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A Foundation for Vacuuming Temporal
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A wide range of real-world database applications, including financial and med-
ical applications, are faced with accountability and traceability requirements.
These requirements lead to the replacement of the usual update-in-place pol-
icy by an append-only policy, resulting in so-called transaction-time databases.
These databases retain all previous states and are therefore ever-growing. A va-
riety of physical storage structures and indexing techniques as well as query lan-
guages have been proposed for transaction-time databases, but the support for
physical deletion, termed vacuuming, has only received little attention. Such
vacuuming is called for by, e.g., the laws of many countries and the policies
of many businesses. Although necessary, with vacuuming, the database’s per-
fect and reliable recollection of the past may be manipulated via, e.g., selective
removal of records pertaining to past states. This paper provides a semantic
foundation for the vacuuming of transaction-time databases. The main focus
is to establish a foundation for the correct processing of queries and updates
against vacuumed databases. However, options for user, application, and data-
base interactions in response to queries and updates against vacuumed data are
also outlined.
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1 Introduction

Real-world database applications are frequently faced with accountability and trace-
ability requirements, which in turn lead to so-called transaction-time databases that
faithfully timestamp and retain all past database states, thus offering their applica-
tions a perfect, uncorrupted record of the past [Cop82].

However, these databases are also ever-growing, and laws and business poli-
cies demand the ability to physically delete data. Such physical deletion necessarily
compromises irreversibly the perfect record of past states. It is thus a fundamental
requirement to physical deletion capabilities that these be “controlled,” which leads
to the introduction of vacuuming.

We provide a foundation that encompasses a range of new concepts essential
to vacuuming. As part of this foundation, we introduce vacuuming specifications
and give their semantics. To meet the need for controlled physical deletion, vacu-
uming specifications include removal specification parts as well as so-called keep
specification parts that override the former specification parts and specify what can-
not be removed.

The paper explores how detection of potentially vacuuming-affected queries
may be accomplished. Detection of queries that may yield results affected by vac-
uuming opens the possibility for taking cooperative action, providing, e.g., alter-
native queries that are similar to the original query, but are guaranteed to not be
affected by vacuuming. This detection is contingent on the disciplined modification
of vacuuming specifications. Specifically, we introduce the notiomgafingand
alive specification parts, which open the possibility of vacuuming the vacuuming
specifications without losing track of what is removed by vacuuming.

The techniques proposed in the foundation separate the enforcement of vacu-
uming semantics from the actual physical removal of data. This independence be-
tween correctness and physical removal is highly desirable because it offers max-
imum flexibility for the scheduling of physical removal, an aspect not addressed
here.

Only little work related to vacuuming has been published. A preliminary
exploration of vacuuming was reported in [JM90]. In this unpublished technical
report, we present different types of vacuuming specifications and introduce an al-
gebra for defining vacuuming specifications. The present paper is based on and
extends this report.

The TSQL2 temporal query language supports a very basic vacuuming func-
tionality: It is possible to specify cutoff points [SAZ94, Jen95] that indicate that
data current only prior to a certain cutoff date should be physically deleted. The
semantic foundation in this paper provides precise definitions of the concepts un-
derlying this functionality and it provides much more advanced functionality.

Next, the Postgres DBMS [RS87], which supports transaction-time databases,
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includes a vacuum cleaner daemon that is responsible for the asynchronous and
transparent movement of logically deleted data from magnetic disk to cheaper op-
tical disk storage. The associated techniques for physical deletion and reorganiza-
tion, and for the scheduling of the daemon may possibly be applied to implementing
physical deletions. Beyond that, this research is accommodated by the foundation
presented here and is unrelated to this paper.

In the context of data warehousing, an approach to “expiring” data has re-
cently been presented [GMLY98]. This work studies the removal of data not needed
for maintaining predefined views. Further, all access to the data warehouse is as-
sumed to occur through views. So, unlike in this paper, unrestricted, ad-hoc query-
ing is not considered. Perhaps more importantly, because the underlying databases
are not append-only, the correctness concerns fundamental to the work presented in
this paper do not apply, making the two works quite different.

The contents of this paper are structured as follows. Section 2 offers an
overview of a vacuuming-extended DBMS and identifies challenges posed by the
introduction of vacuuming and met in the remainder of the paper. Section 3 provides
the concrete data model context for the study of vacuuming, setting the stage for the
introduction of vacuuming specifications, whose semantics is defined in Section 4.
Sections 5 and 6 proceed to consider the querying and modification of databases
with vacuuming, respectively. In order to avoid certain inconsistent database states
as well as misinterpretations of query answers, these sections most prominently
define fundamental notions of correctness, but also outline options for user interac-
tion in response to the absence of vacuumed data. Finally, Section 7 concludes and
offers research directions.

2 Vacuuming—An Overview

In order to provide a global view of the paper’s topic, this section gives a com-
prehensive example of a database system extended with vacuuming. Using the
example, we introduce the semantics of vacuuming and consider the querying of
vacuumed databases.

Assume we have an instanempof a temporal relation schentamp given
as follows.

Emp= {S : TID; Empld Sal Bal: INT; Sex: {M, F}; TT", TT™ : TIME}

Attribute S is a surrogate or tuple identifieEmpld identifies an employee, and
SalandBal record the salaries and account balances of employees, respectively.
AttributesTTH and T T~ are both of typelIME and record the time of insertion

and deletion, respectively

1Updates are modeled as deletions followed by insertions and assign deletion timestamps to some tuples
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First, we assume that no vacuuming is specified on the database aathihat
is as illustrated in Table 1.

| S| Empld| Sal | Bal | Sex| 77" | TT7 |
1 234 32k | $-6,015| M 2/7/93 | 5/10/94
2 128 28k | $ 10274 | F 8/14/93 | 8/31/97
3 234 32k | $—-2,015 | M 5/11/94 | 6/2/94
4 597 40k | $—-4,652 | M 5/12/94 | 7/2/94
5 597 47k | $—2,576 | M 7/3/94 NOW
6 234 35k | $ 1763 | M 11/8/94 NOW
7 318 21k | $ 211 | F | 11/24/94| 6/2/95

Table 1: TheempRelation

All updates of a temporal relation such@spresult in tuples being inserted,
and tuples are never physically removed. (For emphasis, we will use “delete” for
logical deletion and “remove” for physical removal throughout the paper.) There-
fore, empis ever-growing, and it is likely thadmpwill eventually contain some
data that is irrelevant to its users or must be (physically) removed for other reasons.
Now, assume that the current business policy is that data (logically) deleted more
than four years ago is not to be retained, that tuples deleted between two and four
years ago with valué’ of attributeSexcan be disregarded, but that all tuples in the
database containingBal of $— 5, 000 or less must be retained. Using standard re-
lational algebra, this may be specified with the following vacuuming specification,
V = {vq, v, v3}.

ve  p(emp : orr-<now—4ayrs(€MP
U2 p(emp : UNOW—4yrs<TT4§NOW—2yrSASex:F(emp
vz «(emp : ogal<$—5,000(€MP

The specification is read as follows: “Remoyg {rom empall tuples deleted more
than four years ago, i.e., tuples where the value of the attribiitéis less than the
current time NOW, minus four years. Remove froempall tuples deleted between
two and four years ago where attribi8exhas valueF. Keep ) in empall tuples
where attributdBal has the value $- 5, 000 or less.”

While v1 andv, are removal specification parts and tell what should be re-
moved,vs is a keep specification part stating what must be kept. Keep specification
parts always override removal specification parts, for safeguarding reasons. Sub-
mitting specificationV yields the vacuumed relatiocempin Table 2, the current
time (and the value of variabldOW [CDI*97]) being 714/98.

and insertion timestamps to others.



A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 291

| S| Empld| Sal | Bal | Sex| TT" | TT7 |
1 234 32k | $-6,015| M 2/7/93 | 5/10/94
2 128 28k | $ 10274 | F | 8/14/93| 8/31/97
5 597 47k | $—-2,576 | M 713/94 NOW
6 234 35k [ $ 1763 | M 11/8/94 | NOW

Table 2: Relatiorempat Time 7/14/98, Vacuumed According t¥ = {v1, v2, v3}

Without vacuuming, a transaction-time relation satisfies the propefaitbt
ful history encodingstating that previously current database states are retained (to
be formalized later). This property is jeopardized when vacuuming is allowed. The
subsequent example illustrates issues that arise when querying a vacuumed data-
base.

Assume the query) = osap3s(emp is issued before vacuuming, i.e. let
V = ¢, and assume that the current time j&.4/98. ThenQ would evaluate to
tuples 45, and 6. After vacuuming, i.e.V = {v1, vz, v3}, Q will evaluate to
tuples 5 and 6, since tuple 4 was logically deleted more than four years ago and has
Bal > $ — 5, 000.

So queryQ is affected by the vacuuming according¥o If (emp V) de-
notes relatiorempvacuumed according t&, thenQ(emp¥) # Q(emp V) in
the general case. Thus, our sample quergeturns a result inconsistent with the
previously current database states. This result is misleading to users expecting faith-
ful history encoding. Users knowing that faithful history encoding may have been
compromised are unable to properly interpret the result.

A system with vacuuming should support its users in interpreting the results of
gueries that are affected by vacuuming. Specifically, a minimum of support would
be for the system to support the correctness criteriofaittiful history querying
(also to be formalized later), stating that only queries not affected by vacuuming
should be answered without an accompanying warning. A more radical approach
would be to return an error when the result of a query may be affected by vacu-
uming. Together with the error message, the system could additionally return at
least one alternative, a related que&dy;, satisfying faithful history querying. This
approach isillustrated in Figure 1. The reader may verify that the alternative query
(Q') returns the tuple$5, 6}. So, issued on the vacuumed versioreofp Q' re-
turns the same answer @s(see Tables 1 and 2). However, quéryis not affected
by vacuuming, i.e.Q’(emp ¥) = Q’'(emp V), and giving an unqualified answer
to this query is consistent with the faithful history querying property.

Presented with the vacuuming-modified query, the user can choose either to
Issue this query or to modify it. In the latter case, the system may have to go through
a new modification-and-display process.
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»select [Sal >= 35k] (emp)
Error: Query affected by vacuuming; alternative query:
select [((TTend > NOW - 4yrs and
(TTend > NOW - 2yrs or Sex = M)) or Bal <= -5000)
and Sal >= 35k] (emp)
Run? (YY)

Figure 1: A Possible Result of Submitting Quedy= os,;>35(emp V)

In the next sections, we present the data model context necessary for intro-
ducing vacuuming; we show how to determine whether a query sughsagisfies
faithful history querying and how to determine a similar query that is not affected;
and we consider the modification of the vacuuming of user-defined relations and
vacuuming specifications.

3 Data Model Context

A concrete data model context is needed for presenting the semantic foundation
for vacuuming. This section presents the necessary aspects of the temporal data
model that provides the context for our study. Initially, the data structures, schemas
as well as instances, of the model are presented. Then the syntax of vacuuming
specifications is given. The semantic foundation is independent of the particular
guery language adopted, so rather than adopting one of the many existing temporal
algebras or defining a new algebra [MS91], we reuse the well-known relational
algebra as the language associated with the data structures.

3.1 Temporal Relation Structures

LetUp = {D1, D>, ..., D,} be a set of non-empty domains, andiet= UD; be
the set of all values. LeDy = {v1, v, ..., vs} be the specific domain of vacuum-
ing specification parts. Let = {1, 11, . . ., ¢, } be a finite, non-empty set of times
with < as the total order relation. We use elemggy in 7' for denoting the current
time. Finally, letTnow = T U {NOW}, whereNOW s a variable that evaluates to
the current time [CDt97]. Then, forr € T andt’ € Tnow, we define the meaning
of ¢t/ at timet, [¢],, as follows.
0] — t if ¥ = NOW
"7 | otherwise

Next, letUs = {A1, A2, ..., A,} be a set of attributes, l&tspece Uy be

a specific attribute of vacuuming specification parts, andl''ét and 77 be
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distinguished time attributes representing insertion and deletion time, respectively
[SA85]. With these definitions in place, we can define the schema aspects of a
database.

A temporal relation schem&k, is defined as a paiAg,, DOMg, ), where:

(1) Ag, € Ua, andAg, U{TT", TT™} is the set of attributes of the schema. The
latter two attributes are timestamp attributesRef (2) DOMg, is a function from
A, U{TT", TT "} to Up U{T, Tnow}, Which assigns domains itip, to attributes

in Ag,, the domain?" to the attributeT 7", and the domairfyow to the attribute
TT.

Next, symbol) denotes the specific temporal relation schema for vacuuming
specification parts{{Vspe¢, DOMy ), whereDOMy is a function assigning the
domainsDy, T, andTnow to the attributed/spec 7T, andT T, respectively.

A temporal database schenfas is then a finite set of temporal relation
schemask, = (Ag,, DOMg, ), one of them being the schera

EXAMPLE: In Section 2, temporal relatioemp has schemgAemp DOMemp),
where Aemp = {S, Empld Sal Bal, Se} and DOMemp is the function assigning
the domainTID to S, the domainNT to each attributeEmpld Sal andBal, the
domain{M, F} to attributeSex and finally the domaing andTnowto TT" and
TT™, respectively.

Furthermore, we hav®B = {(Aemp DOMemp, . .., ({Vspe¢, DOMy)}, as
an example of a temporal database schema. O

We proceed to define instances of the schemas just definteglé\u, on rela-
tion schemdAg,, DOMg, ), is a function from the attribute sdtzg, U{TT", TT™}
to D U {T, Tnow}, Which assigns an elementOMg (A;) to each attributed; e
Ag,, an element inf’ to 7T, and an element ifyow to TT'; u assigns the
elements to the satisfaction of:

Ve > u.TT" w.TTN <[w.TT 1y A @.TT" = thow= u.TT™ = NOW)).

This formula simply states that intervals must start no later than when they
end and that the end time mustN®Wif the start time is the current time.

For any pair of tupleg; andu, on relations with the same explicit attributes
A;, we say thaiz1 andu, arevalue equivalenmlv':e'uz, ifand only ifVA; (u1.A; =
us.Aj).

We also say that a tupleon relationR, is current at timer in the database if
and only ifu.TT" < ¢ < [u.TT™],, and more specifically that a tupledsrrent
in the database if it is current gbw.

We define aemporal vacuuming specification pait, to be a tuple on the
vacuuming specification schem@/spe¢, DOMy ), assigning values from the do-
main Dy to theVspecattribute, and values frofi and Tnowto 777 and 777,
respectively.
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With tuples in place, we proceed defining relationstefporal relationR,
with the schemdAr , DOMg, ) is a finite set of tuplesk, does not contain value
equivalent tuples that are current at the same time. We term these user-defined
relations. As a specific temporal relation, we defirteraporal vacuuming specifi-
cation V with schema) = ({Vspe¢, DOMy). Thus,V is a finite set of temporal
vacuuming specification parts.

Having a temporal relatioR, anda vacuuming specificatio¥, the effect of
specifying vacuuming foR, is a modified relatioR,, written as(R,, V). SOR,
is the relationRk, modified by the vacuuming specificatidh We will return to the
semantics of vacuuming, and to the definition®fin Section 4.

Finally, atemporal databasé B with schemaDB = {R1,...,R,, V} Is
a set of tgmgoral relations modified by vacuuming specification.e., DB =
(R1,..., Ry, V).

ExAMPLE: Our sample database contains the modified temporal relafopand
V.

Relationempcontains a set of tuples, and as shown in Table 1, the first tuple
is the function assigning value 1 K values 234, 32 $ — 6, 015 toEmpld Sal
Bal, respectively, value M t&ex and transaction timestamps 2/7/93 and 5/10/94 to
the time attributeg’ 7" and7 T, respectively.

The temporal vacuuming specificatidéh = {v1, v2, v3} shown in Section 2
is given in Table 3 as the relatidn. Here,v1 is the tuple that assigns tI8TRING

| | Vspec | 11t | 1T |
U1 ,O(emp . O'TT—|§Now_4yrS(emp 5/16/1992 NOW
v2 | p(EMP  : ONOW—4yrs<TT-<NOW—2yrsnSex=r (€MP | 8/30/1995 | NOW
v3 | kK(emp : O’Ba|§$_5yooo(emp 5/16/1992 | NOW

Table 3: The Vacuuming Specificatioh= {v1, vo, v3}.

value “p(emp : orzr-<now-ayrs(€MP” to attribute Vspeg the time 5/16/1992 to
TT", and the variabl®&lOWto 77

Later, after defining the semantics of vacuuming, we will return to the modi-
fied counterparts afmpandV. For now, Tables 1 and 2 show relatiempand its
modified counterpagfp respectively. a

3.2 Syntax of Vacuuming Specifications

We have already defined a vacuuming specification part as a tuple on the schema
({Vspe¢, DOMy ), assigning values fronDy to Vspec Next, we specify which
values domaiDy offers as possible, avell-formed specification part expressions.
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One aspect of a specification part expression being well-formed is being syn-
tactically correct. The syntax of a vacuuming specification part expressisn
given by the following specification. Note that this specification essentially permits
arbitrary relational algebra selections.

v = w(R):EXxp

w = p | K

Exp = R | or(Exp | (Exp

F = true |false | FbopF | =F | (F) | TToptt | ttopTT
| dop A;j | Ajopd

tt =t | s | tt—tt | tt+1tt | (1)

TT == TT" | TT™

bop = V|A

op u= <|>|=|=|=]#

In addition to being syntactically correct, a specification part expression must
also satisfy conventional semantic constraints. L&k a finite non-empty set of
time spans, i.e., unanchored time intervals like 2 days or 3 years. Then it is re-
quired thatd € Dy,, A; € Ua, t € Tnow, ands € S. For expressions such
asTT op tt andtt op TT, op should be defined for the domaliyow of 77"
andTT7, and¢t should evaluate to an element TRow. For expressions such
asA; op d andd op A;, op should be defined for the domain,, of A;, and
d € Dy,. And foror(EXxp), F should only include attributes; in Exp. Following
normal conventions, we allow ourselves to use expressions that are equivalent to
those generated by the grammar. For example, we wilkiise ¢t < tt3 instead
oftry < tto ANty < t13.

The construction gives the opportunity of relatiigf™ and7 7 to any time-
stamp, fixed or relative thlOW, e.g.,7T7 " < NOW— 2yrs, TT~ < 7/15/4000—

NOW, orTT™ < 1/1/1995.

Note that any specification part expression defined here can be rewritten to be
on the form ‘w(R,) : op(R,),” using standard equivalence-preserving transforma-
tions (e.g., [ASU79b, UII88]).

Specification parts having expressions of the formR,) : Exp are re-
moval specification parfsand specification parts having expressions of the form
“k(Ry) : Exp’ are keep specification partd=rom our exampley; andv, are re-
moval specification parts, and is a keep specification part.

4 Specification Semantics

Having defined a data model context for vacuuming and its syntax, we turn to defin-
ing the semantics of a vacuuming specificatign, The semantics oV expresses
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what remains of each relatiak), in the database whé takes effect. This expres-

sion was previously denoted [y and is termed theodified relation In defining

the modified relation, three issues are considered. First we consider the objectives
to be satisfied by the definition of the semantics. The second issue is how to take
into account the pairs of time values associated with vacuuming specification parts
and how to properly account ftdNOW-relative specification parts in the semantics.
Third, we define the modified relation itself.

Considering the first issue, the definition of the meaning of a vacuuming spec-
ification aims at satisfying two objectives, namely ease of use and loss protection.
The rationale for the former objective is self-evident; the latter is important because
vacuuming is irreversible. It should thus be possible to guard against unintended
removal of data.

With these objectives in mind, we note that we have formalized a vacuuming
specification as a relation, with the tuples being of specification parts. Therefore,
the semantics of a vacuuming specification is independent of the order of the spec-
ification parts.

Mainly to guard against unintended removal of data, but also to provide in-
creased ease of use, we have included keep specification parts that specify what
must be kept in the database.

Expressing—without the use of keep specification parts—that certain tuples
from a relation are to be retained in the database can be done by making sure that no
removal specification part selects these tuples for removal. But this is only an im-
plicit expression, making it difficult to maintain. Further, it does not protect against
unintended loss of data. With keep specification parts that override the removal
specification parts, it is instead possible to specify in a single specification part the
tuples that are to be retained. This is easier, and new removal specification parts are
guaranteed not to inadvertently lead to the removal of tuples to be kept. In general,
specifications may become simpler with both keep and removal specification parts
available.

Having both keep and removal specification parts and an order-independent
semantics, where the keep specification parts override the removal specification
parts, improves ease of use and facilitates loss protection. We thus define vacuum-
ing in this way.

With the semantics decided upon at this abstract level, we turn to the second
issue of determining how the vacuuming specification parts contribute to vacuuming
based on their temporal aspects. Being a temporal relation, each part of a specifi-
cation is timestamped witi 7" and 77~ values that indicate when the part was
inserted and subsequently logically deleted. How should these time values be taken
into account in the semantics?

A first thought may be that only current vacuuming specification parts should
be taken into account in the semantics of a specification. However, the semantics
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must express for each relation what is left in the relation, independently of when the

missing data was removed. Because even non-current (logically deleted) vacuum-
ing specification parts may be responsible for the absence of tuples from a relation,
all parts, non-current as well as current, must be taken into account in the semantics.

However, thel' T" andT T~ values of a part do affect the semantics. Recall
that vacuuming specification parts may involve the varid@®WV that evaluates
to the current time, making themMOW-relative. For example, specification part
v2 in the running example specifies the removal of tuples from relaapwith
Sex= F, for whichNOW — 4yrs < TT~ < NOW — 2yrs. This specification part
was inserted on 8/30/1995 and remains current. So at the current time, the effect of
this specification is the removal of tuples that at some time between 8/30/1995 and
the current time have satisfied the specified property, that is tuplesSSexk- F
and for whichar (r — 4yrs < TT™ < t — 2yrs A 8/30/1995< < tnow).

In general, the expression of a vacuuming specificationypastmodified to
take into account its timestamps as follows. All occurrenceN©OW in the ex-
pression are replaced by an unused variaptbe expression is augmented by the
term “A v;.TT" <1t < [[vl-.TT*]]tnOW,” and the resulting expression is existentially
guantified byr. Equivalence-preserving transformations may subsequently be ap-
plied to the modified specification parts in order to simplify them. Recalling that
each specification pawt can be rewritten in the forms(R,) : op(R,),” modifying
a specification part to take its timestamps into account gives a specification part in
the form “w(Rx) : 03 (pr & . TTH <t<[v.TT 1,0, (Rx):” Where P’ is the predicate
P with NOW replaced by.

Thus modifying any user-specified vacuuming specification part that follows
the syntax defined in Section 3.2 yields a well-defined expression specifying in
constant term&xactly what is selected byMOW-relative specification part from
its insertion until the current time. Note that a logical deletion (which corresponds
to replacing valu&NOW of attribute7 T by a fixed value) fixes the upper bound of
the vacuuming to some time before the current tim&y.

ExAMPLE: The selection predicate in specification parfwith 77" = 8/30/1995
andTT~ = NOW) modified as explained above may be simplified as described
next. We assume that the current tiragy is 7/14/1998.

3t (Sex= F At —4yrs < TT™ <t — 2yrs A 8/30/1995< ¢ < fnow A thow = 7/14/1998
Sex= F A 8/30/1995— 4yrs < TT < thow — 2YIS A thow = 7/14/1998
Sex= F A 8/30/1991< TT™ < 7/14/1996

Recalling that all current tuples have the varia¥@Wwas their7 7 value and
thatNOW s instantiated at the time of evaluation, the semantics of the predicate of
specification part, at time 7/14/1998 is as follows.

Sex= F A 8/30/1991< [TT '17/14/1998< 7/14/1996 0
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In addition toNOW~relative specification parts, parts that specify vacuuming
in the future are meaningful and thus allowed, although they do not appear to be
very useful. To understand the issue, consider a removal specification part with
predicate NOW — 1yrs < TT™ < NOW + 1yrs” When this part is deleted, at
some timenow, the upper bound df 7~ of tuples to be removed igow+ 1yrs, i.€.,
one year into the future. So for one year after having deleted the specification part,
this part continues to remove tuples; the deletion does not stop the removals. The
removal specification part with predicatBlOW — 1yrs < 7T would remove
exactly the same tuples as the first one above, during the time both are current,
and it ceases to remove tuples when logically deleted. Note that both specifica-
tion parts result in tuples being removed immediately upon insertion. This kind of
meaningful, though not useful specifications are expected not to be supported by an
implementation of vacuuming.

Having considered the various issues, we are able to define the semantics of a
vacuuming specification in terms of its effect on each relation in turn. To do that, we
defineV|g, as all specification parts i that concerm,, i.e., parts with a/spec
value of the form &(R,) : Exp.” Now, let V |g. = {v1, ..., Uk, Vk41, ..., Us},
wherev; € {vy, ..., v} areremovalspecification parts ang € {vi41, ..., vs} are
keepspecification parts. Following the observation in Section 3.2 and taking the
timestamps into account as above, g specifying vacuuming for a relatioR,
can be reduced to the fornv(R,) : oF, (Ry),” where F; is of the form "3, (P/ A
v, . TTY <t < [v;.TT™],,,).” We assume without loss of generality that eagh
andv; above are of this form.

With the assumptions and notation introduced above in mind, we define the
modified relation ofR, at the current timeRx, as follows.

~ def
Rx = O-_‘(\/leFi)v(\/j‘:k-s-le)(RX) (1)

So, the modified relatio®, is the set of tuples fronR, either not satisfying any
predicate of a removal specification p#jt or, if so, also satisfying the predicate

of at least one keep specification pa&it Tuples not satisfying any predicates at
all are present irk,, and so are tuples satisfying any number of predicates from
keep specification parts. Also, no tuples satisfying only predicates from removal
specification parts are presentf. This way, keep specification parts override
removal specification parts.

EXAMPLE: Let us illustrate vacuuming by creating the expression of the mod-
ified relationefmp from relationsempand V. = {v1, v2, v3} presented in Sec-
tion 2. V contains only well-formed specification parts, which by equivalence
transformations can be rewritten to be on the fon(R,) : op(R,).” Since vy

and vy are NOW-relative specifications, they are rewritten to the fora(R,) :
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O3t (P'Avr TTH <t <[v;. TT Ty (Kx)- NOW, from Equation 1 we get the modified re-

lationemp= (emp V) = (o—(r,vry)vrs(€EMP, V) = (emp P). Let Fq, Fo, andF3
be the selection predicate in the rewritten specification parts,, andvs, respec-
tively. Then the selection predicat€& = —(Fy Vv F») Vv F3 will be:

F' = =[3rn (IT" <1 —4yrs A 5/16/1992< t; < thow) V
tr (tp —4yrs< T T <ty — 2yrs A 8/30/1995< 17 < thow A Sex= F)]
Vv [Bal < $— 5,000
= = [TT" <tnow—4yrs v (8/30/1991< TT™ < tnow— 2yrs A Sex= F)]
Vv [Bal < $— 5,000

Note that the vacuuming-modified relatiefnpcan be vacuumed due 6 without
changing; no additional tuples will be kept or removed. Finding the vacuuming-
modified expression, when vacuuming one more time, is done using the selec-
tion predicates in the same way, and since they are already present in the first
vacuuming-modified expression, they can be left out leaving the same vacuuming-
modified expression. In our example this gives:

(o=(FivEvE(E€MP, V) = (0=(FvE)v 3 (0-(Fv 2 v Es (€MD), ¥)
= (o-~(rvF)vE(EMP, ) O

A system that implements vacuuming must obey the semantics defined above.
On the other hand, it is also attractive for the system not to have to actually perform
physical removals eagerly to ensure that the semantics is obeyed. Rather, lazy phys-
ical removal is attractive.

In order to both ensure correct semantics and permit lazy removal, the system
may use the vacuuming-modified relation expressions defined above in place of the
corresponding relations themselves. The expressions then serve as filters that hide
the tuples in the relations that have been vacuumed logically, but may or may not
yet have been physically removed.

5 Querying Vacuumed Databases

Having defined the notion of a database system with vacuuming, we now turn to
the querying of databases in the context of vacuuming. Recall that the example
guery from Section 2 returned a result affected by vacuuming. With vacuuming,
transaction-time databases no longer retain a perfect record of their past states, and
the results of queries become harder to interpret. For example, a query on a past
state may return an empty result either because this state never contained qualifying
data or because all qualifying data have been removed because of vacuuming.

This section defines the concept of faithful history encoding satisfied by trans-
action-time relations without vacuuming, but not with vacuuming; and it defines



300 SEMANTICS OF TEMPORAL DATA

the concept of faithful history querying, aiming at making queries on vacuumed
databases easier to interpret. Finally, several options that a system may adopt when
reacting to queries affected by vacuuming are discussed.

5.1 Faithful History Encoding and Querying

To capture what may be jeopardized by introducing vacuuming, we first state the
desirable property of faithful history encoding. Specifically, a transaction-time re-
lation without vacuuming retains all its previous states. So a query that retrieves the
current database state at some tiyend the query that at some later time retrieves
the database state recorded as being current at tnwik both give the same result.

This isfaithful history encodingTo give a precise definition, we need to define the
meaning of retrieving the state current as of some time. For this purpose, we define
the timeslicer; (R, ) of R, at timet [Sch77]. This operator returns a non-temporal
relation having the explicit attributes &, , and that contains the tuples that are
value equivalent to the tuples in relati®y current at time.

(R ={u|u € R, A W=u A TTE <t < IIu’.TT_']]t}

Next, we also need to be able to “rollback” a relation to how it was at some
past time. For this purpose, IR, ], denote relatiorR, at timez, i.e., the set of
tuples present in the relation at this time. THER\, ]|, contains the set of tuples
inserted into the relation before or at timeeven if they were subsequently deleted
between time and the current time; further the timestamps of the resulting tuples
are restored to their original appearance at timlore formally,[[ R, ]; is defined
as follows.

R, % (w3 e R S0 AuTT =/ . TTF Au.TT™ <1 A
(wTT =u' . TT AW TT, <0) Vv
u.TT™ = NOWA [u'.TT], > 1))

So to obtain the result, we first consider only the subs&,ahserted no later than
timer. If atuple was deleted after timewe replace the deletion time with the value
it actually had at time, NOW, otherwise, the tuples from our subset are returned
unmodified. Note thafR,]l;,,, = Rx.

ExAMPLE: To illustrate the definition, consider relati@mpas given in Table 1.
[emdl10/1/94 denotes the set of tuples shown in Table 4. Tuples 6 and 7 where in-
serted inempatfter 10/1/94, so they are not present here. Tuple 2 had a transaction-
time end of §31/97 and[[8/31/97110/1/04 = 8/31/97, which exceeds }0/94.
Thus tuple 2 receives the variaddOW as its new transaction-time end value.
Tuples 1, 3, 4, and 5 all haveT' T 'll10/1/04 < 10/1/94, so they retain their
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| S| Empld| Sal | Bal | Sex| 17" | 777 |
1 234 32k | $—-6,015| M 2/7/93 | 5/10/94
2 128 28k | $ 10274 | F | 8/14/93| NOW
3 234 32k | $—2,015| M | 5/11/94 | 6/2/94
4 597 40k | $—-4,652 | M | 5/12/94 | 7/2/94
5 597 47k | $—-2,576 | M 7/3/94 NOW

Table 4: The[emdl10/1/94 Relation

transaction-time end values. The tuples in the table are exactly the tu@ssat
time 10/1/94. O

With the two preceeding definitions, we can precisely defamiful history
encoding

VR, (VT = Inow (Tt(Rx) = Tt([[Rx]]z)))

That is, for all relations and all timeasnot exceeding the current time, evaluating
the timeslice with time parameteon the relation as it was at timeversus on the
current relation gives the same result. As a result, all previously current states are
retained.

With faithful history encoding, if a query on a past state returns an empty
result, then this means that there never were qualifying tuples in this state. However,
as exemplified in Section 2, transaction-time databases with vacuuming are unable
to satisfy the property of faithful history encoding, and this inference cannot be
made. This leads to a possible misinterpretation of the query response.

To reduce this inherent, but also undesirable, effect of vacuuming, we define a
new correctness criterion, termé&dthful history queryingthat when satisfied will
assist the user in correctly interpreting the result of a query. This criterion states
that only queries that return the same answers when submitted to the vacuumed
database as when submitted to the corresponding unvacuumed database should be
answered without an accompanying warning.

DEFINITION: Let queryQ be defined in terms of relation®;, Ry, ..., R,. Let
Warningbe an (intensional) error warning that may be issued together with the
usual extensional result of a query. Then the correctness critéaitinful history
guerying states that the answer @ should be given as follows.

Q((Rl’ V)’ (RZ’ V)9 ] (Rna V)) If Q((Rlv V)’ (RZ’ V)’ st (Rn’ V)) =
Q((Rlv @)a (RZ’ Q))a ctt (Rn» Q)))
(Q((R1,V),(R2,V),...,(R,,V)), Warning otherwise



302 SEMANTICS OF TEMPORAL DATA

O

ExampPLE: To illustrate faithful history querying, we consider two sample queries
based on the running example.

The first query,Q1 = orr+_nownBai=$0(EMP, only selects from the part of
relationempnot affected by vacuuming. Therefore, it is unaffected by vacuuming,
and a system satisfying faithful history querying can return the usual, extensional
answer, in this case the relation consisting of tuple 6.

The second queng@,; = osak35(emp, overlaps with the part oémpaf-
fected by vacuuming. With this query, it is impossible to guarantee that the result
will be unaffected by vacuuming, and a system satisfying faithful history querying
must return a warning with the extensional query result. a

Having defined faithful history querying, we proceed to discuss various re-
sponse strategies that can be used to satisfy the criterion.

5.2 Query Handling

A vacuuming-enhanced system satisfying faithful history querying answers queries
not affected by vacuuming transparently, but additional response is required when
answering the remaining queries. Various strategies could be used when responding
to queries affected by vacuuming. Some of these are discussed later in this section.
In order to identify the queries affected by vacuuming, it is necessary to de-
termine if Q((R1, V), (R2, V), ..., (R,, V)) = Q((R1,9), (R2, D), ..., (R, 1)).
A foundation for possible actions taken to evaluate this is outlined in the following
three overall steps, each of which is subsequently discussed in some detail.

1. At vacuuming specification time, create expressions for the vacuuming-mod-
ified relations.

2. At query time, create the modified counterpart of the query submitted, ob-
tained by replacing the relation names in the query with the corresponding
vacuuming-modified expressions for the relations.

3. Check if the modified and the original queries are equivalent. If so, the origi-
nal query is not affected by vacuuming.

The first step is to create the vacuuming-modified relation as an expression on
the unvacuumed relation. This was addressed in Section 4.

EXAMPLE: In Section 4, we obtained expressiop (emp for the modified ver-
sion of relationemp whereF”’ is given by

= [(TT < thow—4yrs9)Vv(8/30/1991< TT™ < thow—2yrs A Sex= F)]v[Bal < $—5, 000],

whererow denotes the current time. a
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The second step occurs when a quérys issued. At this point, the system
prepares its test of whether returning an unqualified, extensional result of the query
will violate faithful history querying. A vacuuming-modified versi@i of Q is
created by replacing all relation namesarby the expressions for the correspond-
ing vacuuming-modified relations. The well-known technique used here is query
modification, which is traditionally used for implementing integrity constraints and
views [Sto75]. For example, an occurrence of a view name in a query is substituted
by the definition of the view so that the resulting query only references the base
relation(s) used in defining the view.

In the third step, an equivalence test is performeddoand Q’. Although it
has been shown that the general problem of determining equivalence of relational
expressions is NP-complete, efficient algorithms have also been devised for deter-
mining equivalence for an important subset of relational expressions (most practical
SPJ-queries) [ASU79a, ASU79b, PS88]. So the test employed is one that will never
succeed if, in factQ andQ’ are not equivalent (soundness), but also may fail to de-
tect equivalence among complicated expressions (incompleteness). While a sound
and complete procedure is preferable, the incompleteness is expected to be only a
minor inconvenience in practice.

EXAMPLE: Inthe second example in Section 5.1, we considered two queries. The
firstwasQ1 = o7r-—nownBal=$0(€EMP. When this query is issued, we replagap
with the expression(emp given in the previous example to obtain the modified
version, Q7. Using standard equivalence transformations, it is straightforward to
verify that the original and modified queries are equivaléht,= Q7. (Note that
occurrences o0NOW in a query are replaced byow when it is issued to the sys-
tem.) The system can therefore evalu@teand return the answer without violating
faithful history querying.

The second query wa@s = osap35(€mp. Itis easy to see that this query
is not equivalent toQ2 = osap3s (0 (€MP), again using the definition of”
given in the previous example. It will thus constitute a violation of faithful history
guerying to return an unqualified answer to quéxy. a

Having a strategy for evaluating the effect of vacuuming on a query, what kind
of response will satisfy faithful history querying? If the vacuuming has no effect,
the system can simply evaluate the query and return the extensional answer to the
user. However, if vacuuming may have an effect, the system should accompany
the extensional result with additional information. A query answer then consists
of a relation, the extensional result, and possibly of explanatory information, the
intensional result. In the following, we outline in turn some options for these parts.

The extensional result. We may distinguish between two result relations.
a. Return the result of evaluating the original quéryknowing that it might be
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affected by vacuuming. Note that this is equivalent to returning the result of
the modified quengQ’.

b. Return an empty result.

The intensional result. Different explanatory information of an intensional na-
ture may accompany an extensional result.

I. A warning that queryQ may be affected by vacuuming can be returned. This
warning will inform the user that the result might have been different had
vacuuming not been performed.

ii. Awarning that queryQ may be affected by vacuuming, followed by a vacuum-
ing-modified queryQ’. This query may be presented as it is constructed, pos-
sibly yielding a complex query that is hard to interpret and act upon. Or the
vacuuming-modified query could be specialized and/or generalized to obtain
a “similar” query [Mot84, Cha90] that is simpler and thus easier to interpret
and still is not affected by vacuuming. Using generalization necessitates a
new equivalence check. The response can be given in English or a formal
language.

lii. A warning followed by an exception, either giving the part of the query not
accessible, based on the part of the vacuuming specification relevant for the
guery, or giving the vacuuming specification parts relevant for the query. The
response can again be given in English or a formal language.

iv. No intensional information.

Combining the two lists of options leads to different approaches to reacting
to queries affected by vacuuming. Note that some strategies will not satisfy faithful
history querying. We proceed to discuss the combinations b-ii and a-iii.

Option b-ii.  With this option, an empty relation, a warning expressed, possibly
expressed as an error code, and an alternative query are returned.

In the case of an on-line user, this approach requires an interactive response.
In the case of application access, a predefined reaction defined in the application,
depending on the error code, is required. In either case, it may require some skill to
understand the alternative query and then determine whether or not the alternative
guery is a useful one.

In situations with just a few possible and well-defined reactions, these can
easily be programmed in the application; otherwise, it may be difficult to predict
and respond appropriately to all possible error codes. For on-line users, a few pos-
sible reactions will probably not present any problem, but in situations where the
alternative queries are very complex, this option may prove too challenging to some
users.
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Option a-iii. With this option, the answer to querQ’ is returned along with
explanatory information about how que@ymight be affected by vacuuming.

Focusing on embedded queries and application access, this option will pro-
duce an extensional result that can be used without further action from the appli-
cation. |If faithful history querying is critical, the application could take special
action depending on the warning or error code accompanying the extensional an-
swer. Whether the act should be to, e.qg., reject the dataset or to log the exception for
later use will depend on the application. With this option, all existing applications
would still be running on the vacuumed database.

Interactive user access gains from this approach. The extensional result can
still be used without further action, but the user can also submit another query fol-
lowing an inspection of the intensional component of the answer.

For both options, embedded queries could be pre-evaluated for equivalence
purposes, and modified query/exception could be pre-constructed. This pre-evaluation
could occur after each change to the application or database structure. Also for both
options, performance will depend on the cost of the equivalence check. Whether or
not it makes sense to compute and return the result’dfvhich is also the result
of Q) depends on how likely this result is to be useful to the user.

6 Modifying Vacuumed Databases

Having defined vacuuming and having also covered the querying of vacuumed data-
bases, database modification remains to be covered, addressing questions such as
the following: What happens when tuples are inserted into or deleted from user-
defined relations or the vacuuming relation? Will such modifications create an in-
consistent database?

Recall that the process of vacuuming is irreversible, so that “once data is
vacummed, it is always vacuumed.” Recall also that in order to prevent possible
misinterpretation of query answers, a vacuuming system should Saiisfiul his-
tory querying(see Section 5). To do this, the system must be able to evaluate if
vacuuming has made a difference for each query. Thus, the system must have avail-
able a record of what kind of vacuuming may have been performed. Consideration
of both of these two aspects of vacuuming leads to limitations being imposed on the
modification of the database.

Since all relations are temporal, all modifications—insertions, updates and
deletions—of regular, user-defined relations only result in the accumulation of ad-
ditional data. Thus, no data or information can be lost and vacuuming cannot pose
any limitation on modifications of regular, user-defined relations. However, vacu-
uming can pose limitations on modifications of the vacuuming relaiion,
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Section 6.1 covers modification of relatidh considering vacuuming specifi-
cation parts of the forma (R,) : EXp’ (see Section 3.2), wherR, is any relation,
user-defined as well ag. In this section, we shall see that the irreversibility of
vacuuming poses certain constraints on which modifications are allowed. For ex-
ample, it makes no sense to insert a specification part in order to keep tuples that
are already selected by an existing removal specification part.

Section 6.2 proceeds to cover another type of constraint that applies only to
the vacuuming of relatiofv itself; a type of constraint which is accomplished via
vacuuming specification parts of the form (V) : Exp” Specifically, to achieve
the functionality described in this paper, it is necessary to retain a complete spec-
ification record stating what data—ordinary temporal data as well as vacuuming
specification parts—has been removed from the database by vacuuming. Thus, not
all vacuuming specification parts can simply be removed.

A summary concludes the section.

6.1 Irreversibility-Induced Constraints on Vacuuming

When updating the vacuuming of regular relations and the vacuuming relation, it
is a challenge—the only one for vacuuming regular relations—to contend with the
irreversibility of vacuuming. For example, once a tuple has been selected by some
removal specification part, keep specification parts that would select the tuple must
be disallowed. The principle “once vacuumed, always vacuumed” must be satisfied.

Stated precisely, the set of vacuuming specification parts must be consistentin
its specification of data removal, even as time proceeds and the set of specifications
is modified. We require that if it specifies removal of a tuple, it must continue to
specify removal of that tuple. More precisely, a vacuuming specifictiamust be
growing, which is defined as follows.

growing V) <% Ve (YR, (Vu (u € ([R:Dy. ) Au & (IR, [V, =

V' >t (u & (IR, [[V]]t’)))))
So a vacuuming specificatidnis growingif and only if all tuplesu being removed
from relationR, at some time will continue to be removed for all times afterr.
Note that([R,];, [V],) denotes the relatioR, as it was at time, vacuumed by
the vacuuming specificatiovi as it also was at time To ensuréV/ to be growing,
we consider (logical) deletions and insertionsiom turn.

Consider a general specification pauf the form(“w(Ry) : op(Ry)”, tins,
NOW), which was inserted at timgs, remains current, and is thus a candidate for
deletion. Recall that the effective algebra expression for this specification part at
time ¢’ will be

03t (P’ A tinsstgt/)(Rx), (2)
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where P’ is P with occurrences oNOW replaced by andt’ was obtained by
evaluating[7 T, = [NOW],.. For all times:” after:’ the range of possible
values is extended—resulting in more tuples being selectad Deletion ofv is
accomplished by setting it67 ' value torge;, the time when the deletion occurs.
Thus, for all times aftetye, the effective expression ferwill be

O3t (P! A ting<t<tdel) (Ry). (3)

Because the deletion fixes the range of possiblalues, it also fixes the set
of tuples selected by; and no additional tuples are added to this set.

First, if v is a keep specification part, deletion offixes the set of tuples
to be kept; and no additional tuples are to be kept—especially not tuples already
removed. Therefore, the deletion does not result in a decrease of the set of tuples
specified for removal, and will remain growing

Second, ifv is a remove specification part, the expressions for the correspond-
ing vacuuming-modified relation at timesand rqel, respectively are defined as
follows.

Ry = 031 (P! A fing<t<t')] (Rx) (4)

Ry = oz (P’ A tinsgtgtdep](Rx) (5)

To see that the deletion efdoes not render a growing specification non-growing,

it is sufficient to observe that Expression 5 returns no more tuples than the one it
replaces at the time of the deletion, namely Expression 4. At that time, Expression 4
hast’ = t4el, making the two expressions identical.

Turning to insertions, first observe from Expressions 2 and 3 that any spec-
ification part by itself is growing. This means that inserting any vacuuming spec-
ification part into an empty vacuuming specification would constitute a growing
vacuuming specification.

However, since both remove and keep specification parts are growing, a com-
bination of the two can create a non-growing specification. The problem is that it
Is possible for a keep specification part to select a tuple already selected by a re-
moval specification part, creating an impossible situation where a tuple selected for
removal and possibly already removed must be kept in the database. This situation
may occur because of the insertion of either a removal or a keep specification part.

Before stating requirements for insertions to avoid this problem, we give ex-
amples that explore the issues involved. First, inserting a removal specification part
may lead to a conflict with an existing keep specification part. When this occurs,
the removal specification part should not be inserted.

EXAMPLE: AssumeV = {vp, uvs}, the current time being 7/14/98, angis tried
for insertion. The specification parts are given in the table that follows.
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Vspec TT" TT™
v2 | k(emp : oBal<$—5,000(EMP 5/16/1992 | NOW
vs | k(€MD :07/14/3006-NOW<TT<7/14/4000-Now(€MP | 7/13/1998 | NOW
v7 | p(eMP o774 <NOW-1yrsaSex=m (EMP 7/14/1998 | NOW

At some time’, vs states that tuples @mpsatisfying the following predicate
must be retained.

It (7/14/3996—t < TT™ < 7/14/4000— t A 7/13/1998< t < [NOW],/)

For example, for’ = 7/13/1998, the predicate is/1/1998< TT~ < 1/1/2002,"
and the lower bound ofiT " will continue to decrease as time passes.

Now assume that we want to insert specification pariThe semantics af7
at timer’ is

O[3 (TT <t—1yrs A Sex=M A 7/14/1998<r<[Now],)] (EMP-

Fort' = 7/14/1998, the selection predicate become T ' < 7/14/1997A
Sex= M],” and the upper limit orf' 7~ will increase as the current time increases.

Insertingu7 will not present a problem at the time of insertion, but after a few
months, a situation will occur where wheg says must be kept has already been
selected for removal by;. For example, in six months the lower bound®fi ' in
the expression fors is 7/1/1997. Bus selects tuples witlf 7~ < 7/14/1997 (and
with Sex= M) for removal already at the current time. In conclusion, insertion of
v7 is not acceptable.

Note that related insertion af; will not present any problems in relation to
v2, Which does not expand as time proceeds to select tuples that at some time in the
future will be selected bys. O

To formalize these observations, insertion of a removal specificatiorvpart
will assureV to be growing, ifv; does not remove any tuplethat in time will
satisfy the predicate of any existing keep specification part. Assume that removal
specification parv; concerns relatioR,,. When tried for insertion into specifica-
tion V at timet, insertion ofv; is growth assuringf growRenqv;, ¢, V), defined as
follows.
growRen;, ¢, V) g =3, <t <t" AJu(u & (R, [V U {v;i ;)

A € ([Rxlyr, TV U {vidlle)))]
The definition states that insertion of a removal specification part is growth assuring
if no two timest’ and¢” later than the insertion time exist so that a tuplean be
found not being in the vacuumed relation at timgbut being in the vacuumed
relation at the later time¢’.

Turning to the insertion of keep specification parts, two similar problems can
occur. A keep specification part to be inserted can specify that tuples already se-
lected for removal must be kept, or the keep specification part can at some future
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time select tuples for keeping that were selected for removal prior to that time. The
next example illustrates this.

ExAMPLE: Assume thaty = {v3} and that we want to inserkg andvg; see the
table below.

Vspec TT" TT™
v3 | P(EMD  : ONOW-4yrs<TT+<NOW-2yrsnSex=r (EMP 7/4/1996 | NOW
vs | k(€MD  :07/15/3996-NOW<TT<7/15/4000-NoW(EMP | 7/14/1998 | NOW
vg K(emp . O'TT—|2Now_3yrs(emp 7/14/1998 NOW

At the current time, 7/14/1998, specificationiselects tuples that satisfies the
predicate “g30/1991 < TT™ < 7/14/1996A Sex= F” for removal. Sincevg
currently specifies that tuples satisfying predicat@* > 7/14/1995” should be
kept, insertingg will create an instant problem.

Insertingus creates a delayed problem. For example, after the date 1/1/2000,
vs Will specify that tuples should be kept if (logically) deleted on or after 7/14/1996,
butvs already selects tuples deleted at that date for removal. So in time, also insert-
ing vs will create a problem. a

Generalizing this, insertion of a keep specification pawill leave V grow-
ing if it does not specify keeping of any tuplealready specified for removal, and
if it does not expand to do so as time proceeds. Assumevih@incerns relation
R,. Then, when tried for insertion into specificatibnat timez, insertion ofv; is
growth assuringf growKeepv;, ¢, V), defined as follows.

f
growKeepv;, ¢, V) <d:e>

—[3 (<t AT W & ([(Relly, [VIe) Au' € (TR, TV U {v;}))IA
—[3, "t <t <t" AJu (u & ([Relly, [V U {vj}y)
Au € ([RIy, [V U {vj )]

The first line in the definition states that, at the time of insertion, no tupieust

exist that is selected for removal B¥ before that time, but not by the modified
specification. The last two lines have the same format as the definition of growth
assuring for insertions of removal specification parts.

In conclusion, to ensure that vacuuming specifications will satisfy the property
of “once vacuumed, always vacuumed,” no actions are needed when deleting tuples
from the database, but inserting a vacuuming specificationypa€cessitates an
evaluation ofgrowRengv, ¢, V) or growKeepw, ¢, V).

6.2 Retention of Vacuuming Information

Recall from the introduction to this section that in order for the vacuuming sub-
system to satisfyaithful history queryingt must retain knowledge on the status of
vacuuming. The vacuuming specification is itself a temporal relation, and so it is
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possible to also apply vacuuming to the vacuuming specification itself. However,
we must ensure that a complete record is retained of the vacuuming that is or will
be in effect. This section formulates constraints to ensure this.

It should be clear that removal of specification parts being current is problem-
atic. Even parts that have been deleted may not always be selected for removal. An
example illustrates the potential problem.

EXAMPLE: Assume thaty = {v1, v4} and thatvg is tried for insertion (see the
table below).

Vspec TT" TT™
v1 | p(EMP  : o77-—Now_ayrs(€MP | 5/16/1992 | 7/14/1997
va | p(emMpP  :opr-<now-eyrs(€EMP | 7/15/1997 NOW
v | P(V)  :orr—now(V) 7/14/1998 | NOW

Here v4 takes the place ofi; at time 7/15/1997. Now, at the current time
7/14/1998, even thougty is deleted, it is still the reason for the removal of tuples
with TT™ < 7/14/1993, andv4 still has no tuples to remove, since it selects tu-
ples deleted before 7/14/1992 for removal. Thusalthough not current is still
important if one is to understand the contents of the database.

Insertion ofvg will specify the removal of vacuuming specification parts that
have been deleted, leading to removal of specificationgartf that happens, it
will, for some time, not be possible to see that original data may have been removed.
Due to this, insertion of specification pag should not be allowed. a

To ensure that relevant information about vacuuming is not lost, we introduce
the notions ofalive anddeadspecification parts. A specification parof a vacu-
uming specificatiorV is alive at timet if it is responsible for vacuuming at tinzeor
will become responsible for vacuuming at a later time. Such parts must be retained
because of the information they provide about the present or future vacuuming.

For a specification pant specifying vacuuming for relatio®, vacuumed
according toV, we define it beinglive at timer as follows.

alive(v, t, V) & ' [ >t A
[Fu (u & ([RxIly, [VIy) Au € (IR Iy, [TV \ {v}l))
AJEXp (v.Vspec= p(Ry) : EXp] Vv
[Fu (u € ([Rx1y, [VIy) Au & (IR 1y, IV \ {v}))
AJEXp (v.Vspec= k(Ry) : EXp]]
A removal specification pant; specifying vacuuming forR, is alive at timer if
at some time’ later thanr a tupleu will exist, with 1 being in relation[ R, ],
vacuumed by excludingv;, and withu not being in[R, ], vacuumed by all of
V. In the same way, a keep specification parts alive at timer if at some later
time ¢/, a tupleu will exist in [R, ], vacuumed according to all df, but not in
[R.], vacuumed according t& excludingv;. Removal and keep specification
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parts are thus active if their presence select additional tuples for removal and keep,
respectively. If’ = ¢, specification part is currently responsible for vacuuming,
and we ternv active

In contrast to the specification parts being alive, all other parts are not and will
never be responsible for vacuuming; they dead For a specification pait € V,
we define it to beleadat timer as follows.

f .
deadv, t, V) <d:e> — alive(v, ¢, V)

Finally, the set of alive specification parts at timmay be defined as follows.
This is the set of the parts that either are responsible for vacuuming at tinveill
be so at a later time.

alive(V,r) = {v | v e [VI, A alive(v, 7, V)}

EXAMPLE: To illustrate, letV = {v1, vz, v3, v4} be the current vacuuming speci-
fication, given in the table next, at time 7/14/1998.

Vspec TT" TT™
v1 | p(EMD 0771 —now-4yrs(€MP 5/16/1992 | 7/14/1997
v2 | k(empP  : oBal<$—5000(EMP 5/16/1992 NOW
v3 | p(BMP  : ONOW-4yrs<TT-<NOW-2yrsaSexcF (€MD | 7/4/1996 NOW
v4 | p(€mpP  :orr-<Nnow-—6yrs(€EMP 7/15/1997 NOW

The set of active parts {91, v2, v3}. Atthis time, partvs selects only tuples deleted
before 7/14/1992 for removal, b also selects these and more tuples for removal.
So at time 7/14/1998y, is not active. Buby, is alive because it will be active after
time 7/14/1999. After time 7/14/1999; will be dead O

A vacuuming subsystem must retain enough vacuuming information for it
to always be able to test the equivalence of a query and its vacuuming modified
counterpart and to satisfithful history querying This will require the system to
retain allalive vacuuming specification parts. So when modifying the vacuuming
relation at some time all that is necessary is to check if parts that aralive(V, r)
will be removed. Note that the vacuuming specification must also regnamng.

Now, modifying vacuuming on the vacuuming relation corresponds to delet-
ing and inserting tuples I |y, the set of specification parts effective on relation
V.

Deleting a vacuuming specification part results in a fixed timestamp end value
in the tuple. This only stops the vacuuming, retaining existing vacuuming knowl-
edge. Thus, no vacuuming knowledge is lost and, for the same reason as above, the
vacuuming specification will continue to lggowing Thus, deleting tuples will not
create any problems.

However, inserting tuples can create problems, since this will specify removal
or keep of vacuuming specification parts. First of all, it is still a possibility that the
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part to be inserted will make the vacuuming specification non-growing. This was
addressed in the previous subsection. Second, since inserting a keep specification
part will only cause the system to retain vacuuming specifications in the system, it
will not create further problems. Inserting removal specification partd/feuill,
however, create a potential loss of vacuuming knowledge. To ensure that this will
not happen, specifying removal of specification parts beilne should not be
allowed.

So, what makes a removal specification pgrtspecifying vacuuming o,
admissible for insertion int&’? First, as stated before, the insertion must ensure
growth, and second it must beformation retaining Insertingv; into V retains
vacuuming information ifnfRetv;, ¢, V), defined as follows.

infRet(v;, ¢, V) g = [ (' = A

' (@live(v’, ¢, [VI) Av € (LVIy, [V AV & IV, IV U {vi}li)))]
The definition says insertion of a removal specification padt the timer retains
information about specification parts being alive, if and only if there at no time
aftert exists a vacuuming specification part being alive’aand being removed
by v; at that time, i.e., the insertion retains information if only dead parts will be
removed by;.

6.3 Summary

Two major problems may occur when modifying a vacuuming database, and both
happen when new specification parts are inserted. First, an insertion can violate the
principle “once vacuumed, always vacuumed.” Second, an insertion can create a
loss of vacuuming knowledge. To ensure that these problems do not occur, this sec-
tion has defined properties covering these cases. The full definition of admissibility
for insertions is given next.

DEFINITION: A vacuuming specification patt is admissible for insertion in the
vacuuming specificatiol at timer if and only if admIinsertioikw, ¢, V), defined as
follows.

admlinsertioiw, ¢, V)
[infRet(v, t, V) A growRenv, ¢, V) A JEXp (v.Vspec= p(V) : Exp] Vv
[growRenv, ¢, V) A JEXp R, (v.Vspec= p(Ry) : EXp)] Vv
[growKeefv, t, V) A JEXp (IR, (v.VSpec= k(Ry) : EXp
vv.Vspec=« (V) : Exp))] O

def

7 Conclusions and Research Directions

A wide range of applications are faced with accountability and traceability require-
ments, in turn yielding underlying databases that retain their past states. Such
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databases, termed transaction-time databases, are ever growing, and conventional
(logical) deletions result in insertions at the physical level.

This paper presents a foundation for the physical removal of data, or vacuum-
ing, from such databases. While necessary, vacuuming compromises the property
that past database states are retained. The paper defines the semantics of vacuuming
specification facilities, and it presents options for detecting and evaluating queries
that, if answered, may yield results affected by vacuuming. The requirement of
being able to detect vacuuming-affected queries imposes certain constraints on the
modification of vacuuming specifications; the concepts necessary to capture these
constraints as well as the constraints themselves are given.

The studies reported in this paper point to interesting research directions,
some of which are described next.

In the current foundation for vacuuming, vacuuming is an “all-or-nothing”
proposition: either data is irreversibly eliminated or is retained. Extending the foun-
dation to also allow for the specification of off-line (or even “near-line”) archival in
the context of multi-level storage architectures appears to be an interesting and very
useful, but also non-trivial direction.

One of today’s foci in data warehousing is the bulk-loading of very large
amounts of data, but as years of data are accumulating in data warehouses, vacuum-
ing is likely to become a future focus of attention. The advanced decision support
gueries in data warehousing are expected to introduce new challenges to vacuuming
support.

When a query against a vacuumed database may not return the same result as
when issued against the unvacuumed, but otherwise identical database, a coopera-
tive system may offer alternative queries that are similar to the original query, but
are not affected by vacuuming. While the paper briefly touched upon this aspect,
the use of techniques such as query generalization and specialization for obtaining
simple and easily comprehensible alternative queries deserves further exploration.
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