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Databases
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Most real-world databases record time-varying information. In such databases,
the notion of “the current time,” orNOW, occurs naturally and prominently. For
example, when capturing the past states of a relation using begin and end time
attributes, tuples that are part of the current state have some past time as their
begin time andNOW as their end time. While the semantics of suchvariable
databases has been described in detail and is well understood, the modification
of variable databases remains unexplored.

This paper defines the semantics of modifications involving the vari-
ableNOW. More specifically, the problems with modifications in the presence
of NOW are explored, illustrating that the main problems are with modifica-
tions and tuples that reach into the future. The paper defines the semantics
of modifications—including insertions, deletions, and updates—of databases
without NOW, with NOW, and with values of the typeNOW+1, where1 is a
non-variable time duration. To accommodate these semantics, three new time-
stamp values are introduced. An approximate semantics that does not rely on
new timestamp values is also provided. Finally, implementation is explored.
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1 Introduction

Most real-world database applications record time-varying information. It is typical
to represent the time to which the fact(s) recorded by a tuple in a relational database
apply by a pair of time-valued attributes, which then encode a time interval. Many
of the tuples in a database typically record facts that apply to a time interval that
stretches from some past time to the current time, prompting a need for a time value
that denotes the “current time” in the to-time attribute of these tuples.

While SQL-92 [22] includes the datetime value functionsCURRENT_DATE,
CURRENT_TIME, andCURRENT_TIMESTAMP, these functions cannot be stored
directly as values of attributes in relations. In the absence of a “current time” value
in SQL’sDATE, TIME, andTIMESTAMPdomains or in the corresponding domains
offered by database vendors, common ad-hoc solutions are to use either the null
value or the maximum value of the time domain for the value of the to-time attribute.

Noting the deficiencies of these solutions, the variableNOW that evaluates to
the current time has been introduced as a value of an attribute that may be stored in
the database. The semantics of databases including this variable have been exam-
ined in some detail [10, 14, 16, 24]. While these papers have consideredNOW in
queries, they provide few details on the modification of variable databases.

In the present paper, we define the semantics of modifications of variable
databases containingNOWandNOW+1, and provide means of supporting these
semantics. In addition, we show how modifications under this semantics may be
implemented within a DBMS and in a user-application. An approximate semantics
that is simpler to implement, but carries with it lower fidelity, is also provided.

The presentation is organized as follows. We first give a simple example to
indicate the subtleties and pitfalls inherent in modifications on databases containing
NOW as well as of the practical importance of such modifications. In Section 3,
the semantics of modifications of databases withoutNOW is defined. Section 4
defines the semantics of modifications of databases withNOW as a consistent ex-
tension. Section 5 extends the approach to also accommodate values of the form
NOW+ 1, thereby affording a general solution, with Section 6 providing details
on how to implement the semantics defined in the two previous sections. We then
provide a simplified, approximate semantics of modifications of variable databases
that is easier to implement, in Section 7. Related work is covered in Section 8, and
Section 9 concludes the paper.

2 Problem Description

We motivate the problem addressed in this paper with an example that illustrates
the utility of NOW in capturing time-varying information in the database, but also
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demonstrates that the semantics of modifications of tuples timestamped withNOW
is unclear.

When modifying tuples timestamped with intervals not includingNOW, the
interval affected by the modification is the intersection of the interval associated
with the tuple and the interval specified in the modification [1]. To exemplify, in
Figure 1 we have stored the tuple〈Joe, Shoe, [10,15)〉, and we want to update all
persons in the Shoe department to be in the Toy department in the interval [10,20).
The result is that Joe will be with the Toy department in the interval [10,15). (For
simplicity, we assume that all dates are in January during some year, and we utilize
closed-open intervals.)
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25 Time
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Figure 1: (A) Updating a Fact WithoutNOW; (B) Updating a Fact WithNOW

When allowing intervals to include the variableNOW, it is still desirable that
this intersection semantics be maintained. However, there are problems redefining
the intersection operator, as illustrated in Figure 1B, where Joe is with the Shoe
department in the interval [5,NOW). (We denoteNOW with ‘×’.) We have also
indicated an update statement that, at the 15th of January, updates Joe to be with the
Toy department in the interval [10,20).

We want to determine the outcome of the update. Before the 5th of January,
Joe is not in the database. In the interval [5,10), Joe was with the Shoe department,
and this interval is not affected by the update, so Joe remains there. In the interval
[10,15), Joe was also with the Shoe department, and the department value should
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be updated for this interval. The semantics of the update becomes unclear for the
interval [15,20), and it is also unclear what happens after the 20th of January. This
is indicated by the dashed line in Figure 1B.

If we use a pessimistic semantics, Joe could be fired tomorrow, and so we
cannot update Joe for the latter interval. Further, with the pessimistic approach Joe
is not associated with the Shoe department after the 20th of January either. We can
also apply an optimistic semantics and assume that Joe is not going to be fired in
the near future. We then update Joe to be with the Toy department for the interval
[15,20), and associate Joe with the Shoe department again after the 20th of January.
A third, intermediate approach would be to bind the value ofNOW to the current
time and then execute the update, with the result that Joe’s department is changed
over the interval [10,15). These three possible outcomes are shown in Table 1.

Name Dept. V-Begin V-End

Joe Shoe 5 10
Joe Toy 10 15

Name Dept. V-Begin V-End

Joe Shoe 5 10
Joe Toy 10 20
Joe Shoe 20 NOW

A B

Name Dept. V-Begin V-End

Joe Shoe 5 10
Joe Toy 10 15
Joe Shoe 15 NOW

C

Table 1: (A) Optimistic, (B) Pessimistic, and (C) Intermediate Semantics of the
Update in Figure 1B

Each result reflects its underlying assumptions. With the pessimistic seman-
tics in Table 1A, we assume that Joe is fired tomorrow. With the optimistic se-
mantics in Table 1B, we assume Joe is with the company after the 20th of January.
Finally, in Table 1C, we assume thatNOW is the current time, i.e., the 15th of
January.

3 Modifications of Ground Databases

As an outset, we define the semantics of modifications of databases without the vari-
ableNOW, termedground databasesbecause they are variable-free. This semantics
is used to identify the extensions needed to define modifications of databases with
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the variableNOW, termedvariable databases[10]. Later we compare the seman-
tics of modifications on ground and variable databases. Most existing temporal
data models support intervals withoutNOW in both queries and modifications, see,
e.g., [6, 26].

We focus on the valid-time aspect of the tuples, i.e., when the information
recorded by the tuples is true in the miniworld [19]. The transaction-time aspect,
when tuples are current in the database, is a simpler special case because transaction
times are maintained by the database management system itself and do not extend
into the future. The subtleties examined here thus concern only valid time.

3.1 Preliminaries

We first define the union of valid-time relations and the interval difference and
intersection operators, which are used in the definitions of modifications.

We utilize the conventional relational model, but partition the attributes into
so-called explicit attributes and two datetime attributes, V-Begin and V-End, denot-
ing an interval in valid time. Letrvt andsvt be two union-compatible valid-time
relations with schema〈A1, . . . , An,V-Begin,V-End〉, where theAi are the explicit
attributes and VT= [V-Begin,V-End) record the valid time. The union operator
(∪vt ) for valid-time relations is defined as follows.

rvt ∪vt svt 4= {t |t ∈ rvt ∨ t ∈ svt }
The valid-time union operator is identical to the conventional relational algebra
union operator for ground relations, except that the arguments can be valid-time
relations, with their valid-time attribute just carried along.

We assume a time domainT that is isomorphic to a finite subset of the natural
numbers, with the normal total order,<. We denote the minimum and maximum
values of the time domainbeginningandforever, respectively. The meaning of a
closed-open interval is defined as follows, wherea andb are inT .

[a, b) 4=
{ {t |t ≤ a ∧ t < b} if a < b
∅ otherwise

If the interval start value is smaller than the interval end value, the interval consists
of the values betweena andb, includinga. Otherwise, the interval denotes the
empty set.

Leta, b, c, andd be inT . The difference of intervals (−) is defined as follows.

[a, b) − [c, d) 4=
{ {[a, c), [d, b)} if a < d ∧ c < b
{[a, b)} otherwise

The first line applies when the argument intervals overlap. Zero, one, or two non-
empty intervals may be returned. The second line returns the interval [a,b) un-
changed if this interval is before or after interval [c,d). The three drawings in Fig-
ure 2 illustrate the interval difference operator.
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Figure 2: Intervals Returned by the Difference Operator

The intersection operator of intervals (∩) is defined as follows, wheremin and
max are the conventional minimum and maximum functions returning the smallest
and largest argument, respectively.

[a, b) ∩ [c, d) 4= [max(a, c), min(b, d))
Two comments are in order. First, intersection is not strictly needed, because

[a, b) ∩ [c, d) is equal to[a, b)− ([a, b)− [c, d)). However, interval intersection
is convenient in the later definitions. Second, the union of intervals can also be
defined in terms of themin andmax functions on the end points, but the union of
intervals is not needed in this paper.

3.2 Semantics of Temporal Modifications on Ground Databases

We define insertion, deletion, and update in turn. Insertion into a valid-time rela-
tion rvt is defined as follows, whereA is used an abbreviation forA1, . . . , An and
[vts,vte) is the valid-time interval to be associated with the inserted tuples.

VALIDTIME PERIOD [ vts, vte) INSERT INTO rvt VALUES (A)
4=

rvt ← rvt ∪vt {(A, [vts, vte))}
A tuple is added to the relation. We associate with the tuple the valid-time interval
[vts,vte) specified in the insert statement. If such an interval is not specified, an
interval of now to forever is used, to effect temporal upward compatibility [2].

Deletion from a valid-time relationrvt is defined as next. Again,A abbrevi-
atesA1, . . . , An.

VALIDTIME PERIOD [ vts, vte) DELETE FROMrvt WHEREcond
4=

rvt ← {t |t ∈ rvt (¬cond(t))} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = s[A] ∧ t[VT] ∈ (s[VT] − [vts, vte)) ∧
t[VT] 6= ∅)}
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The first line ensures that tuples inrvt not satisfying conditioncond are included in
the result. In the second line, tuples satisfying the condition have their time inter-
val reduced by the part that overlaps the interval specified in the delete statement.
This interval must be non-empty. Note, if a tuple satisfies the condition, but does
not overlap the interval specified in the deletion, the tuple is included in the result
unchanged.

In the definition of updates that follows, we assume for brevity that all explicit
attributes change values. This simplification does not restrict the generality of the
results of this paper. Updating a valid-time relationrvt is defined as follows, where
A = v abbreviatesA1 = v1, . . . , An = vn.

VALIDTIME PERIOD [ vts, vte) UPDATE rvt SET A = v WHEREcond
4=

rvt ← {t |t ∈ rvt (¬cond(t))} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = s[A] ∧ t[VT] ∈ (s[VT] − [vts, vte)) ∧
t[VT] 6= ∅)} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = v ∧ t[VT] = s[VT] ∩ [vts, vte) ∧
t[VT] 6= ∅)}

The first and second lines are identical to the two lines of the delete statement. The
third line adds tuples with the updated attribute values to the result. The valid-time
intervals associated with these updated tuples are the (non-empty) intersections of
the valid-time interval currently associated with each corresponding argument tuple
and the interval specified in the update statement.

3.3 Examples of Modifications on Ground Databases

This section exemplifies the temporal modification statements on ground databases
defined above. First, an example of a delete is given. Assume the database contains
the tuple〈Joe, Shoe,[5, 20)〉 and that we want to delete Joe in the interval[10, 15).
This can be written as follows.

VALIDTIME PERIOD [10,15) DELETE FROM Emp WHERE Name = ’Joe’

The result of the delete is as follows.

∅ ∪vt {〈Joe,Shoe, {[5, 20)− [10, 15)}〉}
= {〈Joe,Shoe, [5, 10)〉, 〈Joe,Shoe, [15, 20)〉}

From the single tuple stored in the relation, we remove Joe in the interval[10, 15),
which results in two tuples.
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Next, assume again that the database contains the tuple〈Joe, Shoe,[5, 20)〉
and that we want to update Joe to be with the Toy department in the interval[10, 30).
This can be written as follows.

VALIDTIME PERIOD [10,15) UPDATE Emp SET Dept = ’Toy’
WHERE Name = ’Joe’

The result of the update is as follows.

∅ ∪vt {〈Joe,Shoe, {[5, 20)− [10, 30)}〉} ∪vt {〈Joe,Toy, {[5, 20)∩ [10, 30)}〉}
= {〈Joe,Shoe, [5, 10)〉, 〈Joe,Toy, [10, 20)〉}

From the single tuple stored in the relation, we remove Joe in the interval[10, 30).
This results in the tuple〈Joe, Shoe,[5, 10)〉. Further, we update Joe to be with the
Toy department in the intersection of the intervals[5, 20) and[10, 30), so that Joe
is with the Shoe department in the interval[10, 20).

4 Semantics of Modifications InvolvingNOW

Ground databases only evolve through the explicit application of user-supplied
modification statements. The presence of variableNOW in its tuples permits a
database to evolve purely through the passage of time.

In this section we formally define the semantics of modifications of the vari-
able databases that result from introducingNOW. We first list our requirements
to the semantics of modifications in the presence ofNOW. This is followed by an
example that illustrates the desired semantics. Two necessary extensions are iden-
tified and defined, namely (a) the extension of the domain of time values and (b)
the extension of the conventional interval difference and intersection operators to
handle the extended time domain. Finally, the semantics of modifications involving
NOWare defined and exemplified.

4.1 The Use ofNOW

The use ofNOWas an interval end-point helps us to better record information that
remains true from some past time until the increasing current time. WithNOW
available, we avoid solutions such as using the maximum value in the time domain
as a substitute interval-end time, which, using our example database, results in the
database indicating that Joe is with the Shoe department for more than 7000 years
(assuming the standardDATEtype, with a maximum value of 9999-12-31).

In order to accommodate the variableNOW in the database, special support
is needed in both queries and modifications. The meaning of databases withNOW
and the querying of such databases has been covered extensively elsewhere [10].
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However, the impact on modifications of the presence ofNOW in the database as
well as in the modification statements themselves has not been covered, even though
many temporal data models, e.g., [3, 6, 7, 8, 17, 20, 26, 32], assume thatNOWcan
be stored in the database.

Before defining the semantics of modifications on variable databases, we
specify three requirements to the accommodation ofNOW.

Requirement R1 The conventional insert, delete, and update statements should
be extended to permit constant intervals, i.e.,[a, b), as well as now-relative
intervals, i.e.,[a,NOW) and[NOW, b), as user input.
For example, the last statement in Section 3.3 used the ground interval[10, 15);
it should be possible to use a now-relative interval in its place.

Requirement R2 The semantics of modifications on variable databases should re-
duce to the semantics of modifications on conventional, ground databases.
The meaning of a variable-database modification should be the same as the
meaning of a ground-database modification in the case that the variable data-
base in fact contains no occurrences ofNOW.

Requirement R3 The database that results from the modifications to be defined
on the variable database should be representable in the common first-normal-
form format that employs two timestamp columns.

The following two extensions are needed to define the semantics of variable-
database modifications that meet these requirements.

• The time domain from which the interval end-point values are drawn must be
extended to includeNOWand other values, as we shall see.

• The conventional interval difference and intersect operators that are used in
the definition of the modification semantics must be extended to accommodate
the new kinds of end values.

Before we define these extensions, we illustrate and motivate the desired semantics
of modifications involvingNOW.

4.2 Motivating Example

To convey the intuition for what the semantics of modifications involvingNOW
should be, we show the desired results of sample updates with and withoutNOW.
We use the two updates in Figure 1, illustrating them usingextensionalization di-
agrams[10]. These diagrams are very useful for illustrating intervals containing
NOW. Thex-axis denotes reference time, the time when an interval is observed.
They-axis denotes valid time. The regions in these diagrams then convey the (pos-
sibly) time-varying meanings, or extensionalizations, of intervals in tuples stored in
the database.
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For intervals withoutNOW, extensionalization diagrams convert the illustra-
tion of an interval from a line, as shown in Figure 1, to a rectangle, as shown in
Figure 3A. Figures 3A and B illustrate an update not involvingNOW. The region
bounded by the solid line representents the tuple stored in the database, and the
region bounded by the dashed line represents the modification. The solid rectangle
in Figure 3A indicates that Joe is with the Shoe department in the interval [5,15).
This information was stored at time 5 and extends to the right. The dashed rectan-
gle indicates that at time 15, we update Joe to be with the Toy department in the
interval [10,20). The result is shown in Figure 3B, which shows that Joe is now
with the Shoe department in the interval [5,10) and with the Toy department in the
interval [10,15). We cannot update Joe for the interval [15,20) because there is no
information to update in this interval. The update only affects the overlap of the
two rectangles.

In Figure 3C, we show an update involvingNOW. The database contains the
tuple〈Joe, Shoe, [5,NOW)〉, indicated by the solid triangle. The end time ofNOW
makes the top of the extensionalization of the tuple follow the diagonal; at time 6,
the interval is [5,6), at time 7, the interval is [5,7), and so on. Again, we update Joe
to be with the Toy department in the interval [10,20).

Figure 3D shows the desired result of the update where, as for updates without
NOW, we update only the overlap of the region specified in the update and the
region specified by the tuple (as shown in Figure 3C). By updating exactly the
overlap, we avoid basing the semantics on assumptions such as the optimistic or
pessimistic assumptions discussed in the introduction.

Having motivated the desired semantics, the next task is to precisely define
the semantics and to illustrate how these semantics can be accommodated with two
new types of time-attribute values.

4.3 Road Map for Accommodating the New Semantics

The remainder of this section defines the semantics of modifications involving
NOW. The goal is to define a semantics consistent with the semantics for ground
databases defined in Section 3.2 and to reuse the template used there.

To accommodate intervals containingNOW, as demonstrated in Section 4.2,
we have to extend the interval intersection (∩) and difference (−) operators used
in the definitions of delete and update in Section 3.2. As the first step in doing
so, we must determine the set of values for interval end-points that we have to
store in the database and that the generalized operators must then contend with. For
example, we must determine what interval-end points are needed to accurately store
the intersection of two intervals such as [5,NOW) and [10,20) in the database (see
the〈Joe, Toy〉 tuple in Figure 3D).

We extend the domain of interval end-points with two additional types, each of
which can be efficiently represented (we term such intervalsnormal form intervals).
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Figure 3: The Results of Updates Without and WithNOW

We then proceed to define the extensions of the interval intersection and difference
operators in Section 4.6 and use these new operators for defining the semantics of
modifications involvingNOW in Section 4.7.

4.4 Auxiliary Functions

So far, we have employed the time domainT that is isomorphic to a subset of the
natural numbers and contains only ground values. We proceed to introduce time
domainT1 = T ∪ NOW that includes the variableNOW. While including the vari-
ableNOW is convenient for end-users, we need to provide a semantics for variable
databases. We do so by means of a mapping from a variable database to a fully
ground data model, which does not include such variables. A theoretical frame-
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work for providing a logical interpretation, or “meaning,” of a variable database,
i.e., a “translation” from variable to extensional level, may be based on a homomor-
phic mapping from variable-level databases to extensional-level databases [9]. This
mapping is termed anextensionalization, and is denoted[[ ]].

The extensionalization of an element of the time domain at a timec (“c” for
chronon) denotes its value on the y-axis of the extensionalization diagram. Return-
ing to Figure 3D, the extensionalization of the start time for〈Joe, Shoe〉 is 5, for
any timec ≥ 5. The extensionalization of the stop time of〈Joe, Shoe〉 is more
interesting: atc = 5 it is 5, atc = 10, 10, atc = 15, it is back to 10.

With the domain ofa beingT1, we define the extensionalization of a time
value at timec as follows.

[[a]]c 4=
{
c if a = NOW
a otherwise

As examples,[[5]]5 = 5, [[5]]17 = 5, and[[NOW]]17 = 17. Note that the extensional-
ization is always an element ofT , and is thus isomorphic to (and can be represented
by) a natural number.

We want to reuse the framework for defining modifications in Section 3 when
defining modifications for variable databases. Therefore, we need generalized min-
imum and maximum functions,minv andmaxv, respectively, that accommodate
the variableNOW.

Let the domain ofa andb be defined recursively asT2 = T1∪ {minv(a, b)} ∪
{maxv(a, b)}, wherea andb are elements ofT2. T2 is a very general domain,
consisting of natural numbers and expressions containing arbitrarily nested appli-
cations ofminv andmaxv. Examples of elements ofT2 include 5,minv(5, 17), and
minv(6, maxv(4,NOW)). In the next section we will restrict this domain consider-
ably. However, the exposition is smoother if we start with this general domain.

Elements ofT2 involving NOW are particularly interesting. We show three
such examples in Figure 4 using extensionalization diagrams. The examples show
that theminv function (A) gives the time value an upper bound, that themaxv

function (C) gives the time value a lower bound, and that the nesting of amaxv

function in aminv function (B) gives the time value both a lower and an upper
bound. Notice that the sloping lines follow the diagonal.

We define the meaning of theminv(a, b) andmaxv(a, b) functions via their
extensionalizations.

[[minv(a, b)]]c 4= min([[a]]c, [[b]]c)
[[maxv(a, b)]]c 4= max([[a]]c, [[b]]c)

Theminv andmaxv functions reduce to their conventional counter-part when
the arguments are from the domainT .

minv(a, b) = min(a, b) if a, b ∈ T
maxv(a, b) = max(a, b) if a, b ∈ T
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Figure 4: (A) minv(2,NOW), (B) minv(6, maxv(4,NOW)), and (C)
maxv(8,NOW)

Note that the extensionalization of each element ofT2 is also a natural number.
The extensionalization of an interval [a,b) is defined as follows.

[[[a, b)]]c 4= [[[a]]c, [[b]]c)

4.5 Interval Types for Modifications Involving NOW

We use a domain of interval end-points given byTf = T ∪ {minv(a,NOW),
maxv(a,NOW)}, wherea ∈ T , which restricts domainT2 from the previous sec-
tion. It turns out that this domain of values is sufficient for representing the results
of the modifications that we are about to define formally. Intervals using the three
types of values inTf , termedcanonical intervals, are shown in Figure 5.

Figure 5A exemplifies a conventional fixed interval of type[a, b), specifically,
[3, 7). Figure 5B shows an increasing interval of type[a,minv(b,NOW)), specifi-
cally [3, minv(7,NOW)). Note that the interval in Figure 5B may continue to grow;
this is specified as[a,minv(forever,NOW)). Figure 5C shows a decreasing inter-
val of type[maxv(a,NOW), b), specifically,[maxv(3,NOW), 7). Note again the
special case, specified as[maxv(beginning,NOW), b), where the interval starts at
beginning. Also note that as time proceeds, the duration of the interval shrinks, until
the interval is empty.

4.6 Extending the Interval Difference and Intersection Operators

Having establishedTf as the domain of interval end points, the next step is to extend
the interval difference and intersection operators to apply over such intervals. These
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Figure 5: Interval Types Needed for Modifications InvolvingNOW

operators are used in the definition of conventional modifications (Section 3.2) and
will be used in the next section to define the semantics of modifications involving
NOW.

The cases we must consider when extending the interval difference and inter-
section operators are the following, where the domain ofa, b, c, andd is T , and
int-opr is the extended difference operator (−v) or intersect operator (∩v).

[a, b)
[maxv(a,NOW), b)
[a,minv(b,NOW))

 int-opr


[c, d)

[maxv(c,NOW), d)
[c,minv(d,NOW))

 (1)

Let the domain ofα, β, γ , andδ be Tf . The extended interval difference
operators (−v) is defined as follows.
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[α, β) −v [γ, δ) 4=

{[α, γ ), [δ, β)} if (α, β, γ, δ ∈ T ∧ (α < δ ∧ γ < β))
{[α, c), [δ, β), [max(α, c),minv(min(β, δ),NOW))}

if (α, β, δ ∈ T ∧ γ = maxv(c,NOW)∧
(α < δ ∧ c < β))

{[α, γ ), [d, β), [maxv(max(α, γ ),NOW), min(β, d))}
if (α, β, γ ∈ T ∧ δ = minv(d,NOW)∧
(α < d ∧ γ < β))

{[maxv(a,NOW), c), [maxv(δ,NOW), β)}
if ((α = maxv(a,NOW) ∧ β, δ ∈ T )∧
(γ = c ∨ γ = maxv(c,NOW))∧
(a < δ ∧ c < β))

{[α,minv(γ,NOW)), [d,minv(b,NOW))}
if ((α, γ ∈ T ∧ β = minv(b,NOW))∧
(δ = d ∨ δ = minv(d,NOW))∧
(a < d ∧ c < b))

{[α, β)} otherwise

The definition accommodates all nine cases. Note first that the extended difference
operator reduces to the conventional difference operator if the domain of end points
is T . These situations are covered by the first and last cases in the definition.

Second, note that the third case in the definition takes a constant and an in-
creasing interval as inputs and returns a decreasing interval. This corresponds to
subtracting the shape in Figure 5B from the shape in Figure 5A, returning a shape as
shown in Figure 5C. As an example, Figure 6 visualizes[3, 7)−v[4, minv(6,NOW)),
illustrating also how the third case can return three intervals.

In Figure 6A, the extensionalization of the interval[3, 7) is illustrated by the
solid lines, and the extensionalization of the interval[4, minv(6,NOW)) is given by
the dashed line. The three result intervals are shown in Figure 6B. The first interval
is [3, 4), the second is[6, 7), and the third is[maxv(4,NOW), 6). This corresponds
to the order in which the intervals are specified in the definition of−v. (Figure 6C
will be addressed shortly.)

The remaining cases in the definition of the difference can be understood in a
similar way.
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The extended interval intersection operator (∩v) is defined next.

[α, β) ∩v [γ, δ) 4=

[max(α, γ ),min(β, δ))
if (α, β, γ, δ ∈ T ∧ (α < δ ∧ γ < β))

[maxv(max(a, c),NOW), min(β, δ))
if ((α = a ∨ α = maxv(a,NOW))∧
(γ = c ∨ γ = maxv(c,NOW))∧
(β, δ ∈ T ) ∧ (a < δ ∧ c < β))

[max(α, γ ),minv(min(b, d),NOW))
if ((α, γ ∈ T )∧
(β = b ∨ β = minv(b,NOW))∧
(δ = d ∨ δ = minv(d,NOW))
∧ (α < d ∧ γ < b))

∅ otherwise

Note again that the extended intersection operator reduces to the conventional in-
tersection operator if the argument interval end points are inT . This is handled by
the first and last cases.

The extensionalization diagrams in Figure 7 explain the second case in the
definition of∩v; the remaining cases may be explained similarly. The example
computes[3, 7)∩v [maxv(2,NOW), 6).

In Figure 7A, the interval[3, 7) is illustrated by the solid lines, and[maxv(2,
NOW), 6) is given by the dashed line. The resulting interval,[maxv(3,NOW), 6),
is shown in Figure 7B.

We have aimed to make the extended interval difference and intersection op-
erators as similar as possible to their conventional counterparts. This makes the
extended operators easier to understand. Below we summarize the similarities and
then the differences.

• The extended operators are equivalent to their conventional counterparts if all
interval end points are inT . This was required in Section 4.1.

• The results returned by the extended operators are independent of the time
they are evaluated, as is the case for the conventional operators. This inde-
pendence follows from the definitions, where no comparisons to the current
time occur.

• The intervals returned by the extended difference operator are disjoint. For
example, the three result intervals in Figure 6B do not overlap.

• The intervals returned by the extended difference operators are coalesced [5],
so a result containing, e.g.,[5, 7) and[7, 8)will not occur. Instead the interval
[5, 8) would be returned. Again this is fulfilled by design.
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Figure 6: Extended Interval Difference Example

• The extended intersection operator returns at most one interval, as does the
conventional intersection operator.

There are three differences between the extended and the conventional operators.

• The extended difference and intersection operators accommodate intervals de-
fined by using the variableNOW. This was a requirement in Section 4.1.

• The extended difference operator returns from zero to three intervals, whereas
the conventional difference operator returns zero, one, or two intervals. In the
example in Figure 6, three intervals are returned. This is unavoidable and
happens when finding the difference between a constant and a non-constant
interval, where the non-constant interval is included in the constant interval,
e.g.,[10, 15)−v[12, minv(14,NOW)) and[10, 15)−v[maxv(12,NOW), 14).

• The results of one extended difference operation can be combined in several
ways, whereas the result of the conventional difference operator is unique. As
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Figure 7: Extended Interval Intersection Example

an example, the result shown in Figure 6B can also be given as the follow-
ing three intervals:[maxv(3,NOW), 7), [3, minv(4,NOW)), and[6, minv(7,
NOW)), as shown in Figure 6C.

4.7 Temporal Modification Semantics

With the definitions of the extended difference and intersection operators in place,
we can define the semantics of modifications involvingNOW. Examples follow the
definitions.

The definitions of the insert, delete, and update of intervals involvingNOW
on a valid-time relationrvt are identical to those of modifications withoutNOW
defined in Section 3.2, except that the extended versions of the interval difference
and intersection operators are used. The definitions are shown below.

Insertion into a valid-time relationrvt is defined as follows. Again, if the
validity interval is not explicitly provided, a default of (bound)NOW to forever is
used.

VALIDTIME PERIOD [ vts, vte) INSERT INTO rvt VALUES (A)
4=

rvt ← rvt ∪vt {(A, [vts, vte))}
Deletion from a valid-time relationrvt is defined as follows.

VALIDTIME PERIOD [ vts, vte) DELETE FROMrvt WHEREcond
4=

rvt ← {t |t ∈ rvt (¬cond(t))} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = s[A] ∧ t[VT] ∈ (s[VT] −v [vts, vte)) ∧
t[VT] 6= ∅)}
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Update of a valid-time relationrvt is defined as follows.

VALIDTIME PERIOD [ vts, vte) UPDATE rvt SET A = v WHEREcond
4=

rvt ← {t |t ∈ rvt (¬cond(t))} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = s[A] ∧ t[VT] ∈ (s[VT] −v [vts, vte)) ∧
t[VT] 6= ∅)} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = v ∧ t[VT] = (s[VT] ∩v [vts, vte)) ∧
t[VT] 6= ∅)}

Note that the first two lines are identical to the two lines of the delete. Updates
are similar to a delete followed by an insert; this similarity will be exploited in the
implementation described in Section 6.3.

We examine two sample modifications. First an example of an update without
NOW is given. Assume the database contains the tuple〈Joe, Shoe,[5, 20)〉 and that
we want to update Joe to be with the Toy department in the interval[10, 15). This
may be written as follows.

VALIDTIME PERIOD [10,15) UPDATE Emp SET Dept = ’Toy’
WHERE Name = ’Joe’

The result of the update, also illustrated in Figure 8, is as follows.

∅ ∪vt {〈Joe,Shoe, {[5, 20)−v [10, 15)}〉} ∪vt {〈Joe,Toy, {[5, 20)∩v [10, 15)}〉}
= {〈Joe,Shoe, [5, 10)〉, 〈Joe,Shoe, [15, 20)〉, 〈Joe,Toy, [10, 15)〉}
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Figure 8: Joe is in the Toy department for the interval from 10 to 15.
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From the single tuple stored in the relation, we remove Joe from the Shoe
department in the interval[10, 15). This results in two tuples. Further, we update
Joe to be with the Toy department in the intersection of the intervals[5, 20) and
[10, 15). The result is the same as the result obtained by using the earlier definition
of update for ground databases.

The next update involvesNOW. We use the update in Figure 1 and assume
that the database contains the tuple〈Joe,Shoe, [5,NOW)〉. This update may be
written as follows.

VALIDTIME PERIOD [10,20) UPDATE Emp SET Dept = ’Toy’
WHERE Name = ’Joe’

The result of the update is as follows.

∅∪vt {〈Joe,Shoe, {[5,NOW)−v [10, 20)}〉}∪vt {〈Joe,Toy, {[5,NOW)∩v [10, 20)}〉}
= {〈Joe,Shoe, [5, minv(10,NOW))〉,
〈Joe,Shoe, [20, minv(forever,NOW))〉,
〈Joe,Toy, [10, minv(20,NOW))〉}

The resulting tuples containminv functions and are easily explained by the dia-
grams in Figure 9. The solid line denotes the tuple stating that Joe was with the
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Figure 9: Update of aNOW-Relative Database

Shoe department in the interval[5,NOW). The dashed rectangle corresponds to the
interval [10,20) for which the update is to be applied. The update takes effect in the
region where the solid-line and dashed-line regions overlap, and the result is given
in Figure 9B.

This result is the desired one. We only update in the overlap between the
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temporal scope specified in the update statement and the data stored in the database.
It is still correct that Joe was with the Shoe department in the interval[5, minv(10,
NOW)) and[20, minv(forever,NOW)). Should Joe also have been updated to be
with the Toy department in the latter two intervals, a different temporal scope should
have been given in the update statement, e.g, the interval[5,NOW).

5 Semantics of Modifications InvolvingNOW-Relative Values

In some applications, the intervals associated with the tuples do not coincide with
the current time, but still vary with the current time. For example, the hiring and
termination of personnel may be recorded in the database only three days after they
are effective. For cases like these,now-relativetime values, e.g.,NOW− 3 days,
which track the current time, but with a displacement, and which generalizeNOW,
are very useful [10].

This section considers the modification of databases in the presence of such
values. First,NOW-relative values are defined, and then a new kind of interval, used
for accommodating the more general databases that result from theNOW-relative
values, is introduced, and the interval operations (−v and∩v) are extended to also
accommodate these new intervals. On this basis, the modifications are defined.

5.1 Definition of NOW-Relative Values

NOW-relative values generalize variableNOW by allowing offsets fromNOW to
be specified [10]. For example, assume that Joe started in the Shoe department on
January 10 and remains there, but may be assigned to another department with two
days’ notice. This may be captured using aNOW-relative value, as follows:〈Joe,
Shoe, [10,NOW+ 2)〉, where the+2 indicates the two days’ notice.

Formally, the extensionalization at timec of a NOW-relative value,NOWOP
n, where OP∈ {+,−} andn belongs to a domain of durations that is isomorphic to
a subset of the integers, is defined as follows [10].

[[NOWOPn]]c 4= [[NOW]]c OPn

5.2 A New Interval Type

To extend the modifications to accommodateNOW-relative intervals, a single new
interval type is needed over the three introduced in Section 4.5. The extensional-
ization graph in Figure 10 gives an example of this new type of interval, namely the
interval [maxv(3,NOW− 3), minv(7,NOW+ 2)). The dashed line indicates the
diagonal. This interval has amaxv function in its starting point and aminv function
in its ending point; the earlier intervals had at most a function in either the starting
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Figure 10: New Interval Type forNOW-Relative Modifications

or the ending point. Note also the now-relative offsets,−3 and+2. The−3 in
the starting point indicates that the start point is three units below the diagonal, and
the+2 indicates that the ending point is two units above the diagonal. In previous
sections all offsets were 0 and all non-vertical or non-horizontal lines were on the
diagonal.

The offset of the starting point of an interval must be smaller than or equal to
the offset of its ending point. Otherwise, the interval is undefined. For example, the
interval[maxv(3,NOW+ 2), minv(7,NOW− 3)) is undefined.

Formally, we define the meaning of aNOW-relative interval at timec as fol-
lows, wherea andb are inT anda_off andb_off are in the domain of durations.

[[[maxv(a,NOW+ a_off), minv(b,NOW+ b_off))]]c 4=
[a,minv(b,NOW+ b_off)) if a − b_off ≤ c < b − b_off
[a, b) if b − b_off ≤ c < a − a_off
[maxv(a,NOW+ a_off), b) if a − a_off ≤ c < b − a_off
∅ otherwise

We will show next how the new interval type comes into existence and define
also how it is handled in the interval difference and intersection operators.

5.3 Extending the Interval Operators

The sixteen cases we must consider when extending the interval difference and
intersection operators are enumerated below, where the domain ofa, b, c, andd
is T , a_off, b_off, c_off, andd_off are signed durations (i.e., corresponding to
positive or negative integers), andint-opr is the extended difference operator (−v)
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or intersection operator (∩v).
1 : [a, b)
2 : [a,minv(b,NOW+ b_off))
3 : [maxv(a,NOW+ a_off), b)
4 : [maxv(a,NOW+ a_off), minv(b,NOW+ b_off))

 int-opr


1 : [c, d)
2 : [c,minv(d,NOW+ d_off))
3 : [maxv(c,NOW+ c_off), d)
4 : [maxv(c,NOW+ c_off), minv(d,NOW+ d_off))


(2)

Note that allowing only ‘+’, but then allowing positive and negative durations is
equivalent to the definition of now-relative values in Section 5.1.

The extended interval difference operation,[α, β) −v [γ, δ), where the ar-
gument intervals are as enumerated above, is defined in Tables 2 and 3. The tables
have seventeen cases, and each of the sixteen combinations above gives rise to two
cases. The first case for a combination is identified by the integers in Formula 2 and
in the second and third columns in the table (the first column is used for numbering
the cases in the discussion below). The fourth column gives a condition that must
be satisfied for this case to apply. The second case is the last, “otherwise” case in
the table, which applies if the condition in the first case is not satisfied. The result
for a case, a set of intervals, is given in the last column of the table.

It may be observed that the extended difference operator reduces to the con-
ventional difference operator when the interval end points are inT . These situations
are covered by the first and last cases in the definition. Next, the operator returns
up to four intervals (in cases 4, 8, 12, and 16), and the new interval type defined in
Section 5.2 is returned in cases 6, 8, and 11–16.

We motivate the definition by considering the four examples illustrated in
Figure 11. Figure 11A illustrates the difference[5, minv(9,NOW+ 2)) −v [3, 7),
which is covered by case 5 in Tables 2 and 3. The result,[7, minv(9,NOW+ 2)),
is illustrated in Figure 12A. The first interval in case 5 is empty becauseα > γ

(5> 3).
Figure 11B illustrates the difference[maxv(2,NOW− 2), 6) −v [maxv(4,

NOW+ 2), 8), which is covered by case 11 in the definition. The result is the
two intervals[maxv(2,NOW− 2), 4) and[maxv(4,NOW− 2), minv(6,NOW+
2)), which are shown in Figure 12B. These intervals derive from the first and third
intervals in case 11; the second interval is empty becauseδ > β (8> 6). When we
compute the difference of two decreasing intervals as here, the new type of interval
from Section 5.2 is results.

Figure 11C illustrates[maxv(2,NOW), 8)−v [4, minv(6,NOW+ 2)). Here,
the offset of the first interval is 0. Finding the difference of a decreasing and increas-
ing interval (or vice versa) is not as simple as when both offsets are 0, where the left
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1 1 1 α < δ ∧ γ < β [α, γ ), [δ, β)
2 1 2 α < d ∧ γ < β [α, γ ), [d, β), [maxv(max(α, γ ),NOW+ d_off), min(β, d))
3 1 3 α < δ ∧ c < β [α, c), [δ, β), [max(α, c),minv(min(β, δ),NOW+ c_off))

4 1 4 α < d ∧ c < β [α, c), [d, β), [max(α, c),minv(min(β, d),NOW+ c_off)),
[maxv(max(α, c),NOW+ d_off), min(β, d))

5 2 1 α < δ ∧ γ < b [α,minv(γ,NOW+ b_off)), [δ,minv(b,NOW+ b_off))

6 2 2 α < d ∧ γ < b
[α,minv(γ,NOW+ b_off)), [d,minv(b,NOW+ b_off)),
[maxv(max(α, γ ),NOW+ d_off), minv(min(b, d),NOW+ b_off))

7 2 3 α < δ ∧ c < b [α,minv(c,NOW+ b_off)), [δ,minv(b,NOW+ b_off)),
[max(α, c),minv(min(b, δ),NOW+ c_off))

8 2 4 α < d ∧ c < b
[α,minv(c,NOW+ b_off)), [d,minv(b,NOW+ b_off)),
[max(α, c),minv(min(b, d),NOW+ c_off)),
[maxv(max(α, c),NOW+ d_off), minv(min(β, d),NOW+ b_off))

9 3 1 a < δ ∧ γ < β [maxv(a,NOW+ a_off), γ ), [maxv(δ,NOW+ a_off), β)

10 3 2 a < d ∧ γ < β [maxv(a,NOW+ a_off), γ ), [maxv(d,NOW+ a_off), β),
[maxv(max(a, γ ),NOW+ d_off), min(β, d))

11 3 3 a < δ ∧ c < β [maxv(a,NOW+ a_off), c), [maxv(δ,NOW+ a_off), β),
[maxv(max(a, c),NOW+ a_off), minv(min(β, δ),NOW+ c_off))

12 3 4 a < d ∧ γ < b
[maxv(a,NOW+ a_off), c), [maxv(d,NOW+ a_off), β),
[maxv(max(a, c),NOW+ a_off), minv(min(β, d),NOW+ c_off)),
[maxv(max(a, c),NOW+ d_off), min(β, d))

Table 2: The Interval Difference Operator Extended forNOW-Relative Values—Part 1
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13 4 1 a < δ ∧ γ < b [maxv(a,NOW+ a_off), minv(γ,NOW+ b_off)),
[maxv(δ,NOW+ a_off), minv(b,NOW+ b_off))

14 4 2 a < d ∧ γ < b
[maxv(a,NOW+ a_off), minv(γ,NOW+ b_off)),
[maxv(d,NOW+ a_off), minv(b,NOW+ b_off)),
[maxv(max(a, γ ),NOW+ d_off), minv(min(b, d),NOW+ b_off))

15 4 3 a < δ ∧ c < b
[maxv(a),NOW+ a_off), minv(c,NOW+ b_off)),
[maxv(d,NOW+ a_off), minv(b,NOW+ b_off)),
[maxv(max(a, c),NOW+ a_off), minv(min(b, δ),NOW+ c_off))

16 4 4 a < d ∧ c < b

[maxv(a,NOW+ a_off), minv(c,NOW+ b_off)),
[maxv(d,NOW+ a_off), minv(b,NOW+ b_off)),
[maxv(max(a, c),NOW+ a_off), minv(min(b, d),NOW+ c_off)),
[maxv(max(a, c),NOW+ d_off), minv(min(b, d),NOW+ b_off))

17 otherwise [α, β)

Table 3: The Interval Difference Operator Extended forNOW-Relative Values—Part II
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Figure 11:NOW-Relative Interval Difference Examples

argument is the result. Case 10 in the definition applies, and the result is the three
intervals[maxv(2,NOW), 4), [maxv(6,NOW), 8), and [maxv(4,NOW+ 2), 6),
see Figure 12C.

Finally, Figure 11D illustrates[maxv(3,NOW− 3), minv(7,NOW+ 3)) −v
[maxv(4,NOW− 1), minv(6,NOW+ 1)), which is covered by case 16. The result
is the four intervals[maxv(3,NOW− 3), minv(4,NOW+ 3)), [maxv(6,NOW−
3), minv(7,NOW+ 3)), [maxv(4,NOW− 3), minv(6,NOW+ 1)), and[maxv(4,
NOW+ 1), minv(6,NOW+ 3)), shown in Figure 12D. This example illustrates
the overall strategy used in defining interval difference. We look above, below, to
the right, and to the left of the second argument interval, determining what remains
of the first argument interval. Looking to the right and left, we consider only the
parts of the first argument interval that have not been covered by looking above and
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Figure 12:NOW-Relative Interval Difference Results

below. This is implemented in the definition using the standardmax andmin func-
tions. Using this strategy, the difference operator returns non-overlapping regions
and does not duplicate information.

The extended interval intersection operator (∩v) is defined below. Like the
difference operator above, this operator reduces to the conventional intersection
operator if the end points of the argument intervals are inT , which also here is
covered by the first and last cases in the definition. The operator operator always
returns only one interval, as does the conventional intersection operator, and the
new interval type is returned by case 4.
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[α, β) ∩v [γ, δ) 4=

[max(α, γ ),min(β, δ))
if (α, β, γ, δ ∈ T ∧ (α < δ ∧ γ < β))

[maxv(max(a, c),NOW+max(a_off, c_off)), min(β, δ))
if ((α = a ∨ α = maxv(a,NOW+ a_off))∧
(γ = c ∨ γ = maxv(c,NOW+ c_off))∧
β, δ ∈ T ∧ a < δ ∧ c < β)

[max(α, γ ),minv(min(b, d),NOW+min(b_off, d_off)))
if ((β = b ∨ β = minv(b,NOW+ b_off))∧
(δ = d ∨ δ = minv(d,NOW+ d_off))∧
α, γ ∈ T ∧ α < d ∧ γ < b∧

[maxv(max(a, c),NOW+max(a_off, c_off)), minv(min(b, d),
NOW+min(b_off, d_off)))

if (((α = maxv(a,NOW+ a_off)∧
β = minv(b,NOW+ b_off))∨
(γ = maxv(c,NOW+ c_off)∧
δ = minv(d,NOW+ d_off))) ∧ a < d∧
c < b ∧max(a_off, c_off) < min(b_off, d_off)

∅ otherwise

The extensionalization graphs in Figure 11 may also serve to illustrate the
extended union definition. Figure 11A illustrates the union[5, minv(9,NOW+ 2))
∩v [3, 7), which is covered by case 3. The result, interval[5, minv(7,NOW+ 2)),
is shown in Figure 13A. Next, Figure 11B illustrates[maxv(2,NOW− 2), 6) ∩v
[maxv(4,NOW+2), 8), which is covered by case 2 and results in[maxv(4,NOW+
2), 6) as shown in Figure 13B.

The examples in Figure 11C and Figure 11D are both covered by case 4 in
the definition. Figure 11C illustrates[maxv(2,NOW), 8) ∩v [4, minv(6,NOW+
2)), which results in the interval[maxv(4,NOW), minv(6,NOW+ 2)) (shown in
Figure 13C). Thus the offsets cause the intersection operator to return an interval
of the new type introduced in this section. Figure 11D computes[maxv(3,NOW−
3), minv(7,NOW+ 3)) ∩v [maxv(4,NOW− 1), minv(6,NOW+ 1)), resulting in
the interval[maxv(4,NOW− 1), minv(6,NOW+ 1)), shown in Figure 13D.

5.4 Temporal Modification Semantics IncludingNOW-Relative Values

With the new difference and intersection operators in place, we can define the se-
mantics of modifications involvingNOW-relative values. These definitions may be
given by re-using the template employed for the definitions in Section 4.7, the only
difference being that the extended difference and intersection operators are to be
used. For brevity, we do not repeat the definitions, but instead exemplify the utility
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Figure 13:NOW-Relative Interval Intersection Results

of NOW-relative values.
In the following scenario, Joe joins the Shoe department on the 3rd. At any

time, he can leave his job with eight days’ notice. On the 6th, he is told that with
two days notice, he can be reassigned to the Toy department for four days. On the
8th, he gives notice that he will leave his job (i.e., his last day is the 16th).

This scenario is captured by the following database modifications.

-- 3rd: Joe is hired on the 3rd with 8 days notice
VALIDTIME PERIOD [3, NOBIND(CURRENT_DATE + 8))
INSERT INTO Emp VALUES (’Joe’, ’Shoe’);

-- 6th: Plan that Joe can temporarily be in the Toy
department for four days
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VALIDTIME PERIOD [NOBIND(CURRENT_DATE + 2),
NOBIND(CURRENT_DATE + 6))

UPDATE Emp
SET Dept = ’Toy’
WHERE Name = ’Joe’;

-- 8th: Joe quits his job and has 8 days’ notice
VALIDTIME PERIOD [16, FOREVER)
DELETE FROM Emp
WHERE Name = ’Joe’;

The single tuple that results from the first statement is〈Joe, Shoe, [3,NOW+8)〉
and is illustrated with the solid line in Figure 14A. The result of the first update is
as follows, and is illustrated in Figures 14A and B.

∅ ∪vt {〈Joe,Shoe, {[3,NOW+ 8)−v [NOW+ 2,NOW+ 6)}〉} ∪vt
{〈Joe,Toy, {[3,NOW+ 8) ∩v [NOW+ 2,NOW+ 6)}〉}

= {〈Joe,Shoe, [3,NOW+ 2)〉,
〈Joe,Shoe, [maxv(3,NOW+ 6),NOW+ 8)〉,
〈Joe,Toy, [maxv(3,NOW+ 2),NOW+ 6)〉}

We plan that Joe may be temporarily in the Toy department in the interval
[NOW+2,NOW+6) where the +2 indicates the two days’ notice. This interval can
be rewritten as [maxv(beginning,NOW+2),minv(forever,NOW+6)) and is indi-
cated by the two dashed lines in Figure 14A. The result is the three tuples indicated
by solid lines in Figure 14B.

The result of the deletion is as follows, and is illustrated in Figures 14B and C.

∅ ∪vt {〈Joe,Shoe, {[3,NOW+ 2)〉 −v [16, forever)}〉} ∪vt
{〈Joe,Shoe, {[maxv(3,NOW+ 6),NOW+ 8)−v [16, forever)}〉} ∪vt
{〈Joe,Toy, {[maxv(3,NOW+ 2),NOW+ 6)−v [16, forever)}〉}

= {〈Joe,Shoe, [3, minv(16,NOW+ 2))〉,
〈Joe,Shoe, [maxv(3,NOW+ 6), minv(16,NOW+ 8))〉,
〈Joe,Toy, [maxv(3,NOW+ 2), minv(16,NOW+ 6))〉}

From the three tuples stored in the relation at the outset, we delete the interval
[16,forever), to indicate that Joe is leaving the company on the 16th. The interval to
be deleted is indicated by the dashed line in Figure 14B. The result of the deletion
is the three tuples indicated by solid lines in Figure 14C. The tuples with end-point
values above 16 from Figure 14B are “truncated” here.

Having defined the semantics for modifications involvingNOW, we consider
the implementation of the modifications.



MODIFICATION SEMANTICS IN NOW-RELATIVE DATABASES 197

20

15

10

5

5 10 15 20

VT

Time

Toy

Shoe

20

15

10

5

5 10 15 20

VT

Time

Toy

Shoe

Shoe

A B

20

15

10

5

5 10 15 20

VT

Time

Shoe
Toy

Shoe

C

Figure 14: The Results of Updates WithNOW-Relative

6 Implementing NOW-Relative Modifications

This section considers the implementation of the modifications defined in the previ-
ous two sections. Implementation using only SQL-92 and using the object-relational
features provided by some commercial DBMSs are considered.

6.1 Representing Canonical Intervals

The canonical intervals can be implemented in SQL-92 by using four columns. Two
columns record theV-Begin and V-End attributes, and two columns, named
V-Begin-Offset and V-End-Offset , indicate the valid-time begin offset
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and the valid-time end offset, respectively. Our sample relation may then be de-
clared as follows.
CREATE TABLE Emp (

Name VARCHAR (20) NOT NULL,
Dept VARCHAR (20) NOT NULL,
V-Begin DATE, -- Assuming day granularity
V-Begin-Offset NUMERIC (10,0),
V-End DATE, -- Assuming day granularity
V-End-Offset NUMERIC (10,0))

Here, aV-Begin-Offset andV-End-Offset value different fromNULL in-
dicates amaxv and aminv function, respectively. The representation of the dif-
ferent shapes is demonstrated below. Recall thatNOW may be expressed also as
maxv(beginning,NOW) in theV-Begin attribute andminv(forever,NOW) in the
V-End attribute.

The valid-time interval can also be implemented as an abstract data type
(ADT), e.g., in the Informix and Oracle DBMSs. The main advantage of this is
that the valid-time interval is encapsulated and is treated as a single unit.

6.2 Implementing Queries

When querying,NOWvalues must be bound to the current time. We do so with two
functions,BIND_B to bind the beginning time, andBIND_E to bind the end time.

To illustrate querying, suppose we want to retrieve all tuples with a valid
time that overlaps the interval [1999-01-05,1999-01-15). This can be written in a
temporal SQL [27] as follows.
VALIDTIME PERIOD [DATE ’1999-01-05’, DATE ’1999-01-15’)
SELECT * FROM Emp;

This query formulated in SQL-92 is shown below.
SELECT Name, Dept,

BIND_B(V-Begin, V-Begin-Offset) AS V-Begin,
BIND_E(V-End, V-End-Offset) AS V-End

FROM Emp
WHERE BIND_B(V-Begin, V-Begin-Offset) <

DATE ’1999-01-15’ AND
DATE ’1999-01-05’ < BIND_E(V-End, V-End-Offset) AND
BIND_B(V-Begin, V-Begin-Offset) <

BIND_E(V-End, V-End-Offset)

The query checks if the valid time associated with a tuple overlaps with the temporal
scope, i.e., the interval [1999-01-05,1999-01-15). In the last line, it is checked that
theV-Begin attribute is smaller than theV-End attribute, when these attributes
are bound to the current date. Note that a query always returns a ground result.

As an example, theBIND_B function can be specified in PSM [23] as follows.
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DECLARE FUNCTION BIND_B (Val DATE, Offset NUMERIC (10,0))
RETURNS DATE

IF Offset IS NULL
THEN RETURN Val
ELSE IF Val > CURRENT_DATE + CAST(Offset AS INTERVAL DAY)
THEN RETURN Val
ELSE RETURN CURRENT_DATE + CAST(Offset AS INTERVAL DAY);

TheBIND_E function is analogous. These can be implemented similarly in Ora-
cle’s PL/SQL or as user-defined functions in Informix or DB2.

If implemented inside the DBMS, rather than with an external translater from
temporal SQL to conventional SQL, the binding functions need not be called mul-
tiple times, as in the SQL code above. Implementing the binding within the DBMS
might also enable other simplifications.

6.3 Implementing Modifications

Having illustrated querying when representing temporal data using the format with
four four extra attributes, we proceed to consider modification. First, insertions are
easy to map to SQL: we simply set the offset columns depending on the presence
of NOW.
VALIDTIME PERIOD [DATE ’1999-01-05’, DATE ’1999-01-20’)
INSERT (Joe, Shoe)

may be mapped into
INSERT INTO Emp VALUES

(’Joe’, ’Shoe’, DATE ’1999-01-05’, NULL,
DATE ’1999-01-20’, NULL);

When the valueNOW, specified asNOBIND(CURRENT_DATE))[10], is
present, a non-null value of the offset is used.
VALIDTIME PERIOD [DATE ’1999-01-05’, NOBIND(CURRENT_DATE))
INSERT (Joe, Shoe)

is mapped into
INSERT INTO Emp VALUES

(’Joe’, ’Shoe’, DATE ’1999-01-05’, NULL,
DATE ’9999-12-31’, 0);

Deletions and updates should conform to the semantics presented in Sec-
tions 4.7 and 5.4. The main problem when implementing these is that the extended
interval difference operator that they make use of may return up to three intervals
for the semantics specified in Section 4.7 and up to four intervals for the semantics
specified in Section 5.4.

To solve this problem we use the idea illustrated by the extended interval
difference example in Figure 11D and 12D. To determine the result of a difference,
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e.g., the difference[a, b)−v [c, d), we look “above,” “below,” “right,” and “left” of
interval[c, d) and determine what remains of interval[a, b).

As an example, consider the case where the database contains the tuple〈Joe,
Shoe,[maxv(1999-01-03,NOW− 3), minv(1999-01-07,NOW+ 3)) 〉 and a tem-
poral deletion statement causes us to delete Joe from the Shoe department in the
interval[maxv(1999-01-04,NOW− 1), minv(1999-01-06,NOW+ 1)). This latter
interval then is the interval specified in the temporal deletion statement. This is
corresponds to the example in Figure 11D.

The following four SQL-92 insertions and one SQL-92 deletion cover all the
cases. Note that they are similar in form, and that the last three lines of each are
identical.
-- Above
INSERT INTO Emp
SELECT Name, Dept, ’1999-01-06’, V-Begin_Offset, V-End,

V-End-Offset
FROM Emp
WHERE Name = ’Joe’ AND V-End > ’1999-01-06’ AND

V-Begin < DATE ’1999-01-06’ AND
DATE ’1999-01-04’ < V-End AND
(V-Begin-Offset < 1 OR

(V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-Offset OR

(-1 IS NULL or V-End-Offset IS NULL));
-- Below
INSERT INTO Emp
SELECT Name, Dept, V-Begin, V-Begin-Offset, DATE ’1999-01-04’,

V-End-Offset
FROM Emp
WHERE Name = ’Joe’ AND V-Begin < ’1999-01-04’ AND

V-Begin < DATE ’1999-01-06’ AND
DATE ’1999-01-04’ < V-End AND
(V-Begin-Offset < 1 OR

(V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-Offset

OR (-1 IS NULL or V-End-Offset IS NULL));
-- Right
INSERT INTO Emp
SELECT Name, Dept,

GREATEST (V-Begin, DATE ’1999-01-04’), V-Begin-Offset,
LEAST (V-End, ’1999-01-06’), -1

FROM Emp
WHERE Name = ’Joe’ AND -1 IS NOT NULL AND

GREATEST (V-Begin, DATE ’1999-01-04’) <
LEAST (V-End, ’1999-01-06’) AND
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(NOT (V-Begin-Offset IS NOT NULL
AND V-Begin-Offset > -1)) AND

V-Begin < DATE ’1999-01-06’ AND
DATE ’1999-01-04’ < V-End AND
(V-Begin-Offset < 1

OR (V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-Offset

OR (-1 IS NULL or V-End-Offset IS NULL));
-- Left
INSERT INTO Emp
SELECT Name, Dept, GREATEST (V-Begin, DATE ’1999-01-04’), 1,

LEAST (V-End, ’1999-01-06’), V-End-Offset
FROM Emp
WHERE Name = ’Joe’ AND 1 IS NOT NULL

GREATEST (V-Begin, DATE ’1999-01-04’) <
LEAST (V-End, ’1999-01-06’) AND

AND (NOT (V-End-Offset IS NOT NULL AND
1 > V-End-Offset)) AND

V-Begin < DATE ’1999-01-06’ AND
DATE ’1999-01-04’ < V-End AND
(V-Begin-Offset < 1 OR

(V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-Offset

OR (-1 IS NULL or V-End-Offset IS NULL));

-- Delete the old tuple
DELETE FROM Emp
WHERE Name = ’Joe’ AND

V-Begin < DATE ’1999-01-06’ AND
DATE ’1999-01-04’ < V-End AND
(V-Begin-Offset < 1

OR (V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-Offset

OR (-1 IS NULL or V-End-Offset IS NULL));

The SQL-92 code above uses the Oracle-specific functionsGREATESTand
LEAST, which correspond the conventionalmax andmin functions used in this
paper.

The time overlap predicate (the third-to-last line) and the offset overlap pred-
icate (the last two lines) check that the intervals associated with the tuples overlap
with the interval specified in the delete statement. The offset overlap predicate
checks for overlap between the offsets on the intervals in the database and the off-
set specified in the interval to delete or update. Because these offsets can have the
value NULL we must for each less than operator, check if either of the operands
are NULL. The ’1’ in , e.g., in1 IS NULL is the V-End-Offset of the interval
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specified in the delete. Similar, is the ’-1’, e.g., in-1 < V-End-Offset , is the
V-Begin-Offset of the interval specified in the delete.

In the first insert statement the checkV-End > ’1999-01-06’ ensures
that an “above” tuple is generated when appropriate. Similarly, the check in the
second insertion,V-Begin < ’1999-01-04’ , ensures that a “below” tuple is
generated.

The “right” and “left” cases, the third and fourth insert statements, are slightly
more complicated because we ensure (1) that a tuple is generated, (2) that it has no
overlap with the “above” and “below” tuples, (3) that itsV-Begin value is smaller
than itsV-End value, and (4) that itsV-Begin-Offset value is smaller than its
V-End-Offset value.

In the third insert statement, the first check is that-1 IS NOT NULL . A
“right” tuple is only generated if theV-Begin-Offset of the interval specified
in the temporal deletion statement isNOT NULL. The second and third checks are
done with theGREATESTand LEAST functions in the select clause and in the
where clause, respectively. The fourth check occurs in the last line. We must ensure
if the V-Begin-Offset attribute isNOT NULLthen its value cannot be larger
than−1, which is theV-Begin-Offset of the interval specified in the temporal
delete statement.

In the fourth insert statement, the first check is that1 IS NOT NULL. A
“left” tuple is only generated if theV-End-Offset of the interval specified in the
temporal deletion statement isNOT NULL. Again the second and third checks are
done usingGREATESTandLEAST, and the fourth check occurs in the last line. If
theV-End-Offset is NOT NULLthen its value cannot be larger than 1, which
is theV-End-Offset of the interval specified in the temporal deletion statement.

After the four insertions, all tuples that overlap with the interval specified in
the deletion statement are deleted. This is correct because we have just created up
to four tuples that represent what remains of the ordinal interval.

Note that because the semantics specified in Sections 4.7 only allows amaxv

function in theV-Begin attribute or aminv function in theV-End attribute, the
“right” and “left” tuples are mutually exclusive. This semantics will therefore result
in a maximum of three new tuples. This restriction does not apply to the semantics
specified in Section 5.4; in the presence of now-relative values, as many as four
tuples may result.

Updates are implemented similarly to deletes. Assume that we want to up-
date Joe for the interval [1999-01-04,maxv(1999-01-06,NOW)) to be with the Toy
department. In an extended temporal SQL, this may be written as follows [27].
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VALIDTIME PERIOD [DATE ’1999-01-04’, NOBIND(CURRENT_DATE))
UPDATE Emp SET Dept = ’Toy’
WHERE Name = ’Joe’;

This is written in SQL-92 as four insertions and an update. The four inser-
tions are identical to those displayed for the temporal deletion above. The update
statement follows.

-- Update self
UPDATE EmpNow
SET Name, Dept,

V-Begin = GREATEST (V-Begin, DATE ’1999-01-04’),
V-End = LEAST (V-End, NULL),
V-Begin-Offset = GREATEST (V-Begin-Offset, NULL),
V-End-Offset = LEAST (V-End-Offset, 0)

WHERE Name = ’Joe’ AND
NOT (GREATEST (V-Begin, DATE ’1999-01-04’)

IS NOT NULL AND
LEAST (V-End, NULL) IS NOT NULL AND
GREATEST (V-Begin, DATE ’1999-01-04’) >

LEAST (V-End, NULL)) AND
NOT (GREATEST (V-Begin-Offset, NULL) IS NOT NULL AND

LEAST (V-End-Offset, 0) IS NOT NULL AND
GREATEST (V-Begin-Offset, NULL) >

LEAST (V-End-Offset, 0)) AND
V-Begin < DATE ’1999-01-06’ AND
DATE ’1999-01-04’ < V-End AND
(V-Begin-Offset < 1

OR (V-Begin-Offset IS NULL OR 1 IS NULL)) AND
(-1 < V-End-Offset

OR (-1 IS NULL or V-End-Offset IS NULL));

In line 3, theV-Begin attribute is set to the maximum of the start of the interval
of the tuple being updated and the start of the interval specified in the update. In
line 4, theV-End attribute is set to the minimum of its current value and the end of
the interval in the update. This is done similarly for theV-Begin-Offset and
V-End-Offset attributes in lines 5 and 6, respectively. In the where clause, it is
checked in lines 8 to 10 that the new interval is non-empty. Similarly, lines 11 to 13
check that theV-Begin-Offset is smaller than theV-End-Offset . Line 14
checks overlap on theV-Begin andV-End attributes, and theV-Begin-Offset
andV-End-Offset attributes. The last three lines duplicate those of the above
insertions.

In this example, the where clause is particularly simple, and the provided
mapping works fine. For more complex predicates, for example those containing
subqueries, care must be taken to ensure that these are afforded the correct seman-
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tics, following the mapping for queries [27].
A full solution includes support for ground interval end points, which is al-

ready included in SQL-92, and forNOWand for now-relative values, as provided in
this paper. In addition, support can be provided for indeterminate versions of these
values (so-called “don’t know exactly when” values) [12]. Support for indetermi-
nate values can be defined in terms of the operations on determinate values (for ex-
ample, an indeterminate ground time value can be represented and manipulated as a
pair of determinate ground time values). As proof of concept, the TIMEADT proto-
type [28] implements all the usual predicates and constructors for all six classes of
period values: ground determinate, variable determinate, now-relative determinate,
ground indeterminate, variable indeterminate, and now-relative indeterminate.

Triggers and methods on a new data type for the time intervals considered
constitute two alternatives to the SQL-92 statements above. Both have associated
problems. For example, an implementation using triggers for the deletions and up-
dates illustrated above is not directly implementable in Oracle8i because the trigger
will result in amutating table[25], which is not allowed (this condition occurs when
a statement in the trigger body accesses the table that the trigger was fired on).

Defining methods on an interval ADT is also quite challenging. The main
problem is having to generate up to four separate tuples when a single tuple is being
manipulated. This seems to be beyond ADTs. Another problem is how to handle the
where clauses of temporal modifications. The where predicate can be specified by
the user at run-time, making its necessary for the insert, delete, and update methods
on an interval ADT to accept a string argument containing the where clause. The
modification methods must then parse the where clause and dynamically generate
appropriate SQL-92 statements that mirror to the temporal modification statement.

7 Approximate Modification Semantics

As the previous section showed, representing the new time values requires either an
ADT or multiple physical columns. The present section will explore what semantics
may be achieved with just a single additionalNOW value, which can be denoted
with a particular existing value, such asNULL or DATE ’9999-12-31’ [31].
Specifically, we define approximate semantics for modifications involvingNOW
that do not require the use of theminv andmaxv functions. This will help indicate
precisely what the rather complex implementaiton of the previous section buys us.

We first introduce a set of auxiliary functions. Then the semantics of insert,
delete, and update are defined, followed by examples and a discussion of the differ-
ences between the accurate and the approximate semantics.
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7.1 Possible Approximate Semantics of Temporal Modifications

Our definitions of modification lead to tuples that contain theminv andmaxv func-
tions in their timestamps. Existing temporal data models do not accommodate these
functions, leading to a violation ofRequirement R3 in Section 4.1. We thus ex-
plore alternative semantics of modifications that avoid these values.

We use the last example in Section 4.7 of an update for exploring possible
alternative semantics. The result of that update was illustrated in Figure 9B and is
also given in Table 4.

Name Dept. V-Begin V-End

Joe Shoe 5 minv(10,NOW)
Joe Toy 10 minv(20,NOW)
Joe Shoe 20 minv(forever,NOW)

Table 4: Result of the Update

The objective is to accomplish this update without using theminv (andmaxv)
value. We assume that the current time is 15. The current time, not an issue in the
exact semantics, will be important in the approximate semantics. Three possible,
approximate update semantics are illustrated Figure 15.

Figure 15A adopts a pessimistic approach, which was also shown in Table 1A.
(Note that the region labeled “Shoe” corresponds to a tuple that was only present
in the database until time 15.) The drawback is that information is missing in the
shaded region. The second approximate semantics, the result of which is shown
in Figure 15B, has the drawback that the information in the shaded region in Fig-
ure 15B has been manufactured and is extraneous. This figure corresponds to Ta-
ble 1B. The third approximate update semantics, shown in Figure 15C, is similar to
the optimistic approach, shown in Table 1C. There is no extra or missing informa-
tion; however, wrong information is created. The department “Shoe” in the shaded
region should be “Toy.”

Each approximate semantics has drawbacks, but the second semantics appears
to be preferable. The extraneous information is present in the second tuple of Ta-
ble 1B: 〈Joe, Toy, 10, 20〉. If we consult this table on January 16 and ask, “what
department is (actually, will) Joe work in on January 18?”, the result will be: Toy.
The result is slightly misleading, as Joe may be fired. On January 16, all we should
know is that Joe started working in the Toy department on January 10, and is still
working there. (Table 4 would return no department for this query, because we do
not knowwhether he will be working on January 12.) If the same question, “what
department is Joe in on January 18?”, is asked on January 20, both Table 1B and
Table 4 will reply, “Toy,” because we now know Joe was not fired.
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Figure 15: Different Approximate Solutions

In summary, the approximate semantics sometimes represents as the case in-
formation that will in fact be true if nothing changes. In defense of this semantics,
the current situation, in which data models, such as that underlying SQL, do not
support storingNOW, extra information of a similar flavor is routinely represented.

We provide an approximate semantics for modifications consistent with the
second approach that avoid the two new types of time values and that thus may be
stored using the formats proposed by existing temporal data models. But first we
introduce some useful functions.

7.2 Auxiliary Functions

We define the functionsmine andmaxe as follows, wherea andb are inT . Super-
script “e” denotes “eventual,” and the intuition behind the definitions is to make the
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difference and intersection operators produce the results that they would eventually
produce, if one waited to apply them long enough.

mine(a, b)
4=


a if a ∈ T ∧ b = NOW
b if a = NOW∧ b ∈ T
NOW if a = NOW∧ b = NOW
min(a, b) otherwise

maxe(a, b)
4=


a if a ∈ T ∧ b = NOW
b if a = NOW∧ b ∈ T
NOW if a = NOW∧ b = NOW
max(a, b) otherwise

If exactly one of the arguments isNOW, the other argument is returned; and if both
arguments areNOW, NOW is returned. The functions reduce to the conventional
counterparts if botha andb are inT .

We define the maximum time of a modification statement, e.g.,[ vts, vte)
DELETE FROMrvt WHEREcond as follows, wherect is the current time.

max_t ime([vts, vte), ct)
4= max(vts, [[vte]]ct)

Functionmax_t ime will be used in the definitions of deletion and update in Sec-
tion 7.3.

We define the eventual difference,−e, of intervals as follows, wherea andc
are inT andb andd are inT1 as follows.

[a, b) −e [c, d) 4=


[a,mine(b, c)), [maxe(a, d), b) if a < [[d]]forever∧

c < [[b]]forever
[a, b) otherwise

The eventual difference is identical to the conventional difference operator, except
that the value ofNOW is bound toforever.

We define the eventual intersection (∩e) of two intervals, wherea andc again
are inT andb andd are inT , as follows.

[a, b) ∩e [c, d) 4=


[maxe(a, c), mine(b, d)) if a < [[d]]forever∧

c < [[b]]forever
∅ otherwise

The eventual intersection is identical to the conventional intersection, except that
the value ofNOW is bound to the maximum value inT . Two tuples that do not
currently overlap may still have an eventual intersection. For example, the intervals
[10,NOW) and[20, 30) do not overlap at time 15, but if they do not change, they
will eventually overlap, and their eventual intersection is[20, 30).
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7.3 Approximate Modification Semantics

We can now define the approximated semantics of modifications involvingNOW.
Insertion into a valid-time relationrvt is defined as follows.

VALIDTIME PERIOD [ vts, vte) INSERT INTO rvt VALUES (A)
4=

rvt ← rvt ∪vt {(A, [vts, vte))}
A tuple is added to the relation. We associate with the tuple the valid-time interval
[vts,vte) specified in the insertion statement. This semantics is identical to the
accurate semantics.

Deletion from a valid-time relationrvt is defined as follows, wheremt =
max_t ime([vts, vte), ct) is the maximum time of the delete statement, and VT`
and VTa denote the start and end points of valid-time interval VT.

VALIDTIME PERIOD [ vts, vte) DELETE FROMrvt WHEREcond
4=

rvt ← {t |t ∈ rvt (¬cond(t)∨ (VT` ≥ [[vte]]mt ∨ vts ≥ [[VTa]]mt))} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = s[A] ∧ VT` < [[vte]]mt ∧

vts < [[VTa]]mt ∧ t[VT] ∈ (s[VT] −e [vts, vte)) ∧ t[VT] 6= ∅)}
In the first line, tuples that do not fulfill the conditioncond or do not overlap with
the interval specified in the delete, at the maximum time, are retained unchanged.
In the second and third lines, tuples that both fulfill the condition and overlap at the
maximum time have their valid-time intervals reduced by the parts that overlap the
interval specified in the delete statement.

Update of a valid-time relationrvt is defined as follows, whereA = v as usual
is short forA1 = v1, . . . , An = vn and is the explicit attributes, which are assigned
new values. (For brevity, we assume that all explicit attributes change values.)

VALIDTIME PERIOD [ vts, vte) UPDATE rvt SET A = v WHEREcond
4=

rvt ← {t |t ∈ rvt (¬cond(t)∨ (VT` ≥ [[vte]]mt ∨ vts ≥ [[VTa]]mt))} ∪vt
{t |∃s ∈ rvt (cond(s)∧ t[A] = s[A] ∧ VT` < [[vte]]mt ∧
vts < [[VTa]]mt ∧ t[VT] ∈ (s[VT] −e [vts, vte)) ∧ t[VT] 6= ∅)} ∪vt

{t |∃s ∈ rvt (cond(s)∧ t[A] = v ∧ VT` < [[vte]]mt ∧
vts < [[VTa]]mt ∧ t[VT] = (s[VT] ∩e [vts, vte) ∧ t[VT] 6= ∅)}

The first three lines are identical to the three lines for the delete statement. In lines
four and five, tuples with the new explicit attribute values are inserted. The inter-
vals associated with the new tuples are the eventual intersections of the intervals
currently associated with each tuple and the interval specified in the update.
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7.4 Examples of the Approximate Semantics

From the auxiliary functions defined in Section 7.2, it follows that the approximate
semantics for modifications involvingNOW reduce to the conventional semantics
when only fixed intervals are considered. For this reason, we only show modifica-
tion examples involvingNOW.

The first example is an update of a tuple containingNOW. We use the update
in Figure 1 and assume the database contains the tuple〈Joe,Shoe, [5,NOW)〉. The
update occurs at time 15.

VALIDTIME PERIOD [10,20) UPDATE Emp SET Dept = ’Toy’
WHERE Name = ’Joe’

The result of the update is as follows.

∅∪vt {〈Joe,Shoe, {[5,NOW)−e [10, 20)}〉}∪vt {〈Joe,Toy, {[5,NOW)∩e [10, 20)}〉}
= {〈Joe,Shoe, [5, 10)〉, 〈Joe,Shoe, [20,NOW)〉, 〈Joe,Toy, [10, 20)〉}

The maximum time of the update is 20. All tuples in the relation are affected by the
update, which explains the initial empty set. The two next terms reduce the interval
associated with the existing tuple and update Joe to be with the new department.
The result is that shown in Table 1B.

The next example is a deletion on a relation with the tuple〈Joe,Shoe, [15,
NOW)〉. The deletion occurs at time 20.

VALIDTIME PERIOD [10,NOW) DELETE FROM Emp
WHERE Name = ’Joe’

The maximum time of the delete statement is 20. Because the interval specified in
the delete statement totally overlaps the tuple in the relation at the maximum time,
the result is the empty relation. Note that if the delete statement had been executed
at the time 12, the maximum time of the delete statement would then be 12. At time
12, the valid-time interval associated with the tuple and the interval specified in the
delete statement do not overlap. The delete statement would then not have affected
the tuple.

7.5 Comparison of the Accurate and Approximate Semantics

This section describes the main differences between the accurate semantics pro-
posed in Section 4 and the approximate semantics just proposed.

For the approximate semantics, we are looking at the database as of the maxi-
mum time because if the user is making changes to future data, the user is looking at
the current database content as of a time into the future. This leads to the following
differences.



210 SEMANTICS OF TEMPORAL DATA

• For the approximate semantics, only two types of intervals are stored in the
database, namely constant intervals [a,b) and increasing intervals [a,NOW),
whereas three interval types using themaxv andminv functions are needed to
store the results of modifications that follow the accurate semantics.

• The approximate semantics simplifies the extensionalization of tables refer-
enced in queries.

• The approximate semantics is more easily implementable in an existing tem-
poral data model or in a layer on top of an existing relational DBMS, e.g.,
using a substitute value forNOW [30, 31].

• The effect of a delete or an update depends on when it is executed in the
approximated semantics, whereas modifications are time-independent in the
accurate semantics.

8 Related Work

Most prominently, this paper proposes definitions of modifications involvingNOW
and explores how the resulting semantics can be accommodated in the database.
To the best of our knowledge, the semantics of modifications involvingNOWhave
not been defined previously. Only modifications involving fixed time intervals have
been defined and implemented.

In the perhaps most closely related paper [10], the semantics ofNOW is de-
scribed in substantial detail. It proposes a formal framework for the meaning of
databases with variables in general, and it explores the querying of variable data-
bases, but does not consider modification. To be consistent with that paper’s ap-
proach, we borrow its notion of extensionalization of time values and extensional-
ization diagrams. We extend that paper by defining the semantics of modifications
involving NOW.

The approach of timestamping tuples with intervals, as adopted in this paper,
generalizes the timestamping tuples with single time point values, e.g., as done in
time series. With using an interval representation, we can capture constant, increas-
ing, and decreasing intervals. Had single time points been used instead, it would
only be possible to capture either increasing or decreasing intervals, by assuming
that the recorded time is the start (or stop) time and assuming the (implicit) stop (or
start) time to beNOW.

Lorentzos and Manolopoulos [21] extend SQL-92 to handle general interval
data, e.g., intervals in space or time. The semantics of modifications involving
intervals is defined, and details are provided for how to retain relations coalesced.
However, the use of variables such asNOW is not considered. The modification
semantics therefore cover only the special case when intervals have their end points
in domainT .
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Finger and McBrien [14, 15] discuss the semantics ofNOW in connection
with transactions, exploring which value to use forNOWwhen performing updates
in a transaction. They showed that if a value forNOW is not chosen carefully, the
correctness of transactions can be violated. However, the issues of which value to
choose forNOWin a transaction are orthogonal to the issues discussed in this paper;
the semantics of modifications involvingNOWare independent of the values used
for NOW.

In a previous paper [31], we considered the timestamping of modifications
involving NOW in detail, showing that the commit time of a transaction has to be
used as the value assigned toNOWwhen a modification statement in the transaction
leads to a modification of the database. Again, the issues of which values to use for
NOWare orthogonal to the issues discussed in this paper.

9 Summary and Research Directions

The paper’s main contribution is to explore and formally define the semantics of
modifications in relational databases, whereNOWandNOW+1 may be stored in
timestamp columns in the database. In addition, the paper considers the implemen-
tation of such modifications.

The definitions of modifications—insertion, deletion, and update—proceed in
three steps. First, the semantics of modifications on ground databases, not contain-
ing variableNOWare defined. Then the semantics of modifications in the presence
of NOWare defined based on these semantics. Finally, these semantics are extended
to cover also now-relative time values of the formNOW+1.

These semantics involve extending the conventional minimum and maximum
functions, as well as the interval intersection and difference operators. It is shown
that the databases that result from modifications involvingNOWcan be represented
by using three types of intervals with three types of values: normal intervals with
fixed end points, a new kind of interval that increases with time, and another new
kind of interval that decreases as time passes. These intervals involve two new
kinds of time values. By including a fourth kind of interval, now-relative values are
accommodated.

The paper also proposes an approximate semantics for modifications involv-
ing NOWthat is easily implementable in existing temporal data models or on top of
a relational DBMS using existing data types for time.

By defining modifications, the paper consistently extends past work [10] and
completes the understanding of the semantics, the querying, and the modifications
of NOW-relative databases.

It is challenging to index intervals containing the two new types of values
used in the definition of the accurate semantics. Existing index structures gener-
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ally support only fixed values; how to index these new values that change as time
progresses remains an open issue, though some work has been done (e.g., [4]).
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