
8
A Foundation for Vacuuming Temporal

Databases
Janne Skyt, Christian S. Jensen, and Leo Mark

A wide range of real-world database applications, including financial and med-
ical applications, are faced with accountability and traceability requirements.
These requirements lead to the replacement of the usual update-in-place pol-
icy by an append-only policy, resulting in so-called transaction-time databases.
These databases retain all previous states and are therefore ever-growing. A va-
riety of physical storage structures and indexing techniques as well as query lan-
guages have been proposed for transaction-time databases, but the support for
physical deletion, termed vacuuming, has only received little attention. Such
vacuuming is called for by, e.g., the laws of many countries and the policies
of many businesses. Although necessary, with vacuuming, the database’s per-
fect and reliable recollection of the past may be manipulated via, e.g., selective
removal of records pertaining to past states. This paper provides a semantic
foundation for the vacuuming of transaction-time databases. The main focus
is to establish a foundation for the correct processing of queries and updates
against vacuumed databases. However, options for user, application, and data-
base interactions in response to queries and updates against vacuumed data are
also outlined.

287

288 SEMANTICS OF TEMPORAL DATA

1 Introduction

Real-world database applications are frequently faced with accountability and trace-
ability requirements, which in turn lead to so-called transaction-time databases that
faithfully timestamp and retain all past database states, thus offering their applica-
tions a perfect, uncorrupted record of the past [Cop82].

However, these databases are also ever-growing, and laws and business poli-
cies demand the ability to physically delete data. Such physical deletion necessarily
compromises irreversibly the perfect record of past states. It is thus a fundamental
requirement to physical deletion capabilities that these be “controlled,” which leads
to the introduction of vacuuming.

We provide a foundation that encompasses a range of new concepts essential
to vacuuming. As part of this foundation, we introduce vacuuming specifications
and give their semantics. To meet the need for controlled physical deletion, vacu-
uming specifications include removal specification parts as well as so-called keep
specification parts that override the former specification parts and specify what can-
not be removed.

The paper explores how detection of potentially vacuuming-affected queries
may be accomplished. Detection of queries that may yield results affected by vac-
uuming opens the possibility for taking cooperative action, providing, e.g., alter-
native queries that are similar to the original query, but are guaranteed to not be
affected by vacuuming. This detection is contingent on the disciplined modification
of vacuuming specifications. Specifically, we introduce the notions ofgrowingand
alive specification parts, which open the possibility of vacuuming the vacuuming
specifications without losing track of what is removed by vacuuming.

The techniques proposed in the foundation separate the enforcement of vacu-
uming semantics from the actual physical removal of data. This independence be-
tween correctness and physical removal is highly desirable because it offers max-
imum flexibility for the scheduling of physical removal, an aspect not addressed
here.

Only little work related to vacuuming has been published. A preliminary
exploration of vacuuming was reported in [JM90]. In this unpublished technical
report, we present different types of vacuuming specifications and introduce an al-
gebra for defining vacuuming specifications. The present paper is based on and
extends this report.

The TSQL2 temporal query language supports a very basic vacuuming func-
tionality: It is possible to specify cutoff points [SAA+94, Jen95] that indicate that
data current only prior to a certain cutoff date should be physically deleted. The
semantic foundation in this paper provides precise definitions of the concepts un-
derlying this functionality and it provides much more advanced functionality.

Next, the Postgres DBMS [RS87], which supports transaction-time databases,

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 289

includes a vacuum cleaner daemon that is responsible for the asynchronous and
transparent movement of logically deleted data from magnetic disk to cheaper op-
tical disk storage. The associated techniques for physical deletion and reorganiza-
tion, and for the scheduling of the daemon may possibly be applied to implementing
physical deletions. Beyond that, this research is accommodated by the foundation
presented here and is unrelated to this paper.

In the context of data warehousing, an approach to “expiring” data has re-
cently been presented [GMLY98]. This work studies the removal of data not needed
for maintaining predefined views. Further, all access to the data warehouse is as-
sumed to occur through views. So, unlike in this paper, unrestricted, ad-hoc query-
ing is not considered. Perhaps more importantly, because the underlying databases
are not append-only, the correctness concerns fundamental to the work presented in
this paper do not apply, making the two works quite different.

The contents of this paper are structured as follows. Section 2 offers an
overview of a vacuuming-extended DBMS and identifies challenges posed by the
introduction of vacuuming and met in the remainder of the paper. Section 3 provides
the concrete data model context for the study of vacuuming, setting the stage for the
introduction of vacuuming specifications, whose semantics is defined in Section 4.
Sections 5 and 6 proceed to consider the querying and modification of databases
with vacuuming, respectively. In order to avoid certain inconsistent database states
as well as misinterpretations of query answers, these sections most prominently
define fundamental notions of correctness, but also outline options for user interac-
tion in response to the absence of vacuumed data. Finally, Section 7 concludes and
offers research directions.

2 Vacuuming—An Overview

In order to provide a global view of the paper’s topic, this section gives a com-
prehensive example of a database system extended with vacuuming. Using the
example, we introduce the semantics of vacuuming and consider the querying of
vacuumed databases.

Assume we have an instanceempof a temporal relation schemaEmp, given
as follows.

Emp= {S : TID;EmpId,Sal,Bal : INT;Sex: {M,F }; T T `, T T a : TIME}
Attribute S is a surrogate or tuple identifier,EmpId identifies an employee, and
Sal andBal record the salaries and account balances of employees, respectively.
AttributesT T ` andT T a are both of typeTIME and record the time of insertion
and deletion, respectively1.

1Updates are modeled as deletions followed by insertions and assign deletion timestamps to some tuples

290 SEMANTICS OF TEMPORAL DATA

First, we assume that no vacuuming is specified on the database and thatemp
is as illustrated in Table 1.

S EmpId Sal Bal Sex T T ` T T a

1 234 32k $− 6,015 M 2/7/93 5/10/94
2 128 28k $ 10,274 F 8/14/93 8/31/97
3 234 32k $− 2,015 M 5/11/94 6/2/94
4 597 40k $− 4,652 M 5/12/94 7/2/94
5 597 47k $− 2,576 M 7/3/94 NOW
6 234 35k $ 1,763 M 11/8/94 NOW
7 318 21k $ 211 F 11/24/94 6/2/95

Table 1: TheempRelation

All updates of a temporal relation such asempresult in tuples being inserted,
and tuples are never physically removed. (For emphasis, we will use “delete” for
logical deletion and “remove” for physical removal throughout the paper.) There-
fore, empis ever-growing, and it is likely thatempwill eventually contain some
data that is irrelevant to its users or must be (physically) removed for other reasons.
Now, assume that the current business policy is that data (logically) deleted more
than four years ago is not to be retained, that tuples deleted between two and four
years ago with valueF of attributeSexcan be disregarded, but that all tuples in the
database containing aBal of $−5, 000 or less must be retained. Using standard re-
lational algebra, this may be specified with the following vacuuming specification,
V = {v1, v2, v3}.

v1 ρ(emp) : σT T a≤NOW−4yrs(emp)

v2 ρ(emp) : σNOW−4yrs<T T a≤NOW−2yrs∧Sex=F (emp)

v3 κ(emp) : σBal≤$−5,000(emp)

The specification is read as follows: “Remove (ρ) from empall tuples deleted more
than four years ago, i.e., tuples where the value of the attributeT T a is less than the
current time,NOW, minus four years. Remove fromempall tuples deleted between
two and four years ago where attributeSexhas valueF . Keep (κ) in empall tuples
where attributeBal has the value $− 5, 000 or less.”

While v1 andv2 are removal specification parts and tell what should be re-
moved,v3 is a keep specification part stating what must be kept. Keep specification
parts always override removal specification parts, for safeguarding reasons. Sub-
mitting specificationV yields the vacuumed relationempin Table 2, the current
time (and the value of variableNOW [CDI+97]) being 7/14/98.

and insertion timestamps to others.

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 291

S EmpId Sal Bal Sex T T ` T T a

1 234 32k $− 6,015 M 2/7/93 5/10/94
2 128 28k $ 10,274 F 8/14/93 8/31/97
5 597 47k $− 2,576 M 7/3/94 NOW
6 234 35k $ 1,763 M 11/8/94 NOW

Table 2: Relationempat Time 7/14/98, Vacuumed According toV = {v1, v2, v3}

Without vacuuming, a transaction-time relation satisfies the property offaith-
ful history encoding, stating that previously current database states are retained (to
be formalized later). This property is jeopardized when vacuuming is allowed. The
subsequent example illustrates issues that arise when querying a vacuumed data-
base.

Assume the queryQ = σSal≥35k(emp) is issued before vacuuming, i.e. let
V = ∅, and assume that the current time is 7/14/98. ThenQ would evaluate to
tuples 4, 5, and 6. After vacuuming, i.e.V = {v1, v2, v3}, Q will evaluate to
tuples 5 and 6, since tuple 4 was logically deleted more than four years ago and has
Bal> $− 5, 000.

So queryQ is affected by the vacuuming according toV . If (emp, V) de-
notes relationempvacuumed according toV , thenQ(emp, ∅) 6= Q(emp, V) in
the general case. Thus, our sample queryQ returns a result inconsistent with the
previously current database states. This result is misleading to users expecting faith-
ful history encoding. Users knowing that faithful history encoding may have been
compromised are unable to properly interpret the result.

A system with vacuuming should support its users in interpreting the results of
queries that are affected by vacuuming. Specifically, a minimum of support would
be for the system to support the correctness criterion offaithful history querying
(also to be formalized later), stating that only queries not affected by vacuuming
should be answered without an accompanying warning. A more radical approach
would be to return an error when the result of a query may be affected by vacu-
uming. Together with the error message, the system could additionally return at
least one alternative, a related queryQ′, satisfying faithful history querying. This
approach is illustrated in Figure 1. The reader may verify that the alternative query
(Q′) returns the tuples{5, 6}. So, issued on the vacuumed version ofemp, Q′ re-
turns the same answer asQ (see Tables 1 and 2). However, queryQ′ is not affected
by vacuuming, i.e.,Q′(emp, ∅) = Q′(emp, V), and giving an unqualified answer
to this query is consistent with the faithful history querying property.

Presented with the vacuuming-modified query, the user can choose either to
issue this query or to modify it. In the latter case, the system may have to go through
a new modification-and-display process.

292 SEMANTICS OF TEMPORAL DATA

»select [Sal >= 35k] (emp)
Error: Query affected by vacuuming; alternative query:
select [((TTend > NOW - 4yrs and

(TTend > NOW - 2yrs or Sex = M)) or Bal <= -5000)
and Sal >= 35k] (emp)

Run? (Y)

Figure 1: A Possible Result of Submitting QueryQ = σSal≥35k(emp, V)

In the next sections, we present the data model context necessary for intro-
ducing vacuuming; we show how to determine whether a query such asQ satisfies
faithful history querying and how to determine a similar query that is not affected;
and we consider the modification of the vacuuming of user-defined relations and
vacuuming specifications.

3 Data Model Context

A concrete data model context is needed for presenting the semantic foundation
for vacuuming. This section presents the necessary aspects of the temporal data
model that provides the context for our study. Initially, the data structures, schemas
as well as instances, of the model are presented. Then the syntax of vacuuming
specifications is given. The semantic foundation is independent of the particular
query language adopted, so rather than adopting one of the many existing temporal
algebras or defining a new algebra [MS91], we reuse the well-known relational
algebra as the language associated with the data structures.

3.1 Temporal Relation Structures

LetUD = {D1, D2, . . . , Dr} be a set of non-empty domains, and letD = ∪Di be
the set of all values. LetDV = {v1, v2, . . . , vs} be the specific domain of vacuum-
ing specification parts. LetT = {t0, t1, . . . , tx} be a finite, non-empty set of times
with< as the total order relation. We use elementtnow in T for denoting the current
time. Finally, letTNOW = T ∪ {NOW}, whereNOW is a variable that evaluates to
the current time [CDI+97]. Then, fort ∈ T andt ′ ∈ TNOW, we define the meaning
of t ′ at timet , [[t ′]]t , as follows.

[[t ′]]t =
{
t if t ′ = NOW

t ′ otherwise

Next, letUA = {A1, A2, . . . , Az} be a set of attributes, letVspec∈ UA be
a specific attribute of vacuuming specification parts, and letT T ` and T T a be

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 293

distinguished time attributes representing insertion and deletion time, respectively
[SA85]. With these definitions in place, we can define the schema aspects of a
database.

A temporal relation schema,Rx , is defined as a pair〈ARx ,DOMRx 〉, where:
(1)ARx ⊆ UA, andARx ∪ {T T `, T T a} is the set of attributes of the schema. The
latter two attributes are timestamp attributes ofRx ; (2) DOMRx is a function from
ARx ∪ {T T `, T T a} toUD ∪ {T , TNOW}, which assigns domains inUD to attributes
in ARx , the domainT to the attributeT T `, and the domainTNOW to the attribute
T T a.

Next, symbolV denotes the specific temporal relation schema for vacuuming
specification parts,〈{Vspec},DOMV 〉, whereDOMV is a function assigning the
domainsDV , T , andTNOW to the attributesVspec, T T `, andT T a, respectively.

A temporal database schemaDB is then a finite set of temporal relation
schemasRx = 〈ARx ,DOMRx 〉, one of them being the schemaV.

EXAMPLE: In Section 2, temporal relationemp has schema〈Aemp,DOMemp〉,
whereAemp = {S,EmpId,Sal,Bal,Sex} and DOMemp is the function assigning
the domainTID to S, the domainINT to each attributesEmpId, Sal, andBal, the
domain{M,F } to attributeSex, and finally the domainsT andTNOW to T T ` and
T T a, respectively.

Furthermore, we haveDB = {〈Aemp,DOMemp〉, . . . , 〈{Vspec},DOMV 〉}, as
an example of a temporal database schema. 2

We proceed to define instances of the schemas just defined. Atuple,u, on rela-
tion schema〈ARx ,DOMRx 〉, is a function from the attribute setARx ∪{T T `, T T a}
toD ∪ {T , TNOW}, which assigns an element inDOMRx (Ai) to each attributeAi ∈
ARx , an element inT to T T `, and an element inTNOW to T T a; u assigns the
elements to the satisfaction of:

∀t ′ ≥ u.T T ` (u.T T ` ≤ [[u.T T a]]t ′ ∧ (u.T T ` = tnow⇒ u.T T a = NOW)).

This formula simply states that intervals must start no later than when they
end and that the end time must beNOW if the start time is the current time.

For any pair of tuplesu1 andu2 on relations with the same explicit attributes
Ai , we say thatu1 andu2 arevalue equivalent,u1

v.e.=u2, if and only if∀Ai (u1.Ai =
u2.Ai).

We also say that a tupleu on relationRx is current at timet in the database if
and only ifu.T T ` ≤ t ≤ [[u.T T a]]t , and more specifically that a tuple iscurrent
in the database if it is current attnow.

We define atemporal vacuuming specification part, v, to be a tuple on the
vacuuming specification schema〈{Vspec},DOMV 〉, assigning values from the do-
mainDV to theVspecattribute, and values fromT andTNOW to T T ` andT T a,
respectively.

294 SEMANTICS OF TEMPORAL DATA

With tuples in place, we proceed defining relations. Atemporal relationRx
with the schema〈ARx ,DOMRx 〉 is a finite set of tuples.Rx does not contain value
equivalent tuples that are current at the same time. We term these user-defined
relations. As a specific temporal relation, we define atemporal vacuuming specifi-
cationV with schemaV = 〈{Vspec},DOMV 〉. Thus,V is a finite set of temporal
vacuuming specification parts.

Having a temporal relationRx anda vacuuming specificationV , the effect of
specifying vacuuming forRx is a modified relationR̂x , written as(Rx, V). SoR̂x
is the relationRx modified by the vacuuming specificationV . We will return to the
semantics of vacuuming, and to the definition ofR̂x in Section 4.

Finally, a temporal databaseDB with schemaDB = {R1, . . . ,Rn,V} is
a set of temporal relations modified by vacuuming specificationV , i.e., DB =
{R̂1, . . . , R̂n, V̂ }.
EXAMPLE: Our sample database contains the modified temporal relationsˆempand
V̂ .

Relationempcontains a set of tuples, and as shown in Table 1, the first tuple
is the function assigning value 1 toS, values 234, 32k, $− 6, 015 toEmpId, Sal,
Bal, respectively, value M toSex, and transaction timestamps 2/7/93 and 5/10/94 to
the time attributesT T ` andT T a, respectively.

The temporal vacuuming specificationV = {v1, v2, v3} shown in Section 2
is given in Table 3 as the relationV . Here,v1 is the tuple that assigns theSTRING

Vspec T T ` T T a

v1 ρ(emp) : σT T a≤NOW−4yrs(emp) 5/16/1992 NOW
v2 ρ(emp) : σNOW−4yrs<T T a≤NOW−2yrs∧Sex=F (emp) 8/30/1995 NOW
v3 κ(emp) : σBal≤$−5,000(emp) 5/16/1992 NOW

Table 3: The Vacuuming SpecificationV = {v1, v2, v3}.

value “ρ(emp) : σT T a≤NOW−4yrs

(
emp

)
” to attributeVspec, the time 5/16/1992 to

T T `, and the variableNOW to T T a.
Later, after defining the semantics of vacuuming, we will return to the modi-

fied counterparts ofempandV . For now, Tables 1 and 2 show relationempand its
modified counterpart ˆemp, respectively. 2

3.2 Syntax of Vacuuming Specifications

We have already defined a vacuuming specification part as a tuple on the schema
〈{Vspec},DOMV 〉, assigning values fromDV to Vspec. Next, we specify which
values domainDV offers as possible, orwell-formed, specification part expressions.

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 295

One aspect of a specification part expression being well-formed is being syn-
tactically correct. The syntax of a vacuuming specification part expressionv is
given by the following specification. Note that this specification essentially permits
arbitrary relational algebra selections.

v ::= ω(R) : Exp
ω ::= ρ | κ
Exp ::= R | σF (Exp) | (Exp)
F ::= true | false | F bop F | ¬F | (F) | T T op tt | t t op T T

| d op Ai | Ai op d
tt ::= t | s | t t − t t | t t + t t | (tt)
T T ::= T T ` | T T a
bop ::= ∨ | ∧
op ::= < | > | = | ≤ | ≥ | 6=

In addition to being syntactically correct, a specification part expression must
also satisfy conventional semantic constraints. LetS be a finite non-empty set of
time spans, i.e., unanchored time intervals like 2 days or 3 years. Then it is re-
quired thatd ∈ DAi , Ai ∈ UA, t ∈ TNOW, ands ∈ S. For expressions such
asT T op tt and t t op T T , op should be defined for the domainTNOW of T T `
andT T a, and t t should evaluate to an element inTNOW. For expressions such
asAi op d andd op Ai , op should be defined for the domainDAi of Ai , and
d ∈ DAi . And for σF (Exp), F should only include attributesAi in Exp. Following
normal conventions, we allow ourselves to use expressions that are equivalent to
those generated by the grammar. For example, we will uset t1 < tt2 < tt3 instead
of t t1 < tt2 ∧ t t2 < tt3.

The construction gives the opportunity of relatingT T ` andT T a to any time-
stamp, fixed or relative toNOW, e.g.,T T a ≤ NOW− 2yrs, T T a ≤ 7/15/4000−
NOW, orT T a ≤ 1/1/1995.

Note that any specification part expression defined here can be rewritten to be
on the form “ω(Rx) : σP (Rx),” using standard equivalence-preserving transforma-
tions (e.g., [ASU79b, Ull88]).

Specification parts having expressions of the form “ρ(Rx) : Exp” are re-
moval specification parts, and specification parts having expressions of the form
“κ(Rx) : Exp” are keep specification parts. From our example,v1 andv2 are re-
moval specification parts, andv3 is a keep specification part.

4 Specification Semantics

Having defined a data model context for vacuuming and its syntax, we turn to defin-
ing the semantics of a vacuuming specification,V . The semantics ofV expresses

296 SEMANTICS OF TEMPORAL DATA

what remains of each relationRx in the database whenV takes effect. This expres-
sion was previously denoted bŷRx and is termed themodified relation. In defining
the modified relation, three issues are considered. First we consider the objectives
to be satisfied by the definition of the semantics. The second issue is how to take
into account the pairs of time values associated with vacuuming specification parts
and how to properly account forNOW-relative specification parts in the semantics.
Third, we define the modified relation itself.

Considering the first issue, the definition of the meaning of a vacuuming spec-
ification aims at satisfying two objectives, namely ease of use and loss protection.
The rationale for the former objective is self-evident; the latter is important because
vacuuming is irreversible. It should thus be possible to guard against unintended
removal of data.

With these objectives in mind, we note that we have formalized a vacuuming
specification as a relation, with the tuples being of specification parts. Therefore,
the semantics of a vacuuming specification is independent of the order of the spec-
ification parts.

Mainly to guard against unintended removal of data, but also to provide in-
creased ease of use, we have included keep specification parts that specify what
must be kept in the database.

Expressing—without the use of keep specification parts—that certain tuples
from a relation are to be retained in the database can be done by making sure that no
removal specification part selects these tuples for removal. But this is only an im-
plicit expression, making it difficult to maintain. Further, it does not protect against
unintended loss of data. With keep specification parts that override the removal
specification parts, it is instead possible to specify in a single specification part the
tuples that are to be retained. This is easier, and new removal specification parts are
guaranteed not to inadvertently lead to the removal of tuples to be kept. In general,
specifications may become simpler with both keep and removal specification parts
available.

Having both keep and removal specification parts and an order-independent
semantics, where the keep specification parts override the removal specification
parts, improves ease of use and facilitates loss protection. We thus define vacuum-
ing in this way.

With the semantics decided upon at this abstract level, we turn to the second
issue of determining how the vacuuming specification parts contribute to vacuuming
based on their temporal aspects. Being a temporal relation, each part of a specifi-
cation is timestamped withT T ` andT T a values that indicate when the part was
inserted and subsequently logically deleted. How should these time values be taken
into account in the semantics?

A first thought may be that only current vacuuming specification parts should
be taken into account in the semantics of a specification. However, the semantics

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 297

must express for each relation what is left in the relation, independently of when the
missing data was removed. Because even non-current (logically deleted) vacuum-
ing specification parts may be responsible for the absence of tuples from a relation,
all parts, non-current as well as current, must be taken into account in the semantics.

However, theT T ` andT T a values of a part do affect the semantics. Recall
that vacuuming specification parts may involve the variableNOW that evaluates
to the current time, making themNOW-relative. For example, specification part
v2 in the running example specifies the removal of tuples from relationempwith
Sex= F , for whichNOW− 4yrs< TT a ≤ NOW− 2yrs. This specification part
was inserted on 8/30/1995 and remains current. So at the current time, the effect of
this specification is the removal of tuples that at some time between 8/30/1995 and
the current time have satisfied the specified property, that is tuples withSex= F

and for which∃t (t − 4yrs< T T a ≤ t − 2yrs∧ 8/30/1995≤ t ≤ tnow).
In general, the expression of a vacuuming specification partvi is modified to

take into account its timestamps as follows. All occurrences ofNOW in the ex-
pression are replaced by an unused variablet , the expression is augmented by the
term “∧ vi .T T ` ≤ t ≤ [[vi .T T a]]tnow,” and the resulting expression is existentially
quantified byt . Equivalence-preserving transformations may subsequently be ap-
plied to the modified specification parts in order to simplify them. Recalling that
each specification partvi can be rewritten in the form “ω(Rx) : σP (Rx),” modifying
a specification part to take its timestamps into account gives a specification part in
the form “ω(Rx) : σ∃t (P ′ ∧ vi .T T `≤t≤[[vi .T T a]]tnow)

(Rx),” whereP ′ is the predicate
P with NOWreplaced byt .

Thus modifying any user-specified vacuuming specification part that follows
the syntax defined in Section 3.2 yields a well-defined expression specifying in
constant termsexactly what is selected by aNOW-relative specification part from
its insertion until the current time. Note that a logical deletion (which corresponds
to replacing valueNOWof attributeT T a by a fixed value) fixes the upper bound of
the vacuuming to some time before the current time,tnow.

EXAMPLE: The selection predicate in specification partv2 (with T T ` = 8/30/1995
andT T a = NOW) modified as explained above may be simplified as described
next. We assume that the current timetnow is 7/14/1998.

∃t (Sex= F ∧ t − 4yrs< T T a ≤ t − 2yrs∧ 8/30/1995≤ t ≤ tnow∧ tnow= 7/14/1998)
≡ Sex= F ∧ 8/30/1995− 4yrs< T T a ≤ tnow− 2yrs∧ tnow= 7/14/1998
≡ Sex= F ∧ 8/30/1991< TT a ≤ 7/14/1996

Recalling that all current tuples have the variableNOWas theirT T a value and
thatNOW is instantiated at the time of evaluation, the semantics of the predicate of
specification partv2 at time 7/14/1998 is as follows.

Sex= F ∧ 8/30/1991< [[T T a]]7/14/1998≤ 7/14/1996 2

298 SEMANTICS OF TEMPORAL DATA

In addition toNOW-relative specification parts, parts that specify vacuuming
in the future are meaningful and thus allowed, although they do not appear to be
very useful. To understand the issue, consider a removal specification part with
predicate “NOW− 1yrs ≤ T T a ≤ NOW+ 1yrs.” When this part is deleted, at
some timetnow, the upper bound ofT T a of tuples to be removed istnow+1yrs, i.e.,
one year into the future. So for one year after having deleted the specification part,
this part continues to remove tuples; the deletion does not stop the removals. The
removal specification part with predicate “NOW− 1yrs ≤ T T a” would remove
exactly the same tuples as the first one above, during the time both are current,
and it ceases to remove tuples when logically deleted. Note that both specifica-
tion parts result in tuples being removed immediately upon insertion. This kind of
meaningful, though not useful specifications are expected not to be supported by an
implementation of vacuuming.

Having considered the various issues, we are able to define the semantics of a
vacuuming specification in terms of its effect on each relation in turn. To do that, we
defineV |Rx as all specification parts inV that concernRx , i.e., parts with aVspec
value of the form “ω(Rx) : Exp.” Now, let V |Rx= {v1, . . . , vk, vk+1, . . . , vs},
wherevi ∈ {v1, . . . , vk} areremovalspecification parts andvj ∈ {vk+1, . . . , vs} are
keepspecification parts. Following the observation in Section 3.2 and taking the
timestamps into account as above, allvi ’s specifying vacuuming for a relationRx
can be reduced to the form “ω(Rx) : σFi (Rx),” whereFi is of the form “∃ti (P ′i ∧
vi .T T

` ≤ ti ≤ [[vi .T T a]]tnow).” We assume without loss of generality that eachvi
andvj above are of this form.

With the assumptions and notation introduced above in mind, we define the
modified relation ofRx at the current time,̂Rx , as follows.

R̂x
def= σ¬(∨k

i=1Fi)∨(
∨s
j=k+1Fj)

(Rx) (1)

So, the modified relation̂Rx is the set of tuples fromRx either not satisfying any
predicate of a removal specification partFi , or, if so, also satisfying the predicate
of at least one keep specification partFj . Tuples not satisfying any predicates at
all are present inR̂x , and so are tuples satisfying any number of predicates from
keep specification parts. Also, no tuples satisfying only predicates from removal
specification parts are present in̂Rx . This way, keep specification parts override
removal specification parts.

EXAMPLE: Let us illustrate vacuuming by creating the expression of the mod-
ified relation ˆemp, from relationsempand V = {v1, v2, v3} presented in Sec-
tion 2. V contains only well-formed specification parts, which by equivalence
transformations can be rewritten to be on the form “ω(Rx) : σP (Rx).” Sincev1
andv2 areNOW-relative specifications, they are rewritten to the form “ω(Rx) :

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 299

σ∃t (P ′∧vi .T T `≤t≤[[vi .T T a]]tnow)
(Rx).” Now, from Equation 1 we get the modified re-

lation ˆemp= (emp, V) = (σ¬(F1∨F2)∨F3(emp), ∅) = (ˆemp, ∅). LetF1, F2, andF3
be the selection predicate in the rewritten specification partsv1, v2, andv3, respec-
tively. Then the selection predicateF ′ = ¬(F1 ∨ F2) ∨ F3 will be:

F ′ = ¬ [∃t1 (T T a ≤ t1− 4yrs ∧ 5/16/1992≤ t1 ≤ tnow) ∨
∃t2 (t2 − 4yrs< T T a ≤ t2− 2yrs ∧ 8/30/1995≤ t2 ≤ tnow ∧ Sex= F)]

∨ [Bal ≤ $− 5,000]
≡ ¬ [T T a ≤ tnow− 4yrs ∨ (8/30/1991< TT a ≤ tnow− 2yrs ∧ Sex= F)]
∨ [Bal ≤ $− 5,000]

Note that the vacuuming-modified relation̂empcan be vacuumed due toV without
changing; no additional tuples will be kept or removed. Finding the vacuuming-
modified expression, when vacuuming one more time, is done using the selec-
tion predicates in the same way, and since they are already present in the first
vacuuming-modified expression, they can be left out leaving the same vacuuming-
modified expression. In our example this gives:(

σ¬(F1∨F2)∨F3(emp), V
) ≡ (

σ¬(F1∨F2)∨F3(σ¬(F1∨F2)∨F3(emp)), ∅)
≡ (

σ¬(F1∨F2)∨F3(emp), ∅) 2

A system that implements vacuuming must obey the semantics defined above.
On the other hand, it is also attractive for the system not to have to actually perform
physical removals eagerly to ensure that the semantics is obeyed. Rather, lazy phys-
ical removal is attractive.

In order to both ensure correct semantics and permit lazy removal, the system
may use the vacuuming-modified relation expressions defined above in place of the
corresponding relations themselves. The expressions then serve as filters that hide
the tuples in the relations that have been vacuumed logically, but may or may not
yet have been physically removed.

5 Querying Vacuumed Databases

Having defined the notion of a database system with vacuuming, we now turn to
the querying of databases in the context of vacuuming. Recall that the example
query from Section 2 returned a result affected by vacuuming. With vacuuming,
transaction-time databases no longer retain a perfect record of their past states, and
the results of queries become harder to interpret. For example, a query on a past
state may return an empty result either because this state never contained qualifying
data or because all qualifying data have been removed because of vacuuming.

This section defines the concept of faithful history encoding satisfied by trans-
action-time relations without vacuuming, but not with vacuuming; and it defines

300 SEMANTICS OF TEMPORAL DATA

the concept of faithful history querying, aiming at making queries on vacuumed
databases easier to interpret. Finally, several options that a system may adopt when
reacting to queries affected by vacuuming are discussed.

5.1 Faithful History Encoding and Querying

To capture what may be jeopardized by introducing vacuuming, we first state the
desirable property of faithful history encoding. Specifically, a transaction-time re-
lation without vacuuming retains all its previous states. So a query that retrieves the
current database state at some timet , and the query that at some later time retrieves
the database state recorded as being current at timet , will both give the same result.
This isfaithful history encoding. To give a precise definition, we need to define the
meaning of retrieving the state current as of some time. For this purpose, we define
the timesliceτt (Rx) of Rx at timet [Sch77]. This operator returns a non-temporal
relation having the explicit attributes ofRx , and that contains the tuples that are
value equivalent to the tuples in relationRx current at timet .

τt (Rx) = {u | u′ ∈ Rx ∧ uv.e.=u′ ∧ u′.T T ` ≤ t ≤ [[u′.T T a]]t}
Next, we also need to be able to “rollback” a relation to how it was at some

past time. For this purpose, let[[Rx]]t denote relationRx at time t , i.e., the set of
tuples present in the relation at this time. Then[[Rx]]t contains the set of tuples
inserted into the relation before or at timet , even if they were subsequently deleted
between timet and the current time; further the timestamps of the resulting tuples
are restored to their original appearance at timet . More formally,[[Rx]]t is defined
as follows.

[[Rx]]t def= {u | ∃u′ ∈ Rx (uv.e.=u′ ∧ u.T T ` = u′.T T ` ∧ u.T T ` ≤ t ∧
((u.T T a = u′.T T a ∧ [[u′.T T a]]t ≤ t) ∨
(u.T T a = NOW∧ [[u′.T T a]]t > t)))}

So to obtain the result, we first consider only the subset ofRx inserted no later than
time t . If a tuple was deleted after timet , we replace the deletion time with the value
it actually had at timet , NOW; otherwise, the tuples from our subset are returned
unmodified. Note that[[Rx]]tnow = Rx .
EXAMPLE: To illustrate the definition, consider relationempas given in Table 1.
[[emp]]10/1/94 denotes the set of tuples shown in Table 4. Tuples 6 and 7 where in-
serted inempafter 10/1/94, so they are not present here. Tuple 2 had a transaction-
time end of 8/31/97 and[[8/31/97]]10/1/94 = 8/31/97, which exceeds 10/1/94.
Thus tuple 2 receives the variableNOW as its new transaction-time end value.
Tuples 1, 3, 4, and 5 all have[[T T a]]10/1/04 ≤ 10/1/94, so they retain their

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 301

S EmpId Sal Bal Sex T T ` T T a

1 234 32k $− 6,015 M 2/7/93 5/10/94
2 128 28k $ 10,274 F 8/14/93 NOW
3 234 32k $− 2,015 M 5/11/94 6/2/94
4 597 40k $− 4,652 M 5/12/94 7/2/94
5 597 47k $− 2,576 M 7/3/94 NOW

Table 4: The[[emp]]10/1/94 Relation

transaction-time end values. The tuples in the table are exactly the tuples inempat
time 10/1/94. 2

With the two preceeding definitions, we can precisely definefaithful history
encoding.

∀Rx
(∀t ≤ tnow

(
τt (Rx) = τt ([[Rx]]t)

))
That is, for all relations and all timest not exceeding the current time, evaluating
the timeslice with time parametert on the relation as it was at timet versus on the
current relation gives the same result. As a result, all previously current states are
retained.

With faithful history encoding, if a query on a past state returns an empty
result, then this means that there never were qualifying tuples in this state. However,
as exemplified in Section 2, transaction-time databases with vacuuming are unable
to satisfy the property of faithful history encoding, and this inference cannot be
made. This leads to a possible misinterpretation of the query response.

To reduce this inherent, but also undesirable, effect of vacuuming, we define a
new correctness criterion, termedfaithful history querying, that when satisfied will
assist the user in correctly interpreting the result of a query. This criterion states
that only queries that return the same answers when submitted to the vacuumed
database as when submitted to the corresponding unvacuumed database should be
answered without an accompanying warning.

DEFINITION: Let queryQ be defined in terms of relationsR1, R2, . . . , Rn. Let
Warningbe an (intensional) error warning that may be issued together with the
usual extensional result of a query. Then the correctness criterion,faithful history
querying, states that the answer toQ should be given as follows.

Q((R1, V), (R2, V), . . . , (Rn, V)) if Q((R1, V), (R2, V), . . . , (Rn, V)) =
Q((R1,∅), (R2,∅), . . . , (Rn,∅))

(Q((R1, V), (R2, V), . . . , (Rn, V)),Warning) otherwise

302 SEMANTICS OF TEMPORAL DATA

2

EXAMPLE: To illustrate faithful history querying, we consider two sample queries
based on the running example.

The first query,Q1 = σT T a=NOW∧Bal≥$0(emp), only selects from the part of
relationempnot affected by vacuuming. Therefore, it is unaffected by vacuuming,
and a system satisfying faithful history querying can return the usual, extensional
answer, in this case the relation consisting of tuple 6.

The second query,Q2 = σSal≥35k(emp), overlaps with the part ofempaf-
fected by vacuuming. With this query, it is impossible to guarantee that the result
will be unaffected by vacuuming, and a system satisfying faithful history querying
must return a warning with the extensional query result. 2

Having defined faithful history querying, we proceed to discuss various re-
sponse strategies that can be used to satisfy the criterion.

5.2 Query Handling

A vacuuming-enhanced system satisfying faithful history querying answers queries
not affected by vacuuming transparently, but additional response is required when
answering the remaining queries. Various strategies could be used when responding
to queries affected by vacuuming. Some of these are discussed later in this section.

In order to identify the queries affected by vacuuming, it is necessary to de-
termine ifQ((R1, V), (R2, V), . . . , (Rn, V)) = Q((R1, ∅), (R2, ∅), . . . , (Rn, ∅)).
A foundation for possible actions taken to evaluate this is outlined in the following
three overall steps, each of which is subsequently discussed in some detail.

1. At vacuuming specification time, create expressions for the vacuuming-mod-
ified relations.

2. At query time, create the modified counterpart of the query submitted, ob-
tained by replacing the relation names in the query with the corresponding
vacuuming-modified expressions for the relations.

3. Check if the modified and the original queries are equivalent. If so, the origi-
nal query is not affected by vacuuming.

The first step is to create the vacuuming-modified relation as an expression on
the unvacuumed relation. This was addressed in Section 4.

EXAMPLE: In Section 4, we obtained expressionσF ′(emp) for the modified ver-
sion of relationemp, whereF ′ is given by

¬ [(T T a ≤ tnow−4yrs)∨(8/30/1991< TT a ≤ tnow−2yrs∧ Sex= F)]∨[Bal ≤ $−5,000],

wheretnow denotes the current time. 2

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 303

The second step occurs when a queryQ is issued. At this point, the system
prepares its test of whether returning an unqualified, extensional result of the query
will violate faithful history querying. A vacuuming-modified versionQ′ of Q is
created by replacing all relation names inQ by the expressions for the correspond-
ing vacuuming-modified relations. The well-known technique used here is query
modification, which is traditionally used for implementing integrity constraints and
views [Sto75]. For example, an occurrence of a view name in a query is substituted
by the definition of the view so that the resulting query only references the base
relation(s) used in defining the view.

In the third step, an equivalence test is performed onQ andQ′. Although it
has been shown that the general problem of determining equivalence of relational
expressions is NP-complete, efficient algorithms have also been devised for deter-
mining equivalence for an important subset of relational expressions (most practical
SPJ-queries) [ASU79a, ASU79b, PS88]. So the test employed is one that will never
succeed if, in fact,Q andQ′ are not equivalent (soundness), but also may fail to de-
tect equivalence among complicated expressions (incompleteness). While a sound
and complete procedure is preferable, the incompleteness is expected to be only a
minor inconvenience in practice.

EXAMPLE: In the second example in Section 5.1, we considered two queries. The
first wasQ1 = σT T a=NOW∧Bal≥$0(emp). When this query is issued, we replaceemp
with the expressionσF ′(emp) given in the previous example to obtain the modified
version,Q′1. Using standard equivalence transformations, it is straightforward to
verify that the original and modified queries are equivalent,Q1 ≡ Q′1. (Note that
occurrences ofNOW in a query are replaced bytnow when it is issued to the sys-
tem.) The system can therefore evaluateQ1 and return the answer without violating
faithful history querying.

The second query wasQ2 = σSal≥35k(emp). It is easy to see that this query
is not equivalent toQ2 = σSal≥35k(σF ′(emp)), again using the definition ofF ′
given in the previous example. It will thus constitute a violation of faithful history
querying to return an unqualified answer to queryQ2. 2

Having a strategy for evaluating the effect of vacuuming on a query, what kind
of response will satisfy faithful history querying? If the vacuuming has no effect,
the system can simply evaluate the query and return the extensional answer to the
user. However, if vacuuming may have an effect, the system should accompany
the extensional result with additional information. A query answer then consists
of a relation, the extensional result, and possibly of explanatory information, the
intensional result. In the following, we outline in turn some options for these parts.

The extensional result. We may distinguish between two result relations.

a. Return the result of evaluating the original queryQ, knowing that it might be

304 SEMANTICS OF TEMPORAL DATA

affected by vacuuming. Note that this is equivalent to returning the result of
the modified queryQ′.

b. Return an empty result.

The intensional result. Different explanatory information of an intensional na-
ture may accompany an extensional result.

i. A warning that queryQ may be affected by vacuuming can be returned. This
warning will inform the user that the result might have been different had
vacuuming not been performed.

ii. A warning that queryQmay be affected by vacuuming, followed by a vacuum-
ing-modified queryQ′. This query may be presented as it is constructed, pos-
sibly yielding a complex query that is hard to interpret and act upon. Or the
vacuuming-modified query could be specialized and/or generalized to obtain
a “similar” query [Mot84, Cha90] that is simpler and thus easier to interpret
and still is not affected by vacuuming. Using generalization necessitates a
new equivalence check. The response can be given in English or a formal
language.

iii. A warning followed by an exception, either giving the part of the query not
accessible, based on the part of the vacuuming specification relevant for the
query, or giving the vacuuming specification parts relevant for the query. The
response can again be given in English or a formal language.

iv. No intensional information.

Combining the two lists of options leads to different approaches to reacting
to queries affected by vacuuming. Note that some strategies will not satisfy faithful
history querying. We proceed to discuss the combinations b-ii and a-iii.

Option b-ii. With this option, an empty relation, a warning expressed, possibly
expressed as an error code, and an alternative query are returned.

In the case of an on-line user, this approach requires an interactive response.
In the case of application access, a predefined reaction defined in the application,
depending on the error code, is required. In either case, it may require some skill to
understand the alternative query and then determine whether or not the alternative
query is a useful one.

In situations with just a few possible and well-defined reactions, these can
easily be programmed in the application; otherwise, it may be difficult to predict
and respond appropriately to all possible error codes. For on-line users, a few pos-
sible reactions will probably not present any problem, but in situations where the
alternative queries are very complex, this option may prove too challenging to some
users.

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 305

Option a-iii. With this option, the answer to queryQ′ is returned along with
explanatory information about how queryQmight be affected by vacuuming.

Focusing on embedded queries and application access, this option will pro-
duce an extensional result that can be used without further action from the appli-
cation. If faithful history querying is critical, the application could take special
action depending on the warning or error code accompanying the extensional an-
swer. Whether the act should be to, e.g., reject the dataset or to log the exception for
later use will depend on the application. With this option, all existing applications
would still be running on the vacuumed database.

Interactive user access gains from this approach. The extensional result can
still be used without further action, but the user can also submit another query fol-
lowing an inspection of the intensional component of the answer.

For both options, embedded queries could be pre-evaluated for equivalence
purposes, and modified query/exception could be pre-constructed. This pre-evaluation
could occur after each change to the application or database structure. Also for both
options, performance will depend on the cost of the equivalence check. Whether or
not it makes sense to compute and return the result ofQ′ (which is also the result
ofQ) depends on how likely this result is to be useful to the user.

6 Modifying Vacuumed Databases

Having defined vacuuming and having also covered the querying of vacuumed data-
bases, database modification remains to be covered, addressing questions such as
the following: What happens when tuples are inserted into or deleted from user-
defined relations or the vacuuming relation? Will such modifications create an in-
consistent database?

Recall that the process of vacuuming is irreversible, so that “once data is
vacummed, it is always vacuumed.” Recall also that in order to prevent possible
misinterpretation of query answers, a vacuuming system should satisfyfaithful his-
tory querying(see Section 5). To do this, the system must be able to evaluate if
vacuuming has made a difference for each query. Thus, the system must have avail-
able a record of what kind of vacuuming may have been performed. Consideration
of both of these two aspects of vacuuming leads to limitations being imposed on the
modification of the database.

Since all relations are temporal, all modifications—insertions, updates and
deletions—of regular, user-defined relations only result in the accumulation of ad-
ditional data. Thus, no data or information can be lost and vacuuming cannot pose
any limitation on modifications of regular, user-defined relations. However, vacu-
uming can pose limitations on modifications of the vacuuming relation,V .

306 SEMANTICS OF TEMPORAL DATA

Section 6.1 covers modification of relationV , considering vacuuming specifi-
cation parts of the form “ω(Rx) : Exp” (see Section 3.2), whereRx is any relation,
user-defined as well asV . In this section, we shall see that the irreversibility of
vacuuming poses certain constraints on which modifications are allowed. For ex-
ample, it makes no sense to insert a specification part in order to keep tuples that
are already selected by an existing removal specification part.

Section 6.2 proceeds to cover another type of constraint that applies only to
the vacuuming of relationV itself; a type of constraint which is accomplished via
vacuuming specification parts of the form “ω(V) : Exp.” Specifically, to achieve
the functionality described in this paper, it is necessary to retain a complete spec-
ification record stating what data—ordinary temporal data as well as vacuuming
specification parts—has been removed from the database by vacuuming. Thus, not
all vacuuming specification parts can simply be removed.

A summary concludes the section.

6.1 Irreversibility-Induced Constraints on Vacuuming

When updating the vacuuming of regular relations and the vacuuming relation, it
is a challenge—the only one for vacuuming regular relations—to contend with the
irreversibility of vacuuming. For example, once a tuple has been selected by some
removal specification part, keep specification parts that would select the tuple must
be disallowed. The principle “once vacuumed, always vacuumed” must be satisfied.

Stated precisely, the set of vacuuming specification parts must be consistent in
its specification of data removal, even as time proceeds and the set of specifications
is modified. We require that if it specifies removal of a tuple, it must continue to
specify removal of that tuple. More precisely, a vacuuming specificationV must be
growing, which is defined as follows.

growing(V)
def⇐⇒ ∀t (∀Rx (∀u (u ∈ ([[Rx]]t , ∅) ∧ u 6∈ ([[Rx]]t , [[V]]t)⇒

∀t ′ > t (u 6∈ ([[Rx]]t ′ , [[V]]t ′))
)))

So a vacuuming specificationV is growingif and only if all tuplesu being removed
from relationRx at some timet will continue to be removed for all timest ′ aftert .
Note that([[Rx]]t , [[V]]t) denotes the relationRx as it was at timet , vacuumed by
the vacuuming specificationV as it also was at timet . To ensureV to be growing,
we consider (logical) deletions and insertions onV in turn.

Consider a general specification partv of the form(“ω(Rx) : σP (Rx)” , tins,

NOW), which was inserted at timetins, remains current, and is thus a candidate for
deletion. Recall that the effective algebra expression for this specification part at
time t ′ will be

σ∃t (P ′ ∧ tins≤t≤t ′)(Rx), (2)

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 307

whereP ′ is P with occurrences ofNOW replaced byt and t ′ was obtained by
evaluating[[T T a]]t ′ = [[NOW]]t ′ . For all timest ′′ after t ′ the range of possiblet
values is extended—resulting in more tuples being selected byv. Deletion ofv is
accomplished by setting itsT T a value totdel, the time when the deletion occurs.
Thus, for all times aftertdel, the effective expression forv will be

σ∃t (P ′ ∧ tins≤t≤tdel)(Rx). (3)

Because the deletion fixes the range of possiblet values, it also fixes the set
of tuples selected byv; and no additional tuples are added to this set.

First, if v is a keep specification part, deletion ofv fixes the set of tuples
to be kept; and no additional tuples are to be kept—especially not tuples already
removed. Therefore, the deletion does not result in a decrease of the set of tuples
specified for removal, andV will remaingrowing.

Second, ifv is a remove specification part, the expressions for the correspond-
ing vacuuming-modified relation at timest ′ and tdel, respectively are defined as
follows.

R̂x = σ¬[∃t (P ′ ∧ tins≤t≤t ′)](Rx) (4)

R̂x = σ¬[∃t (P ′ ∧ tins≤t≤tdel)](Rx) (5)

To see that the deletion ofv does not render a growing specification non-growing,
it is sufficient to observe that Expression 5 returns no more tuples than the one it
replaces at the time of the deletion, namely Expression 4. At that time, Expression 4
hast ′ = tdel, making the two expressions identical.

Turning to insertions, first observe from Expressions 2 and 3 that any spec-
ification part by itself is growing. This means that inserting any vacuuming spec-
ification part into an empty vacuuming specification would constitute a growing
vacuuming specification.

However, since both remove and keep specification parts are growing, a com-
bination of the two can create a non-growing specification. The problem is that it
is possible for a keep specification part to select a tuple already selected by a re-
moval specification part, creating an impossible situation where a tuple selected for
removal and possibly already removed must be kept in the database. This situation
may occur because of the insertion of either a removal or a keep specification part.

Before stating requirements for insertions to avoid this problem, we give ex-
amples that explore the issues involved. First, inserting a removal specification part
may lead to a conflict with an existing keep specification part. When this occurs,
the removal specification part should not be inserted.

EXAMPLE: AssumeV = {v2, v5}, the current time being 7/14/98, andv7 is tried
for insertion. The specification parts are given in the table that follows.

308 SEMANTICS OF TEMPORAL DATA

Vspec T T ` T T a
v2 κ(emp) : σBal≤$−5,000(emp) 5/16/1992 NOW
v5 κ(emp) : σ7/14/3996−NOW≤T T a≤7/14/4000−NOW(emp) 7/13/1998 NOW

v7 ρ(emp) : σT T a≤NOW−1yrs∧Sex=M(emp) 7/14/1998 NOW

At some timet ′, v5 states that tuples ofempsatisfying the following predicate
must be retained.

∃t (7/14/3996− t ≤ T T a ≤ 7/14/4000− t ∧ 7/13/1998≤ t ≤ [[NOW]]t ′)
For example, fort ′ = 7/13/1998, the predicate is “1/1/1998≤ T T a ≤ 1/1/2002,”
and the lower bound onT T a will continue to decrease as time passes.

Now assume that we want to insert specification partv7. The semantics ofv7

at timet ′ is

σ¬ [∃t (T T a≤t−1yrs∧ Sex=M ∧ 7/14/1998≤t≤[[NOW]]t ′)](emp).

For t ′ = 7/14/1998, the selection predicate becomes “¬[T T a ≤ 7/14/1997∧
Sex=M],” and the upper limit onT T a will increase as the current time increases.

Insertingv7 will not present a problem at the time of insertion, but after a few
months, a situation will occur where whatv5 says must be kept has already been
selected for removal byv7. For example, in six months the lower bound onT T a in
the expression forv5 is 7/1/1997. Butv5 selects tuples withT T a ≤ 7/14/1997 (and
with Sex= M) for removal already at the current time. In conclusion, insertion of
v7 is not acceptable.

Note that related insertion ofv7 will not present any problems in relation to
v2, which does not expand as time proceeds to select tuples that at some time in the
future will be selected byv7. 2

To formalize these observations, insertion of a removal specification partvi
will assureV to be growing, ifvi does not remove any tupleu that in time will
satisfy the predicate of any existing keep specification part. Assume that removal
specification partvi concerns relationRx . When tried for insertion into specifica-
tion V at timet , insertion ofvi is growth assuringif growRem(vi, t, V), defined as
follows.

growRem(vi, t, V)
def⇐⇒ ¬[∃t ′, t ′′ (t ≤ t ′ < t ′′ ∧ ∃u (u 6∈ ([[Rx]]t ′ , [[V ∪ {vi}]]t ′)

∧u ∈ ([[Rx]]t ′′ , [[V ∪ {vi}]]t ′′)))]
The definition states that insertion of a removal specification part is growth assuring
if no two timest ′ andt ′′ later than the insertion time exist so that a tupleu can be
found not being in the vacuumed relation at timet ′, but being in the vacuumed
relation at the later timet ′′.

Turning to the insertion of keep specification parts, two similar problems can
occur. A keep specification part to be inserted can specify that tuples already se-
lected for removal must be kept, or the keep specification part can at some future

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 309

time select tuples for keeping that were selected for removal prior to that time. The
next example illustrates this.

EXAMPLE: Assume thatV = {v3} and that we want to insertv5 andv8; see the
table below.

Vspec T T ` T T a
v3 ρ(emp) : σNOW−4yrs<T T a≤NOW−2yrs∧Sex=F (emp) 7/4/1996 NOW

v5 κ(emp) : σ7/15/3996−NOW≤T T a≤7/15/4000−NOW(emp) 7/14/1998 NOW
v8 κ(emp) : σT T a≥NOW−3yrs(emp) 7/14/1998 NOW

At the current time, 7/14/1998, specificationv3 selects tuples that satisfies the
predicate “8/30/1991≤ T T a ≤ 7/14/1996∧ Sex= F ” for removal. Sincev8

currently specifies that tuples satisfying predicate “T T a ≥ 7/14/1995” should be
kept, insertingv8 will create an instant problem.

Insertingv5 creates a delayed problem. For example, after the date 1/1/2000,
v5 will specify that tuples should be kept if (logically) deleted on or after 7/14/1996,
butv3 already selects tuples deleted at that date for removal. So in time, also insert-
ing v5 will create a problem. 2

Generalizing this, insertion of a keep specification partvj will leaveV grow-
ing if it does not specify keeping of any tupleu already specified for removal, and
if it does not expand to do so as time proceeds. Assume thatvj concerns relation
Rx . Then, when tried for insertion into specificationV at timet , insertion ofvj is
growth assuringif growKeep(vj , t, V), defined as follows.

growKeep(vj , t, V)
def⇐⇒

¬ [∃t ′ (t ′ < t ∧ ∃u′ (u′ 6∈ ([[Rx]]t ′ , [[V]]t ′) ∧ u′ ∈ ([[Rx]]t , [[V ∪ {vj }]]t)))]∧
¬ [∃t ′, t ′′ (t ≤ t ′ < t ′′ ∧ ∃u (u 6∈ ([[Rx]]t ′ , [[V ∪ {vj }]]t ′)

∧u ∈ ([[Rx]]t ′′, [[V ∪ {vj }]]t ′′)))]
The first line in the definition states that, at the time of insertion, no tupleu′ must
exist that is selected for removal byV before that time, but not by the modified
specification. The last two lines have the same format as the definition of growth
assuring for insertions of removal specification parts.

In conclusion, to ensure that vacuuming specifications will satisfy the property
of “once vacuumed, always vacuumed,” no actions are needed when deleting tuples
from the database, but inserting a vacuuming specification partv necessitates an
evaluation ofgrowRem(v, t, V) or growKeep(v, t, V).

6.2 Retention of Vacuuming Information

Recall from the introduction to this section that in order for the vacuuming sub-
system to satisfyfaithful history queryingit must retain knowledge on the status of
vacuuming. The vacuuming specification is itself a temporal relation, and so it is

310 SEMANTICS OF TEMPORAL DATA

possible to also apply vacuuming to the vacuuming specification itself. However,
we must ensure that a complete record is retained of the vacuuming that is or will
be in effect. This section formulates constraints to ensure this.

It should be clear that removal of specification parts being current is problem-
atic. Even parts that have been deleted may not always be selected for removal. An
example illustrates the potential problem.

EXAMPLE: Assume thatV = {v1, v4} and thatv6 is tried for insertion (see the
table below).

Vspec T T ` T T a
v1 ρ(emp) : σT T a≤NOW−4yrs(emp) 5/16/1992 7/14/1997
v4 ρ(emp) : σT T a≤NOW−6yrs(emp) 7/15/1997 NOW

v6 ρ(V) : σT T a<NOW(V) 7/14/1998 NOW

Herev4 takes the place ofv1 at time 7/15/1997. Now, at the current time
7/14/1998, even thoughv1 is deleted, it is still the reason for the removal of tuples
with T T a ≤ 7/14/1993, andv4 still has no tuples to remove, since it selects tu-
ples deleted before 7/14/1992 for removal. Thus,v1 although not current is still
important if one is to understand the contents of the database.

Insertion ofv6 will specify the removal of vacuuming specification parts that
have been deleted, leading to removal of specification partv1. If that happens, it
will, for some time, not be possible to see that original data may have been removed.
Due to this, insertion of specification partv6 should not be allowed. 2

To ensure that relevant information about vacuuming is not lost, we introduce
the notions ofalive anddeadspecification parts. A specification partv of a vacu-
uming specificationV is aliveat timet if it is responsible for vacuuming at timet or
will become responsible for vacuuming at a later time. Such parts must be retained
because of the information they provide about the present or future vacuuming.

For a specification partv specifying vacuuming for relationRx vacuumed
according toV , we define it beingaliveat timet as follows.

alive(v, t, V)
def⇐⇒ ∃t ′ [t ′ ≥ t ∧

[∃u (u 6∈ ([[Rx]]t ′ , [[V]]t ′) ∧ u ∈ ([[Rx]]t ′, [[V \ {v}]]t ′))
∧∃Exp(v.Vspec= ρ(Rx) : Exp)] ∨

[∃u (u ∈ ([[Rx]]t ′ , [[V]]t ′) ∧ u 6∈ ([[Rx]]t ′, [[V \ {v}]]t ′))
∧∃Exp(v.Vspec= κ(Rx) : Exp)]]

A removal specification partvi specifying vacuuming forRx is alive at timet if
at some timet ′ later thant a tupleu will exist, with u being in relation[[Rx]]t ′
vacuumed byV excludingvi , and withu not being in[[Rx]]t ′ vacuumed by all of
V . In the same way, a keep specification partvj is alive at timet if at some later
time t ′, a tupleu will exist in [[Rx]]t ′ vacuumed according to all ofV , but not in
[[Rx]]t ′ vacuumed according toV excludingvj . Removal and keep specification

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 311

parts are thus active if their presence select additional tuples for removal and keep,
respectively. Ift ′ = t , specification partv is currently responsible for vacuuming,
and we termv active.

In contrast to the specification parts being alive, all other parts are not and will
never be responsible for vacuuming; they aredead. For a specification partv ∈ V ,
we define it to bedeadat timet as follows.

dead(v, t, V)
def⇐⇒ ¬ alive(v, t, V)

Finally, the set of alive specification parts at timet may be defined as follows.
This is the set of the parts that either are responsible for vacuuming at timet or will
be so at a later time.

alive
(
V, t

) = {v | v ∈ [[V]]t ∧ alive(v, t, V)
}

EXAMPLE: To illustrate, letV = {v1, v2, v3, v4} be the current vacuuming speci-
fication, given in the table next, at time 7/14/1998.

Vspec T T ` T T a
v1 ρ(emp) : σT T a≤NOW−4yrs(emp) 5/16/1992 7/14/1997
v2 κ(emp) : σBal≤$−5,000(emp) 5/16/1992 NOW
v3 ρ(emp) : σNOW−4yrs<T T a≤NOW−2yrs∧Sex=F (emp) 7/4/1996 NOW
v4 ρ(emp) : σT T a≤NOW−6yrs(emp) 7/15/1997 NOW

The set of active parts is{v1, v2, v3}. At this time, partv4 selects only tuples deleted
before 7/14/1992 for removal, butv1 also selects these and more tuples for removal.
So at time 7/14/1998,v4 is not active. Butv4 is alive because it will be active after
time 7/14/1999. After time 7/14/1999,v1 will be dead. 2

A vacuuming subsystem must retain enough vacuuming information for it
to always be able to test the equivalence of a query and its vacuuming modified
counterpart and to satisfyfaithful history querying. This will require the system to
retain allalive vacuuming specification parts. So when modifying the vacuuming
relation at some timet , all that is necessary is to check if parts that are inalive(V, t)
will be removed. Note that the vacuuming specification must also remaingrowing.

Now, modifying vacuuming on the vacuuming relation corresponds to delet-
ing and inserting tuples inV |V , the set of specification parts effective on relation
V .

Deleting a vacuuming specification part results in a fixed timestamp end value
in the tuple. This only stops the vacuuming, retaining existing vacuuming knowl-
edge. Thus, no vacuuming knowledge is lost and, for the same reason as above, the
vacuuming specification will continue to begrowing. Thus, deleting tuples will not
create any problems.

However, inserting tuples can create problems, since this will specify removal
or keep of vacuuming specification parts. First of all, it is still a possibility that the

312 SEMANTICS OF TEMPORAL DATA

part to be inserted will make the vacuuming specification non-growing. This was
addressed in the previous subsection. Second, since inserting a keep specification
part will only cause the system to retain vacuuming specifications in the system, it
will not create further problems. Inserting removal specification parts forV will,
however, create a potential loss of vacuuming knowledge. To ensure that this will
not happen, specifying removal of specification parts beingalive should not be
allowed.

So, what makes a removal specification partvi , specifying vacuuming onV ,
admissible for insertion intoV ? First, as stated before, the insertion must ensure
growth, and second it must beinformation retaining. Insertingvi into V retains
vacuuming information ifinfRet(vi, t, V), defined as follows.

infRet(vi, t, V)
def⇐⇒ ¬ [∃t ′ (t ′ ≥ t∧

∃v′ (alive(v′, t ′, [[V]]t ′) ∧ v′ ∈ ([[V]]t ′ , [[V]]t ′) ∧ v′ 6∈ ([[V]]t ′ , [[V ∪ {vi}]]t ′)))]
The definition says insertion of a removal specification partvi at the timet retains
information about specification parts being alive, if and only if there at no timet ′
after t exists a vacuuming specification part being alive att ′, and being removed
by vi at that time, i.e., the insertion retains information if only dead parts will be
removed byvi .

6.3 Summary

Two major problems may occur when modifying a vacuuming database, and both
happen when new specification parts are inserted. First, an insertion can violate the
principle “once vacuumed, always vacuumed.” Second, an insertion can create a
loss of vacuuming knowledge. To ensure that these problems do not occur, this sec-
tion has defined properties covering these cases. The full definition of admissibility
for insertions is given next.

DEFINITION: A vacuuming specification partv is admissible for insertion in the
vacuuming specificationV at timet if and only if admInsertion(v, t, V), defined as
follows.

admInsertion(v, t, V)
def⇐⇒

[infRet(v, t, V)∧ growRem(v, t, V) ∧ ∃Exp(v.Vspec= ρ(V) : Exp)] ∨
[growRem(v, t, V) ∧ ∃Exp, Rx (v.Vspec= ρ(Rx) : Exp))] ∨
[growKeep(v, t, V) ∧ ∃Exp(∃Rx (v.Vspec= κ(Rx) : Exp

∨v.Vspec= κ(V) : Exp)))] 2

7 Conclusions and Research Directions

A wide range of applications are faced with accountability and traceability require-
ments, in turn yielding underlying databases that retain their past states. Such

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 313

databases, termed transaction-time databases, are ever growing, and conventional
(logical) deletions result in insertions at the physical level.

This paper presents a foundation for the physical removal of data, or vacuum-
ing, from such databases. While necessary, vacuuming compromises the property
that past database states are retained. The paper defines the semantics of vacuuming
specification facilities, and it presents options for detecting and evaluating queries
that, if answered, may yield results affected by vacuuming. The requirement of
being able to detect vacuuming-affected queries imposes certain constraints on the
modification of vacuuming specifications; the concepts necessary to capture these
constraints as well as the constraints themselves are given.

The studies reported in this paper point to interesting research directions,
some of which are described next.

In the current foundation for vacuuming, vacuuming is an “all-or-nothing”
proposition: either data is irreversibly eliminated or is retained. Extending the foun-
dation to also allow for the specification of off-line (or even “near-line”) archival in
the context of multi-level storage architectures appears to be an interesting and very
useful, but also non-trivial direction.

One of today’s foci in data warehousing is the bulk-loading of very large
amounts of data, but as years of data are accumulating in data warehouses, vacuum-
ing is likely to become a future focus of attention. The advanced decision support
queries in data warehousing are expected to introduce new challenges to vacuuming
support.

When a query against a vacuumed database may not return the same result as
when issued against the unvacuumed, but otherwise identical database, a coopera-
tive system may offer alternative queries that are similar to the original query, but
are not affected by vacuuming. While the paper briefly touched upon this aspect,
the use of techniques such as query generalization and specialization for obtaining
simple and easily comprehensible alternative queries deserves further exploration.

Acknowledgments

This research was supported in part by the Danish Research Councils through grants
9700780 and 9701406, by the CHOROCHRONOS project, funded by the European
Commission, contract no. FMRX-CT96-0056, and by a grant from the Nykredit
corporation.

References

[ASU79a] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient Optimization of a Class
of Relational Expressions.ACM Transactions on Database Systems,
4(4):435–454, December 1979.

314 SEMANTICS OF TEMPORAL DATA

[ASU79b] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences Among Relational
Expressions.SIAM Journal of Computing, 8(2):218–246, May 1979.

[CDI+97] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snod-
grass. On the Semantics of “Now” in Databases.ACM Transactions
on Database Systems, 22(2):171–214, June 1997.

[Cha90] S. Chaudhuri. Generalization as a Framework for Query Modification.
In Proceedings of the 6th Data Engineering Conference, pages 138–
145, February 1990.

[Cop82] G. Copeland. What If Mass Storage Were Free?IEEE Computer
Magazine, 15(7):27–35, July 1982.

[GMLY98] H. Garcia-Molina, W. Labio, and J. Yang. Expiring Data in a Ware-
house. InProceedings of the 24th International Conference on Very
Large Databases, pages 500–511, August 1998.

[Jen95] C. S. Jensen. Vacuuming. In R. T. Snodgrass, editor,The TSQL2 Tem-
poral Query Language, Chapter 23, pages 451–462. Kluwer Academic
Publishers, 1995.

[JM90] C. S. Jensen and L. Mark. A Framework for Vacuuming Temporal
Databases. Technical report, CS-TR-2516, UMIACS-TR-90-105, De-
partment of Computer Science. University of Maryland, College Park,
MD 20742, August 1990.

[Mot84] A. Motro. Query Generalization: A Technique for Handling Query
Failure. InProceedings of the 1st International Workshop on Expert
Database Systems, pages 314–325, October 1984.

[MS91] E. McKenzie and R. Snodgrass. Evaluation of Relational Algebras
Incorporating the Time Dimension in Databases.Computing Surveys,
23(4):501–543, 1991.

[PS88] J. Park and A. Segev. Using Common Subexpressions to Optimize
Multiple Queries. InProceedings of the 4th Data Engineering Confer-
ence, pages 311–319, February 1988.

[RS87] L. A. Rowe and M. R. Stonebraker. The Postgres Papers. Memoran-
dum UCB/ERL M86/85, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, CA 94720, June 1987.

[SA85] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In
Proceedings of ACM SIGMOD, pages 236–246, May 1985.

[SAA+94] R. T. Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Clifford, C. E. Dyre-
son, R. Elmasri, F. Grandi, C. S. Jensen, W. Kafer, N. Kline, K. Kulka-
rni, T. Y. C. Leung, N. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo,
and S. M. Sripada. TSQL2 Language Specification.SIGMOD Record,
1(23):65–86, March 1994.

A FOUNDATION FOR VACUUMING TEMPORAL DATABASES 315

[Sch77] B. M. Schueler. Update Reconsidered. InProceedings of the IFIP
Working Conference on Modelling in Data Base Management Systems,
pages 149–164, 1977.

[Sto75] M. R. Stonebraker. Implementation of Integrity Constraints and Views
by Query Modification. Memorandum ERL-M514, Electronics Re-
search Laboratory, College of Engineering, University of California,
Berkeley 94720, March 1975.

[Ull88] J. D. Ullman. Database and Knowledge—Base Systems, Volume I of
Principles of Computer Science. Computer Science Press, Rockville,
MD, 1988.

