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Richard T. Snodgrass

To add time support to the relational model, both first normal form (1NF) and
non-1NF data models have been proposed. Each has associated advantages and
disadvantages. For example, remaining within 1NF when time support is added
may introduce data redundancy. On the other hand, well-established storage
organization and query evaluation techniques require atomic attribute values,
and are thus intended for 1NF models; utilizing a non-1NF model may degrade
performance.

This paper describes a new temporal data model designed with the sin-
gle purpose of capturing the time-dependent semantics of data. Here, tuples
of bitemporal relations are stamped with sets of two-dimensional chronons in
transaction-time/valid-time space. We use the notion of snapshot equivalence to
map temporal relation instances and temporal operators of one existing model
to equivalent instances and operators of another. We examine five previously
proposed schemes for representing bitemporal data: two are tuple-timestamped
1NF representations, one is a backlog relation composed of 1NF timestamped
change requests, and two are non-1NF attribute value-timestamped representa-
tions. The mappings between these models are possible using mappings to and
from the new conceptual model.

The framework of well-behaved mappings between models, with the new
conceptual model at the center, illustrates how it is possible to use different
models for display and storage purposes in a temporal database system. Some
models provide rich structure and are useful for display of temporal data, while
other models provide regular structure useful for storing temporal data. The
equivalence mappings effectively move the distinction between the investigated
data models from a semantic basis to a display-related or a physical, performance-
relevant basis, thereby allowing the exploitation of different data models by
using each for the task(s) for which they are best suited.
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1 Introduction

Adding time to the relational model has been a daunting task [3, 16, 18, 31, 29].
More than a dozen extended data models have been proposed over the last decade
[12, 26]. Most of these models supportvalid time, that is, the time a fact was,
is, or will be valid in the modeled reality. A few, notably [1, 2, 25, 27], have
also supportedtransaction time, the time a fact was recorded in the database; such
models are termedbitemporalbecause they support both kinds of time [14].

While these data models differ in many ways, perhaps the most often stated
distinction is that between first normal form (1NF) and non-1NF. A related dis-
tinction is between tuple timestamping and attribute-value timestamping. Each has
associated difficulties. Remaining within 1NF (an example being the timestamping
of tuples with valid and transaction start and end times [25]) may introduce redun-
dancy because attribute values that change at different times are repeated in multiple
tuples. The non-1NF models, one being timestamping attribute values with sets of
intervals [9], may not be capable of directly using existing relational storage struc-
tures or query evaluation techniques that depend on atomic attribute values.

It is our contention that focusing on datapresentation(how temporal data is
displayed to the user), on datastorage, with its requisite demands of regular struc-
ture, and on efficientquery evaluationhas complicated the primary task of captur-
ing the time-varying semantics. The result has been a plethora of incompatible data
models and query languages, and a corresponding surfeit of model specific database
design approaches and implementation strategies.

We advocate instead a very simple data model, theBitemporal Conceptual
Data Model(BCDM), which captures the essential semantics of time-varying re-
lations, but has no illusions of being suitable for presentation, storage, or query
evaluation. The BCDM is termed aconceptualmodel because of these properties.
In essence, we advocate moving the distinction between the various existing tem-
poral data models from a semantic basis to a physical, performance-relevant basis,
utilizing our proposed conceptual data model to capture the time-varying semantics.
The terminology of “conceptual” is used only to emphasize the use of the model for
design and as a basis for a query language; otherwise this new model is similar to
other temporal data models in the formalism used to define it.

We rely on existing data model(s) for the other tasks, by exploiting equiv-
alence mappings between the conceptual model and therepresentationalmodels.
The equivalence mappings are based on the notion ofsnapshot equivalence, which
says that two relation instances have the same information content if all their snap-
shots, taken at all times (valid and transaction), are identical. Snapshot equivalence
provides a natural means of comparing relation instances in the models considered
in this paper. Finally, while not addressed here, we feel that the conceptual data
model is the appropriate location for database design and logical query optimiza-
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tion [13].
In the next section, the conceptual model is defined. We then examine five

representational data models that have been previously proposed. These repre-
sentational models can be classified as either tuple timestamping (e.g., [1, 21, 22,
23, 25, 27]), backlog-based (e.g., [11, 15]), or attribute-value timestamping (e.g.,
[5, 9, 17, 20, 32]). We provide mappings between the conceptual model and these
representational models.

Having presented both the conceptual data model and the representational
data models, Section 4 presents an overview of the interaction among the data mod-
els. Snapshot equivalence is the subject of Section 5. The definitions of snapshot
equivalence rely on model-specific operations because the notion of snapshot equiv-
alence allows us to relate relation instances, as well as operators, of different repre-
sentations, and also allows us to relate representations to the semantics ascribed to
the conceptual model. Section 6 is devoted to generalizing algebraic operators of
the relational model to apply to objects in the bitemporal conceptual model as well
as one of the tuple-timestamped representational models. As with data instances,
we demonstrate correspondence of these operators. We also discuss transforma-
tions, e.g.,coalescing, of the bitemporal elements of tuples in a relation instance.
Finally, we demonstrate that the BCDM is a temporally ungrouped data model [6].

After summarizing, we outline the next steps to be taken in utilizing the con-
ceptual model to integrate existing temporal data models.

2 Bitemporal Conceptual Relations

The primary reason for the success of the relational model is its simplicity. A bitem-
poral relation is necessarily more complex than a conventional relation. Not only
must it associate values with facts, as does the relational model, it must also specify
whenthe facts were valid in reality, as well aswhenthe facts were current in the
database. Since our emphasis is on semantic clarity, our aim is to extend the con-
ventional relational model as small an extent as necessary to capture this additional
information.

2.1 Definition

Tuples in a bitemporal conceptual relation instance are associated with time val-
ues from two orthogonal time domains, namely valid time and transaction time.
Valid time is used for capturing the time-varying nature of the portion of reality
being modeled, and transaction time models the update activity associated with the
relation. For both domains, we assume that the database system has limited pre-
cision; the smallest time units are termed chronons [14]. The time domains have
total orders and both are isomorphic to subsets of the domain of natural numbers.
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The domain of valid times may be given asDVT = {t1, t2, . . . , tk} and the domain
of transaction times may be given asDTT = {t ′1, t ′2, . . . , t ′j } ∪ {UC} whereUC
is a distinguished value which is used during update as will be explained later in
this section. A valid-time chronon is thus an element ofDVT , a transaction-time
chronon is an element ofDTT \ {UC}, and a bitemporal chronon is an ordered pair
of a transaction-time chronon and a valid-time chronon. We expect that the valid
time domain is chosen so that some times are before the current time and some
times are after the current time.

We also define a set of namesDA = {A1, A2, . . . , AnA} for explicit attributes
and a set of attribute domainsDD = {D1, D2, . . . , DnD }. In general, the schema
of a bitemporal conceptual relation,R, consists of an arbitrary number, e.g.,n,
of explicit attributes fromDA, with domains inDD, encoding some fact (possibly
composite) and an implicit timestamp attribute, T, with domainDTT×DVT . Thus, a
tuple,x = (a1, a2, . . . , an| tb), in a bitemporal conceptual relation instance,r(R),
consists of a number of attribute values associated with a bitemporal timestamp
value.

An arbitrary subset of the domain of valid times is associated with each tuple,
meaning that the fact recorded by the tuple istrue in the modeled realityduring
each valid-time chronon in the subset. Each individual valid-time chronon of a
single tuple has associated a subset of the domain of transaction times, meaning
that the fact, valid during the particular chronon, iscurrent in the relationduring
each of the transaction-time chronons in the subset. Any subset of transaction times
less than the current time and including the valueUC may be associated with a
valid time. Notice that while the definition of a bitemporal chronon is symmetric,
this explanation is asymmetric. This assymmetry is also present in the the update
operations to be defined shortly, and it reflects the different semantics of transaction
and valid time.

We have thus seen that a tuple has associated a set of so-calledbitemporal
chronons(“tiny rectangles”) in the two-dimensional space spanned by transaction
time and valid time. Such a set is termed abitemporal element1, denotedtb. Be-
cause no two tuples with mutually identical explicit attribute values (termedvalue-
equivalent) are allowed in a bitemporal relation instance, the full time history of a
fact is contained in a single tuple.

In graphical representations of bitemporal space, we choose thex-axis as the
transaction-time dimension, and they-axis as the valid-time dimension. Hence, the
ordered pair (t , v) represents the bitemporal chronon with transaction timet and
valid timev.

1This term is a generalization oftemporal element, used to denotes a set of single dimensional chronons
[9]. Alternative terms includetime period set[1] andbitemporal lifespan[5].
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Example 1 Consider a relation recording employee/department information, such
as “Jake works for the shipping department.” We assume that the granularity of
chronons is one day for both valid time and transaction time, and the period of
interest is some given month in a given year, e.g., June 1992. Throughout, we
use integers as timestamp components. The reader may informally think of these
integers as dates, e.g., the integer 15 in a timestamp represents the date June 15th.

Figure 1 shows how the bitemporal element in an employee’s department tu-
ple changes. Employee Jake was hired by the company as temporary help in the
shipping department for the interval from time 10 to time 15, and this fact became
current in the database at time 5. This is shown in Figure 1(a). The arrows pointing
to the right signify that the tuple has not been logically deleted; it continues through
to the transaction timeuntil_changed(UC).

Figure 1(b) shows a correction. The personnel department discovers that Jake
had really been hired from time 5 to time 20, and the database is corrected beginning
at time 10. Later, the personnel department is informed that the correction was itself
incorrect; Jake really was hired for the original time interval, time 10 to time 15, and
the correction took effect in the database at time 15. This is shown in Figure 1(c).
Lastly, Figure 1(d) shows the result of three updates to the relation, all of which
become current starting at time 20. (The same transaction could have caused all
three updates.) While the period of validity was correct, it was discovered that Jake
was not in the shipping department, but in the loading department. Consequently,
the fact (Jake, Ship) is removed from the current state and the fact (Jake, Load)
is inserted. A new employee, Kate, is hired for the shipping department for the
interval from time 25 to time 30.

We note that the number of bitemporal chronons in a given bitemporal element
is the area enclosed by the bitemporal element. The bitemporal element for (Jake,
Ship) contains 140 bitemporal chronons.

The example illustrates how transaction time and valid time are handled. As
time passes, i.e., as the computer’s internal clock advances, the bitemporal element
associated with a fact is updated, if the fact remains current in the database. For
example, consider the fact (Jake, Ship) which first becomes current in the database
at time 5. Due to the semantics of insertion as described in the next section, a fact,
when first appended to the relation, has associated the special transaction time value
UC. When the clock advances, additional bitemporal chronons are appended to the
timestamp associated with the fact. Each bitemporal chronon with a transaction
time of UC produces an appended bitemporal chronon withUC replaced by the
current transaction time. Thus, for (Jake, Ship) to become current at time 5, the fact
first appears in the relation at time 4 with the six valid-time chronons 10, 11,. . . ,
15, each associated with the transaction time valueUC. Note that, logically, the
fact is not yet current. This does not occur until time 5 when the six new bitemporal
chronons,(5, 10), . . . , (5, 15), are appended. This continues for every clock tick



220 SEMANTICS OF TEMPORAL DATA

-

-

6

-

6

-

-

-

-

-

-

-

6

-

-

-
6

-

(Kate,Ship)

(Jake,Ship)(Jake,Ship)

(Jake,Ship)

(Jake,Load)

(Jake,Ship)

30
0

0 10

10

15

20

5

5

15 20 25 30 2015

5

5

20

15

10

100
0

25

0
0 10

10

15

20

5

5

15 20 25

25

30

30

30

25

5

20

15

10

0
0 105 15 20 25 30

VT

VT

VT

VT

TT
(a) (b)

TT

TTTT
(c) (d)

Figure 1: Bitemporal Elements

until time 9, when a correction to the fact’s valid time is made. Thus, starting at
time 10, 16 bitemporal chronons are added at every clock tick.

The actual bitemporal relation corresponding to the graphical representation
in Figure 1(d) is shown in Figure 2 below. This relation contains three facts. The
timestamp attribute T shows each transaction-time chronon associated with each
valid-time chronon as a set of ordered pairs. 2

Valid-time relations and transaction-time relations are special cases of bitem-
poral relations that support only valid time or transaction time, respectively. Thus
a valid-time tuple has associated a set of valid-time chronons (termed avalid-
time elementand denotedtv), and a transaction-time tuple has associated a set of
transaction-time chronons (termed atransaction-time elementand denotedtt ). For
clarity, we use the termsnapshot relationfor a conventional relation. Snapshot
relations support neither valid time nor transaction time.
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Emp Dept T

Jake Ship {(5,10), . . . , (5,15), . . . , (9,10), . . . , (9,15),
(10,5), . . . , (10,20), . . . , (14,5), . . . , (14,20),
(15,10), . . . , (15,15) . . . , (19,10), . . . , (19,15)}

Jake Load {(UC,10), . . . , (UC,15)}
Kate Ship {(UC,25), . . . , (UC,30)}

Figure 2: Bitemporal Relation Instance

2.2 Update

In this section, we describe the semantics of the three forms of update, insertion,
deletion, and modification. This description is pedagogical, meant only to illustrate
the semantics of the operations, and not intended for implementation. Possible
techniques for efficiently supporting these semantics are discussed in Section 3.

An insertion is issued when we want to record in bitemporal relation instance
r that a currently unrecorded fact(a1, . . . , an) is true for some period(s) of time.
These periods of time are represented by a valid-time element. When the fact is
stored, its valid-time element stamp is transformed into a bitemporal-element stamp
to capture that, until its explicit attribute values are changed, the fact is current in
the relation. This is indicated with the special transaction time value,UC.

The arguments to theinsert routine are the relation into which a fact is to be
inserted, the explicit values of the fact, and the set of valid-time chronons,tv, during
which the fact was true in reality. Theinsert routine returns the new, updated
version of the relation. There are three cases to consider. First, if(a1, . . . , an)

was never recorded in the relation, a completely new tuple is appended. Second,
if (a1, . . . , an) was part of some previously current state, the tuple recording this
is updated with the new valid time information. Third, if(a1, . . . , an) is already
current in the relation, a modification is required, and the insertion is rejected (in
this case, amodify operation should have been used). In the following, we denote
valid-time chronons withcv and transaction-time chronons withct .

insert (r, (a1, . . . , an), tv) =
r ∪ {(a1, . . . , an|{UC} × tv)} if ¬∃ tb ((a1, . . . , an| tb) ∈ r)
r − {(a1, . . . , an| tb)}
∪{(a1, . . . , an| tb ∪ {{UC} × tv})} if ∃ tb ((a1, . . . , an| tb) ∈ r ∧

¬∃ (UC, cv) ∈ tb)
r otherwise

The insert routine adds bitemporal chronons with a transaction time ofUC.
As transaction time passes, new chronons must be added. Logically, this is

performed by a special routinets_update which is applied to all bitemporal
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relations at each clock tick. This function simply updates the timestamps to include
the new transaction-time value. The timestamp of each tuple is examined in turn.
When a bitemporal chronon of the type(UC, cv) is encountered in the timestamp,
a new bitemporal chronon(ct , cv), where timect is the new transaction-time value,
is made part of the timestamp.

ts_update (r, ct ) :
for each x ∈ r

for each (UC, cv) ∈ x[T]
x[T] ← x[T] ∪ {(ct , cv)};

We note again thatts_update is part of the logical semantics of the conceptual
model, and that direct implemention would be prohibitively expensive. In Section 3,
we discuss efficient ways to support these semantics.

Deletion concerns the logical removal of a tuple from the current valid-time
state of a bitemporal relation. To logically remove a qualifying tuple from the cur-
rent state, we delete all chronons(UC, cv), wherecv is some valid-time chronon,
from the timestamp of the tuple. As a result, the timestamp is not expanded by
subsequent invocations ofts_update , and the tuple will not appear in future
valid-time states. If there is no qualifying tuple in the relation, or if a qualifying
tuple exists but has no chronons with a transaction time ofUC, then the deletion
has no effect.

delete (r, (a1, . . . , an)) =
r − {(a1, . . . , an| tb)}
∪{(a1, . . . , an| tb − uc_ts (tb))} if ∃ tb ((a1, . . . , an| tb) ∈ r)

r otherwise

whereuc_ts (tb) = {(UC, cv) | (UC, cv) ∈ tb}.
Finally, a modification of an existing tuple is defined by a deletion followed

by an insertion as follows.

modify (r, (a1, . . . , an), tv) =
insert (delete (r, (a1, . . . , an)), (a1, . . . , an), tv)

Example 2 The conceptual relation in Figure 2 is created by the following se-
quence of commands, invoked at the indicated transaction time.

Command Transaction Time

insert(dept,("Jake","Ship"),[10,15]) 5
modify(dept,("Jake","Ship"),[5,20]) 10
modify(dept,("Jake","Ship"),[10,15]) 15
delete(dept,("Jake","Ship")) 20
insert(dept,("Jake","Load"),[10,15]) 20
insert(dept,("Kate","Ship"),[25,30]) 20
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2

We have given a definition of a bitemporal conceptual relation. As part of the
definition, we used the special valueUC in conjunction with the routinets_upda-
te to allow timestamps of tuples to grow as time passes. It should be emphasized
that users will not see the valueUC. Query results are static, and there is no need
to display this value. In the next section, we shall see how the temporal relations
defined thus far may be mapped to other formats, some of which may be better for
display or storage of temporal data.

3 Representation Schemes

A bitemporal conceptual relation is structurally simple—it is a set of facts, each
timestamped with a bitemporal element which is a set of bitemporal chronons. In
this section, we examine five representations of bitemporal relations that have been
previously proposed. These representations fall into the class of temporally un-
grouped models [6], and constitute all such models proposed to date, to our knowl-
edge. For each, we briefly specify the objects defined in the representation, provide
the mapping to and from conceptual bitemporal relations to demonstrate that the
same information is being stored, and show how updates of bitemporal concep-
tual relations may be mapped into updates on relations in the representation. We
progress from a simple model to ones associated with more complex mappings.

In the following, we will useR andS to denote relation schemas. Relation
instances are denoted byr, s, andt , andr(R)means thatr is an instance ofR. For
brevity, we useA to denote the set of all (explicit) attributesAi , 1 ≤ i ≤ n of a
relation. For tuples we use,x, y, andz, possibly indexed, and the notationx[Ai]
denotes theAthi attribute ofx. Similarly, x[T] denotes the timestamp associated
with x. Often, when discussing representational models, we will usex[V] and
x[T] to denote the valid-time and transaction-time intervals, respectively, associated
with a representational tuplex. The differing use associated with conceptual tuples
should be clear from context.

3.1 Snodgrass’ Tuple Timestamped Representation Scheme

In the conceptual model, the timestamp associated with a tuple is an arbitrary set
of bitemporal chronons. As such, a relation schema in the conceptual model is
non-1NF, which represents difficulties if directly implemented. We describe here
how to represent conceptual relations by 1NF snapshot relations, allowing the use
of existing, well-understood implementation techniques [25].

Let a bitemporal relation schemaR have the attributesA1, . . . , An,T where
T is the timestamp attribute defined on the domain of bitemporal elements. ThenR
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is represented by a snapshot relation schemaR as follows.

R = (A1, . . . , An,Ts,Te,Vs,Ve)

The additional attributes Ts , Te, Vs , Ve are atomic-valued timestamp attributes
containing a starting and ending transaction-time chronon and a starting and end-
ing valid-time chronon, respectively. These four values represent the bitemporal
chronons in a rectangular region, the idea being to divide the region covered by the
bitemporal element of a tuple in a conceptual relation into a number of rectangles
and then represent the conceptual tuple by a set of representational tuples, one for
each rectangle.

There are many possible ways of covering a bitemporal element. To ensure
the representation remains faithful to the semantics of the conceptual relation, we
require that any covering function on a bitemporal elementx[T] of a bitemporal
tuplex satisfy two properties.

1. Any bitemporal chronon inx[T]must be contained in at least one rectangle.

2. Each bitemporal chronon in a rectangle must be contained inx[T].
The first condition ensures that all chronons in the bitemporal element ofx are
accounted for; the second ensures that no spurious chronons are introduced. Hence,
the covering represents the same information as is contained in the original tuple.

Apart from these requirements, the covering function is purposefully left un-
specified—an implementation is free to choose a covering with properties it finds
desirable. For example, a set of covering rectangles need not be disjoint. Overlap-
ping rectangles may reduce the number of tuples needed in the representation, at
the possible expense of additional processing during update.

Example 3 While the results presented in this paper are independent of particular
covering functions, it is still useful to consider some examples to illustrate the range
of possibilities.

Figure 3 illustrates three ways of covering the bitemporal element associated
with the fact (Jake, Ship) contained in Figure 2, and shown graphically in Fig-
ure 1(d). We may distinguish between those covering functions that partition the
argument set into disjoint rectangles and those that allow overlap between the result
rectangles. Figure 3(a) and Figure 3(b) are examples of partitioned coverings while
the covering in Figure 3(c) has overlapping rectangles.

Figure 3(a) illustrates a type of covering where regions are partitioned by
transaction time. Maximal transaction-time intervals are located so that each trans-
action time in an interval has the same interval of valid times associated. In the
figure, the transaction-time interval (5,9) is maximal, and the associated valid-time
interval is (10,15). Thus, the rectangle with corners (5,10) and (9,15) is part of the
result. Similarly, the two rectangles with corners ((10,5), (14,20)), and ((15,10),
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Figure 3: Example Coverings of a Bitemporal Element

(19,15)) are in the result. Due to the semantics of transaction time [11], this is
perhaps the most natural choice of covering [25]. Indeed, all the examples of repre-
sentations of the employee bitemporal relation use covering functions that partition
by transaction time.

Figure 3(b) illustrates the symmetric partitioning by valid time. Here, three
rectangles are created with corners at ((5,10), (19,15)), ((10,5), (14,10)), and ((10,15),
(14,20)).

Figure 3(c) exemplifies a type of covering that allows overlaps. The two rect-
angles in this covering have corners at ((5,10), (19,15)) and ((10,5), (14,20)). The
overlap of these rectangles means that two tuples will express the fact that Jake was
in the shipping department from time 10 to time 15, recorded as current information
from time 10 to time 14.

The last example demonstrates that a covering function that allows overlap
may result in a smaller number of covering rectangles, and therefore may yield a
more compressed representation than a covering function that partitions. However,
this repetition of information makes some updates more time consuming, as more
tuples may be affected by a single update. 2

We will make use of covering functions throughout this section when repre-
senting bitemporal elements of conceptual tuples with rectangles.

Example 4 The 1NF relation corresponding to the conceptual relation in Figure 2
is shown below.

Emp Dept Ts Te Vs Ve
Jake Ship 5 9 10 15
Jake Ship 10 14 5 20
Jake Ship 15 19 10 15
Jake Load 20 UC 10 15
Kate Ship 20 UC 25 30
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Here we use a non-overlapping covering function that partitions the bitemporal el-
ement by transaction time. 2

The following functions convert between a bitemporal conceptual relation in-
stance and a corresponding instance in the representation scheme. The second ar-
gument,cover, of the routineconceptual_to_snap is a covering function. It
returns a set of rectangles, each denoted by a set of bitemporal chronons.

conceptual_to_snap( r ′, cover):
s ← ∅;
for each x ∈ r ′

z[A] ← x[A];
for each t ∈ cover( x[T])

z[Ts] ← min_1( t); z[Te] ← max_1( t);
z[Vs] ← min_2( t) ; z[Ve] ← max_2( t);
s ← s ∪ {z};

return s;

snap_to_conceptual( r):
s ← ∅;
for each z ∈ r

r ← r − {z};
x[A] ← z[A];
x[T] ← bi_chr( z[T], z[V]);
for each y ∈ r

if z[A] = y[A]
r ← r − {y};
x[T] ← x[T] ∪ bi_chr( y[T], y[V]);

s ← s ∪ {x};
return s;

Recall thatA is an abbreviation for all attributesA1, . . . , An of the argument rela-
tions. The functionsmin_1andmin_2select a minimum first (transaction time) and
second (valid time) component, respectively, in a set of bitemporal chronons. The
functionmax_1returns the valueUC if encountered as a first component; otherwise,
it returns a maximum first component. The functionmax_2selects a maximum sec-
ond component. The functionbi_chrcomputes the bitemporal chronons covered by
the argument rectangular region.

The conceptual_to_snap routine generates possibly many representa-
tional tuples from each conceptual tuple, each generated tuple corresponding to a
rectangle in valid/transaction-time space. Thesnap_to_conceptual routine
merges the rectangles associated with a single fact into a single bitemporal element.

Note that the functions are the inverse of each other, i.e., for any conceptual
relation instancer ′,

snap_to_conceptual (conceptual_to_snap (r ′, cover)) = r ′.
We sketch an argument around which a formal proof can be constructed. Consider
a tuplex in the conceptual relationr ′. The functionconceptual_to_snap
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produces a set of value-equivalent representational tuples{z1, z2, . . . , zk}, k ≥ 1,
from this x, where the bitemporal rectangle associated withzi is produced by
cover(x[T]). We claim that the reverse transformation performed bysnap_to_
conceptual coalesces the set of tuples{z1, z2, . . . , zk} back into the conceptual
tuplex. To see this, note that any value-equivalent tuples inconceptual _to _
snap (r ′, cover) must have been produced fromx, otherwise value-equivalent tu-
ples must have been present inr ′. Let y be the conceptual tuple produced by coa-
lescing{z1, z2, . . . , zk}. Theny[T] contains exactly the chronons contained in the
union of the rectangles produced bycover(x[T]). By the definition of covering
functions, these are exactly the chronons inx[T]. Hencey = x. It is easy to see
that no spurious tuples can be produced by the transformations. Hence, the same
conceptual relation is produced.

For the update routines, the most convenient covering functions partition on
either valid or transaction time and do not permit overlaps. The current transaction
time isct .

insert( r, (a1, . . . , an), tv , coverv ):
cvr ← coverv(tv);
for each x ∈ r

if x[A] = (a1, . . . , an) and x[Te] = UC
for each t ∈ cvr

if x[V] ∩ t 6= ∅
cvr ← (cvr − t) ∪ (t − x[V]);

for each t ∈ cvr
z[A] ← (a1, . . . , an);
z[Ts] ← ct ; z[Te] ← UC;
z[Vs ] ← t[s]; z[Ve] ← t[e];
r ← r ∪ {z};

return r

delete( r, (a1, . . . , an), ct ):
for each x ∈ r

if x[A] = (a1, . . . , an) and x[Te] = UC
x[Te] ← ct ;

return r

The functioncoverv in the insert routine returns a set of valid-time intervals
(each a set of contiguous valid-time chronons). The routine first reduces the valid
time elements, produced by the covering function, to avoid overlap with the valid
times of existing tuples that have a transaction time extending toUC and that are
value equivalent to the one to be inserted. Then, one tuple is inserted for each
of the remaining valid-time intervals. Thedelete routine simply replaces the
transaction end time with the current time,ct .

As for the conceptual data model,modify is simply a combination ofde-
lete andinsert .
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3.2 Jensen’s Backlog-Based Representation Scheme

The previous representation scheme presented a very natural and frequently used
way of representing a bitemporal relation by a snapshot relation.

In the backlog-based representation scheme, bitemporal relations are repre-
sented by backlogs, which are also 1NF relations [11, 15]. The most important dif-
ference between this and the previous schemes is that tuples in backlogs are never
updated, i.e., backlogs are append-only. Therefore, this representation scheme is
well-suited for log-based storage of bitemporal relations, and it admits the possibil-
ity of using cheap write-once optical disk storage devices. This is highly desirable
since the information content of bitemporal relations is ever-growing, resulting in
very large relations.

A bitemporal relation schemaR = (A1, . . . , An |T) is represented by a back-
log relation schemaR as follows.

R = (A1, . . . , An,Vs,Ve,T,Op)

As in the previous representation scheme, the attributes Vs and Ve store starting and
ending valid-time chronons, respectively. Attribute T stores the transaction time
when the tuple was inserted into the backlog. Tuples, termed change requests, are
either insertion requests or deletion requests, as indicated by the values,I , andD,
of attribute Op. The fact in an insertion request is current starting at its transaction
timestamp and until a matching deletion request with the same explicit and valid-
time attribute values is recorded. Modifications are recorded by a pair of a deletion
request and an insertion request, both with the same T value.

Example 5 The backlog relation corresponding to the conceptual relation in Fig-
ure 2 is shown below.

Emp Dept Vs Ve T Op

Jake Ship 10 15 5 I

Jake Ship 10 15 10 D

Jake Ship 5 20 10 I

Jake Ship 5 20 15 D

Jake Ship 10 15 15 I

Jake Ship 10 15 20 D

Jake Load 10 15 20 I

Kate Ship 25 30 20 I
2

Next, we consider the conversion between a bitemporal relation and its back-
log representation. The first function,conceptual_to_back , takes a concep-
tual relation as its first argument. The second argument is an arbitrary covering
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function as described in Section 3.1. The result is a backlog relation. Each concep-
tual tuple,x, is treated in turn. For each rectangle of bitemporal chronons in the
cover of the timestamp ofx, an insertion request is appended to the result. Further,
if the rectangle has an ending transaction time different fromUC then a deletion
request is inserted.

conceptual_to_back( r ′, cover):
r ← ∅;
for each x ∈ r ′

for each t ∈ cover( x[T])
z[A] ← x[A];
z[Vs ] ← min_2( t); z[Ve] ← max_2( t);
z[Op] ← I ; z[T] ← min_1( t);
r ← r ∪ {z};
if max_1( t) 6= UC

z[Op] ← D; z[T] ← max_1( t);
r ← r ∪ {z};

return r;

back_to_conceptual( r,ct ):
r ′ ← ∅;
for each z1 ∈ r

if z1[Op] = I
a← z1[Vs ]; b← z1[Ve];
c← z1[T]; d ← ct + 1;
x1[A] ← z1[A];
r ← r − {z1};
for each z2 ∈ r

if z2[A] = z1[A] and z2[V] = z1[V] and
z2[Op] = D and z1[T] < z2[T] < d

d ← z2[T];
z3← z2;

if d 6= ct + 1
r ← r − {z3};

x1[T] ← bi_chr([c, d], [a, b]);
if d = ct + 1

x1[T] ← x1[T] ∪ {UC} × {a, . . . , b};
for each x2 ∈ r ′

if x2[A] = x1[A]
x1[T] ← x1[T] ∪ x2[T];
r ′ ← r ′ − {x2};

r ′ ← r ′ ∪ {x1};
return r ′;

The second function,back_to_conceptual , is the inverse transforma-
tion. It is rather complex because not only is information about a single fact spread
over a set of update requests, but, depending on the covering function, a single
bitemporal chronon may be represented in multiple change requests. The change
requests in the argument backlog relation are treated in turn. First, an insertion re-
quest is located, and its attribute values are recorded as appropriate. It is initially
assumed that the information recorded by the insertion request is still current, indi-
cated by the ending transaction-time value,ct + 1, where, as before,ct represents
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the current transaction time. Note that all transaction times in the backlog must be
smaller thanct + 1.

In the second loop, the backlog is scanned for a matching deletion request
with a larger transaction time. If more than one exists, the earliest is chosen. If no
such deletion request exists, denoted whend = ct + 1, then the fact is still current.
Now, the correct rectangular region of bitemporal chronons has been computed, and
this can be recorded in the bitemporal conceptual relation. If other chronons have
already been computed and recorded for the same fact, the two sets of chronons are
simply merged.

As before, we claim that the transformation functions are inverses of each
other. Briefly, consider a tuplex in the conceptual relationr ′. The functioncon-
ceptual_to_back produces a set of value-equivalent change requests, depend-
ing on the covering ofx[T]. Note that eachx must produce at least one change
request, and if a change request is value-equivalent tox then it must have been
produced fromx, otherwise value-equivalent conceptual tuples were present. The
reverse transformation,back_to_conceptual , produces a single conceptual
tuple from each set of value-equivalent change requests in the argument backlog. It
can be shown that the same conceptual relation is produced.

As expected, insertion into backlogs, where tuples are never changed, is
straightforward. For each set of consecutive valid-time chronons returned by the
argument covering function, an insertion request with the appropriate attribute val-
ues is created. The current transaction time is assumed to bect .

insert( r, (a1, . . . , an), tv, coverv , ct ):
for each t ∈ coverv(tv)

r ← r ∪ {(a1, . . . , an,min(t),max(t), ct , I )};
return r;

Deletion follows the same pattern, the only complication being that a dele-
tion request can only be inserted if a value-equivalent, previously entered and so
far undeleted insertion request is found. First, the backlog is scanned to locate a
matching insertion request. Second, it is ensured that the located insertion request
has not previously been deleted. For every undeleted, matching insertion request
that is found, a deletion request is inserted.

delete( r, (a1, . . . , an), ct ):
r ′ ← r;
for each x1 ∈ r

if x1[A] = (a1, . . . , an) and x1[Op] = I
found ← TRUE;
for each x2 ∈ r

if x2[A] = x1[A] and x2[V ] = x1[V ] and
x2[OP] = D and x2[T ] > x1[T ]

found ← FALSE;
if found

r ′ ← r ′ ∪ {(a1, . . . , an, x1[Vs ], x1[Ve], ct ,D)};
return r ′;
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3.3 Gadia’s Attribute Value Timestamped Representation Scheme

Non-1NF representations consolidate all information about an object within a single
tuple. As such, attribute-value timestamped representations have become popular
for their flexibility in data modeling. We describe here how to represent conceptual
relations by non-1NF attribute-value timestamped relations [10]. A novel feature of
this representation is that a relation may be restructured [10], causing the relation
to consolidate information using different attributes.

Let a bitemporal relation schemaR have the attributesA1, . . . , An,T, where
T is the timestamp attribute defined on the domain of bitemporal elements. Then
bitemporal relation schemaR is represented by an attribute-value timestamped re-
lation schemaR as follows.

R = ({([Ts,Te] × [Vs,Ve] A1)}, . . . , {([Ts,Te] × [Vs,Ve] An)})

A tuple is composed ofn sets. Each set elementa is a triple of a transaction-
time interval[Ts ,Te], a valid-time interval[Vs,Ve], representing in concert a rect-
angle of bitemporal chronons, and an attribute value, denoteda.val. As shorthand
we will use T to denote the transaction time interval [Ts ,Te], and, similarly, V for
[V s,Ve], and will refer to them asa.T anda.V, respectively.

Example 6 In an attribute-value timestamped representation, the structure of infor-
mation within a tuple can be based on the value of any attribute or set of attributes.
For example, we could represent the conceptual relation in Figure 2 by restructur-
ing on the employee attribute. Then all information for an employee is contained
within a single tuple, as shown below.

Emp Dept

[5,9]× [10,15] Jake [5,9]× [10,15] Ship
[10,14]× [5,20] Jake [10,14]× [5,20] Ship
[15,19]× [10,15] Jake [15,19]× [10,15] Ship
[20,UC] × [10,15] Jake [20,UC] × [10,15] Load
[20,UC] × [25,30] Kate [20,UC] × [25,30] Ship

A tuple in the above relation shows all departments for which a single employee has
worked. A different way to view the same information is to perform the restructur-
ing by department. A single tuple then contains all information for a department,
i.e., the full record of employees who have worked for the department.
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Emp Dept

[5,9]× [10,15] Jake [5,9]× [10,15] Ship
[10,14]× [5,20] Jake [10,14]× [5,20] Ship
[15,19]× [10,15] Jake [15,19]× [10,15] Ship
[20,UC] × [25,30] Kate [20,UC] × [25,30] Ship
[20,UC] × [10,15] Jake [20,UC] × [10,15] Load

Restructuring using both attributes consolidates the information for one employee
and one department into a single tuple. This yields three tuples, as shown next.

Emp Dept

[5,9]× [10,15] Jake [5,9]× [10,15] Ship
[10,14]× [5,20] Jake [10,14]× [5,20] Ship
[15,19]× [10,15] Jake [15,19]× [10,15] Ship
[20,UC] × [10,15] Jake [20,UC] × [10,15] Load
[20,UC] × [25,30] Kate [20,UC] × [25,30] Ship

This notion of restructuring provides flexibility. One user may want to focus on em-
ployees and will then use the restructuring on employee names. Another user may
want to investigate departments and would restructure the relation on the depart-
ment attribute. Finally, users may want to study the relationships between employ-
ees and departments, in which case the last format above may be advantageous.2

Next we consider the conversion between a conceptual relation and an attribute-
value timestamped representation. The first function,conceptual_to_att ,
takes three arguments,r ′, a conceptual relation,cover, a covering function, and
restruct , a restructuring function. Argumentsr ′ andcover are as described for the
other representation schemes. Argumentrestruct partitionsr ′ into disjoint subsets
where all tuples in a subset agree on the values of a particular attribute or set of
attributes, as illustrated in the above example. Each such set of conceptual tuples
produces one representation tuple.

conceptual_to_att( r ′, cover, restruct):
s ← ∅;
G ← restruct( r ′ );
for each g ∈ G

z← (∅, . . . ,∅);
for each x ∈ g

for each t ∈ cover( x[T])
for i ← 1 to n

z[Ai ] ← z[Ai] ∪
{([min_1(t),max_1(t)] ‘ ×’
[min_2(t),max_2(t)] x[Ai ])};

s ← s ∪ {z};
return s;
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att_to_conceptual( r):
s ← ∅;
for each z ∈ r

for i ← 1 to n

g[i] ← ∅;
for each y ∈ z[Ai]

t ← bi_chr( y.T, y.V);
z[Ai] ← z[Ai ] − {y};
for each y′ ∈ z[Ai ]

if y.val = y′.val
t ← t ∪ bi_chr( y′ .T, y′.V);
z[Ai] ← z[Ai ] − {y′};

g[i] ← g[i] ∪ {(y.val, t)};
for each (a1, a2, . . . , an) ∈ facts(g)

t ← a1.t;
for i ← 2 to n

t ← t ∩ ai .t;
if t 6= ∅

for i ← 1 to n

x[Ai ] ← ai .val;
x[T] ← t;
s ← s ∪ {x};

return s;

The second function,att_to_conceptual , performs the inverse trans-
formation. Given an attribute-value timestamped representation, it produces the
equivalent conceptual relation. If we regard the transaction/valid times associated
with an attribute value as rectangles, then the function simply constructs these rect-
angles for each attribute value in a tuple and then uses intersection semantics to
determine the equivalent tuple timestamp. In this transformation, the restructuring
is ignored.

In the above, thefactsfunction computes, for an array of attribute value/rec-
tangle sets, all combinations of facts that can be constructed from those attribute
values.

facts(g) = {((a1, t1), (a2, t2), . . . , (an, tn)) | ∀i 1≤ i ≤ n((ai, ti) ∈ g[i])}

As before the functionbi_chr computes the bitemporal chronons represented by a
given rectangle.

As for the previous representational models, the conversion functions perform
inverse transformations. As an outline of a proof, note thatconceptual_to_att
produces, for each set of conceptual tuples satisfying the restructuring, a single
attribute-value timestamped tuple. This representational tuple has homogeneous
timestamps (identical temporal elements for each attribute), since the conceptual
tuples that produced it were trivially homogeneous, being tuple timestamped. In
the reverse transformation performed byatt_to_conceptual this representa-
tional tuple is exploded into the set of conceptual tuples that formed it.
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Insertion of a fact into an attribute-value timestamped relation can result in
either of two actions. Either the new information is merged into an existing tuple
x ∈ r or no suchx exists and the creation of an entirely new tuple is required.

The former case occurs whenr is structured so thatx matches the explicit
attribute values in exactly the structuring attributes,G. Placing the new information
into x preserves the structuring of the relation. For any given attribute valuex[Ai],
some or all of the information being inserted may already be present inx[Ai]. A
triple y containing such information must match the information being inserted in
the explicit attribute valueai , be current in the database, and overlap in valid-time.
We remove all such overlapping valid-times chronons, perform a covering of the
remaining chronons, and insert triples intox[Ai] for each element of the covering.

In the latter case, no tuple with matching structuring attributes is found. The
new information cannot be merged into an existing tuple without violating the struc-
ture of the relation. Therefore, a new tuple containing only the added information
is created.

insert( r, (a1, . . . , an), tv, coverv, ct ):
found ← FALSE;
for each x ∈ r

if x[G] = (a1, . . . , an)[G];
f ound ← TRUE;
for i ← 1 to n

t ′ ← tv ;
for each y ∈ x[Ai ]

if y.val = ai and y.T[e] = UC
t ′ ← t ′ − {y.V};

for each t ∈ coverv(t ′)
x[Ai ] ← x[Ai ]∪ {([ct ,UC] ‘ ×’ [min(t),max(t)] ai )};

if f ound = FALSE
for each t ∈ coverv(tv)

r ← r ∪ {{([ct ,UC] ‘ ×’ [min(t),max(t)] a1)} . . .
{([ct ,UC] ‘ ×’ [min(t), max(t)] an)}};

return r;

Deletion is more complicated. Removing a fact(a1, . . . , an) from an attribute-
valued timestamped relationr involves locating the tuplex containing the fact, if
such anx exists, and alteringx to reflect that the fact is no longer current. As we
are interested only in current information, i.e., when(a1, . . . , an) is current in the
database, the triples in the attribute values ofx that can participate in producing the
fact must all have an ending transaction time ofUC. The functioncurrent produces
tuples fromx representing the current information contained inx. It selects triples
from eachx[Ai], 1 ≤ i ≤ n, with an ending transaction time ofUC and performs
a Cartesian product, resulting in a relation whose tuples have attribute values each
containing a single triple.

current(x) =
{((t1v1a1), (t2v2a2), . . . , (tnvnan)) | ∀i 1≤ i ≤ n((tiviai) ∈ x[Ai] ∧ UC ∈ ti )}
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Each tupley potentially has information that must be deleted from the current data-
base state. This is the case if the explicit-attribute values ofy match(a1, . . . , an),
andy contains a rectangle in bitemporal space where each of the triples(tiviai),
1 ≤ i ≤ n, overlap. For each suchy, we insert triples indicating that the fact
has been deleted from the current database state, and, with the help of a covering
function, reinsert unaffected information back into the relation.
delete( r, (a1, . . . , an), coverv, ct ):

for each x ∈ r
z[Ai] ← ∅; . . . z[An] ← ∅;
for each y ∈ current(x)

if y[A1].val = a1 and . . . and y[An].val = an
t1← bi_chr(y[A1].T, y[A1].V); . . . tn ← bi_chr(y[An].T, y[An].V);
t ← t1 ∩ . . . ∩ tn;
if t 6= ∅

for i ← 1 to n

x[Ai ] ← x[Ai ] − {y[Ai ]};
x[Ai ] ← x[Ai ] ∪ {([min1(t), ct − 1] ‘ ×’ [min2(t),max2(t)] y[Ai ].val)};
for each t ′ ∈ coverv(ti − t)

x[Ai ] ← x[Ai ]∪
{([min1(t

′),max1(t
′)] ‘ ×’ [min2(t),max2(t)] y[Ai ].val)};

return r;

As before,modify is simply a combination ofinsert anddelete .

3.4 McKenzie’s Attribute Value Timestamped Representation Scheme

Like the representation of the previous section, McKenzie’s data model uses non-
1NF attribute-value timestamping [19, 20].

In McKenzie’s model, a bitemporal relation is a sequence of valid-time states
indexed by transaction time. Tuples within a valid-time state are attribute-value
timestamped. The timestamps associated with each attribute value are sets of chro-
nons, i.e., valid-time elements. In addition, the model does not assume homogenei-
ty—attributes within the same tuple may have different timestamps.

A bitemporal relation schemaR = (A1, . . . , An | T) is represented by an
attribute valued timestamped relation schemaR as follows.

R = (T,VR)

where VR is a valid-time relation, and T is the transaction time when VR became
current in the database. Stepwise-constant semantics are assumed.

The schema of the valid-time state VR is as follows.

VR = (A1V1, . . . , AnVn)

HereA1, . . . ,An are explicit attribute values. Associated with eachAi , 1≤ i ≤ n,
is a valid-time element Vi denoting whenAi was true in the modeled reality.
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Example 7 The sequence of valid-time states indexed by transaction time corre-
sponding to the conceptual relation in Figure 2 is shown below.

T VR

0 ∅
5 {(Jake {10,. . . ,15}, Ship {10,. . . ,15})}
10 {(Jake {5, . . . ,20}, Ship {5, . . . ,20})}
15 {(Jake {10,. . . ,15}, Ship {10,. . . ,15})}
20 {(Jake {10,. . . ,15}, Load {10,. . . ,15}), (Kate {25,. . . ,30}, Ship {25,. . . ,30})}

Notice that for each tuple in each valid-time state, the timestamps associated with
the attribute values in a tuple are identical, i.e., the timestamps are homogeneous.
As mentioned above, this is not required by the model, but in our example the
values of the attributes Emp and Dept change synchronously, hence the timestamps
associated with each are identical. 2

Next, we consider the conversion between a bitemporal relation and its repre-
sentation as a sequence of valid-time states in McKenzie’s data model. As before,
we exhibit two functions. The first, given below, maps conceptual instances into
representational instances, and the second performs the inverse transformation.

conceptual_to_att2( r ′, ct ):
r ← ∅;
uc_present ← FALSE;
for each x ∈ r ′

for each (t, v) ∈ reduce(x[T]);
if t = UC

uc_present ← TRUE;
else

for i ← 1 to n

z[Ai ] ← x[Ai ];
z[Ti] ← v;

r ← r ∪ {(t, {z})};
if not uc_present

r ← r ∪ {(ct ,∅)};
r ← r ∪ {(0,∅)};
r ← collapse(r);
return r;

This function takes a conceptual relation as its first argument and returns a
sequence of valid-time relations, indexed by transaction time, in McKenzie’s data
model. A conceptual tuplex can contribute possibly many tuples to the result, with
the generated tuples residing in possibly many different valid-time states. For exam-
ple, the first tuple in the conceptual relation of Figure 2 would contribute three tu-
ples, (Jake {10,. . . ,15}, Ship {10,. . . ,15}), (Jake {5,. . . ,20}, Ship {5, . . . ,20}),
and (Jake {10,. . . ,15}, Ship {10,. . . ,15}), in the valid-time states associated with
transaction times 5, 10 and 15, respectively. Value-equivalent tuples with identi-
cal valid-timestamps but at intermediate transaction times, e.g., (Jake {10,. . . ,15},
Ship {10,. . . ,15}) at transaction time 6, are not generated.
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We accomplish this by deriving for each conceptual tuplex a set of stepwise
constant states from its bitemporal elementx[T]. The result is a set of pairs (t ,v),
the first element being a transaction time and the second being a valid-time element.
Effectively, each (t ,v) denotes the state ofx[A] as being valid during the setv at the
transaction timet . Intermediate states are not included in the computed set of pairs,
effectively preserving the stepwise constant assumption.

The set of stepwise constant states is computed by the functionreduce
shown below. For the above example,reduce returns the set {(5,{10,. . . ,15}),
(10,{5, . . . ,20}), (15,{10, . . . ,15})}. The function next_state is called by
reduce ; it examines each bitemporal chronon in the timestamp and derives a state
(t ,v) wheret is the earliest transaction time present in the timestamp, andv is the
set containing exactly those valid-time chronons associated witht .

reduce( T ):
T ′ ← ∅;
while T 6= ∅

(t, v)← next_state(T );
T ′ ← T ′ ∪ {(t, v)};
T ← T − bi_chr({t}, v);
t ′ ← t + 1;
while (t ′, v) = next_state(T )

T ← T − bi_chr({t ′}, v);
t ′ ← t ′ + 1;

return T ′;

next_state( T ):
v← ∅;
t ← UC;
for each b ∈ T

if b.T < t

v← {b.V};
t ← b.T;

else
if b.T = t

v← v ∪ {b.V};
return (t, v);

For a given pair (t ,v), a tuple is generated and placed in a valid-time state
indexed by the transaction timet . The end result is a set of pairs of single tuple
valid-time states indexed at the given by a transaction time.

Finally, the functioncollapse collapses all pairs with identical transaction-
time components into a single valid-time state, indexed at the given transaction time.

collapse( r):
S ← ∅;
for each (t, vr) ∈ r;

f ound ← FALSE;
for each (t ′, vr ′) ∈ S

if t = t ′
S ← S − (t ′, vr ′);
S ← S ∪ {(t ′, vr ′ ∪ vr)};
f ound ← TRUE;

if not f ound

S ← S ∪ {(t, vr)};
return S;

The second function,att2_to_conceptual , given next, performs the in-
verse transformation. It takes a sequence of valid-time statesr, indexed by transac-
tion time, and produces the equivalent conceptual relation.
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att2_to_conceptual( r,ct ):
for each (t, vr) ∈ r

vr ← homogenize(vr);
reverse_sort (r);
r ′ ← ∅;
(t, vr)← next(r);
for each y ∈ vr

z[A] ← y[A];
z[T] ← bi_chr([t, ct − 1], y[V]) ∪ bi_chr({UC}, y[V]);
r ′ ← r ′ ∪ {z};

tlast ← t; (t, vr)← next(r);
while (t, vr) 6=⊥

for each y ∈ vr
f ound ← FALSE;
for each z′ ∈ r ′

if z′[A] = y[A]
z′[T] ← z′[T] ∪ bi_chr([t, tlast − 1], y[V]);
f ound ← TRUE;

if not f ound

z[A] ← y[A]
z[T] ← bi_chr([t, tlast − 1], y[V]);
r ′ ← r ′ ∪ {z};

tlast ← t; (t, vr)← next(r);
return r ′;

As the valid-time states ofr may contain tuples with non-homogeneous times-
tamps, we first transform each input valid-time state into an equivalent tuple-time-
stamped relation. This is the purpose of functionhomogenize shown below. For
each tuplex ∈ vr, homogenize generates possibly many result tuples, one for
each valid-time chronon present in a timestamp associated with an attribute value of
x. The function determines the maximal set of attribute values simultaneously valid
during that chronon, and generates a result tuple, whose tuple timestamp contains
the single chronon.

homogenize( vr):
vrh← ∅;
for each x ∈ vr

for i ← 1 to n

for each v ∈ x[Vi ]
z[A1] ←⊥; . . . z[An] ←⊥;
z[Ai ] ← x[Ai ];
z[V] ← v;
for j ← 1 to n

if j 6= i and v ∈ x[Vj ]
z[Aj ] ← x[Aj ]

vrh ← vrh ∪ {z};
return coalesce(vrh );

coalesce( vr):
vr ′ ← ∅;
for each x ∈ vr

vr ← vr − {x};
for each y ∈ vr

if x[A] = y[A]
x[V] ← x[V] ∪ y[V];
vr ← vr − {y};

vr ′ ← vr ′ ∪ {x};
return vr ′;

As many value-equivalent tuples may be produced, functioncoalesce is
used to collapse such tuples into a single tuple. The timestamps of matching tuples
are unioned into a single result tuple.

The valid-time states ofr are then processed from latest to earliest in trans-
action time order; the pairs(t, vr) ∈ r are sorted into descending order oft , and a
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functionnext returns the next(t, vr) in the sorted order. The current valid-time
state is treated specially to accommodate the stepwise constant semantics between
the time the state was stored, the current transaction time, andUC.

The remaining valid-time states are converted as follows. For a tuplex ∈ vr,
its bitemporal timestamp is generated using the appropriate range of transaction-
time and valid-time element associated with the tuple. However, since value-equi-
valent tuples may be present in different valid-time states, we must consolidate
the information in such tuples within one resulting conceptual tuple. If a value-
equivalent tuplez′ is already present in the result, we augment its timestamp with
the generated bitemporal element. Otherwise, a new tuple is inserted.

As for the previous representational models, it is possible to construct a proof
showing that the functions truly perform the inverse transformations. A possible
argument would show thatconceptual_to_att2 explodes each conceptual tu-
ple into value-equivalent tuples in possibly many valid-time states. In the reverse
transformation, these value-equivalent tuples are coalesced and any “holes” in the
timestamp corresponding to intermediate transaction times are filled in.

We now show how the semantics of bitemporal update are supported within
this representation. Insertion of a fact into the database involves the creation of a
new current state containing the fact and the time that it was, is, or will be valid.
This state is constructed in one of two ways. If the valid-time state current at the
time of the insertion contains a value-equivalent tuple, the timestamps of that tuple
are augmented to reflect the new information. Otherwise a new tuple is inserted.
In both cases, the updated valid-time state is inserted intor indexed by the current
transaction time,ct . The functionrollback simply returns the valid time state in
r current during the argument transaction time. For example, ifr is the sequence
of valid-time states shown in the previous example thenrollback(r, 11) returns the
valid-time state {(Jake {5,. . . ,20}, Ship {5, . . . ,20})}.
insert( r, (a1, . . . , an), tv , ct ):

vr ← rollback(r, ct );
f ound ← FALSE;
for each x ∈ vr

if x[A] = (a1, . . . , an)
for i ← 1 to n

x[Ti ] ← x[Ti ] ∪ tv ;
f ound ← TRUE;

if not f ound

vr ← vr ∪ (a1tv , . . . , antv);
r ← r ∪ {(ct , vr)};
return r;

delete( r, (a1, . . . , an), ct ):
vr ← rollback(r, ct );
for each x ∈ vr

if x[A] = (a1, . . . , an)
t ← x[T1] ∩ . . . ∩ x[Tn];
if t 6= ∅

for i ← 1 to n

x[Ti ] ← x[Ti ] − t;
if x[T1] = ∅ and . . . and x[Tn] = ∅

vr ← vr − {x};
r ← r ∪ {(ct , vr)};

return r;

Deletion of a fact involves the removal of the fact from the current valid-time state
if it exists, and no action otherwise. A fact to be deleted is present in a tuplex, if the
explicit attribute values ofx match(a1, . . . , an) and the intersection of the valid-
time elements associated with the attribute values ofx is non-empty. We delete
from each timestamp the computed intersection, and remove the entire tuple if all
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resulting timestamps are empty.

3.5 Ben-Zvi’s Tuple Timestamped Representation Scheme

Like the representational model in Section 3.1, Ben-Zvi’s data model is a 1NF tuple-
timestamping model. Appended to each tuple are five timestamp attributes [1].

Let a bitemporal relation schemaR have the attributesA1, . . . , An,T where
T is the timestamp attribute defined on the domain of bitemporal elements. ThenR

is represented by a relation schemaR in Ben-Zvi’s data model as follows.

R = (A1, . . . , An,Tes ,Trs,Tee,Tre,Td)

In a tuple, the value of attribute Tes (effective start) is the time when the explicit
attribute values of the tuple start being true. The value for Trs (registration start)
indicates when the Tes value was stored. Similarly, the value for Tee (effective
end) indicates when the information recorded by the tuple ceased to be true, and
Tre (registration end) contains the time when the Tee value was recorded. The last
implicit attribute Td (deletion) indicates the time when the information in the tuple
was logically deleted from the database.

It is not necessary that Tee be recorded when the Tes value is recorded (i.e.,
when a tuple is inserted). The symbol ‘–’ indicates an unrecorded Tee value (and
Tre value). Similarly, the symbol ‘–’, when used in the Td field, indicates that a
tuple contains current information.

Example 8 The Ben-Zvi relation corresponding to the conceptual relation in Fig-
ure 2 is shown below.

Emp Dept Tes Trs Tee Tre Td
Jake Ship 10 5 15 5 10
Jake Ship 5 10 20 10 15
Jake Ship 10 15 15 15 20
Jake Load 10 20 15 20 –
Kate Ship 25 20 30 20 –

In the example, the timestamps Tes and Tee are stored simultaneously, hence the
registration timestamps associated with the effective timestamps are identical within
each tuple. As facts are corrected, the deletion timestamp Td is set to the current
transaction time, effectively outdating the given fact, and a new tuple without a
deletion time is inserted. As only two facts are current when all updates have been
performed on the database, only two tuples with no deletion times remain.2

In the conversion functions presented next, the functionsmin_1andmin_2se-
lect a minimum first and second component, respectively, in a set of binary tuples.
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The functionmax_1returns the symbol ‘–’ ifUC is encountered as a first compo-
nent; otherwise, it returns a maximum first component. The functionmax_2selects
a maximum second component. The functionbi_chr may accept the symbol ‘–’ as
a transaction-time end value, in which case the symbol is treated as the current time.
Bitemporal chronons withUC as first component are then generated. When ‘–’ is
encountered as a valid-time end, it is treated as the maximum valid-time value,c∞vt .
Analogously, when ‘–’ is encountered as a transaction-time value, it is treated as
the current transaction time,ct , as well as the valueUC.

The first conversion function is very similar to the corresponding function in
Section 3.1. The routineconceptual_to_snap2 constructs an output tuple
for each rectangle in a covering of a bitemporal element. The effective-start and
effective-end timestamps are set to the minimum and maximum valid-time chronons
in the rectangle, respectively. We set the times when the valid timestamps were
stored to the minimal transaction time chronon in the rectangle. The deletion time
of the tuple is set to the maximal transaction time of the rectangle (possiblyUC),
thereby denoting when the fact was last current in the relation.

conceptual_to_snap2( r ′, cover):
s ← ∅;
for each x ∈ r ′

z[A] ← x[A];
for each t ∈ cover( x[T])

z[Trs] ← min_1( t);
z[Tre] ← z[Trs];
z[Td ] ← max_1( t);
z[Tes ] ←min_2( t) ;
z[Tee] ← max_2( t);
s ← s ∪ {z};

return s;

The functionsnap2_to_conceptual performs the inverse transforma-
tion. It constructs one conceptual tuple for each set of value-equivalent tuples in the
representation. Initially, each representational tuple is examined, and a conceptual
tuple corresponding to that representational tuple is generated.

snap2_to_conceptual( r):
s ← ∅;
for each z ∈ r

r ← r − {z};
x[A] ← z[A];
x[T] ← make_ts(z[Tes ], z[Trs], z[Tee], z[Tre], z[Td ]);
s ← s ∪ {x};

return coalesce(s);

The functionmake_ts constructs a bitemporal element from the five times-
tamps in the representational tuple. There are three cases to consider. In each case,
we construct a bitemporal element representing a rectangle or union of rectangles
bounded by the argument time values.

First, if the effective-time start and effective-time end values were stored si-
multaneously, the associated element corresponds to a rectangular region bounded
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in valid time and possibly unbounded in transaction time. Similarly, if the values
were not stored simultaneously, it may be the case that the effective-end time was
never stored. This corresponds to a rectangular region that is unbounded in valid
time and possibly bounded in transaction time, depending on if the tuple has been
deleted.

Otherwise, both the effective-time start and the effective-time end values have
been stored, and are unequal. The resulting region is unbounded in valid time be-
tween the times when the effective-time start and effective-time end were stored,
and possibly bounded in transaction time, depending on if the tuple has been deleted.

Finally, functioncoalesce collapses each set of value-equivalent tuples in
the result into a single tuple.

make_ts( tes , trs , tee, tre, td ):
if trs = tre

t ← bi_chr([trs , td ], [tes , tee]);
else

if tre = ‘–’
t ← bi_chr([trs , td ], [tes , c∞vt ]);

else
t ← bi_chr([trs , tre], [tes , c∞vt ]) ∪

bi_chr([tre , td ], [tes , tee]);
return t;

coalesce( r):
r ′ ← ∅;
for each x ∈ r

r ← r − {x};
for each y ∈ r

if x[A] = y[A]
x[T] ← x[T] ∪ y[T];
r ← r − {y};

r ′ ← r ′ ∪ {x};
return r ′;

As for the previous representational models, it is possible to construct a proof show-
ing that the conversion functions truly perform inverse transformations. We outline
a proof as follows. In the conversion performed bysnapshot2_to_concep-
tual , a single conceptual tuple produces possibly many value-equivalent snapshot
tuples, each with an associated rectangle produced by the covering function. In
the reverse transformation, these value-equivalent tuples are coalesced back into
the original conceptual tuple, and the bitemporal element for the resulting tuple is
constructed from the rectangles associated with the representational tuples.

For the update routines, the most convenient covering function partitions on
transaction time, and does not permit overlap.

insert( r, (a1, . . . , an), tv, coverv, ct ):
for each t ∈ coverv (tv)

for each x ∈ r
if x[A] = (a1, . . . , an) and x[Td ] = ‘–’ and

x[Tes ,Tee] ∩ t 6= ∅
r ← r − {x};
x[Td ] ← ct ;
z[A] ← x[A];
z[Tes ] ← min(x[Tes ] ∪ t);
z[Tee] ← min(x[Tee] ∪ t);
z[Td ] ← ‘–’ ;
r ← r ∪ {x, z};

return r;
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delete( r, (a1, . . . , an), ct ):
for each x ∈ r

if x[A] = (a1, . . . , an) and
x[Td ] = ‘–’

x[Td ] ← ct ;
return r;

3.6 Summary

We introduced five representations of bitemporal relations and showed how in-
stances in the BCDM can be mapped to and from instances in each of these repre-
sentations. The established correspondence between representations and the con-
ceptual model is central to our work—the BCDM forms a unifying link between
disparate relational bitemporal models. The mapping functions assign semantics
to instances in the five representations and allows us to meaningfully compare in-
stances of diverse models.

In the next section, we discuss in more detail the role of the BCDM with re-
spect to data model unification. Subsequent sections provide a detailed examination
of the concept of equivalence among the data models.

4 Data Model Interaction

The previously proposed representations arose from several considerations. They
were all extensions of the conventional relational model that attempted to capture
the time-varying nature of both the enterprise being modeled and the database, and
hence incorporated support for both valid and transaction time (the use of valid and
transaction time for data modeling has been discussed a number of papers [1, 4,
24]). They attempted to retain the simplicity of the relational model; the two tuple-
timestamping models were perhaps most successful in this regard. They attempted
to present all the information concerning an object in one tuple; the attribute-value
timestamped models were perhaps best at that. And they attempted to ensure ease
of implementation and query evaluation efficiency; the backlog representation may
have advantages here.

It is clear from the number of proposed representations that meeting all of
these goals simultaneously is a difficult, if not impossible task. We therefore advo-
cate a separation of concerns.

In the representational models, the essential semantics of time-varying infor-
mation become obscured by considerations of presentation and implementation. We
feel that the bitemporal conceptual data model proposed in this paper is a more ap-
propriate basis for expressing this semantics. This data model is notable in its use of
bitemporal chronons to stamp facts. Clearly, in most situations, this is not the most
appropriate way to present the stored data to users, nor is it the best way to phys-
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ically store the data. However, since there are mappings to other representations
that, in many situations, may be more amenable to presentation and storage, those
representations can be employed for those purposes, while retaining the semantics
of the conceptual data model.

Conceptual
Bitemporal

Data Model

Tuple−timestamping

Attribute−value
Timestamping

Backlogs

Sequence of 

Five timestamps

Display Formats

Format1

Formatn

Representational Data Models

Valid−time States

Query
Optimization

Logical

Physical
Database
Design

Logical
Database
Design

Figure 4: Interaction of Conceptual and Representational Data Models

Figure 4 places the bitemporal conceptual data model with respect to the tasks
of logical and physical database design, storage representation, query optimization,
and display. It indicates that logical database design produces the conceptual rela-
tion schemas, which are then refined into relation schemas in some representational
data model(s). The query language itself would be based on the conceptual data
model. Query optimization may be performed on the logical algebra, parameter-
ized by the cost models of the representation(s) chosen for the stored data. Finally,
display presentation should be decoupled from the storage representation.

Section 3 gave five different representations of the example conceptual rela-
tion introduced in Section 2.1. Each of these may be an appropriate presentation
under some circumstances, independent of how the relation is stored. For example,
the backlog presentation is quite useful during an audit, and the first attribute-value
timestamped presentation is suitable when the history of an employee is desired.

Note that this arrangement hinges on the semantic equivalence of the various
data models. It must be possible to map between the conceptual model and the
various representational models, as discussed next.

5 Semantic Equivalence

The previous section claimed that many semantically equivalent representations of
the same conceptual relation may co-exist. In this and the next section, we explore
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the nature of this relationship between the conceptual data model and the repre-
sentational data models. We focus next on the equivalence among the objects in
the models; a following section will examine equivalence when operations on these
objects is also considered.

5.1 Snapshot Equivalence

We use snapshot equivalence to formalize the notion of relation instances having
the same information content.

Snapshot equivalence makes use of transaction and valid timeslice operators.
We initially define these operators for BCDM relations, then for relations in each
of the representational models.

The transaction-timesliceoperator,ρB, takes two arguments, a bitemporal re-
lation and a time value, the latter appearing as a subscript. The result is a valid-time
relation. In order to explain the semantics ofρB, we describe its operation on a
bitemporal conceptual relation. Each tuple is examined in turn. If any of its as-
sociated bitemporal chronons have a transaction time matching the argument time,
the explicit attribute values, along with each of the valid-time chronons paired to a
matching transaction time, become a tuple in the result. The transaction-timeslice
operator may also be applied to a transaction-time relation, in which case the result
is a snapshot relation.

Thevalid timesliceoperator,τ B, is very similar. It also takes two arguments,
a bitemporal relation and a time value. The difference is that this operator does the
selection on valid time and produces a transaction-time relation. The valid-timeslice
operator may also be applied to a valid-time relation, in which case the result is a
snapshot relation.

Definition 1 Define a relation schemaR = (A1, . . . , An| T), and letr be an in-
stance of this schema. Lett2 denote an arbitrary time value and lett1 denote a time
not exceeding the current time. Then the transaction-timeslice and valid-timeslice
operators may be defined as follows for the conceptual data model.

ρB
t1
(r) = {z(n+1) | ∃x ∈ r ( z[A] = x[A]∧

z[Tv] = {t2 | (t1, t2) ∈ x[T]} ∧ z[Tv] 6= ∅)}
τ B
t2
(r) = {z(n+1) | ∃x ∈ r ( z[A] = x[A]∧

z[Tt ] = {t1 | (t1, t2) ∈ x[T]} ∧ z[Tt ] 6= ∅)} 2

The transaction-timeslice operator for transaction-time relations (ρT) and the valid-
timeslice operator for valid-time relations (τ V) are straightforward special cases.

We can now formally define snapshot equivalence so that it applies to each
representational data model for which the valid-timeslice and transaction-timeslice
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operators have been defined.

Definition 2 Two relation instances,r ands, aresnapshot equivalent, r
S≡ s, if for

all timest1 not exceeding the current time and for all timest2,
τ V
t2
(ρB
t1
(r)) = τ V

t2
(ρB
t1
(s)). 2

The concept of snapshot equivalence is due to Gadia and was first defined for
valid-time relations [7] and was later generalized to multiple dimensions [8]. We
have chosen not to use the original termweakly equivalentto avoid confusion with
the different notions ofweak equivalenceover algebraic expressions (e.g., [33]) and
over data models [6]. In the next section, we will discuss how snapshot equivalence
may also be applied to pairs of instances when the instances belong to different
models.

The following theorem states that identity and snapshot equivalence coincide
for the conceptual model. It is a major source of semantic clarity that two instances
have the same information content exactly when they are identical.

Theorem 1 Let r ands be conceptual relations over the same schema. Thenr
S≡ s

if and only if r = s.
PROOF: First assume thatr

S≡ s. We show that for eachx ∈ r, x = (a1, . . . , an | tx)
there exists ay ∈ s, y = (a1, . . . , an | ty), with tx = ty .

By the definition of snapshot equivalence there exist tuplesyi , i = 1, . . . , m,
in s so that for allt1, t2, wheret1 does not exceed the current time,τ V

t2
(ρB
t1
({x})) =

τ V
t2
(ρB
t1
({y1, . . . , ym})). The definitions of the involved operators demand that each

of theyi must havea1, . . . , an as explicit attribute values. Further, the operators
demand thattx = ∪i tyi . By definition of the BCDM, no two tuples with the same
explicit attribute values may exist in an instance. Thus,i = 1 andy1 = y, proving
the claim. As a result, each tuple inr has an exact match ins. By the symmetrical
argument, each tuple ins has a match inr, and the two instances are consequently
identical.

In the other direction, assuming thatr = s, clearly∀t1, t2 wheret1 does not
exceed the current time,τ V

t2
(ρB
t1
(r)) = τ V

t2
(ρB
t1
(s)). 2

5.2 Rollback and Timeslice Operators

We now define the timeslice operators for each of the five representational models.
These definitions extend the notion of snapshot equivalence to the corresponding
representation. In the definitions, lett denote an arbitrary time value and lett ′ be a
time value not exceeding the current time.

Definition 3 (Snodgrass’ Tuple Timestamped Data Model). Define a relation sche-
maR = (A1, . . . , An, Ts , Te, Vs , Ve), and letr be an instance of this schema.
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ρB

t ′(r) = {z(n+2) | ∃x ∈ r (z[A] = x[A] ∧ z[V] = x[V] ∧ t ′ ∈ x[T])}
τ B
t (r) = {z(n+2) | ∃x ∈ r (z[A] = x[A] ∧ z[T] = x[T] ∧ t ∈ x[V])} 2

Definition 4 (Jensen’s Backlog Data Model). Define a relation schemaR = (A1,

. . . , An,Vs,Ve,T,Op), and letr be an instance of this schema.

ρB

t ′(r) = {z(n+2) | ∃x ∈ r (z[A] = x[A] ∧ z[V] = x[V] ∧ x[T] ≤ t ′ ∧ x[Op] = I∧
(¬∃y ∈ r (y[A] = x[A] ∧ y[V] = x[V] ∧ y[Op] = D∧

x[T] ≤ y[T] ≤ t ′)))}
τ B
t (r) = {z(n+2) | ∃x ∈ r (z[A] = x[A] ∧ z[T] = x[T] ∧ z[Op] = x[Op]∧

t ∈ x[V])}
In the definition of transaction timeslice, an insertion request contributes to the
result if it was entered before the argument transaction timet ′ and if it was not sub-
sequently countered by a deletion request beforet ′. The non-symmetry of these two
definitions underscores the emphasis accorded transaction time in this model.2

Definition 5 (Gadia’s Attribute Value Timestamped Data Model). Define a relation
schemaR = ({([Ts,Te] × [Vs,Ve] A1)}, . . . , {([Ts,Te] × [Vs,Ve] An)}), and
let r be an instance ofR.

ρB

t ′(r) = {z(n) | ∃x ∈ r (∀i ( i ∈ 1, . . . , n∧
∀a ∈ x[Ai](t ′ ∈ a.T⇒ (a.V a.val) ∈ z[Ai])∧
∀b ∈ z[Ai](∃a ∈ x[Ai](t ′ ∈ a.T ∧ b.val = a.val∧

b.V = a.V))))}
τ B
t (r) = {z(n) | ∃x ∈ r (∀i ( i ∈ 1, . . . , n∧

∀a ∈ x[Ai](t ∈ a.V ⇒ (a.T a.val) ∈ z[Ai])∧
∀b ∈ z[Ai](∃a ∈ x[Ai](t ∈ a.V ∧ b.val = a.val∧

b.T = a.T))))}
For each operator, the first line ensures that no chronon is left unaccounted for, and
the second line ensures that no spurious chronons are introduced. 2

Definition 6 (McKenzie’s Attribute Value Timestamped Data Model). Define a
relation schemaR = (T,VR), with T being a transaction timestamp and VR=
(A1V1, . . . , AnVn), where theAi , 1≤ i ≤ n, are explicit attributes and the corre-
sponding Vi are valid-time elements. An instance of this schema is a sequence of
valid-time states indexed by transaction times as. Letr be such an instance.

ρB

t ′(r) = {z(n) | ∃(t, vr) ∈ r (t ′ ≤ t ∧ ¬∃(t ′′, vr ′′) ∈ r (t ′ ≤ t ′′ < t) ∧ z ∈ vr)}
τ B
t (r) = {(t ′′, S) | ∀s ∈ S (∃t ′′ ( (t ′′, vr) ∈ r∧

∀x ∈ vr (∀i 1≤ i ≤ n
((t ∈ x[Vi] ⇒ s[Ai] = x[Ai])∧
(t 6∈ x[Vi] ⇒ s[Ai] = ⊥))∧

∃i 1≤ i ≤ n (t ∈ x[Vi]))))}
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The first operator extracts the valid time relation with the greatest transaction time-
stamp beforet ′. The second returns a rollback relation, a sequence of snapshot
states such that each tuple in each snapshot state was valid at valid timet for all
attributes. Some, but not all, attribute values in the tuples in the snapshot states may
be null values. 2

Definition 7 (Ben-Zvi’s Tuple Timestamped Data Model). Define a relation schema
R = (A1, . . . , An,Tes,Tee,Trs,Tre,Td), and letr be an instance of this schema.

ρB

t ′(r) = {z(n+2) | ∃x ∈ r (z[A] = x[A]∧z[Tes] = x[Tes ] ∧ x[Trs] ≤ t ′∧
(x[Td ] 6= ‘–’ ⇒ t ′ ≤ x[Td ])∧
((x[Tre] 6= ‘–’ ⇒ t ′ ≤ x[Tre])⇒ z[Tee] = ‘–’ )∧
((x[Tee] 6= ‘–’ ∧ x[Tre] ≤ t ′)⇒ z[Tee] = x[Tee])}

τ B
t (r) = {z(n+2) | ∃x ∈ r (z[A] = x[A] ∧ z[Trs] = x[Trs]∧

((((x[Tes] ≤ t) ∧ (x[Tee] 6= ‘–’ ⇒ t ≤ x[Tee]))⇒
z[Tre] = x[Td ])∨

((x[Tee] 6= ‘–’ ∧ t ≥ x[Tee] ∧ x[Trs] 6= x[Tre])⇒
z[Tre] = x[Tre])))}

In the first operator, the complexity arises in computing Tee for the resulting tuples;
the other implicit attribute, Tes , is trivial. Two possibilities for Tee exist, ‘–’ and
x[Tee], depending on the value ofx[Tre]. For the second operator, the complexity
is in determiningz[Tre], which can also assume two possible values,x[Td ] and
x[Tre], depending primarily on the value ofx[Tee]. 2

For each of the five schemes, the transaction-timeslice operator for transaction-
time relations (ρT) and the valid-timeslice operator for valid-time relations (τ V) are
straightforward special cases of these definitions. Note that the rollback and times-
lice operators in the various representations all have the same names,ρB

t andτ B
t .

The existence of the timeslice operators for the representational models has
important implications, as we discuss in the following. Rather than providing the-
orems and proofs for each representational model, the theorems and proofs in the
remainder of this section are limited to a single model only. Specifically, the tuple-
timestamped model introduced in Section 3.1 is used due to its straightforward
structure. Corresponding results hold for the remaining models; proofs may be
similarly obtained.

There is no reason to applyρ beforeτ in the definition of snapshot equiva-
lence, as the following theorem states.

Theorem 2 Let r be a temporal relation. Then for all timest1 not exceeding the
current time and for all timest2,

τ V
t2
(ρB
t1
(r))

S≡ ρT
t1
(τ B
t2
(r)).
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PROOF: Let x ∈ τ V
t2
(ρB
t1
(r)); then there is a tupley in ρB

t1
(r) with y[A] = x[A]

andt2 ∈ y[V]. This implies the existence of a tuplez in r so thatz[A] = y[A],
z[V] = y[V], andt1 ∈ z[T]. As t2 ∈ z[V], there is a tupleu in τ B

t2
(r) for which

u[A] = z[A] andu[T] = z[T]. As t1 ∈ u[T], there is a tuplev in ρT
t1
(τ B
t2
(r)) with

v[A] = u[A]. By construction,v = x. Thus, a tuple on the lhs (left hand side)
is also on the rhs (right hand side). Proving the opposite inclusion is similar and
omitted. Combining the inclusions proves the equivalence. 2

Snapshot equivalence precisely captures the notion that relation instances in
the chosen representation scheme have the same information content. More pre-
cisely, all representations of the same bitemporal conceptual relation are snapshot
equivalent, and two bitemporal relations that are snapshot equivalent represent the
same bitemporal conceptual relation.

In the proof of the following theorem, the notion of snapshot subset is utilized.

Definition 8 A temporal relation instance,r, is a snapshot subsetof a temporal

relation instance,s, r
S⊆ s, if for all times t1 not exceedingUC and all timest2,

τ V
t2
(ρB
t1
(r)) ⊆ τ V

t2
(ρB
t1
(s)).

More generally, a temporal query expressionQ1 is asnapshot subsetof a temporal

query expressionQ2, Q1
S⊆Q2, if all instantiations ofQ1 are snapshot subsets of

the corresponding instantiations ofQ2. 2

Theorem 3 Snapshot equivalent temporal relations represent the same conceptual
temporal relation.

1. If conceptual_to_snap (r ′ , cover1) = r1 and

conceptual_to_snap (r ′ , cover2) = r2, thenr1
S≡ r2.

2. If s1
S≡ s2 thensnap_to_conceptual (s1) =

snap_to_conceptual (s2).

PROOF: We prove the two implications in turn. To prove thatr1 andr2 are snapshot
equivalent, we prove thatr1 is a snapshot subset ofr2, and conversely. We need to
show that for all timest1 andt2 that if x ∈ τ V

t2
(ρB
t1
(r1)) then alsox ∈ τ V

t2
ρB
t1
(r2)). Let

tuplex be inτ V
t2
(ρB
t1
(r1)). By the definitions of transaction and valid timeslice, a set

of tuplesxi exist inr1 with xi[A] = x andt1 ∈ xi[T] andt2 ∈ xi[V]. By the premise
and the definition ofconceptual_to_snap , a single tuplex′ exists inr ′ with
x′[A] = xi[A] and so thatx′[T] contains exactly the bitemporal chronons covered
by thexi . Further, the bitemporal chronon(t2, t1) must be inx′[T]. Independently
of a particular covering function, an application ofconceptual_to_snap to x′
will then result in a set of tuplesyj , each withyj [A] = x′[A]. For at least one of the
yj , it must be true thatt1 ∈ yj [T] andt2 ∈ yj [V] (the first requirement). Therefore,
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tupley = x′[A]must be inτ V
t2
(ρB
t1
(r2)). Sincey = x, r1 is a snapshot subset ofr2.

Due to symmetry, proving the reverse is similar.

To prove the second implication, pick an arbitrary tuplex in some snapshot
of s1 and let(ti , tj ) be the set of pairs of valid and transaction times so thatx is
in τ V

ti
(ρB
tj
(s1)). (This is simply the bitemporal element ins1 corresponding to the

fact x.) By the premise and the definition of snapshot equivalence, the set of pairs
(t ′i , t ′j ) such thatx is in τ V

t ′i
(ρB

t ′j
(s2)) must be identical to the set(ti, tj ). In general,

these sets of pairs are covered by different sets of rectangles ins1 ands2. How-
ever, the functionsnap_to_conceptual simply accumulates the covered pairs
(corresponding to bitemporal chronons) in sets, rendering the particular covering
by rectangles immaterial. 2

This theorem has important consequences. For each representation and for
any covering function, snapshot equivalence partitions the relation instances into
equivalence classes where each instance in an equivalence class maps to the same
bitemporal conceptual relation instance. The semantics of the representational in-
stance is thus identical to that of the corresponding conceptual instance. This cor-
respondence provides a way of converting instances between representations: the
conversion proceeds through a snapshot equivalent conceptual instance.

Finally, the correspondence provides a way of demonstrating that two in-
stances in different representations are semantically equivalent, again by examin-
ing the conceptual instance(s) to which they map. For example, it may be shown
that the representation instances given in Sections 3.1 through 3.5 are semantically
equivalent to the bitemporal conceptual relation given in Section 2.1, and are thus
semantically equivalent to each other.

6 Algebras and Equivalence

We now examine operational aspects of the data models just introduced. A major
goal is to demonstrate the existence of the operational counterpart of the structural
equivalence established in the previous section.

In Section 5.1, we defined two algebraic operators, the transaction- and valid-
timeslice operators, on conceptual relations. We then defined the corresponding
operations on the chosen tuple-timestamped representation (see Section 3.1). Each
of the remaining four representations could have been used instead. We continue
by defining the remaining conceptual algebraic operators. We prove that the opera-
tors preserve snapshot equivalence and are natural generalizations of their snapshot
counterparts. Finally, we examine two transformations that manipulate coverings
in representations of bitemporal-relation instances.
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6.1 An Algebra for Bitemporal Conceptual Relations

Define a relation schemaR = (A1, . . . , An| T), and letr be an instance of this
schema. Lett2 denote an arbitrary time value and lett1 denote a time not exceeding
the current time.

LetD be an arbitrary set of|D| non-timestamp attributes of relation schema
R. The projection onD of r, πB

D(r), is defined as follows.

πB
D(r) = {z(|D|+1) | ∃x ∈ r (z[D] = x[D])∧

∀y ∈ r (y[D] = z[D] ⇒ y[T] ⊆ z[T])∧
∀t ∈ z[T] ∃y ∈ r (y[D] = z[D] ∧ t ∈ y[T])}

The first line ensures that no chronon in any value-equivalent tuple ofr is left unac-
counted for, and the second line ensures that no spurious chronons are introduced.

Let P be a predicate defined onA1, . . . , An. The selectionP on r, σB
P (r), is

defined as follows.

σB
P (r) = {z | z ∈ r ∧ P(z[A])}

To define the union operator,∪B, let bothr1 andr2 be instances ofR.

r1 ∪B r2 = {z(n+1) | (∃x ∈ r1 ∃y ∈ r2 (z[A] = x[A] = y[A]∧
z[T] = x[T] ∪ y[T]))∨

(∃x ∈ r1 (z[A] = x[A] ∧ (¬∃y ∈ r2(y[A] = x[A]))∧
z[T] = x[T]))∨

(∃y ∈ r2 (z[A] = y[A] ∧ (¬∃x ∈ r1(x[A] = y[A]))∧
z[T] = y[T]))}

The first clause handles value-equivalent tuples found in bothr1 andr2; the second
clause handles those found only inr1; and the third handles those found only inr2.

With r1 andr2 defined as above, relational difference is defined as follows.

r1−B r2 = {z(n+1) | ∃x ∈ r1 ((z[A] = x[A])∧
((∃y ∈ r2 (z[A] = y[A] ∧ z[T] = x[T] − y[T]))∨
(¬∃y ∈ r2 (z[A] = y[A]) ∧ z[T] = x[T])))}

The last two lines compute the bitemporal element, depending on whether a value-
equivalent tuple may be found inr2.

In the bitemporal natural join, two tuples join if they match on the join at-
tributes and have overlapping bitemporal-element timestamps. Definer ands to be
instances ofR andS, respectively, and letR andS be bitemporal relation schemas
given as follows.

R = (A1, . . . , An, B1, . . . , Bl| T)
S = (A1, . . . , An, C1, . . . , Cm| T)
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The bitemporal natural join ofr ands, r 1B s, is defined below. As can be seen, the
timestamp of a tuple in the result is the (bitemporal) intersection of the timestamps
of the two tuples that produced it.

r 1B s = {z(n+l+m+1) | ∃x ∈ r ∃y ∈ s (x[A] = y[A] ∧ x[T] ∩ y[T] 6= ∅∧
z[A] = x[A] ∧ z[B] = x[B]∧
z[C] = y[C] ∧ z[T] = x[T] ∩ y[T])}

Example 9 To exemplify the join, consider the following relation instance, mgrDep.

Dept Mgr T
Ship Jean {(10,15), . . . , (10,30), . . . , (UC,15), . . . , (UC,30)}
Load Jean {(15,5), . . . , (15,15), . . . , (UC,5), . . . , (UC,15)}

Next, assign the name empDep to the relation instance in Figure 2. Then empDep
1

B mgrDep, with the explicit join attribute Dept, shows who managed whom and
is given by the following relation.

Emp Dept Mgr T
Jake Ship Jean {(10,15), . . . , (10,20), . . . , (15,15), . . . , (15,20)}
Jake Load Jean {(UC,10), . . . , (UC,15)}
Kate Ship Jean {(UC,25), . . . , (UC,30)}

-
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-
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Figure 5: Graph of empDep1B mgrDep

Using our graphical representation of bitemporal relations, the bitemporal natural
join can be visualized as the overlap of rectangles enclosing regions with matching
explicit join attributes. This is easily seen by superimposing the mgrDep relation
on top of the empDep relation, as shown in Figure 5. 2
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We have only defined operators for bitemporal relations. The similar opera-
tors for valid-time and transaction-time relations are special cases. The valid and
transaction time natural joins are denoted1V and 1B , respectively; the conven-
tional snapshot natural join is denoted1S . The same naming convention is used
for the remaining operators.

6.2 An Algebra for Snodgrass’ Tuple Timestamped Representation Scheme

For each of the algebraic operators defined in the previous section, we now define
counterparts for the first of the five representation schemes. Throughout this sec-
tion, R andS denote tuple timestamped bitemporal relation schemas, andr and
s are instances of these schemas. Initially,R is assumed to have the attributes
A1, . . . , An,Ts,Te,Vs, and Ve.

We define in turn projection, selection, union, difference, and natural join.
The timeslice operators were defined in Section 5.2.

To define projection, letD be an arbitrary set of|D| attributes amongA1, . . . ,

An. The projection onD of r, πB
D(r), is defined as follows.

πB
D(r) = {z(|D|+4) | ∃x ∈ r (z[D] = x[D] ∧ z[T] = x[T] ∧ z[V] = x[V])}
Next, letP be a predicate defined onA1, . . . , An. The selectionP on r,

σB
P (r), is defined as follows.

σB
P (r) = {z(n+4) | z ∈ r ∧ P(z[A]))}

To define the union operator,∪B, let bothr1 andr2 be instances of schemaR.

r1 ∪B r2 = {z(n+4) | ∃x ∈ r1 ∃y ∈ r2 (z = x ∨ z = y)}
With r1 andr2 defined as above, relational difference is defined using several

functions introduced in Section 3.1.

r1−B r2 = {z(n+4) | ∃x ∈ r1 (z[A] = x[A]∧
∃t ∈ cover(bi_chr(x[T], x[V])−

{bi_chr(y[T], y[V]) | y ∈ r2∧
y[A] = x[A]})∧

z[Ts] = min_1(t) ∧ z[Te] = max_1(t)∧
z[Vs] = min_2(t)∧ z[Ve] = max_2(t))}

The new timestamp is conveniently determined by set difference on bitemporal el-
ements.

To define the bitemporal natural join, we need two bitemporal relation schemas
R andS with overlapping attributes.

R = (A1, . . . , An, B1, . . . , Bl,Ts,Te,Vs,Ve)

S = (A1, . . . , An, C1, . . . , Cm, ,Ts,Te,Vs,Ve)
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In the bitemporal natural join ofr ands, r 1B s, two tuples join if they match on
the join attributes and overlap in both valid time and transaction time.

r 1B s = {z(n+l+m+4) | ∃x ∈ r ∃y ∈ s (z[A] = x[A] = y[A] ∧ x[T] ∩ y[T] 6= ∅∧
x[V] ∩ y[V] 6= ∅ ∧ z[B] = x[B]∧
z[C] = y[C] ∧ z[T] = x[T] ∩ y[T]∧
z[V] = x[V] ∩ y[V])}

As for the previous model, corresponding operators for valid-time and trans-
action-time relations may be defined as special cases of the operators already de-
fined.

6.3 Equivalence Properties

We have seen that a bitemporal conceptual relation is represented by a class of snap-
shot equivalent relations in the representation scheme. We now define the notion of
an operator preserving snapshot equivalence.

Definition 9 An operatorα preserves snapshot equivalenceif, for all parametersX
and snapshot relation instancesr andr ′ representing bitemporal relations,

r
S≡ r ′ ⇒ αX(r)

S≡ αX(r ′).

This definition may be trivially extended to operators that accept two or more argu-
ment relation instances. 2

In the snapshot relational algebra, an operator, e.g., natural join, must return
identical results every time it is applied to the same pair of arguments. The same
holds for the BCDM. However, in the representational models, for which several
relation instances may be snapshot equivalent, only preservation of snapshot equiv-
alence is required. Thus, we add flexibility in implementing the bitemporal oper-
ators by accepting that they return different, but snapshot equivalent, results when
applied to identical arguments at different times.

We proceed by showing that the operators preserve snapshot equivalence.
That is, given snapshot equivalent operands each operator produces snapshot equiv-
alent results. This ensures that the result of an algebraic operation is correct, irre-
spective of covering. Again, the proof is given only for one representation, though
the theorem holds for all five representations considered.

Theorem 4 The algebraic operators preserve snapshot equivalence. Specifically,
let r

S≡ r ′ ands
S≡ s′. Then
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r 1V s
S≡ r ′ 1V s′

r 1B s
S≡ r ′ 1B s′

σB
P (r)

S≡ σB
P (r
′)

πB
D(r)

S≡ πB
D(r
′)

r ∪B s
S≡ r ′ ∪B s′

r −B s
S≡ r ′ −B s′.

PROOF: As before, we proceed by demonstrating snapshot subsets. To prove the
first equivalence, let tuplex be in the lhs. By the definition of1V there exists a set
of tuplesxi ∈ r with xi[AB] = x[AB] and so that∪ixi[V] ⊇ x[V]. Similarly, there
exists a set of tuplesxj ∈ s with xj [AC] = x[AC] and so that∪j xj [V] ⊇ x[V].
Next, by the definition of

S≡ , for eachxi ∈ r the exists a set of tuplesxik ∈ r ′
with xik[AB] = xi[AB] and so that∪kxik[V] ⊇ xi[V]. The setxik coversxi . For

eachj a similar setxjl exists that coversxj . Applying 1
V to the sets of tuples

xik ∈ r ′ andxjl ∈ s′ yields a set of tuplesxm with xm[ABC] = x[ABC] and so that
∪mxm[V] ⊇ x[V]. This proves that any tuple in a snapshot made from the lhs will
also be present in the same snapshot made from the rhs. By symmetry, the reverse
is also true, and the equivalence follows.

The proofs of the other equivalences are similar. 2

The next step is to combine the transformation functions with the represen-
tation level operators to create corresponding conceptual-level operators. Given a
representation level operator,α, its corresponding conceptual-level operator,αc, is
defined as follows.

αcX(r
′) = snap_to_conceptual (αX(conceptual_to_snap (r ′)))

Theorems 3 and 4 in combination make this meaningful and ensure that the con-
ceptual-level operators behave like the snapshot relational algebra operators—with
identical arguments, they always return identical results. This is required because,
like snapshot relations, bitemporal conceptual relations are unique, i.e., two con-
ceptual relations have the same information content if and only if they are identical.

Now, we have two sets of operators defined on the bitemporal conceptual
relations, namely the directly defined operators in Section 6.1 and the induced op-
erators. In fact, we have constructed the two sets of operators to be identical. Put
differently, the operators in Section 6.1 are the explicitly stated conceptual-level
operators, induced from the representation level operators (Section 6.2) and the
transformation algorithms in Section 3.1. This is formalized in the following theo-
rem.
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Theorem 5 The induced algebraic operators preserve snapshot equivalence.
PROOF: Let αcX be an induced conceptual operator, and suppose that conceptual
relationsr and s are snapshot equivalent. By Theorem 1,r = s, and therefore,
conceptual _to _snap (r)

S≡ conceptual _to _snap (s). By Theorem 4,
αX(conceptual _to _snap (r))

S≡ αX(conceptual _to _snap (s)). Finally,
by Theorem 3,snap _to _conceptual (αX(conceptual _to _snap (r)))

S≡
snap _to _conceptual (αX(conceptual _to _snap (s))). 2

Next we show how the operators in the various data models, snapshot, trans-
action-time, valid-time, and bitemporal, are related. Specifically, we show that the
semantics of an operator in a more complex data model reduces to the semantics of
the operator in a simpler data model. Reducibility guarantees that the semantics of
simpler operators are preserved in their more complex counterparts.

For example, the semantics of the transaction-time natural join reduces to
the semantics of the snapshot natural join in that the result of first joining two
transaction-time relations and then transforming the result to a snapshot relation
yields a result equivalent to that obtained by first transforming the arguments to
snapshot relations and then joining the snapshot relations. This is shown in Fig-
ure 6 and stated formally in the first equivalence of the following theorem.

-

-
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Snapshot relationsTransaction-time relations
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1
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ρT
t
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ρT
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t (r) 1
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t (r
′)r 1T r ′

ρT
t (r), ρ

T
t (r
′)r, r ′

Figure 6: Reducibility of Transaction-time Natural Join to Snapshot Outer Natural
Join.

Theorem 6 Let t denote an arbitrary time that, when used with a rollback opera-
tor, does not exceed the current time. In each equivalence, letr ands be relation
instances of the proper types for the given operators. Then the following hold.

ρT
t (r 1

T s)
S≡ ρT

t (r) 1
S ρT

t (s)

τ V
t (r 1

V s)
S≡ τ V

t (r) 1
S τ V
t (s)

τ B
t (r 1

B s)
S≡ τ B

t (r) 1
T τ B
t (s)
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ρB
t (r 1

B s)
S≡ ρB

t (r) 1
V ρB

t (s)

PROOF: An equivalence is shown by proving its two inclusions separately. The
non-timestamp attributes ofr ands areAB andAC, respectively, whereA, B, and
C are sets of attributes andA denotes the join attribute(s).

We prove the fourth equivalence. The proofs of the remaining equivalences
are similar and are omitted. Letx′′ ∈ lhs. Then there is a tuplex′ ∈ r 1B s such that
x′[ABC] = x′′ andt ∈ x′[T]. By the definition of1B , there exists tuplesx1 ∈ r
andx2 ∈ s such thatx1[A] = x2[A] = x′[A], x1[B] = x′[B], x2[C] = x′[C],
x′[T ] = x1[T ] ∩ x2[T ], andx′[V ] = x1[V ] ∩ x2[V ]. By the definition ofρB

t , there
exists a tuplex′1 ∈ ρB

t (r) such thatx′1 = x′[AB] andx′1[V ] = x′[V ] and a tuple
x′2 ∈ ρB

t (s) such thatx′2 = x′[AC] andx′2[V ] = x′[V ]. Then there existsx′′12 ∈
rhs such thatx′′12[AB] = x′1, x′′12[C] = x′2[C], andx′′12[V ] = x′1[V ] ∩ x′2[V ]. By

constructionx′′12
S≡ x′′ (in fact,x′′12 = x′′).

Now assumex′′ ∈ rhs. Then there exists tuplesx′1 andx′2 in ρB
t (r) andρB

t (s),
respectively, such thatx′1 = x′′[AB] andx′2 = x′′[AC] andx′′[V ] = x′1[V ]∩x′2[V ].
This implies the existence of tuplesx1 ∈ r andx2 ∈ s and withx1[AB] = x′1[AB],
x1[V ] = x1[V ], t ∈ x1[T], x2[AC] = x′2[AC], x2[V ] = x′2[V ], andt ∈ x2[T].
There must exist a tuplex′ ∈ r 1B s with x′[AB] = x1[AB], x′[C] = x2[C],
x′[V ] = x1[V ] ∩ x2[V ], andt ∈ x′[T]. Consequently, there exists a tuplex′′12 ∈ lhs

such thatx′′12= x′[ABC] andx′′12[V ] = x′[V ]. By construction,x′′12
S≡ x′′. 2

6.4 Covering Transformations

When a bitemporal conceptual relation is mapped to a representation scheme, a
covering function is employed to represent bitemporal elements by sets of rectan-
gles. The mappings were used in Sections 3.1 to 3.5, and different types of covering
functions were discussed in Section 3.1. We now define two transformations that
can change the covering in a representation without affecting the results of queries,
as the transformations preserve snapshot equivalence. Both are generalizations of
simpler transformations used in valid time data models.

The first transformation is termed coalescing. Informally, it states that two
temporally overlapping or adjacent, value-equivalent tuples may be collapsed into
a single tuple [25]. Coalescing may reduce the number of tuples necessary for rep-
resenting a bitemporal relation, and, as such, is a space optimization. We formally
define coalescing and show that it preserves snapshot equivalence.

Definition 10 Coalescing. Let x = (a1, . . . , an, t1, t2, v1, v2) andx′ = (a1, . . . ,

an, t3, t4, v3, v4) be two distinct tuples belonging to the same bitemporal relation
instance.

First, if x[T] = x′[T] andx[V] ∪ x′[V] = [min(v1, v3),max(v2, v4)], the two
tuples may becoalescedinto the single tupley = (a1, . . . , an, t1, t2,min(v1, v3),
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max(v2, v4)). Second, ifx[V] = x′[V] andx[T]∪x′[T] = [min(t1, t3),max(t2, t4)],
the two tuples may becoalescedinto the single tupley′ = (a1, . . . , an,min(t1, t3),
max(t2, t4), v1, v2).

A bitemporal relation instance iscoalescedif no pair of tuples may be coa-
lesced. 2

The proof of the next theorem utilizes a subtle requirement on null values
in bitemporal relations. Specifically, we require that null information not conflict
with non-null information. If one tuple states that the value of an attribute is null
then another, temporally concurrent tuple that contains non-null information for that
attribute must not exist. More formally, we define this property as follows.

Definition 11 Consistency of null information.Let two tuplesx andx′, both be-
longing to a relation instancer, be given byx = (a1, . . . , an, t) andx′ = (a′1, . . . ,
a′n, t ′) where∃k1 . . . km (ak1 = ⊥ 6= a′k1

∧ . . . ∧ akm = ⊥ 6= a′km) and∀i 6∈
{k1, . . . , km}(ai = a′i). The last elements,t andt ′, of the two tuples denote bitem-
poral elements. If, for all such tuple pairs inr, it is the case thatt ∩ t ′ = ∅ then the
null information inr is consistent. 2

Theorem 7 Coalescing preserves snapshot equivalence.
PROOF: Let r be a relation instance containingx andx′ as given in the definition
of coalescing. In the first of the two cases, let relations be identical tor, but with
x andx′ replaced by the tupley as given in the definition. We must prover and
s snapshot equivalent. The tuplesx andx′ result in exactly the tuple(a1, . . . , an)

being present in all snapshots ofr with a transaction time in[t1, t2] and a valid
time in [min(v1, v3),max(v2, v4)]. Similarly, the tupley results in(a1, . . . , an)

being part of all snapshots ofs with a transaction time in[t1, t2] and a valid time
in [min(v1, v3),max(v2, v4)]. The requirement that null information be genuine
ensures this even in the case when there are nulls among theai . The proof for the
second of the two cases is similar. 2
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Figure 7: Coalescing

Coalescing of overlapping, value-equivalent tuples is illustrated in Figure 7.
The figure shows how rectangles may be combined when overlap or adjacency oc-
curs in transaction time (a) or valid time (b). Note that it is only possible to coa-



UNIFYING TEMPORAL DATA MODELS 259

lesce rectangles when the result is a bitemporal rectangle. Compared to valid-time
relations with only one time dimension, this severely restricts the applicability of
coalescing.

We now formalize the notion that a relation may have repeated information
among tuples.

Definition 12 A bitemporal relation instancer hasrepetition of informationif it
contains two distinct tuplesx = (a1, . . . , an, t1, t2, v1, v2) andx′ = (a1, . . . , an, t3,

t4, v3, v4) such thatx[T] ∩ x′[T] 6= ∅ ∧ x[V] ∩ x′[V] 6= ∅. A relation with no such
tuples has no repetition of information. 2

While coalescing may both reduce the number of rectangles and reduce rep-
etition of information, its applicability is restricted. The next equivalence preserv-
ing transformation may be employed to completely eliminate temporally redundant
information, possibly at the expense of adding extra tuples. We first define the
transformation and then describe its properties.

Definition 13 Elimination of repetition.With x andx′ as in the definition above,
the information in tupley, defined below, is contained in bothx andx′.

y = (a1, . . . , an,max(t1, t3),min(t2, t4),max(v1, v3),min(v2, v4))

The repetition incurred byx andx′ may be eliminated by replacing tuplesx andx′
by the set of tuples,s, defined below.

1 s = {z(n+4) | z[A] = x[A] ∧ ((z[T] ∈ covermaxt (x[T] − x′[T])∧
z[V] = x[V])∨

2 (z[T] ∈ covermaxt (x′[T] − x[T])∧
z[V] = x′[V])∨

3 (z[T] = x[T] ∩ x′[T] ∧ z[V] = x[V] ∪ x′[V]))}
The functioncovermaxt transforms an argument set of transaction-time chronons
into a set of maximal intervals of consecutive chronons. 2

Theorem 8 The elimination of repetition transformation has the following proper-
ties.

1. It eliminates repetition among two argument tuples.

2. The result,s, has at most three tuples.

3. It is snapshot-equivalence preserving.

4. Repeated application produces a relation instance with no repetition of infor-
mation.

PROOF: There is no repetition of information between the resulting tuples as they
do not overlap in transaction time.
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Let x andx′ be given as in the definition of elimination of repetition and de-
fineTx = covermaxt (x[T]−x′[T]) andT ′x = covermaxt (x′[T]−x[T]). Tuplesx and
x′ are replaced by at most three tuples. Line 3 results in one tuple. Lines 1 and 2
collectively result in two tuples, for the following reasons. The setTx has two ele-
ments whenx′[T] contains no endpoints of x[T]. In this caseT ′x is empty. The sets
Tx andT ′x have both one element whenx′[T] contains exactly one of the endpoints
of x[T]. Lastly, Tx is empty whenx′[T] contains both endpoints of x[T]. In this
caseT ′x has two elements.

Being similar to that for coalescing, the proof of snapshot-equivalence preser-
vation is omitted.

The process of eliminating repetition is terminating because the new tuples
that result from one transformation step cover strictly smaller intervals in the trans-
action-time dimension. In addition, two tuples that cover only a single transaction
time and have repeated information may be coalesced into a single tuple that would
not be further partitioned. 2

The transformation partitions the regions covered by the argument rectangles
on transaction time. The symmetric transformation, which partitions on valid time,
may also be included. These transformations are illustrated in parts (a) and (b),
respectively, of Figure 8.

6

-

� -

6

-

6

-

(b)(a)

VT VT VT

TT TT TT

Figure 8: Eliminating Representational Repetition of Information

The elimination of repetition of information may increase the number of tu-
ples in a representation. The transformation may still be desirable because subse-
quent coalescing may be possible and, more importantly, because certain updates
are simplified.

7 The BCDM as a Temporally Ungrouped Model

Little previous work has been reported on the interaction among multiple temporal
data models. A recent paper by Clifford et al. [6] constitutes a notable exception, in
that it provides a formal framework for the relative expressivenes of the structural
and operational aspects of data models.
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While the work by Clifford et al. and the contents of this paper are quite dif-
ferent in objective and focus, it is possible to relate the contributions of the paper to
their framework. To do so we first briefly and informally introduce central concepts
defined by Clifford et al., then illustrate how they apply here.

Of relevance to this paper, Clifford et al. define two types of temporal data
models, temporally grouped and ungrouped models. This categorization of a data
model is based solely on its structural aspect, and solely on its support of valid
time. Specifically, a data model istemporally ungroupedif there exists a 1–1 and
onto mapping between its set of possible relation instances and those of a particular
temporal relation structure,T U , supplied by the authors. Similarly, the notion of
temporally groupedis defined in terms of the specified relation structureTG.

Barring details such as the cardinality of the valid-time domain, the BCDM
is an ungrouped data model. To prove this, we first devise a function from BCDM
relation instances toT U instances.T U relations and BCDM relations are quite
similar. In fact,T U relations are in essence BCDM relations where timestamps
are restricted to be single chronons. Thus, a BCDM tuple is mapped to a set
of value-equivalentTU tuples, one for each chronon in its timestamp. Based on
this, an obvious mapping can be constructed that maps any legal BCDM instance
to exactly one legalT U instance, i.e., the mapping is a function. For example,
the BCDM instance{(Sue, Load | {1, 2, 3}), (Kay,Ship | {1, 3})} is mapped to
the T U instance{(Sue, Load, 1), (Sue, Load, 2), (Sue, Load, 3), (Kay,Ship, 1),
(Kay,Ship, 3)}. Next, the mapping is 1–1 because distinct BCDM instances map to
distinctT U instances. To show that the mapping is also onto, we pick an arbitrary
TU instance and show that a BCDM instance exists that maps to theT U instance.
For anyT U instance, the BCDM instance that maps to it is obtained by coalescing
its value-equivalent tuples.

The paper by Clifford et al. is concerned with the completeness of ungrouped
and grouped temporal data models. Completeness is a relative notion. Given two
data models,M1 andM2, with the same structural component, i.e., type of relation,
M2 is complete with respect toM1 if for each query inM1, there exists an equivalent
query inM2. When the structural components of the models differ, the definition
must be modified as it becomes necessary to map between instances of the models.
A mapping�M1M2 from the instances of modelM1 to those ofM2 is acorrespon-
dence mappingif pairs of argument and result instances have the same explicit at-
tributes and the same explicit-attribute values for all arguments. Mappings without
this property are not interesting. Assume for simplicity that the query languages of
M2 andM1 are algebras, as in this paper. Then data modelM2 is complete with re-
spect to data modelM1 if a correspondence mapping exists as defined above, and if
a mapping,0M1M2, from the operators ofM1 to queries ofM2 exists with the prop-
erty that for all operatorsop ofM1,�M1M2(op(r)) = 0M1M2(op)(�M1M2(r)) .

The completeness of one model with respect to another isstrongif the map-
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ping� is 1–1; otherwise it isweak. Mutually complete models are termedequiv-
alent. It is important to note that the present paper uses different notions of equiv-
alence, on different mathematical objects. In particular, we use value equivalence,
betweentuplesof the same data model to indicate identical values for the explicit
attributes, and snapshot equivalence, betweenrelation instancesof the same data
model to indicate identical information content.

Our paper provides a detailed study of the structural aspects of relatively di-
verse bitemporal relational data models, but a detailed study of operational aspects
is beyond its scope. It follows that the paper is then not aimed at comparing the
relative expressive powers of query languages. Rather, it indicates how several
structural data model components can coexist in a temporal DBMS where they may
be used for different tasks. In the terminology of Clifford et al., we provide concrete
�-mappings between specific, existing bitemporal data models and the BCDM. In
this sense the paper complements the framework of Clifford et al., which contains
no such concrete mappings. In addition, theorems illustrate that the mappings are
well behaved.

As the definition of temporal ungroupness is specific to the structure of a data
model, we now consider whether the mappings exibit the properties required for the
models to qualify as temporally ungrouped. It may be verified that all of the pro-
vided mappings satisfy the correspondence criterion. IfT U is extended in the obvi-
ous fashion to incorporate transaction time, via bitemporal chronon timestamping,
then we find it likely that all five mappings can be shown to be 1–1 and onto (via ap-
propriate covering and grouping functions). As the BCDM was shown above to be
temporally ungrouped, this would demonstrate that all five representational models
discussed in this paper are temporally ungrouped.

The0-mapping of Clifford et al. also has a counterpart in this paper. In their
framework, two data models, each with its own structural and operational compo-
nent, are assumed to exist. Then�- and0-mappings are devised in order to show
completeness and equivalence. In this paper the situation is different. Rather than
having two query languages and wanting a0-mapping, we have algebra operators
for representational models and “0-mappings,” but want algebra operators for the
BCDM. We then apply the existing mappings to algebra operators of representa-
tional data models and induce, via Theorem 5, new operators for the BCDM.

8 Summary and Future Research

In this paper, we defined thebitemporal conceptual data modelwhich timestamps
facts with bitemporal elements, which are sets of bitemporal chronons.

We showed that it is a unifying model in that conceptual instances could be
mapped into instances of five existing bitemporalrepresentational data models: a
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first normal form (1NF) tuple-timestamped data model, a data model based on 1NF
timestamped change requests recorded in backlog relations, a non-1NF data model
in which attribute values were stamped with rectangles in transaction-time/valid-
time space, a non-1NF model where valid-time states are indexed by transaction
time, and a 1NF model where each tuple is accorded five timestamp values. We
also showed how extensions to the conventional relational algebraic operators could
be defined in a representational data model and then be meaningfully mapped to
analogous operators in the conceptual data model.

An important property of the conceptual model, shared with the conventional
relational model, but not held by the representational models, is that relation in-
stances are semantically unique; each models a different reality and thus has a dis-
tinct semantics. We employedsnapshot equivalenceto relate instances in these six
models. It was shown how new algebra operators for the BCDM can be induced
from the algebraic operators of the representational models. Further, the operators
of the BCDM were shown to be natural extensions of the snapshot operators. We
also discussed covering functions at different points along the space-time tradeoff,
and presented two types of transformations that alter coverings of bitemporal rela-
tion representations. Finally, we showed that the BCDM is a temporally ungrouped
data model [6].

We advocate a separation of concerns. Each of data presentation, storage rep-
resentation, and time-varying semantics should be considered in isolation, utilizing
perhaps different data models. Semantics, specifically as determined by logical
database design, should be expressed in the conceptual model. Multiple presen-
tation formats should be available, as different applications require different ways
of viewing the data. The storage and processing of bitemporal relations should be
done in a data model that emphasizes efficiency.

By showing how it is possible to use the existing models in an integrated
mode for the different, independent tasks, we have contributed to a foundation for
implementing a temporal database system.

Additional research is needed in database design, utilizing the conceptual data
model. It appears that normal forms may be more conveniently defined in this
model than in the representational models. We are currently investigating this topic
[13]. The BCDM has been adopted as the basis for the consensus temporal query
language TSQL2 [28], and a comprehensive, underlying algebra has been defined
on the data model [30]. We conjecture that this algebra yields a temporally un-
grouped (TU-) complete data model [6]. It would be illuminating to attempt the
design of an extension to the BCDM that could be shown to be temporally grouped
(TG-) complete, and to then extend the representational mappings, the algebra, and
the normal forms to this extended data model.
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