBC_FB_Insertion
ADD COLUMN MediaPackage CHARACTER (30) ;

Since this table is timestamped with transaction time (it is also timestamped with
valid time, but this aspect is not relevant to the present discussion), its schema is
versioned. Previous data is potentially stored under the old schema, while newly
inserted or updated data is stored consistent with the current schema.

Legacy applications are supported via the set schema time statement. If there
was an application program that used the original schema, it could continue to ac-
cess old data as well as current data through that schema, by specifying the follow-
ing.

SET SCHEMA DATE ’1993-03-01’

This states that the schema in effect as of that date should be used. If the applica-
tion inserted rows intoNBC_FB_Insertion , the value of theMediaPackage
column would be a null value. Note that the schema modification statements that
enable continued use of previous schemas are restricted.

8 Vacuuming

If transaction time is supported for a table, that table grows monotonically, with
logical deletions being implemented as physical modifications. No old data is phys-
ically deleted. For many applications, this behavior is precisely what is desired, as
there may be company policies or government regulations (such as laws governing
tax records) that require retension of previous data.

However, some applications may wish to periodically physically remove old
data.

Example 8 Vacuum theNBC_FB_Insertion table before 1990.

VACUUM NBC_FB_Insertion
WHERE TRANSACTION(NBC_FB_Insertion)

PRECEDES DATE ’1990-01-01’

All information with a transaction time before this cutoff date is inaccessible after
this statement is executed. 2

Current queries (those that do not mention transaction time) will not be af-
fected, as they request the most current state, which will always be after the cutoff

332 THE TSQL2 QUERY LANGUAGE

date. Queries that do mention transaction time should not attempt to access data
updated before the cutoff date.

9 Summary

In this tutorial, we have touched on the following facilities and constructs available
in the consensus temporal query language TSQL2.

• Periodsare anchored durations of time. This is a new data type, augmenting
SQL’s datetimes and intervals.

• Event tablesare timestamped with sets of instants.

• State tablesare timestamped withtemporal elements, which are sets of peri-
ods.

• Bitemporal tablesare timestamped with both valid time and transaction time.

• A granularity is a partitioning of the time line.

• Calendarsprovide a collection of granularities, and participate in parsing and
output of timestamp literals.

• Timestamp formatsare user-specified, allowing different applications to con-
trol how timestamps are displayed.

• Valid-time selectionenables rows to be selected by means of predicates on
their timestamps, within the where clause.

• Valid-time projectionspecifies the period of validity of a derived table, via the
valid clause.

• Coalescingmerges the timestamps ofvalue-equivalentrows, and is specified
by listing column names in the from clause.

• Partitioning extracts maximal period(s) from a temporal element timestamp
for a row, and is specified via thePERIODreserved word in the from clause.

• Coupled correlation namespermits a further coalescing on additional columns,
while ensuring that the rows associated with the two correlation names agree
on the values of the original coalescing columns.

• Conventional (non-time-varying) tables can be derived from time-varying ta-
bles by specifying snapshot in the select clause. Conventional tables can also
participate along with time-varying tables in a select statement.

• Time-varying aggregatescan be computed. Grouping can be over columns or
over row timestamps.

• Temporal indeterminacyis supported in the data model, via instant times-
tamps that encode the first and last possible occurrence times, as well as
a probability distribution, and in the query language, via a with plausibility
phrase in the where clause.

A TSQL2 TUTORIAL 333

• Transaction-time selectionpermits specification of previous versions.

• Now-relative timesare bound during query evaluation.

• Schema versioningallows tables timestamped with transaction time to be ac-
cessed and modified through previous schemas, thereby supporting legacy
applications.

• Tables timestamped with transaction time may bevacuumedto remove old
versions.

Acknowledgements

The domain expertise of Merrie L. Brucks was critical in developing this example,
and her assistance is greatly appreciated.

References

[1] Jensen (ed.), C. S. “A Consensus Test Suite of Temporal Database Queries.”
Technical Report R 93-2034. Department of Mathematics and Computer, In-
stitute for Electronic Systems. Nov. 1993.

[2] Snodgrass, R. T., (editor) “An Evaluation of TSQL2.” Commentary. TSQL2
Design Committee. Sep. 1994.

[3] Jensen, C. S., R. T. Snodgrass and M. D. Soo. “Extending Normal Forms to
Temporal Relations.” TR 92-17. Computer Science Department, University of
Arizona. July 1992.

