
40
Effective Timestamping in Databases

Kristian Torp, Christian S. Jensen, and
Richard T. Snodgrass

Many existing database applications place various timestamps on their data,
rendering temporal values such as dates and times prevalent in database ta-
bles. During the past two decades, several dozen temporal data models have
appeared, all with timestamps being integral components. The models have
used timestamps for encoding two specific temporal aspects of database facts,
namely transaction time, when the facts are current in the database, and valid
time, when the facts are true in the modeled reality. However, with few ex-
ceptions, the assignment of timestamp values has been considered only in the
context of individual modification statements.

This paper takes the next logical step: It considers the use of timestamping
for capturing transaction and valid time in the context of transactions. The pa-
per initially identifies and analyzes several problems with straightforward time-
stamping, then proceeds to propose a variety of techniques aimed at solving
these problems. Timestamping the results of a transaction with the commit
time of the transaction is a promising approach. The paper studies how this
timestamping may be done using a spectrum of techniques. While many data-
base facts are valid untilnow, the current time, this value is absent from the
existing temporal types. Techniques that address this problem using different
substitute values are presented. Using a stratum architecture, the performance
of the different proposed techniques are studied. Although querying and mod-
ifying time-varying data is accompanied by a number of subtle problems, we
present a comprehensive approach that provides application programmers with
simple, consistent, and efficient support for modifying bitemporal databases in
the context of user transactions.

1263

1264 IMPLEMENTATION TECHNIQUES

1 Introduction

In a wide range of database applications, accountability and traceability are impor-
tant; such applications manage transaction-time databases, where all previous data-
base states are retained. In addition, many database applications require the times
when the facts stored in the database are true to be stored with these facts. Such
applications manage valid-time databases. A database recording both transaction
and valid time is a bitemporal database [13].

The goal of this paper is to provide an effective approach to timestamping
of data that may be used directly by application developers as well as may be em-
ployed within a stratum, which is a layer on top of a database management system
(DBMS) that translates statements in a temporal query language into conventional
SQL. The stratum should ensure ACID properties on the user transactions, by ex-
ploiting the transaction and concurrency control facilities of the underlying DBMS,
specifically SQL’s COMMIT and ROLLBACK statements. In particular, we do not
allow any modifications to the DBMS itself, rendering the approach relevant also to
non-DBMS vendors.

Designing a mapping of user transactions to SQL that provides the desired se-
mantics turns out to be a challenging task. We shall see that oft-proposed approach
of using the commit time of a transaction as the timestamp value of its database
modifications is difficult to realize in practice, especially from the outside of the
DBMS. One problem is that the commit time only becomes known when a trans-
action has exhausted all its statements, and so the commit time cannot be used in
those statements. Consequently, a (single, temporary) transaction-internal transac-
tion time, no later than the time of the first modification statement, must be used in
order to make the results of modification statements visible within the transaction
itself. This raises the concern of what value should be used for this temporary time
value, and how and when it should be replaced with the permanent value.

This paper analyzes the implications of supporting transaction time in the
presence of transactions and in the context of a stratum architecture. The paper
proposes and studies the properties, including performance, of a range of techniques
for updating database records resulting from a transaction’s modifications to reflect
the permanent commit time that only becomes available at commit time.

As a next step the paper also considers valid time, whose characteristics differ
from those of transaction time. Valid times are user-specified or given by the system
using default values—transaction times are always system-specified. The user may
use the variable time valuenow that denotes the current time for delimiting valid
time periods. Also unlike transaction time, valid times cover the entire time domain
from “beginning” to “forever”—transaction-time values never exceed the current
time.

EFFECTIVE TIMESTAMPING IN DATABASES 1265

The paper shows that when the systems assigns default valid-time values,
valid time must be handled identically to transaction time. Otherwise, the user can
extract database states that are inconsistent. When theCURRENT_DATEfunction
(as well as the associatedCURRENT_TIMEand CURRENT_TIMESTAMPfunc-
tions [15]) is present, we show that the value returned must be the commit time
of the transaction. It turns out that the use of the commit time may lead to (ille-
gal) periods that start after they end. When this occurs, the intermediate result of
a modification, computed during the execution of the transaction, is different from
the final result, computed at the commit time of the transaction. While this phe-
nomenon cannot be eliminated, we show that it can be detected and subsequently
handled via transaction abortion.

The performance of timestamping during modifications is a major concern.
A performance study shows that the solutions suggested in the paper have efficient
implementations, both for applications handling time-varying data explicitly in ap-
plications and in temporal databases handling time-varying data implicitly.

We conclude that although querying and modifying time-varying data is ac-
companied by a number of problems of surprising subtlety, it is possible to provide
application programmers with simple, consistent, and efficient support for bitem-
poral databases in the context of user transactions, without requiring any changes
to the underlying DBMS.

The paper is organized as follows. The next section introduces the stratum
approach to implementing temporal databases. Requirements for correctly support-
ing transactions handling time-varying data are listed in Section 3. We then out-
line a new approach in Section 4. Sections 5 and 6 provide the details for effecting
correct timestamping of the transaction-time and the valid-time dimensions, respec-
tively. Different approaches for timestamping both valid time and transaction time
are compared in Section 7. A performance study of design alternatives is presented
in Section 8. Related work is discussed in Section 9, and Section 10 summarizes
and points to directions for future research.

2 Temporal Databases and Stratum Architecture

As a first step in introducing the topic of the paper, we briefly describe bitemporal
data. This type of data has associated a valid time, indicating when the data was
true in the modeled reality, and a transaction time, indicating when the data along
with its valid time was stored as current in the database.

The valid time of a tuple, a period, may be recorded using the two attributes
V-Begin andV-End , and similarly, the transaction-time period of a tuple, also a
period, may be recorded using attributesT-Start andT-Stop . We use half-open
time periods.

1266 IMPLEMENTATION TECHNIQUES

A sample bitemporal table is shown in Table 1. The first tuple was recorded in
the database on January 1, 1998, stating that Joe was with the Shoe department from
that day onward. The variablesnobind nowanduntil changedwill be explained in
detail shortly; for now, assume they both mean “until we learn more.” The three next
tuples record that Bob is with the Outdoor department in the period[1998-01-04-
1998-01-11) , Jim is with the Toy Department in the period[1998-01-04- 1998-
01-12) , and Jill is with the Shoe department in the period[1998-01-14- 1998-01-
19) . This was all recorded on the 2nd of January. The information regarding Joe
was believed correct until January 20, when it was discovered that Joe was only in
the Shoe department until January 8, at which time he had been transferred to the
Toy department. As a result, the initial information was logically deleted, by placing
1998-01-20 in theT-Stop attribute of the first tuple, and by inserting the second
tuple. A tuple (the third) was inserted during that same transaction, on January
20, to reflect that Joe had been in the Toy department since January 8. Finally, on
January 23, we learned that this was incorrect: in reality Joe had been transferred to
the Outdoor department, rather than the Toy department, on January 8. This led us
to logically delete the third tuple for Joe and insert the final tuple. As can be seen,
the benefit of a bitemporal table is that it captures the history of the enterprise, as
well as the sequence of changes to that history.

Name Dept V-Begin V-End T-Start T-Stop

Joe Shoe 1998-01-01 nobind now 1998-01-01 1998-01-20
Bob Outdoor 1998-01-04 1998-01-11 1998-01-02 until changed
Jim Toy 1998-01-04 1998-01-12 1998-01-02 until changed
Jill Shoe 1998-01-14 1998-01-19 1998-01-02 until changed
Joe Shoe 1998-01-01 1998-01-08 1998-01-20 until changed
Joe Toy 1998-01-08 nobind now 1998-01-20 1998-01-23
Joe Outdoor 1998-01-08 nobind now 1998-01-23 until changed

Table 1: The Bitemporal Table,Emp

A number of quite different and more or less temporally enhanced query lan-
guages exist that permit an application programmer to modify and query bitempo-
ral tables [29]. For example, SQL-92 [15] and SQL3 provide little built-in support,
leaving more work to the application programmer. Other languages such as TSQL2
[21] and ATSQL [3] extend SQL-92 and provide advanced support, making appli-
cation development easier.

Using an integrated DBMS architecture to implement a temporal data model
that extends SQL with temporal support is a costly task, which only the major
DBMS vendors can accomplish. The fact that existing DBMSs already manage
large quantities of temporal data suggests that a better approach is available: pro-

EFFECTIVE TIMESTAMPING IN DATABASES 1267

viding built-in temporal support to applications by interposing a stratum between
an existing DBMS and the application.

The stratum exploits the services already provided by the DBMS to offer tem-
poral support to the application. Indeed, to be cost-effective, this approach is used
by some vendors to enhance their own systems [25, 26]. By adopting a stratum ap-
proach, it is possible to maximally reuse existing technology and relatively quickly
make a temporal DBMS available to the application programmers so they will ben-
efit from the built-in temporal support of a temporal query language. Among the
disadvantages of using a stratum approach is the inapplicability of well-known tem-
poral storage structures, temporal indices, and algorithms that implement temporal
operations such as temporal join, coalescing, and timeslicing algorithms.

In this paper, we assume a stratum architecture and thus aim to reuse the ser-
vices provided by an existing DBMS, which is itself considered a black box. The
consequence is that the techniques and results presented here are relevant for the
layered implementation of a temporal DBMS, as well as for application program-
mers who do not have built-in temporal support available, but must handle the tem-
poral aspects directly in their applications. The stratum architecture is illustrated in
Figure 1, where the downward arrows denote flows of queries, the upward arrows
denote flows of data, and the boxes are software components.

In this figure, the user first enters a temporal statement. The stratum converts
the temporal statement to an SQL-92 statement that is executed in the underlying
conventional DBMS. The DBMS sends the result back to the stratum, which then
displays the result of the statement to the user. The user cannot see that the data
is actually stored in a conventional DBMS—the stratum encapsulates the DBMS
from the user’s point of view.

Underlying
DBMS

Stratum

Error ResultTemporal Statement

SQL-92 Statement

Code Generator

Parser

Scanner

Output ProcesserManagement
Metadata

Figure 1: The Stratum Architecture

1268 IMPLEMENTATION TECHNIQUES

The stratum approach is similar in some ways to the related area ofmedia-
tors [27, 28] and, more generally, ofintegration architectures. Broadly speaking,
a mediator offers a consistent data model and accessing mechanism to a range of
disparate data sources. The two approaches share an emphasis on interposing a
layer, termed the mediator (also called awrapper[18]) that changes the data model
of the data, or allows new query facilities for accessing the data. A stratum dif-
fers from a mediator in that it is fully cognizant of the particular characteristics of
the underlying DBMS and can exploit the constructs and facilities that the DBMS
provides.

In the approach for timestamping advocated here, only few assumptions need
be made about the temporal data model implemented using the stratum architecture.
In particular, the specifics of the built-in support for querying are not important;
only the facilities for database modification are of interest. So we now describe
precisely how temporal modification statements are translated into SQL-92 modifi-
cation statements.

We examine two simple types of modification statements. The first comprises
the ones allowed in SQL:INSERT, DELETE, andUPDATE. Here the syntax is
exactly that specified in SQL, with the stratum automatically supplying the valid-
time and transaction-time timestamps, consistent with the semantics expected of
these timestamps. As an example, the following is a valid SQL-92 statement.

UPDATE Emp
SET Dept = ’Toy’
WHERE Name = ’Joe’

As Empis a bitemporal table, the semantics of this statement, consistent with the
snapshot semantics of SQL-92, is to change Joe’s department now, and in the future.

For queries, we use the traditional SQL-92SELECTstatement, perhaps with
explicit reference to the timestamp attributes.

Table 2 shows how the modification statements may be mapped to SQL-92.
The left column gives temporal query language statements for insertion and dele-
tion (updates are combinations of deletions and insertions). Here we use the syntax
proposed for SQL3 [22], though we emphasize that the specific syntax is not impor-
tant. The right column provides the translation to SQL-92 effected by the stratum
and thus defines the semantics of the temporal statements. We elaborate on each
translation below. The translation is preliminary because the representations of
now, nobind now, until changed, start value, andstop valueusing values of SQL-
92 data types are not specified. Later sections will study the issues involved in
providing such values, resulting in a fully specified definition of the modification
statements.

When we insert a tuple (the mapping for such an insertion appears as the
second row of Table 2), it is timestamped with the period[now - nobind now) in
the valid-time dimension. This states that the fact is valid from the current time
until we learn more. In the transaction-time dimension, it is timestamped with the

EFFECTIVE TIMESTAMPING IN DATABASES 1269

Temporal statement:
CREATE TABLE Emp (Name VARCHAR (20) Dept VARCHAR (20))
AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME
Corresponding SQL-92 statement:
CREATE TABLE Emp (Name VARCHAR (20), Dept VARCHAR (20),
V-Begin DATE, V-End DATE, T-Start DATE, T-End DATE)

Temporal statement:
INSERT INTO Emp VALUES (new name, new dept)
Corresponding SQL-92 statement:
INSERT INTO Emp VALUES (new name, new dept, now, nobind now,

start value, until changed)
Temporal statement:
VALIDTIME PERIOD [Start - Stop)
INSERT INTO Emp VALUES (new name, new dept)
Corresponding SQL-92 statement:
INSERT INTO Emp VALUES (new name, new dept, Start , Stop,

start value, until changed)
Temporal statement:
DELETE FROM Emp WHEREPredicate
Corresponding SQL-92 statement:
INSERT INTO Emp
SELECT Name, Dept, V-Begin, now, start value, until changed
FROM Emp WHEREPredicate AND T-Stop = until changed
AND V-Begin < now AND now < V-End;
UPDATE Emp SET T-Stop = stop value
WHEREPredicate AND T-Stop = until changed
AND V-Begin < now AND now < V-End

Table 2: Initial Translation of Temporal Modification Statements

period[start value- until changed) , denoting that it was present in the database
starting atstart valueand persists to now, that is, until a future transaction, or a
future statement in the current transaction deletes or updates the tuple.

A deletion of a tuple (the fourth row of Table 2) is effected by updating the
T-Stop attribute to thestop value, indicating that our old belief no longer holds,
and inserting a tuple to record our new belief that the tuple was valid in the modeled
reality from the oldV-Begin time to the current time (now). Note that all explicit
attributes are copied. Because the insertion uses aSELECT, it must appear before
the update statement. Note also that the inserted tuple will not be later changed by
the update statement, becausenow < V-End will not hold for the inserted tuple.

Not shown in the above table is the translation of an SQL-92 update statement
(with an implicit valid-time period of “now” to “forever”). Such an update can be

1270 IMPLEMENTATION TECHNIQUES

stated as a temporal deletion of the old values, coupled with a temporal insertion of
the new values.

3 Correct Transactions

This section concerns the correctness of transactions. We first review the notion of
correct transactions in snapshot databases. Next, we turn to discuss the correctness
of temporal transactions and illustrate several subtle problems that arise when the
correctness criteria of transactions on snapshot databases are generalized to tem-
poral databases. The discussion of correct temporal transactions in this section is
independent of implementation techniques, e.g., for concurrency control, recovery,
and temporal attribute visibility.

3.1 Correct Snapshot Transactions

We define snapshot transactions and temporal transactions as database transactions
on snapshot tables and temporal tables, respectively. Note that we do not differ-
entiate time values stored in explicit attributes (handled in an ad-hoc fashion by
applications) from time values stored in implicit attributes (handled by a temporal
DBMS).

The correctness criteria for snapshot transactions running at isolation level
SERIALIZABLE [15] are the ACID properties [12]. These properties, guaranteed
by the DBMS, state that the transaction is an atomic unit of execution: it commits
or it aborts in its entirety. After the transaction has either committed or aborted,
the database will be in a consistent state according to, e.g., primary key constraints,
referential integrity constraints, andCHECKstatements. The execution of a transac-
tion is isolated from the execution of other transactions. Finally, the database-state
changes caused by the transaction are made durable.

3.2 Correct Temporal Transactions

In the transition from snapshot transactions to temporal transactions, the novel as-
pect is that we apply special semantics to the timestamp attributes. The three dif-
ferences between snapshot transactions and temporal transactions are as follows.
(1) For snapshot transactions we store modifications made to tuples; for temporal
transactions we store in addition when the modifications took place. (2) The time
when tuples were modified can be queried in a temporal transaction. (3) In tem-
poral transactions, the semantics ofCURRENT_DATEmust be consistent with the
timestamps stored in the database.

For temporal transactions to be upwards compatible [1] with snapshot transac-
tions and because temporal transactions are not fundamentally different from snap-

EFFECTIVE TIMESTAMPING IN DATABASES 1271

shot transactions, we want to retain the ACID properties as correctness criteria.
In particular, we wish to retain the view that transactions logically have no dura-
tion (i.e., that they appear to execute instantaneously) and that this execution corre-
sponds to a serial execution in commit order. The transaction timestamp should be
consistent both with the commit order and with the clock time when the transaction
committed.

One might assume that as a DBMS has the necessary mechanisms for pro-
viding the ACID properties for snapshot transactions, the DBMS will automatically
also retain the ACID properties for temporal transactions. However, we will show
that the timestamp attributes have to be handled carefully to avoid violating the
ACID properties.

Problems Occuring in Temporal Transactions

To motivate the need for additional requirements to temporal transactions, we illus-
trate the new problems that may occur in temporal transactions by Table 1 and the
example in Figure 2. For convenience, all timestamps on the figure are dates during
the month of January, 1998, and we make the transactions artificially long to em-
phasize the semantic problems that may occur. Note that the problems we illustrate
may occur in DBMSs using two-phase locking.

Although our emphasis is on database modification statements, we occasion-
ally need the ability to observe the contents of the database being modified. For
this purpose, we use the SQL-92 query given below, denotedQ(t), that retrieves
the snapshot state of Table 1 (theEmptable) as of a time instantt .

SELECT Name, Dept
FROM Emp
WHERE V-Begin <= t ANDt < V-End AND

T-Start <= t ANDt < T-Stop
Above the time-line in Figure 2, we show the contents of theEmptable on day

4 for Bob and Jim. Bob is with the Outdoor department in the period[1998-01-04
- 1998-01-11) and Jim is with the Toy department in the period[1998-01-04-
1998-01-12) . Below the time-line we have shown two transactions,T1 andT2. On
days 6 and 10,T1 updates Bob to be with the Toy department and updates Jim to
be with the Outdoor department, respectively. Further,T1 retrieves the current state
of the database, usingQ(t) on day 11. On day 8,T2 updates Jim to be with the
Sports department.T1 starts on day 4 and commits on day 12;T2 starts on day 7
and commits two days later. Hence,T2 starts afterT1 starts and commits beforeT1

commits.
First consider only transactionT1 in Figure 2 and assume that the statements

are evaluated using the translations outlined in Table 2 and the obvious approach
of usingCURRENT_DATEfor the variablesnowandstart valueand the maximum

1272 IMPLEMENTATION TECHNIQUES

1T

T2

Update
(Jim, Sports)

Update
(Bob, Toy)

Update
(Jim, Outdoor)

������

�� ��

��

Emp

1110 12 13 145 6 8 94 7

10 11 12

Time3

4 6

7 8 9

Q(11)

(Bob, Outdoor)

(Jim, Toy)

Figure 2: Problems Occuring in Temporal Transactions

value of the time domain fornobind nowand until changed(in SQL-92, this is
9999-12-31). The following two problems may occur.

The first problem is that a query may see that the actual executions of trans-
actions have durations in time. This makes it possible to perform a timeslice to an
intra-transaction state obtaining a result that may violate the consistency require-
ments of the database. As an example, Bob and Jim exchanged departments during
T1; however, when we are usingCURRENT_DATEfor now, Q(8) executed in a
separate transaction at day 14 is able to detect that Bob and Jim are with the same
department. This is due to (Bob, Toy) having aV-Begin of January 7 and (Jim,
Toy) having aV-End of January 10, clearly missing our goal of transactions ap-
pearing to execute instantaneously.

The second problem is that a query, executed twice in a transaction and with
no intermediate modifications, may return different results. Returning different re-
sults is similar to a non-repeatable read [12], which violates the isolation of trans-
actions. As an example using Table 1, the execution ofQ(CURRENT_DATE) in a
separate transaction on day 13 would not include Jill in its result set; however the
execution ofQ(CURRENT_DATE) on day 15in the same transactionwill return
Jill in its result set, because Jill is recorded being in the Sports department in the
period[1998-01-14- 1998-01-19) . Again, this breaks the logical illusion of the
transaction being instantaneous.

The two problems mentioned above can be solved by using a single fixed
value for now, start value, andCURRENT_DATEwithin a transaction. Assume
we use the start times of the transactions and consider transactionsT1 andT2 in
Figure 2. While our new approach solves the first two problems, it also introduces
two new problems.

EFFECTIVE TIMESTAMPING IN DATABASES 1273

The first problem is that the outcome of temporal transactions is inconsistent
with the outcome for equivalent SQL-92 transactions. This violates temporal up-
wards compatibility [1], which requires that nontemporal transactions and queries
should return the same results when applied to tables with temporal support as when
applied to non-temporal tables. As an example,Q(11) in T1 will return the two tu-
ples (Bob, Toy) and (Jim, Sports), whereas the equivalent (nontemporal) SQL-92
transaction will result in (Bob, Toy) and (Jim, Outdoors). To understand why this
occurs, look at the content of theEmptable whenT1 is ready to make the update
at day 10. The content of theEmptable for Bob and Jim is shown in Table 3. In
this table, only two current tuples are currently valid: (Bob, Toy) (tuple 4) and (Jim,
Sports) (tuple 6).

Name Dept V-Begin V-End T-Start T-Stop

Bob Outdoor 1998-01-04 1998-01-11 1998-01-01 1998-01-04
Jim Toy 1998-01-04 1998-01-12 1998-01-02 1998-01-07
Bob Outdoor 1998-01-04 1998-01-04 1998-01-04 until changed
Bob Toy 1998-01-04 nobind now 1998-01-04 until changed
Jim Toy 1998-01-04 1998-01-07 1998-01-02 1998-01-07
Jim Sports 1998-01-07 nobind now 1998-01-07 until changed

Table 3: Part of TableEmpon Day 10 before the Update of Jim inT1

The update at day 10 in transactionT1 should update the last tuple in Table 3,
because this is the tuple with current and currently valid information for Jim. How-
ever, we are using the start time of a transaction fornow in the transaction, which
is day 4 and day 7 for transactionsT1 andT2, respectively. Because transactionT2

is executed duringT1, the predicate for a translated delete (the fourth tuple in Table
2) will fail on the last tuple in Table 3 because day 4 is not between the values of
V-Begin (day 7) andV-End (nobind now). Recall that an update is a combination
of a delete and an insert.

The second problem using the start time fornow is what may be termed his-
tory correction, which undermines the accountability of a temporal database. As an
example the execution ofQ(5) at day 5 in a separate transaction will return (Bob,
Outdoor) and (Jim, Toy), becauseT1 had not yet committed. However, the execu-
tion of Q(5) at day 14 in another separate transaction will return (Bob, Toy) and
(Jim, Toy).

To solve the two problems using the start-time of transactions fornow, we can
extend theWHEREclauses for the delete in the fourth row of Table 2 to include a
check of whether theV-End attribute is equal tonobind now. The predicate for the
valid-time dimension is thus extended from “V-Begin < nowANDnow< V-End ”
to “V-Begin < nowAND (now< V-End OR V-End = nobind now) ”. All prior

1274 IMPLEMENTATION TECHNIQUES

SQL-92 statements of the transaction are guaranteed not affect tuples withV-End
= nobind now. With this extension, the outcome ofT1 andT2 is as shown in Table 4.

Name Dept V-Begin V-End T-Start T-Stop

Bob Outdoor 1998-01-04 1998-01-11 1998-01-01 1998-01-04
Jim Toy 1998-01-04 1998-01-12 1998-01-02 1998-01-07
Bob Outdoor 1998-01-04 1998-01-04 1998-01-04 until changed
Bob Toy 1998-01-04 nobind now 1998-01-04 until changed
Jim Toy 1998-01-04 1998-01-07 1998-01-02 1998-01-07
Jim Sports 1998-01-07 nobind now 1998-01-07 1998-01-04
Jim Sports 1998-01-07 1998-01-04 1998-01-04 until changed
Jim Outdoor 1998-01-04 nobind now 1998-01-04 until changed

Table 4: Part of TableEmpafter the Execution ofT1

QueryQ(11) in transactionT1 now returns the same result as the equivalent
SQL-92 transaction. Further, we no longer see Bob and Jim in the same department
when executingQ(5) at day 14 in a separate transaction. However, this approach
introduces yet another problem: the start time of a period recorded in a temporal
table can be after the stop time. This is obviously a violation of the properties of
a period. The new problem is shown in the sixth and seventh tupls in Table 4 that
shows the result after executingT1 andT2 from Figure 2 with the predicate changed
for the valid-time dimension.

The fundamental problem of using the start time of a transaction fornow is
retroactive modifications of exposed tuples. That is, a transaction with start timeta
can modify a tuple also modified by a transaction with start timetb, andtb > ta . The
problem was illustrated by transactionsT1 andT2 in Figure 2. These both update
the tuple for Jim.T1 starts at day 4 andT2 starts at day 7. However,T2 modifies
and commits beforeT1 modifies Jim, causing the problems described above.

To avoid the problems associated with using the start time fornow, we will
finally use the commit times of the transactions as their values fornowand forCUR-
RENT_DATE. When the value of either is needed, we postpone applying the value
until the transaction is ready to commit. This approach solves all of the above prob-
lems, but again introduces a new problem. We cannot return a result ofQ(11) in
transactionT1 because the we do not know the value fornowfor the tuples modified
during the transaction until the transaction actually commits at time 12.

The central question is, what the semantics should be for the transactions
shown in Figure 2 and indeed, for any transaction applied to a temporal database.
Once the appropriate semantics has been determined, one can then consider how to
implement that semantics in a stratum architecture.

EFFECTIVE TIMESTAMPING IN DATABASES 1275

Requirements to Temporal Transactions

Starting with the ACID properties and considering the problems illustrated in the
previous section, we now enumerate a set of requirements for a consistent, logical
semantics for temporal transactions.

Requirement 1 All of the tuples modified by a single transaction must be given
the same timestamp value in the database. Otherwise, we have shown the prob-
lem of being able to timeslice and see intra-transaction states, thus violating the
consistency of the database.

Requirement 2 The value ofCURRENT_DATEmust be fixed within a transac-
tion. If CURRENT_DATEchanges in a single transaction, we have shown that the
queryQ(CURRENT_DATE) on Table 1 on days 13 and 15 in the same transaction
return different results. Fixing the value ofCURRENT_DATEin a transaction is
a refinement of the SQL-92 semantics, in which the value ofCURRENT_DATEis
fixed only within a statement, but may change within a transaction1.

Requirement 3 The start time of a time period assigned to a tuple must be smaller
than or equal to the stop time of the period. Otherwise, we violate the properties of
a period.

Requirement 4 The timestamp used for a transaction should not be after the com-
mit time of the transaction. Using a timestamp after the commit time, e.g., by adding
two days to the start time of the transaction and aborting all transactions running for
more than two days, results in an inaccuracy where a tuple is not visible for query
Q(CURRENT_DATE) from the time the transaction actually commits until the time
chosen as the commit time of the transaction.

Requirement 5 The result ofQ(t1) at time t2 should the same as the result of
Q(t1) at time t3 wheret1 ≤ t2 and t1 ≤ t3. As discussed above,Q(5) on day 5
in a separate transaction will return Bob as being with the Outdoor department.
However, if we use the start time for timestamping,Q(5) on day 14 in another
transaction will return Bob as being in the Toy department.

1While the value is fixed within a statement,which fixed value to use is left entirely to the implementor.
General Rule 3 of Subclause 6.8<datetime value function> of the SQL-92 standard states “If an SQL-
statement generally contains more than one reference to one or more<datetime value function>s, then all
such references are effectively evaluated simultaneously. The time of evaluation of the<datetime value
function> during the execution of the SQL-statement is implementation-dependent.” [14, p. 110].

1276 IMPLEMENTATION TECHNIQUES

Requirement 6 Temporal transactions must be able to see their own modifica-
tions, e.g., after a transaction has updated a tuple, all explicit attributes of the up-
dated tuple must be visible to a query immediately following the update in the
transaction.

Requirement 7 A transaction must be able to see the values of timestamp at-
tributes of tuples it had previously modified.

Requirement 8 The level of concurrency in a database should not be lowered sig-
nificantly when temporal support is added, such as by requiring that all transactions
be executed sequentially.

Requirement 9 The timestamping approach should not restrict the temporal query
language. As an example, a very efficient timestamping approach that disallows
valid-time periods into the future is not appealing. Such a restriction would reduce
the benefits of a temporal database.

These requirements are used as guidelines for designing a timestamping approach
for transaction-time and valid-time tables. Unfortunately, some of these require-
ments are mutually exclusive or may affect each other. We discuss this in the fol-
lowing, but discuss first the implications of assuming a stratum architecture.

We want to implement the timestamping approach using a stratum architec-
ture. The rationale for building on top of a conventional DBMS is to be able to reuse
its functionality. Most of the major DBMSs use locking as a concurrency control
mechanism [4]. We therefore assume that two-phase locking is used to provide the
isolation property of the ACID properties. The use of two-phase locking has some
impacts on timestamping in the stratum, as explained next.

Salzberg has shown that to achieve a transaction-consistent view of previous
database states (RequirementR1), it is necessary to use the same timestamp for all
modifications within a transaction [19]. The timestamp must be after the time at
which all locks have been acquired. Otherwise, the timestamps will not properly
reflect the serialization order of transactions [19].

To make it possible for transactions to see their own modifications (Require-
mentR6), it may be necessary to associate timestamps with tuples before all locks
have been acquired [19]. Specifically, at the time of the first modification in a
transaction, we may not have all locks, but we must associate a timestamp with
the modified tuples because a query follows the modification. However, it is not
possible to get the permanent timestamp.

The two requirements to temporal transactions discussed above, retaining a
transaction-consistent view of previous database states (RequirementR1) and that

EFFECTIVE TIMESTAMPING IN DATABASES 1277

transactions should be able to see their own modifications (RequirementR6), can
be fulfilled by usingtimestamping after commit[19]. However, timestamping af-
ter commit does not make it possible for a temporal transaction to see the values
of timestamp attributes it has previously modified (RequirementR7). Hence, Re-
quirementsR1 andR7 are mutual exclusive. The first requires that we use a value
for nowafter all locks are acquired, whereas the second requires that we use a value
before the first lock is acquired.

Retaining transaction-consistent previous database states (RequirementR1)
is more important than seeing permanent timestamps within transactions (Require-
mentR7). We therefore focus on how to make previous states transaction-consistent.
The unavoidable consequence is that the value ofT-Start or T-Stop for tuples
modified by a transaction are not known during the transaction.

The use of the commit time for timestamping modifications is dictated by
RequirementR1 and affects RequirementR9. As an example, had the queryQ(11)
in transactionT1 in Figure 2 selected theT-Start andT-Stop attributes, this
would have to result in an error or a warning. Minimizing the effect on the temporal
query language is discussed in Section 4.

Note that the use of the commit time fornowdoes not result in significantly
lowering the level of concurrency in a database (RequirementR8). However, locks
must be held slightly longer; this is examined in Section 8.5.

4 A New Approach

We now show how the problem of not knowing the permanent timestamp of modi-
fied tuples within a transaction can be minimized, and, when it occurs, how it can be
easily detected. Specifically, we propose using a temporary value for the timestamp
and then revisit tuples after all locks have been acquired, to replace the temporary
value with the (now-known) permanent timestamp.

There are three major differences between the approach presented here and
previous approach to timestamping [19, 23]. First, we consider both valid-time and
transaction-time compared to transaction-time only. Second, we consider an entire
temporal query language and do not restrict ourselves to timeslice (“as-of”) queries.
In particular, we consider the display of the temporal attributes. Third, we assume a
stratum architecture, meaning that we reuse the services of, but also cannot change,
an underlying DBMS.

Figure 3 illustrates our approach. In Figure 3A, we show the times when a
transaction starts, when it has acquired all locks, and when it commits. The shaded
strip indicates the time period, from the time when all locks have been acquired
to the time when the transaction commits, where it is possible to revisit and up-
date tuples with their permanent timestamp. Tuples modified between the time the
transaction started and the time when all locks were acquired must be revisited.

1278 IMPLEMENTATION TECHNIQUES

In a conventional DBMS, typically using strict two phase locking [2], it is not
known that all locks have been acquired until when the transaction’s final statement
is reached, i.e., at user-commit. Further, a stratum has no access to the internals
of the underlying DBMS. We therefore postpone reading the timestamp until after
user-commit and then revisit the tuples modified by the transaction, to apply the
permanent timestamp; the transaction then actually commits by having the stratum
issue a commit to the underlying DBMS. This sequence of events is illustrated in
Figure 3B.

Transaction
Start

User
Commit

System
CommitTransaction

Start Acquired
All Locks

CommitAcquired
All Locks

Time

A

B

Time
and Revisit

Read Timestamp

Read Timestamp
and Revisit

Figure 3: A: Temporal Transaction B: Mapping a Temporal Transaction to SQL-92

Using the approach shown in Figure 3B, we read the timestamp after user-
commit, referred to as thecommit time. Because we do not yet know the com-
mit time when a transaction modifies a tuple, we set the appropriate transaction-
time attribute to a temporary value and store in the tuple the transaction-id of
the transaction modifying it. After user-commit, we read the system clock and
save the transaction-id and the timestamp in aCommitTime table, which has the
schema (TID INTEGER, Commit-Time DATE). We subsequently revisit all
tuples modified by the transaction and apply the timestamp stored in theCommit-
Time table. We remove the transaction-ids from tuples and delete the entry in the
CommitTime table. This extra step is similar in some ways to the revisit step in
Postgres [23]. We term our approachTimestamping after Commit with Revisitation.

The use of timestamping after commit with revisitation adds two additional
requirements to temporal transactions. First, timestamps that eventually are identi-
cal (i.e., are associated with tuples modified by the same transaction) must not ap-
pear temporarily to be different. Otherwise, the wrong result will be returned when
timestamps are compared. Second, the effect of temporal modifications within a
transaction should be easily understandable to the user writing the transaction.

EFFECTIVE TIMESTAMPING IN DATABASES 1279

The specifics of how to implement the timestamping after commit with revis-
itation in a stratum is discussed in detail in the next two sections. First, we discuss
timestamping the transaction-time dimension, then examine the consequences of
introducing also the valid-time dimension.

5 Transaction Timestamping

In this section we describe how timestamping in a transaction-time table can be
achieved. Where there are obvious choices, we identify a particular approach.
Where there are several possibilities, we list them and postpone choosing one ap-
proach until Section 7, where we present a specific approach to timestamping.

We first give an example that raises four design issues with respect to trans-
action timestamping. The issues are discussed in turn, thus providing the details of
how to implement timestamping after commit for transaction time.

5.1 An Example

As an example of timestamping a transaction-time table, consider theEmp table
from before that stores the names and departments of employees. To createEmpas
a transaction-time table, we issue the temporal statementCREATE TABLE Emp
(Name VARCHAR(30), Dept VARCHAR(30)) AS TRANSACTIONTIME2.
As three separate transactions, we issue an insertion, an update, and an update and
a query, as indicated in Figure 4. The modifications are expressed in plain SQL-92;
the temporal semantics automatically supplies values for the tuple timestamps, as
discussed informally in Section 2.

-- on 1998-01-06:
INSERT INTO Emp VALUES (’Joe’, ’Shoe’); COMMIT;
-- on 1998-01-16:
UPDATE Emp SET Dept = ’Sports’
WHERE Name = ’Joe’; COMMIT;
-- on 1998-01-27:
UPDATE Emp SET Dept = ’Outdoor’ WHERE Name = ’Joe’;
SELECT Name, Dept, T-Start, T-Stop, FROM Emp; COMMIT;

Figure 4: Using the Transaction-Time TableEmp

Table 5 shows theEmp table after the three transactions commit. As can
be seen from Table 5 we add two time attributes,T-Start andT-Stop . The
time attributes are calledimplicit attributes, andNameandDept are calledexplicit

2Again, the details of the temporal extensions are not important. We use a particular syntax [22] only to
provide a specific example for expository purposes.

1280 IMPLEMENTATION TECHNIQUES

attributes. The implicit attributes capture the time evolution of the table. We em-
phasize thatEmpis a transaction-time table, and hence captures the state stored in
the database over time.

Name Dept T-Start T-Stop

Joe Shoe 1998-01-06 1998-01-16
Joe Sports 1998-01-16 1998-01-27
Joe Outdoor 1998-01-27 until changed

Table 5: The Transaction-Time Table,Emp

Table 6 shows how temporal statements are mapped to SQL-92 statements by
the stratum. This table is a simplification of Table 2, considering only transaction
time and utilizing timestamping after commit with revisitation. For simplicity, we
assume that all explicit attributes occur in modification statements. When we insert
a tuple, it is timestamped with the period[temporary value- until changed) . A
deletion of a tuple is mapped to an update of theT-Stop attribute of the tuple to
temporary value. A tuple qualifies for deletion if it satisfiesPredicateand is current.
An update, not shown in Table 6, is implemented as a temporal delete of the old
tuple followed by a temporal insert of the new tuple. We do not show the mapping
of insertions and deletions with user-supplied times because such statements are
permitted only for tables with valid-time support.

Temporal statement:INSERT INTO Emp VALUES (new name, new dept)
Corresponding SQL-92 statement:

INSERT INTO Emp VALUES (new name, new dept,
temporary value, until changed)

Temporal statement:DELETE FROM Emp WHEREPredicate
Corresponding SQL-92 statement:

UPDATE Emp SET T-Stop = temporary value
WHEREPredicate AND T-Stop = until changed

Temporal statement:COMMIT
Corresponding SQL-92 statements:
c← CURRENT_DATE;
INSERT INTO CommitTime VALUES (transaction-id, c);
UPDATE Emp SET T-Start = c WHEREtuple inserted by transaction-id;
UPDATE Emp SET T-Stop = c WHEREtuple deleted by transaction-id;
DELETE FROM CommitTime WHERE TID =transaction-id;
COMMIT

Table 6: Mapping Statements on Transaction-Time Tables into Equivalent SQL-92
Statements

EFFECTIVE TIMESTAMPING IN DATABASES 1281

When a user commits, we record the transaction-id andCURRENT_DATEin
theCommitTime table. All tuples modified by the transaction are then revisited.
Tuples inserted by the transaction have theT-Start attribute updated to the com-
mit time of the transaction. Similarly, tuples deleted by the transaction have their
T-Stop attribute updated. For the twoUPDATEstatements, theWHEREclause is
deliberately vague; how to identify tuples modified by a transaction is described
in Section 8. After cleaning up theCommitTime table, the transaction actually
commits. If the modification statements in Figure 4 are translated as indicated in
Table 6, the result is Table 5.

Studying this example raises four questions, which we address in turn in the
following sections.

• What is thetemporary valueof the transaction-time attributes for tuples modi-
fied within a transaction? As an example, the selection in Figure 4 is executed
before the transaction is committed. TheT-Stop attribute of the second tu-
ple and theT-Start attribute of the third tuple of Table 5 will then have a
temporary value. Which value should be displayed for these attributes?

• When a transaction commits, the modified tuples must be revisited. In a multi-
user system, how do we guarantee that tuples are updated with the appropriate
commit time during the revisit phase?

• How shoulduntil changedbe represented, e.g., in theSELECTin Figure 4?

• Must modified tuples be revisited before the transaction actually commits?

5.2 Finding a Temporary Timestamp Value

If tuples are to be timestamped with the commit time, tuple modification must be
deferred until the transaction commits [19], rendering it impossible for a transaction
to see its own modifications. Timestamping tuples with a temporary value before
the commit time makes it possible for a transaction to see its own modifications.

Permanent transaction timestamps are first applied after user commit. A po-
tential problem therefore occurs when a transaction first modifies the database and
then queries it, referring to the transaction timestamps. For example, this problem
occurs in the last transaction in Figure 4. In general, many temporal queries may
refer to the tuples’ timestamps. There are several possible responses to this situa-
tion. (1) We can disallow queries that access the timestamps. (2) We can treat it
as a semantic error when a transaction modifies a tuple and subsequently queries
the transaction time of that tuple. (3) We can warn the user during query analy-
sis when a statement referencing a transaction time attribute is encountered after a
modification statement. (4) We can simply return the temporary value stored.

Disallowing references to timestamps restricts the query language, which we
prefer not doing (cf. requirementR9). Simply returning the temporary value can be

1282 IMPLEMENTATION TECHNIQUES

a great surprise to users and may lead to misunderstandings (if the temporary times-
tamps are relative to the smallest timestamp, the user would indeed be surprised that
the tuple appeared to be inserted in 1 A.D.!). This leaves us with the choice of mak-
ing it a semantic error or issuing a warning. We find the warning more appropriate
because allowing reference to transaction time after modifications within the same
transaction is then a decision made by the user, rather than by the system. The warn-
ing is of the form: the transaction times displayed may change after the transaction
commits.

The temporary value must fulfill two requirements. First, it must make the
tuple qualify for the current transaction-time state when the transaction-time at-
tributes are referenced in aWHEREclause. Second, it must be a sensible value
to return when the transaction-time attributes are used in aSELECTclause. The
possible choices for the temporary value are as follows.

• Use the start time of the transaction.

• Use the time when the temporary value is first needed, e.g., the time of the
first modification.

• Use multiple values within a transaction, e.g.,CURRENT_DATE.

The first two alternatives will make the modified tuple qualify for the current
state and are sensible values to display to the user, along with a warning that the
values change when the transaction commits. We rule out using multiple values of
two reasons. First, as discussed in Section 3, this can lead to non-repeatable reads
when the same query is executed twice in a transaction, e.g., displaying the times-
tamps of a tuple inserted by the transaction. Second, it makes tuples temporarily
have different timestamps values for timestamps that eventually get the same value,
which we do not allow (cf. requirementR1 and the discussion in Section 4).

5.3 Associating Transaction-ids With Tuples

We use a transaction-id when revisiting tuples to identify the tuples being modified.
There are several ways to associate a transaction-id with tuples. First, we can store
the transaction-ids directly in the tuples. In such an approach, the stratum adds
an extra attribute when it passes aCREATE TABLEstatement to the underlying
DBMS. Storing the transactions-ids in the tuples can be done in two ways: in an
extra attribute or encoded in the timestamp attributes themselves.

Using an extra attribute is straightforward: we simply store the transaction-id
in this attribute; Postgres uses this approach [23]. In contrast, storing the transaction-
id in a transaction-time attribute requires type conversion, because the domain
of transaction-time attributes differs from the domain of transaction-ids (typically
TIMESTAMPversusINTEGER). Collision between the encoded transaction-ids and
actual timestamps can be avoided because transaction timestamps are larger than the

EFFECTIVE TIMESTAMPING IN DATABASES 1283

time when the database was created. Thus the transaction-ids can be relative to the
smallest timestamp (typically 0001-01-01): the first transaction-id is mapped to the
smallest value in the time domain, the second transaction-id is mapped to the sec-
ond smallest value in the time domain, and so on. When storing the transaction-ids
in the transaction-time attributes, we must in addition store the temporary value for
the tuple in an auxiliary data structure.

The choice of using an extra attribute versus converting transaction-ids in or-
der to associate a transaction-id within tuples represents a space-time trade-off. The
conversion may be useful, but is not very elegant in SQL-92 where the conversion
betweenINTEGERandTIMESTAMPis via anINTERVAL [15]. This means we
first have to convert a transaction-id to anINTERVAL and next have to add the in-
terval to the smallest value in the time domain. This manipulation would be done
in the first and second rows of Table 6 before the insert and update in the second
column. A reverse, two-step expression is needed to decode a transaction-id again
when identifying the tuples to update in the second column of the third row in Ta-
ble 6.

As another alternative, we may store the transaction-ids separately from the
tuples. Here, the stratum defines for each explicit table a new table that stores the
tuple-id, the transaction-id, and the timestamp attributes affected by the modifica-
tion. This approach has the consequence that two tables must be updated for each
modification, compared with one table when storing the transaction-ids directly in
the tuples.

5.4 Representation ofuntil changed

Another and separate issue is the representation ofuntil changed. All tuples not
logically deleted are timestamped withuntil changedin the T-Stop attribute as
shown in Table 6. The value foruntil changedcannot be between the time the
database was created and the current time; using a value in the near future is also
not a safe option. These representations are ambiguous because we eventually will
not be able to distinguishuntil changedfrom the value with which it is represented.
Even avoiding these possibilities, several values are still available for representing
until changed. Specifically, three possible values remain.

• Any time before the database was created.

• The largest value in the domain (9999-12-31 in SQL-92).

• The valueNULL.

Using a value before the database was created implies that the transaction-
time stop value may be smaller than the transaction-time start value, which we do
not allows (cf. requirementR3). The requirement can be fulfilled by using the
largest value in the domain. The last alternative, usingNULL for until changed,

1284 IMPLEMENTATION TECHNIQUES

is also possible because the transaction-time stop cannot beNULL: we can thus
“reuse”NULLwithout overloading it. Further,NULLoften requires less space in a
database than other timestamps.

5.5 Strategies for Revisiting Tuples

Yet another issue is when to update temporary timestamps to the permanent commit
times, or to be specific, when to execute the two updates and the delete for the
translated commit statement in Figure 6. We prefer flexibility in scheduling these
database modifications.

Because revisiting tuples adds to the system load, to be discussed further
in Section 8.5, we first identify which modifications and queries need permanent
timestamps. Second, we explore different approaches for updating the temporary
timestamps to the permanent values, the purpose being to find the most efficient
approach.

In Section 5.1, we described a scenario where the temporary values of the
transaction-time attributes are updated to the commit time right after user-commit.
Examining which modifications and queries that need to know the permanent trans-
action timestamps, we see that no modifications and queries on the current state
depend on the permanent transaction timestamps; the current states are the tuples
with until changedin the T-Stop attribute. Only modifications and queries on
previous states depend on the permanent transaction timestamps for their correct
execution. As queries on previous states are often syntactically identifiable (e.g.,
[3, 22]), syntactic analysis can decide when permanent transaction timestamps are
required for reasons of correctness of query processing. As an example, selecting
all tuples (with their transaction-timestamps) can be expressed asTRANSACTION-
TIME SELECT * FROM Empin an SQL3 proposal [22]. Selecting the current
transaction-time state (without transaction-timestamps) is expressed simply asSE-
LECT * FROM Emp. The keywordTRANSACTIONTIMEmakes it possible to
determine when correct, permanent timestamps are needed and not needed.

For modifications and queries not requiring the permanent timestamps, there
are several approaches to the revisiting of tuples to apply the permanent time-
stamping.

• Eager: For each transaction, the permanent timestamp is applied immediately,
at user-commit.

• Low-system-usage: On low system load, e.g., during lunch breaks or late at
night, the tuples are revisited.

• Piggy-backing: On pages brought into the buffer, check if any tuples need to
be revisited, and then do so.

EFFECTIVE TIMESTAMPING IN DATABASES 1285

• Explicitly scheduled revisiting: Revisit tuples at times of expected low system
load, e.g., at 2 a.m. every night.

• Lazy: Revisit only tuples with the temporary timestamps when a query refers
to the timestamps and the permanent values are needed to process the query
correctly.

• Never: If a query needs the permanent timestamp of a tuple, extract it from
theCommitTime table.

The eager approach was implicitly assumed in Section 5.1. It can be imple-
mented by using after-triggers. The approach is attractive if timestamps are often
referenced in queries and modifications. However, the approach is less cost-efficient
if timestamps are rarely referenced.

The “low-system-usage” approach is used in Postgres [23]; it is appropriate
for an integrated architecture. However, the approach is not well-suited in a stratum
because it requires scheduling of an asynchronous process based on the system load.
It is hard to get this fine-level degree of control of the underlying DBMS from the
stratum.

The “piggy-backing” approach is also not possible in a stratum, as the move-
ment of pages in and out of the buffer is transparent to and cannot be controlled by
the stratum.

Explicit scheduling of the revisit is a good choice if there are only current-
state queries. The approach is not sufficient if there is a mixture of current-state and
past-state queries within a transaction. Such queries may not execute correctly if a
revisit has not yet occurred, because queries assume that the permanent timestamp
values are already in place for committed tuples. The approach will have to be used
in combination with the lazy approach, or the never approach, both of which are
now described.

The lazy approach takes advantage of the fact that queries requiring perma-
nent transaction timestamps can be identified by the stratum, which will then first
update the transaction timestamps. This may be very cost-efficient if few queries
depend on the permanent transaction timestamps for their correctness.

The never approach does not apply the timestamps from theCommitTime
table to the temporal tables at all, but rather is applicable only if the timestamps are
retained in a separate table. In the never approach, theCommitTime table is joined
with the temporal table when referring to the transaction-time attributes. This will
be expensive for large temporal tables, and is mostly useful if the transaction-time
attributes are rarely referenced, say no more than two or three times in the lifetime
of a tuple [23].

For the user-specified and lazy approaches to revisiting tuples, the revisiting
can be done with different granularities. We see the following granularities.

1286 IMPLEMENTATION TECHNIQUES

• On a per-tuple basis.

• Up to a certain time.

• On a per-table basis.

• On a per-database basis.

When revisiting on a per-tuple basis, we look at each tuple the query fetches to
determine if it needs to be timestamped, and do so if needed. The drawback of this
approach is that it is not general. For example, it is not always possible to identify
which tuples qualify for a query without first timestamping them. This happens if a
query compares a timestamp to a time constant, as in “find all employees inserted
after October 1, 1995:”

SELECT * FROM Emp WHERE T-Start >= ’1995-10-01’ .
With the up-to-a-certain-time approach we look at the query. If it implies

comparisons of the transaction time of tuples to time constants, we can find the
largest time constant in the query and revisit tuples that were inserted up to that
point in time in all tables used by the query. This approach is also not general. For
example, a query may reference transaction time without containing a comparison
with a time constant. The following query compares the transaction-time attribute
of different tuples:

SELECT * FROM Emp E1, E2 WHERE E1.T-Stop > E2.T-Stop .
With the per-table approach, we bring the tables referred to by the query up-to-

date with respect to transaction timestamping before the query is executed. This is a
general approach. However, it has the drawback of yielding non-uniform response
times if the tables used in some queries have been updated frequently, but have not
been revisited for a long time.

The per-database approach is similar to the per-table approach, except that it
brings all tables up-to-date when a query references transaction time. This is also
a general approach, but with a more non-uniform response time than the per-table
approach. A query accessing but one table would be deferred until all tables are
updated; the same query evaluated shortly thereafter would be much faster. This
seemingly randomness in execution times is an undesirable system property.

6 Adding Valid Timestamping

In this section we discuss how the valid-time dimension is timestamped. The valid-
time dimension is different from the transaction-time dimension in that the valid-
time periods associated with tuples may be user-supplied. Further, for the valid-time
dimension an additional special valid-time value is defined:nobind now[5].

EFFECTIVE TIMESTAMPING IN DATABASES 1287

6.1 An Example

We describe the general idea of adding valid time by redefining theEmptable from
Section 5.1 to be a bitemporal table. The example will raise two questions on how
to timestamp the valid-time dimension, which we then address.

To changeEmp to a bitemporal table we issue the temporal statement [22]
ALTER TABLE Emp ADD VALIDTIME PERIOD(DATE)on the 1st of Febru-
ary. The tuples already in the table are timestamped with the valid-time period
[1998-02-01- nobind now) , wherenobind nowhas a semantics similar tountil
changedfor the transaction-time dimension and means “until we learn more.”

We also consider a new type of modification, which is a variation on that
already provided by SQL-92; in this augmented statement, the user specifies the
valid-time extent of the modification.

VALIDTIME PERIOD ’[1998-02-01 - 1998-03-01)’
UPDATE Emp
SET Dept = ’Toy’
WHERE Name = ’Joe’

This update refelects that Joe was in the Toy department during the month of Febru-
ary, 1998. We allow the temporal extent to be specified for all three types of modi-
fication statements.

To add more tuples to the bitemporalEmp table, we execute the temporal
statements in Figure 5. On the 1st of February, we insert Kim in the Sports depart-
ment. On the 2nd of February, we insert that Jill will be in the Sports department
in the period[1998-02-05- 1998-02-14) . In the SQL3 proposal, this is indicated
by prefixing a query withVALIDTIME <period specification >. On the
13th of February, we update Kim to be with the Toy department, and on the 16th of
February we delete Kim. Finally, on the 27th of February, we record that John has
and always will be in the Toy department.

Table 7 shows theEmptable resulting from the execution of these transactions.
As can be seen, we include four special attributes in bitemporal tables:V-Begin
andV-End for valid time, andT-Start andT-Stop for transaction time.

We next turn to how the stratum converts modifications in a temporal query
language on bitemporal tables to SQL-92 modifications on SQL-92 tables. The
conversion is shown in Table 8.

When we insert a tuple without a user-specified valid-time period, it is time-
stamped with the period[now - nobind now) in the valid-time dimension. This
states that the tuple is valid from the current time until we learn more. In the
transaction-time dimension, it is timestamped with the period[temporary value
- until changed) . For an insertion with a user-specified valid-time period, the user-
specifiedV-Begin andV-End attributes are simply inserted into the database.
The transaction-time dimension is timestamped as before.

1288 IMPLEMENTATION TECHNIQUES

-- on 1998-02-01:
INSERT INTO Emp VALUES (’Kim’, ’Sports’); COMMIT;
-- on 1998-02-02:
VALIDTIME PERIOD [1998-02-05 - 1998-02-14)
INSERT INTO Emp VALUES (’Jill’, ’Sports’); COMMIT;
-- on 1998-02-13:
UPDATE Emp SET Dept = ’Toy’ WHERE Name = ’Kim’; COMMIT;
-- on 1998-02-16:
DELETE FROM Emp WHERE NAME = ’Kim’; COMMIT;
-- on 1998-02-27:
VALIDTIME PERIOD [0001-01-01 - 9999-12-31)
INSERT INTO Emp VALUES(’John’, ’Toy’); COMMIT;

Figure 5: Modifying the Bitemporal Table,Emp

Name Dept V-Begin V-End T-Start T-Stop

Joe Shoe 1998-02-01 nobind now 1998-01-06 1998-01-16
Joe Sports 1998-02-01 nobind now 1998-01-16 1998-01-27
Joe Outdoor 1998-02-01 nobind now 1998-01-27 until changed
Kim Sports 1998-02-01 nobind now 1998-02-01 1998-02-13
Jill Sports 1998-02-05 1998-02-14 1998-02-02 until changed
Kim Sports 1998-02-01 1998-02-13 1998-02-13 until changed
Kim Toy 1998-02-13 nobind now 1998-02-13 1998-02-16
Kim Toy 1998-02-13 1998-02-16 1998-02-16 until changed
John Toy 0001-01-01 9999-12-31 1998-02-27 until changed

Table 7: The Bitemporal Table,Emp

Deletions of tuples are mapped to logical deletions of currently valid tuples.
A tuple is logically deleted by updating theT-Stop attribute totemporary value.
The update is followed by an insertion that records the new belief that the tuple was
valid in the modeled reality from the oldV-Begin to the current-time (now). All
explicit attribute values are copied.

For a delete statement with a user-specified valid-time period, two insertions
are needed, one for the portion of the original tuple’s valid-time that isbeforethe
user-specified period, and one for the portion after the user-specified period. The
last statement, the update, terminates the original tuple.

An update, e.g., that updates Kim to be in the Toy department on the 13th of
February, is a temporal delete of the old values followed by a temporal insert of the
new values. Similarly, an update with a user-specified valid-time period is a delete

EFFECTIVE TIMESTAMPING IN DATABASES 1289

Temporal statement:INSERT INTO Emp VALUES (new name, new dept)
Corresponding SQL-92 statement:

INSERT INTO Emp VALUES (new name, new dept, now, nobind now,
temporary value, until changed)

Temporal statement:
VALIDTIME PERIOD [Start - Stop)
INSERT INTO Emp VALUES (new name, new dept)
Corresponding SQL-92 statement:

INSERT INTO Emp VALUES (new name, new dept, Start , Stop,
start value, until changed)

Temporal statement:DELETE FROM Emp WHEREPredicate
Corresponding SQL-92 statements:

INSERT INTO Emp
SELECT Name, Dept, V-Begin, now, temporary value, until changed
FROM Emp WHEREPredicate AND T-Stop = until changed
AND V-Begin < now AND now < V-End;
UPDATE Emp SET T-Stop = temporary value
WHEREPredicate AND T-Stop = until changed
AND V-Begin < now AND now < V-End

Temporal statement:
VALIDTIME PERIOD [Start - Stop) DELETE FROM Emp WHEREPredicate
Corresponding SQL-92 statements:

INSERT INTO Emp
SELECT Name, Dept, V-Begin, Start , start value, until changed
FROM Emp WHEREPredicate AND T-Stop = until changed
AND V-Begin < Start AND Start < V-End;
INSERT INTO Emp
SELECT A1, . . . , An, Stop, V-End, start value, until changed
FROM Emp WHEREPredicate AND T-Stop = until changed
AND V-Begin < Stop AND Stop < V-End;
UPDATE Emp SET T-Stop = stop value
WHEREPredicate AND T-Stop = until changed
AND V-Begin < Stop AND Start < V-End

Temporal statement:COMMIT
Corresponding SQL-92 statements:
c← CURRENT_DATE;
INSERT INTO Time VALUES (transaction-id, c);
UPDATE Emp SET T-Start = c WHEREtuple inserted by transaction-id;
UPDATE Emp SET T-Stop = c WHEREtuple inserted by transaction-id;
DELETE FROM Time WHERE TID =transaction-id;
COMMIT

Table 8: Mapping Statements on Bitemporal Tables into Equivalent SQL-92 State-
ments

1290 IMPLEMENTATION TECHNIQUES

with a user-specified valid-time period followed by an insert with a user-specified
valid-time period.

When the user enters commit (the fifth row of Table 8), the appropriateT-
Start andT-Stop attributes are updated, similarly to what occurred in Table 6.

If the statements described in Table 8 are applied to the transactions in Fig-
ure 5, Table 7 results.

We now address in turn three questions with respect to timestamping the
valid-time dimension: How isnow represented, what shouldCURRENT_DATEbe
mapped to, and how isnobind nowrepresented?

6.2 Handling now

Section 3 illustrated that a single value fornow must be used throughout a trans-
action in order to avoid violating the consistency property. The question is, then,
which value to use fornow. We see the following possibilities.

• The start time of the transaction.

• The time of the first modification in the transaction.

• The commit time of the transaction.

It has been shown that using the start time of the transaction can lead to the
current time appearing to move backwards [10]. It has also been shown that using
the time of the first update can cause a violation of the isolation property, even
when two-phase locking is used [10]. Both problems occur because neither the
start times nor the times of the first updates in transactions reflect the commit order
of the transactions.

It is also the case that using the start time of the transaction can result in the
violation of the ACID properties, because the transactions are no longer serializable.
Consider Figure 2 again. TransactionT1 starts on the 4th of January and commits
on the 12th of January. On the 10th of January,T1 updates Jim to be in the Outdoor
department. TransactionT2 starts afterT1, on the 7th of January, and commits
beforeT1, on the 9th of January. On the 8th of February,T2 updates Jim to be in
the Sports department. Assume Jim was inserted in the Shoe department on the 2nd

of January and we are using the start time of the transaction fornow. The tuples
relating to Jim after the execution ofT1 andT2 are then as shown in Table 9.

First, notice that the fourth tuple is timestamped with the valid-time period
[1998-01-07- 1998-01-04) ; the value ofV-Begin is larger than the value of
V-End . Second, notice that the second and the fifth tuples are both in the cur-
rent transaction-time state (the current time is 1998-01-04) and have overlapping
valid-time periods,[1998-01-04- 1998-01-07) and[1998-01-07- nobind now) ,
respectively, even though Figure 2 shows that Jim was only in a single department
at any point in time.

EFFECTIVE TIMESTAMPING IN DATABASES 1291

Name Dept V-Begin V-End T-Start T-Stop

Jim Toy 1998-01-04 1998-01-12 1998-01-02 until changed
Jim Toy 1998-01-04 1998-01-07 1998-01-02 1998-01-07
Jim Sports 1998-01-07 nobind now 1998-01-07 1998-01-04
Jim Sports 1998-01-07 1998-01-04 1998-01-04 until changed
Jim Outdoor 1998-01-04 nobind now 1998-01-04 until changed

Table 9: Tuples for Jim in the Bitemporal Table,Emp

The result of the two transactionsT1 andT2 does not correspond to any serial
execution of the transactions. In a serial execution, the two problems discussed
above cannot occur because the start times will reflect the commit order of the
transactions.

Because using the start time as well as using the time of the first modification
for nowcan lead to violation of the isolation property of transactions, we elect to
use the commit time fornow. For transactions to be able to see their own modifica-
tions to the valid-time dimension, modified tuples are given atemporary valueand
are revisited, to update thetemporary value, after user commit. We use the same
temporary value fornowas foruntil changed.

Using the commit time eliminates both the problem of current time moving
backwards and the violation of the isolation property. The drawback is that modi-
fied tuples must be revisited, which requires extra resources. However, in the case
of bitemporal tables, the tuples must be revisited anyhow, to apply the permanent
transaction-time timestamps. Thus, the number of tuples that are to be revisited is
not increased.

However, for valid time revisitation raises a new problem. Consider the ex-
ample in Figure 6. This transaction inserts James in the Shoe department and then

-- on 1998-02-20:
INSERT INTO Emp VALUES (’James’, ’Shoe’);
VALIDTIME PERIOD [1998-02-01 - 1998-02-21)

DELETE FROM Emp WHERE Name = ’James’;
COMMIT;

Figure 6: A Race Condition in a Delete Transaction

deletes James from the the Sports department in the period[1998-02-01- 1998-
02-21) . This leads to a race condition. If the transaction commits on the 20th of
February, the delete will have an effect on the inserted tuple. If the clock ticks and
the transaction actually commits on the 21st of February, the update has no effect
on the inserted tuple because the valid-time period associated with the insertion no

1292 IMPLEMENTATION TECHNIQUES

longer overlaps with the valid-time period specified in the delete. When the delete
is actually executed, the commit time is not known, and we cannot determine what
to do.

The general problem is illustrated in Figure 7. Here, the circles (filled or non-
filled) represent timestamp values given explicitly in a modification statement, and
‘×’ represents the temporary value ofnowused in modifications. The sequence of
modifications within a transaction that can cause the problem is an insertion (or an
update) of one or more tuples usingnow (indicated by the two “a”’s in Figure 7),
followed by a deletion (or an update) of the same tuples, using an explicitly given
period that overlaps with the temporary value ofnow(indicated by the two “b”’s in
Figure 7).

Time

T2T1

a

b

a

bDel

Ins Ins

Del

Figure 7: The General Problem Using the Commit Time fornow

Syntactic analysis may be applied to detect when the problem may occur.
We have to store the smallest explicit timestamp value for any period[now -
explicit timestamp) within a transaction. If the smallest explicit timestamp value
is smaller than the commit time, the problem is present. We have not found any
way of solving the problem and getting a clear semantics. Therefore, when this
situation occurs, the transaction is declared illegal and is rolled back.

6.3 Handling CURRENT_DATE

The presence ofCURRENT_DATE(andCURRENT_TIMEandCURRENT_TIME-
STAMP) in queries and in modification statements causes some problems. Users
expect that this value is identical to teh value ofnow that is stored in tuples, yet
that latter value is the commit time for the transaction. So, we must map usages of
CURRENT_DATEinto expressions consistent with the value ofnow.

We will address the handling ofCURRENT_DATEin two steps. First, we
handle this function in the context of modifications, discussing implications of sev-
eral alternative approaches. Second, we consider the function in queries and again
discuss implications of various approaches.

EFFECTIVE TIMESTAMPING IN DATABASES 1293

CURRENT_DATEin Modifications

A user may specify arbitrary valid-time periods in modification statements. The
combination of using the commit time for bothnow and CURRENT_DATEand
the constraint thatV-Begin must be smaller thanV-End can cause problems in
transactions, as shown in Figure 8. Here we use a period constructor, which takes
two SQL-92 datetime expressions as arguments.

-- on 1998-02-20:
VALIDTIME PERIOD [CURRENT_DATE, DATE ’1998-02-21’)

INSERT INTO Emp Values (’James’, ’Shoe’);
COMMIT;

Figure 8: A Race Condition in an Insert Transaction

The transaction inserts a tuple and timestamps it with the period[now- 1998-
02-21) . This leads to a race condition. If the transaction commits on the 20th of
February, no anomalies occur. However, if the transaction does not commit before
the 22th of February, theV-Begin will be larger than theV-End value, which is
not allowed.

A possible approach to addressing this problem is for the revisit step to re-
move tuples with erroneous valid-time periods. However, this does not work be-
cause subsequent statements in the transaction might reference these tuples in the
meantime, corrupting the result of the transaction. Instead, we adopt the solution
of the previous section, of identifying the smallest explicit timestamp value for any
period[now - explicit timestamp) within the transaction (here, the explicit time-
stamp is 1998-02-21). If that value is smaller than the commit time, the transaction
is considered illegal and is rolled back.

We next examine the consequences of using a single value forCURRENT_DA-
TE and show it impacts the query rewriting performed in the stratum to retain the
semantics of SQL-92 queries.

In Figure 9, transactionT1 inserts Joe in the Shoe Department on the 8th of
February. On the 19th of February,T1 executes the modificationM that deletes
all employees in the Shoe Department:DELETE FROM Emp WHERE Dept =
’Shoe’ . TransactionT2 inserts Tim in the Shoe Department and transactionT3

inserts Lee in the Shoe department for the period[1998-02-10- 1998-02-25) .
The question is, what effect doesM have on the insertions made byT2 andT3?

The content of theEmp table on the 19th of February, whenM is ready to
execute, is shown in Table 10. Remember,T1 has not committed yet, which means
V-Begin andT-Start of the first tuple have a temporary value, 1998-02-08, be-
cause this is when the value is first needed inT1. To emphasize this, these temporary
values are shown in italics.

1294 IMPLEMENTATION TECHNIQUES

���� ���� �� �� ����4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T1

T2

T3

������������������������������
�
�
�
�

�
�
�
�

��

����

����

Time

MInsert(Joe, Shoe)

Insert(Tim, Shoe)

Insert(Lee, Shoe, 15, 25)

Figure 9: Using a Single Value forCURRENT_DATEin Queries

Name Dept. V-Begin V-End T-Start T-Stop

Joe Shoe 1998-02-08 nobind now 1998-02-08 until changed
Tim Shoe 1998-02-15 nobind now 1998-02-15 until changed
Lee Shoe 1998-02-15 1998-02-25 1998-02-15 until changed

Table 10: The Bitemporal TableEmpat 1998-02-19

T1 now executes the modificationM. Referring to the delete in Table 8 and
assumingnobind nowhas a reasonable value, the first tuple is deleted because
V-Begin is smaller than or equal to the value ofnow. The second tuple has a
V-Begin larger than the value ofnow. However, it must be deleted to fulfill the
SQL-92-query requirement. The tuple is inserted by a transaction that commits be-
fore the deletion is applied. The third tuple is also inserted by a transaction that
commits before the deletion is applied, and the tuple is in the current bitempo-
ral state whenT1 commits. This could indicate that the third tuple should also be
deleted. However, the valid-time period associated with the tuple does not overlap
with the value ofnow.

The impact of using one value fornow in transactions can be summarized
as follows. Tuples that have aV-End value of nobind nowwill be affected by
modifications in a transaction, even if the value ofnow used in the transaction is
smaller than theV-Begin attribute values of the tuples. This ensures that SQL-92
like modifications on temporal tables have the expected results. For tuples with an
explicit value inV-End , read-level consistency within a transaction is provided.

It is important that the valid-time periods associated with tuples are checked
for whether theV-End is equal tonobind nowor the valid-time periods overlap
with the value ofnowused in queries. Doing just the latter, which may seem suf-
ficient, can violate the requirement of temporal upward compatibility, stating that
SQL-92 queries should have the same effect on snapshot as on bitemporal tables.

EFFECTIVE TIMESTAMPING IN DATABASES 1295

CURRENT_DATEin Queries

Timestamping after commit with revisitation presents the same problem for the
valid-time dimension as for the transaction-time dimension when the user modifies
the database and then queries it with explicit reference to valid time. The handling
of CURRENT_DATEin queries is further complicated by the user being allowed to
insert tuples with valid-time attributes in the future.

There are two approaches for usingCURRENT_DATEin queries. (a) We can
use the same value in the entire transaction, e.g., the time when a value ofCUR-
RENT_DATEis first needed. (b) We can permit the use of different values forCUR-
RENT_DATEin different queries in the same transaction, which may be obtained
simply by leaving invocations ofCURRENT_DATEas are in queries.

When using a single value forCURRENT_DATEin queries, we cannot use
the same value as for modification, because this time is the commit time, which is
unknown until the transaction actually commits. Instead assume we use the time
whenCURRENT_DATEis first needed, which can be determined syntactically, and
consider the transaction in Figure 10.

(Jill, Shoe)

10 11 12 13 14 15 16 17 18 19 20 Time2221

Q1 Q2

Figure 10:CURRENT_DATEin Queries

This transaction starts on the 16th of January and commits on the 22nd of
January. The database includes a tuple recording Jim is in the Shoe department
in the period[1998-01-14- 1998-01-19) . Now assume that queryQ1, executed
at the 18th of January, asks for all the employees currently in the Toy department.
Q1 must use a value forCURRENT_DATEand this is the time, it is first needed,
so CURRENT_DATEwill be instantiated to the 18th of January. On the 20th of
January, queryQ2 asks for all the employees currently in the Shoe department.
Because we use only one value forCURRENT_DATEin a transaction, we return the
16th of January, andQ2 will return that Jim is in the Shoe department, even though
the query is executed at the 20th of January, and we have recorded that Jim is in the
Shoe department only during the period[1998-01-14- 1998-01-19) .

Next, we consider the alternative of using multiple values forCURRENT_DA-
TE in queries within a transaction. For each statement within a query, we retain
CURRENT_DATEas is, with each invocation possibly yielding a different value.

1296 IMPLEMENTATION TECHNIQUES

Consider Figure 10 again. This approach evaluatesCURRENT_DATEto the 18th

of January and the 20th of January in queriesQ1 andQ2, respectively. This also
causes problems. For example, ifQ1 andQ2 are the same query retrieving all em-
ployees currently in the Shoe department. On the 18th of January, the query will
return that Jill is in the Shoe department, and at the 20th of January, the query will
return there are no employees in the Shoe department. Two identical queries with
no intermediate modifications within the same transaction should not return differ-
ent results. The disappearance of the tuple recording Jill in the Shoe department is
similar to the non-repeatable read problem [12, pp. 380] and constitutes a violation
of the isolation property of transactions. Non-repeatable reads is a multi-user prob-
lem in conventional database systems; here, a non-repeatable read can also appear
in a single-user system.

The problems using a single value or multiple values forCURRENT_DATE
in a transaction are caused by the possibility of inserting tuples with a valid time
into the future; this is not allowed for transaction-time. We have to choose be-
tween disallow insertion of tuples with valid-times into the future or use one of the
approaches mention above.

Disallowing valid-times into the future is a serious restriction on temporal
databases: it will make them useless for many applications such as, e.g., planing
applications. This option is therefore ruled out. We must then choose to use one
value or multiple values forCURRENT_DATEin queries. We chose the former
alternative, because using multiple values can cause non-repeatable reads to occur
in SQL-92 queries on temporal tables.

6.4 Handling nobind now

As discussed in Section 6.1, there is also the special valuenobind nowin the valid-
time dimension. Because this value is not part of the SQL-92 timestamp domain,
an SQL-92 value for representing it must be identified.

We can useNULLor a value from the time domain. The problem with using
NULL for nobind nowis that it is then not possible to store “real”NULL values in
the valid-time dimension. Problems with picking a value from the time domain are
that this restricts the time domain and that we must handle the representative value
specially.

7 A Specific Proposal

This section motivates and presents an overall approach to timestamping the valid-
time and transaction-time dimensions. The proposal is based on two assumptions.
We are focusing on the stratum approach to implement a temporal DBMS; and to
be specific, we are using Oracle 8 as the underlying DBMS in the stratum approach.

EFFECTIVE TIMESTAMPING IN DATABASES 1297

For timestamping the transaction-time dimension, we use timestamping after
commit with revisitation. For thetemporary valueof the commit time, we use one
value throughout a transaction. We choose to use the time of the first modifica-
tion statement or the time of the first statement that referencesCURRENT_DATE,
whichever comes first. This is the constant value closest to the commit time we can
use within a transaction. For the value ofuntil changed, we choose the largest value
in the time domain. We could also useNULL. However, this may invalidate the use
of indexes in Oracle [6].

For the valid-time dimension, we use the commit time as the value ofnow in
modifications. When using the commit time, we again need a temporary value for
nowwithin the transaction. The temporary value fornow is the same as thetempo-
rary valueused for transaction time. We also use this value forCURRENT_DATE
in queries and modification statements.

Again, because Oracle handlesNULL badly in connection with indexes, we
do not useNULL as the value ofnobind now. Instead, we use the second largest
value in the time domain, as the largest value in the time domain is commonly used
to representforever. The representations of the special temporal values can be seen
in Table 11.

Special Value Representation

nobind now 9999-12-30
beginning 0001-01-01
forever 9999-12-31
until changed 9999-12-31

Table 11: Representation of the Special Temporal Values

When the timestamp attributes occur in aSELECTor a WHEREclause, a
CASEstatement is introduced to ensure that the special temporal valuesnobind now
anduntil changedare interpreted correctly and to ensure that their representations
remain hidden from the user. As an example,WHERE V-End < ’1998-01-
10’ is converted toWHERE CASE WHEN V-End = ’9999-12-30’ THEN
CURRENT_TIME ELSE V-End END < ’1998-01-10’ . This approach is
consistent with the recommendations by Clifford et al. [5].

In the following three tables, we provide the specifics for mapping temporal
statements. We use theEmptable as an example.

Table 12 shows the mapping of theCREATE TABLEand INSERT state-
ments. The first row shows the mapping of aCREATE TABLEstatement. For a
bitemporal table, four attributes are added (as an aside, more attributes are added in
Section 8). The second row shows that at the time of the first modification or the first
use ofCURRENT_DATE, we fix the value oftemporary valuewithin a transaction.

1298 IMPLEMENTATION TECHNIQUES

The value oftemporary valueis used in the third row, which gives the mapping of an
INSERT statement and uses several of the special temporal values. The fourth row
shows the mapping of anINSERT statement with a user-specified period. TheIF
statement is used to find the smallest explicit timestamp in periods of the form[now
- explicit timestamp) within a transaction. The valuesmallest_explicit_timestamp
is used to detect race conditions, as discussed in Section 6.3.

Temporal statement:
CREATE TABLE Emp (Name VARCHAR(20), Dept VARCHAR(20))
AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME
Resulting statement:

CREATE TABLE Emp (Name VARCHAR(20), Dept VARCHAR(20),
V-Begin DATE, V-End DATE, T-Start DATE, T-Stop DATE)

Temporal statement: first modification or use ofCURRENT_DATE
Resulting statement:temporary value← CURRENT_DATE

Temporal statement:INSERT INTO Emp VALUES (new name, new dept)
Resulting statement:

INSERT INTO Emp VALUES (new name, new dept, temporary value,
nobind now, temporary value, until changed)

Temporal statement:
VALIDTIME PERIOD [Start - Stop)
INSERT INTO Emp VALUES (new name, new dept)
Resulting statement:

IF (Start is now AND Stop is anexplicit timestampAND
smallest_explicit_timestamp> Stop) smallest_explicit_timestamp← Stop

INSERT INTO Emp VALUES (new name, new dept, Start , Stop,
temporary value, until changed)

Table 12: Mapping Create Table and Insert Statements on Bitemporal Tables

Table 13 coversDELETEstatements. In the first row, aDELETEstatement
without a user-specified period is shown. The statement is mapped to anINSERT
of a new tuple followed by anUPDATEof the existing tuple. The last line in the
WHEREclauses for theINSERT andUPDATEstatements is used to identify the
tuples inserted by other transactions that must be logically deleted to fulfill the tem-
poral upwards compatibility requirement, as discussed in Section 6.3. The second
row in the table gives the mapping of aDELETEstatement with a user-specified
period. As for insertions with user-specified periods, theIF statement keeps track
(within a transaction) of the smallest explicit timestamp used in periods of the form
[now - explicit timestamp) . Note that theDELETEwith a user-specified period
may result in two new tuples being added to the table and a single tuple being up-
dated. This happens if, for example, the period[20 - 30) is deleted from a tuple
timestamped with the valid period[10 - 40) .

EFFECTIVE TIMESTAMPING IN DATABASES 1299

In the implementation used in the performance evaluation presented in Sec-
tion 8, bothDELETEstatements in Table 13 are accomplished using cursors. This is
done for efficiency reasons: when using cursors, all tuples to delete can be retrieved
by evaluating a singleWHEREclause, instead of the two and threeWHEREclauses
used in Table 13.

Temporal statement:DELETE FROM Emp WHEREPredicate
Resulting statements:

INSERT INTO Emp SELECT Name, Dept, V-Begin, temporary value,
temporary value, until changed

FROM Emp WHEREPredicate AND T-Stop = until changed
AND ((V-Begin <= temporary valueAND temporary value< V-End)
OR (V-Begin <= T-Start AND V-End = nobind now));
UPDATE Emp SET T-Stop = temporary value
WHEREPredicate AND T-Stop = until changed
AND ((V-Begin <= temporary valueAND temporary value< V-End)
OR (V-Begin = T-Start AND V-End = nobind now));

Temporal statement:
VALIDTIME PERIOD [Start - Stop) DELETE FROM Emp WHEREPredicate
Resulting statements:

IF (Start is now AND Stop = is anexplicit timestampAND
smallest_explicit_timestamp> Stop) smallest_explicit_timestamp← Stop

INSERT INTO Emp SELECT Name, Dept, V-Begin, Start ,
temporary value, until changed

FROM Emp WHEREPredicate AND T-Stop = until changed
AND V-Begin < Start AND Start < V-End;
INSERT INTO Emp
SELECT Name, Dept, Stop, V-End, temporary value, until changed
FROM Emp WHEREPredicate AND T-Stop = until changed
AND V-Begin < Stop AND Stop < V-End;
UPDATE Emp SET T-Stop = temporary valueWHEREPredicate
AND T-Stop = until changed AND V-Begin < Stop AND Start < V-End;

Table 13: Mapping Delete Statement on Bitemporal Tables

Finally, Table 14 shows the mapping of transaction start and eager and lazy
commit. When a transaction starts, we initialize the variablesmallest_explicit_time-
stampto the maximum value in the time domain (the variable is local to each trans-
action). For both eager and lazy timestamping, the variable is used to determine
if any race conditions occurred, requiring that the transaction be rolled back, as
indicated by theIF statements in Table 14.

When a transaction commits and we are using eager timestamping and no
race conditions occur, we find the value ofnow, and all tuples modified by the
transaction are revisited. For lazy timestamping, this is a two-stage process. First,

1300 IMPLEMENTATION TECHNIQUES

when the transaction commits, the commit time is stored in the tableCommitTime .
Second, the revisit step is scheduled in a separate transaction, shown in the fourth
row of Table 14. When the revisit step is executed, all tuples modified since the last
revisit are updated with the permanent timestamps fornow by using the commit
times stored theCommitTime table. When the timestamps have been applied, the
CommitTime table is cleaned up.

As for the DELETEstatement, theCOMMITstatements used in the perfor-
mance study are implemented using cursors.

Temporal statement:start transaction
Resulting statement:smallest_explicit_timestamp← 9999-12-31

Temporal statement:COMMIT(eager)
Resulting statement(s):
now← CURRENT_DATE;
IF (smallest_explicit_timestamp< now) ROLLBACK;
ELSE
UPDATE Emp SET V-Begin = nowWHEREtuple modified by this transaction;
UPDATE Emp SET V-End =nowWHEREtuple modified by this transaction;
UPDATE Emp SET T-Start = nowWHEREtuple modified by this transaction;
UPDATE Emp SET T-Stop = nowWHEREtuple modified by this transaction;
COMMIT;

Temporal statement:COMMIT(lazy)
Resulting statements:
now← CURRENT_DATE;
IF smallest_explicit_timestamp< now ROLLBACK
ELSE INSERT INTO CommitTime VALUES (transaction-id, now);

Temporal statement:timestamp_table
Resulting statements:
UPDATE Emp SET V-Begin =
SELECT Commit-Time FROM CommitTime
WHERE TID =T ID modif ied V-Begin WHERE V-Begin needs revisiting;
UPDATE Emp SET V-End =
SELECT Commit-Time FROM CommitTime
WHERE TID =T ID modif ied V-End WHERE V-End needs revisiting;
UPDATE Emp SET T-Start =
SELECT Commit-Time FROM CommitTime
WHERE TID =T ID modif ied T-Start WHERE T-Start needs revisiting;
UPDATE Emp SET T-Stop =
SELECT Commit-Time FROM CommitTime
WHERE TID =T ID modif ied T-Stop WHERE T-Stop needs revisiting
DELETE FROM CommitTime;

Table 14: Mapping Start and Commit of Transactions on Bitemporal Tables

EFFECTIVE TIMESTAMPING IN DATABASES 1301

TheWHEREclauses for the mapping of theCOMMITstatements in Table 14
are deliberately vague. This is because two open issues remain: (1) how to associate
transaction-id’s with tuples (discussed in Section 5.3), and (2) which of the revis-
iting approaches identified in Section 5.5 is the most cost-efficient and thus should
be adopted. We now conduct a performance study resolving these issues.

8 Performance Evaluation

Section 5.3 discussed how transaction-ids can be associated with tuples, and in Sec-
tion 5.5 we presented a spectrum of approaches for scheduling the revisiting step.
Some of these approaches are viable only within the DBMS; others apply equally
well to situations with applications directly handling time-varying data or with tem-
poral support being implemented in a stratum. After having stated the objectives of
the performance study and described the experimental setup in Sections 8.1 and 8.2,
Section 8.3 proceeds to evaluate the performance of the various approaches to asso-
ciating transaction-ids with tuples. We then evaluate the two revisiting approaches
anchoring the spectrum, the eager and lazy approaches; both are well-suited for
implementation in a stratum. This is done in Sections 8.4 and 8.5.

8.1 Objectives of the Performance Evaluation

We first attempt to determine how transaction-ids should be associated with tuples
to make revisiting efficient. The transaction-ids identify which tuples must be re-
visited to apply correct, permanent timestamps. It is therefore essential for the
performance of the revisiting step that given a transaction-id, it is easy to identify
exactly which tuples to timestamp. Because the issue of associating transaction-ids
with tuples is orthogonal to the choice of revisiting approach, we simply use the
eager approach.

With the performance study of revisiting approaches, also presented in this
section, we want to answer the following two questions.

1. For different transaction sizes, which revisiting approach is most cost effi-
cient, the eager or the lazy approach?

2. How expensive is the revisiting step compared to the actual execution of the
transaction?

The answer to the first question is important because it affects temporal DBMS
implementation and transaction design. It is more complicated to implement and
schedule the revisiting of modified tuples in the lazy approach, compared to the
straightforward revisiting of tuples in the eager approach. If lazy revisitation does
not perform better than eager revisitation, e.g., by allowing us to postpone the revis-

1302 IMPLEMENTATION TECHNIQUES

iting step to be done during off hours, there is no reason to add the extra complexity
of the lazy approach to the temporal DBMS implementation.

Further, the answer to the first question is important for the transaction de-
signer to be able to tune applications. If one revisitation approach is superior for
certain transaction sizes and the other approach is superior for other transaction
sizes then for a given transaction size, the designer can determine which approach
is the most cost-efficient in a particular situation.

The second question is important for transaction performance reasons. Us-
ing timestamping after commit adds the revisiting step to the cost of executing a
transaction.

We investigate the questions by running a set of experiments using the stratum
architecture described in Section 2. This architecture is well-suited for the evalua-
tion because we can use an existing commercial relational DBMS, thus obtaining a
realistic picture of transaction performance.

8.2 Performance Evaluation Setup

We use the Oracle 8.0.4 DBMS running on a SUN UltraSparc-2. Our test database
contains a single bitemporal tableEmpthat has two explicit attributes,NameId and
DeptId , of typeINTEGER, recording which employees are affiliated with which
departments. The four timestamp attributesV_BEGIN, V_END, T_START, and
T_STOPcapture valid and transaction time.

There are 5,000 tuples in the current state of theEmptable; this number is con-
stant. We simulate the update activity of an application over a number of months.
For each simulated month, we insert 5%, delete 5%, and update 10% of the current
state. We run our experiments starting with an 18-month old table. This table con-
tains approximately 822,000 tuples, which occupy approximately 42MB. Our page
size is 8KB, and the buffer size of the database is 1.5 MB. The entire current state
does not fit in the buffer because the table is stored inT-Start order and tuples
in the current state can haveT-Start values within the entire transaction-time
period (18 months) of the table.

The tests are performed by executing a total of 2000 modifications as a series
of transactions where we vary the transaction size (m, the number of modifications
in each transaction). For the lazy approach, we also vary theinter-visitation inter-
val, that is, the number (n) of transactions between revisiting tuples. The elapsed
time is measured using Oracle’sDBMS_UTILITY.GET_TIME function [9] be-
fore the first transaction starts and then after each user commit and system commit
for the eager approach. For the lazy approach, we also measure the time before
a revisit. As is customary for (non-simulation based) performance measurements
on database systems [7, 17], we only report on the elapsed-time usage. The num-
bers we report here are the averages of our measurements for a single test series,

EFFECTIVE TIMESTAMPING IN DATABASES 1303

i.e., execution of the 2000 modifications with fixed values forn andm. Repeated
executions of the test series showed little variation.

Note that only one table is needed for the test setup because we are examining
modifications. A modification statement, by its very nature, concerns only a single
table.

8.3 Number of Transaction-id Attributes on Bitemporal Tables

Section 5.3 described how transaction-ids can be associated with tuples. Two over-
all approaches were discussed, namely storing the transaction-ids in the timestamp
attributes by encoding the transaction-ids as the smallest values in the time domain,
versus storing the transaction-ids in separate attributes.

We proceed to evaluate the performance of the following three approaches for
associating transaction-ids with tuples.

• Storing the transaction-ids in the timestamp attributes.

• Storing all transaction-ids in a single, separate attribute.

• Storing each transaction-id in a separate attribute.

The first approach adds no extra attributes to a bitemporal table. The second
and third approaches add one and four extra transaction-ids attributes to a bitempo-
ral table, respectively. Due to the number of attributes added, we refer to the three
approaches as thezero-tid, theone-tid, and thefour-tidsapproaches. The schemas
of the tables used in the performance study are shown below.

TABLE Emp_0 (NameId, DeptId, V_BEGIN, V_END, T_START, T_STOP)

TABLE Emp_1 (NameId, DeptId, V_BEGIN, V_END, T_START, T_STOP,

TIDS)

TABLE Emp_4 (NameId, DeptId, V_BEGIN, V_END, T_START, T_STOP,

V_BEGIN_TID, V_END_TID, T_START_TID, T_STOP_TID)

Although we are only concerned with modifications in this performance study,
we have chosen to use an indexing scheme that is suitable when both queries and
modifications are considered. For all three approaches, we used a composite B+-
tree index on theNameId , V_BEGIN, andV_ENDattributes. This index speeds up
modifications and queries.

To be able to identify which tuples to timestamp, we add for the zero-tid
approach two B+-tree indexes, on theT_STARTandT_STOPattributes, respec-
tively. An index on both of these attributes is needed because we must check both
theT_STARTandT_STOPattributes for the smallest values in the time domain.
Tests without indexes on both theT_STARTandT_STOPattributes show results
orders of magnitude slower because full table scans are performed. For the one-tid

1304 IMPLEMENTATION TECHNIQUES

approach, we add a B+-tree index on theTIDS attribute, and for the four-tids ap-
proach, we add a B+-tree index on each of theT_START_TID andT_STOP_TID
attributes. Test show that also for the four-tids approach, indexes on both the
T_START_TID andT_STOP_TID attributes are needed to avoid full table scans.

To perform the tests, we load the 822,638 tuples into each of the tables and
execute 2000 modifications for each table in each test series. After a test series is
executed, all three tables are restored to the initial state. In a test series, the trans-
action size (m) is fixed, and to avoid artificially high buffer hit rates, we interleave
the transactions so that first a transaction is executed on theEmp_0 table, then one
on theEmp_1 table, then on on theEmp_4 table, and so on.

Figure 11 shows the average elapsed-time per transaction for various transac-
tion sizes, for the three approaches to associating transaction-ids with tuples.

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

ds
)

Number of Modifications

zero-tid
four-tids
one-tid

Figure 11: The Number of Transaction-ids on Tables

As shown in Figure 11, the one-tid approach is always faster than the two
other approaches. For transactions of size larger than or equal to four, the one-tid
approach is approximately 40% faster than the zero-tid approach and approximately
20% faster than the four-tids approach. The one-tid approach becomes percent-wise
slightly better with increasing transaction size.

These results can be explained as follows. For the actual execution of the
modifications, the one-tid and the four-tids approaches are equally fast because
the data content, indexes used, and modification logic are identical. Storing the
transaction-ids in the timestamp attributes, in the zero-tid approach, makes the cost
of modifying tuples higher because the modification logic becomes more compli-
cated: if timestamp values that occur in tuples identify transactions (and are not
“real” values), special handling is necessary in the predicates involving the time-

EFFECTIVE TIMESTAMPING IN DATABASES 1305

stamp values. However, the major differences in performance are caused by the
revisiting and timestamping costs. The one-tid approach is the fastest because tu-
ples to timestamp can be efficiently identified by the index on theTIDS attribute.
This index only indexes tuples that must be timestamped. The four-tids approach
is slower because two different indexes must be used. Again these two indexes
only index tuples that must be timestamped. Finally, storing the transaction-ids in
the timestamp attributes results in the slowest timestamping because identifying the
tuples to timestamp requires using two larger indexes, over all tuples in the table.

With respect to the storage usage of the tables (not including storage used
for indexes) theEmp_0 table is the smallest because no extra attributes are added.
The Emp_1 andEmp_4 tables are 2.5% and 9.1% larger than theEmp_0 table,
respectively.

Based on this performance study, we will in the following use the one-tid
approach for associating transaction-ids with tuples.

8.4 Eager versus Lazy Revisitation

The next experiment measures the cost of executing transactions using eager versus
lazy revisitation strategies. To be able to compare the cost for various transaction
sizes and inter-visitation intervals, we report the cost on a per-modification basis.

We use the one-tid approach discussed in the previous section with the accom-
panying indexing scheme described there. To verify this indexing scheme we ran a
set of six test queries and six test modifications on five different indexing schemes.
The chosen indexes provided the best overall response time. The first index was
needed to speed up queries; the latter index sped up modifications.

Figure 12 shows the total elapsed time per modification for the eager and lazy
approaches. The elapsed time is shown for varying transaction sizes (m). For the
lazy approach, we also vary the inter-visitation interval (n). The time taken to revisit
tuples in the lazy approaches have been divided equally among the transactions
executed since the last revisit. For example, if the inter-visitation interval is five,
we have added to each transaction’s total elapsed-time one fifth of the elapsed time
for revisiting. Note that this is possible because the transaction size is fixed within
a test series.

Figure 12 shows that using lazy revisitation immediately after a transaction
containing only one modification is approximately 11% more expensive than eager
revisitation for the same transaction size. Lazy revisitation is more expensive be-
cause the revisiting is done using a separate transaction, whereas eager revisitation
is done in the transaction that also did the modifications. However, forn larger than
two, lazy timestamping is more efficient.

In general, Figure 12 shows that the combination of small transactions and
revisiting often is expensive on a per modification basis. This is due to the extra

1306 IMPLEMENTATION TECHNIQUES

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

ds
)

Transaction Size (m)

lazy n = 1
lazy n = 2
lazy n = 5

lazy n = 10
lazy n = 50

eager

Figure 12: Elapsed time Per Modification for Eager and Lazy Revisitation

transaction executed for lazy revisitation. However, if a transaction contains more
than just five modifications, then lazy revisitation is less than 10% cheaper than ea-
ger revisitation, independently of the inter-visitation interval. For larger transaction
sizes and larger inter-visitation intervals, the costs of eager and lazy revisitation are
almost identical.

We also ran experiments with inter-visitation intervals (n) of up to 200 trans-
actions for transaction sizes (m) of up to 5 modifications; and we experimented
with the inter-visitation intervals of up to 10 transactions for transaction sizes of up
to 100 modifications. These experiments were consistent with the trend illustrated
by Figure 12 and showed that the elapsed time per modification converges towards
approximately 30 milliseconds.

That lazy revisitation becomes cost-efficient already for inter-visitation inter-
val (n) larger than two, and almost independent of transaction size (m) is surpris-
ing. However, that the elapsed time converges towards the same value was expected
because both approaches have to do almost the same work; for the lazy approach
there is an extra overhead in saving the commit times of transactions, administrating
which tables should be timestamped, and executing an extra transaction. However,
unlike for eager timestamping, more tuples can be timestamped in a single revisit
step during lazy timestamping.

8.5 The Cost of Revisiting

We next look at the cost of performing the revisiting step compared to the cost of
the actual execution of the transaction. Because neither approach proved superior in
the previous study, we look at the revisiting cost for both eager and lazy revisitation.

EFFECTIVE TIMESTAMPING IN DATABASES 1307

Figure 13 shows the relative cost of executing the transactions and revisiting
the modified tuples for eager revisitation. For small transaction sizes (m ≤ 10),
the revisiting step accounts for 33% to 58% of the total elapsed-time. For larger
transaction sizes, the revisiting cost stabilizes at approximately 20% of the total
elapsed-time. We have measured the elapsed-time for transaction sizes of up to
1000 modifications. The study shows the revisiting cost to converge towards 17%
of the elapsed time.

Figure 13: Relative Cost of Transaction Execution Versus Revisiting Using Eager
Revisitation

For larger transaction sizes, the overhead of revisiting is very stable because
approximately half the tuples to revisit are clustered at the end of the table (the table
is stored in transaction-time start order). The other half of tuples to revisit can be
found very efficiently using the index on theTIDS attribute. The revisiting step is
relatively more expensive at smaller transaction sizes because the same number of
tuples modified during the actual modification must be revisited, and the clustering
of half of the tuples to revisit provides no substantial benefits because only very few
tuples are involved.

We now turn to lazy revisitation. Figure 14 shows the relative costs of transac-
tion execution, saving the commit time, and revisiting the modified tuples. We use
an inter-visitation interval of five (n=5). Experiments usingn=1,n=10, andn=100
(and otherwise identical) showed the same behavior as that reported in Figure 14.

The revisit step in Figure 13 is to be compared with the combination of the
save and revisit steps in Figure 14. The total cost of these latter two for the lazy

1308 IMPLEMENTATION TECHNIQUES

approach is relatively higher than the revisit step for the eager approach because the
lazy approaches perform the same tasks as the eager approach, but have extra ad-
ministration costs for timestamping and use separate transactions for the revisiting.

Figure 14: Relative Cost of Transaction Execution Versus Revisiting Using Lazy
Revisitation,n=5

Figure 14 also shows this administrative cost becomes relatively lower for
larger transactions. This is because the save step only stores the TID and timestamp
of the transaction, and then commits. The size of this step is independent of the
transaction size, making the elapsed time for this step only vary little in absolute
numbers.

The relative cost of the revisiting step is constant, at approximately 17%, for
various transaction sizes. Although not clear from Figure 14 alone, this indicates
that the cost of revisiting grows linearly with the transaction size. The revisiting
consists of two parts: (a) timestamping new tuples inserted at the end of the table
and (b) timestamping modified tuples that were already present in the table. The
first part is nearly independent of the transaction size (or, equivalently, the number
of tuples to revisit) because the tuples are clustered on a few disk pages. The cost of
the second part grows linearly with the transaction size. The linear growth occurs
because the index on theTIDS attribute is used to locate the modified tuples. When
the tuples are spread evenly over the table, the timestamping of each tuple will
consist of an index look-up and the assignment of the permanent timestamp.

Figure 14 indicates that the relative cost of transaction execution versus the
revisiting using lazy revisitation is largely independent of the inter-visitation inter-

EFFECTIVE TIMESTAMPING IN DATABASES 1309

val (n) and the transaction sizes (m). That is, for varyingm, n, andm · n, there is
a relatively fixed overhead for revisiting tuples. Thus if we can postpone the revis-
iting step of transactions, e.g., to do it once per night, the number of transactions
executed per time unit can be increased by approximately 17% for lazy revisitation.
In absolute numbers, this will make lazy revisitation more efficient than eager revis-
itation, as shown in Figure 15. This figure shows the elapsed-time per modification
for eager and lazy revisitation without the revisiting cost. Because the revisiting
cost is not included, the time to execute a transaction of sizem is independent of
n for the lazy approach. This is the reason why the lazy revisitation curves are are
almost identical.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

E
la

ps
ed

 T
im

e
(m

ill
is

ec
on

ds
)

Transaction Size (m)

lazy n = 1
lazy n = 2
lazy n = 5

lazy n = 10
lazy n = 50

eager

Figure 15: Elapsed Time Per Modification for the Eager and Lazy Approaches
Without Revisiting

9 Related Work

Timestamping after commit of time-varying data in local and distributed environ-
ments was previously studied by Salzberg [19]. As outlined in Section 4, the present
paper extends and refines that study in several respects. While Salzberg is con-
cerned with timestamping the transaction-time dimension, this paper considers also
valid time and transaction and valid time together. In Salzberg’s study, timeslice
queries are considered; this paper proceeds to consider general queries in a tempo-
ral SQL. Finally, Salzberg assumes an integrated DBMS architecture, which may
may be extended to incorporate a new recovery algorithm and as well as multi-
dimensional temporal indexes; in contrast, this paper describes how timestamping

1310 IMPLEMENTATION TECHNIQUES

after commit may be achieved in a layer, without necessitating any changes to the
underlying DBMS.

Finger and McBrien [10] studied timestamping, including the use of the valid-
time variablenow. They take into consideration that the actual execution of a trans-
action has a duration in time, and they argue that the value fornowshould remain
constant within a transaction. However, they rule out using the commit time for
timestamping the valid-time dimension and instead suggest using the start time or
the time of the first update fornow. They showed that using the start time can lead
to now appearing to be moving backwards in time and—in the case of using the
time of the first update—that the serialization of transactions can be violated. They
suggest ignoring the problem of time moving backwards or making transactions
serializable on their start-times. This paper takes the opposite approach, ruling out
using any value fornowother than the commit time. We show first that the prob-
lem of now moving backwards cannot be ignored because it may also violate the
isolation principle. Second, we argue that transaction executions cannot be serial-
izable in the order of their start times, if concurrency is allowed. Finally, we show
that using the commit time, can solve the two problems identified by Finger and
McBrien.

An alternative to a stratum approach to building a temporal DBMS is the in-
tegrated architecture where the DBMS is built from scratch and the implementation
incorporates temporal support. The Postgres DBMS [23, 24] is the best-known sys-
tem with an integrated architecture. Postgres supports transaction time only and
uses timestamping after commit. Commit times of transactions are stored in a spe-
cial Time table. To associate transactions-ids and timestamps with tuples, Postgres
adds eight extra attributes to each table. To support both valid time and transac-
tion time, we add five attributes. There is no discussion of temporary values of the
timestamp attributes in Postgres. The transaction-time values are left unassigned
when a tuple is stored in the database [23]. With respect to revisiting tuples for
applying the permanent timestamps, Postgres uses either the “never” or the lazy ap-
proach. The integrated architecture of Postgres also permits experimentation with
(asynchronous) low-system-usage approach to revisiting tuples [23].

10 Summary and Research Directions

This paper provides a comprehensive approach to timestamping in temporal databa-
ses with transaction support as well as support for both the valid-time and transac-
tion-time dimensions.

We show that the straightforward approach to timestamping modifications
may lead to violations of the consistency and isolation properties of transactions. To
avoid these violations, we formulate a set of requirements for timestamping data-

EFFECTIVE TIMESTAMPING IN DATABASES 1311

base modifications. The most important requirements being to preserve of the ACID
properties of transaction and to retain a non-reduced level of interleaved transaction
execution. The requirements are independent of the underlying temporal database
architecture.

For the transaction-time dimension, we use timestamping after commit with
revisitation, where permanent timestamps are assigned to the results of the modi-
fications in a transaction only after all statements in the transaction are exhausted
and the transaction is ready to commit. The paper provides the details necessary
for implementing this timestamping approach in a stratum architecture, where an
temporal database management system (DBMS) is built via a layer on top of an
existing DBMS. In particular, the paper investigates a spectrum of revisiting strate-
gies, ranging from eager to lazy.

The paper also considers the timestamping of the valid-time dimension. In
contrast to previous work, the paper illustrates that the default timestamp values for
the valid-time dimension must be identical to values used for the transaction-time
dimension, i.e., timestamping after commit must also be used for valid time. This
use of timestamping after commit causes problems for the valid-time dimension
because of the notion ofnow(the current time) and because users may supply valid
times in the future. It is shown that when using the default value for valid-time,
isolation level SERIALIZABLE can be obtained; however, for used-supplied valid
times in the future, only read-level consistency can be archived.

A performance study demonstrated that for transactions containing few mod-
ifications, eager revisitation is the most cost-efficient. For transactions containing
more than ten modifications, the eager and lazy approaches are almost equally effi-
cient.

Overall, we have shown how to provide users with simple, consistent, and
efficient support for modifying bitemporal databases in the context of user trans-
actions. This can done while fulfilling our requirements, perhaps most notably
without lowering the level of concurrency of transactions and without violating the
ACID properties.

An interesting topic for future research is the use of more advanced revisi-
tation approaches, e.g., low-system-usage revisitation, in an integrated DBMS ar-
chitecture. Also the partitioning of the temporal tables, e.g., into old, current, and
future data is a topic of future research; partitioning may speed up the revisiting and
should be investigated.

References

[1] J. Bair, M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass.Notions of Up-
ward Compatibility of Temporal Query Languages. Business Informatics
(Wirtschaftsinformatik), 39(1):25–34, February 1997.

1312 IMPLEMENTATION TECHNIQUES

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and
Recovery in Database Systems. Addison-Wesley Publishing Company, 1987.

[3] M. H. Böhlen and C. S. Jensen.A Seamless Integration of Time into SQL.
Technical Report R-96–2049, Aalborg University, Denmark, 1996.

[4] C. J. Bontempo and C. M. Saracco.Database Management Principles and
Products. Prentice Hall, 1995.

[5] J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen and R. T. Snodgrass.
On the Semantics of ‘Now’ in Databases. ACM Transactions on Database
Systems, 22(2):171–214, June 1997.

[6] P. Corrigan and M. Gurry.Oracle Performance Tuning. O’Reilly & Asso-
ciates, 1993.

[7] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future. In [11],
Chapter 4, pp. 269–315, 1993.

[8] O. Etzion, S. Jajodia, and S. Sripada [eds].Temporal Databases: Research
and Pratice. LNCS 1399, Springer Verlag, 1998.

[9] S. Feuerstein.Oracle PL/SQL Programming. O’Reilly & Associates, Inc.,
1995.

[10] M. Finger and P. McBrien.On the Semantics of ’Current-Time’ in Temporal
Databases. In 11th Brazilian Symposium on Databases, pp. 324–337, 1996.

[11] J. Gray [ed].The Benchmark Handbook for Database and Transaction Pro-
cessing Systems. Morgan Kaufmann Publishers, 1993.

[12] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993.

[13] C. S. Jensen and C. E. Dyreson [eds].The Consensus Glossary of Temporal
Database Concepts. In [8], pp. 367–405, 1998.

[14] J. Melton.Database Language—SQL, ANSI X3.135-1992, 1992.

[15] J. Melton and A. R. Simon.Understanding the New SQL: A Complete Guide.
Morgan Kaufmann Publishers, 1993.

[16] G. Özsoyǒglu and R. T. Snodgrass.Temporal and Real-Time Databases: A
Survey. IEEE Transaction on Knowledge and Data Engineering, 7(4):513–
532, August 1995.

[17] F. Raab.Overview of the TPC Benchmark C: A Complex OLTP Benchmark.
In [11] Chapter 3, pp. 131–267, 1993.

[18] M. T. Roth and P. M. Schwarz.Don’t Scrap it, Wrap It! A Wrapper Archi-
tecture for Legacy Data Sources. In Proceedings of the VLDB Conference,
Athens, Greece, pp. 265–275, August 1997.

EFFECTIVE TIMESTAMPING IN DATABASES 1313

[19] B. Salzberg.Timestamping After Commit. In Proceedings of the Conference
on Parallel and Distributed Information Systems, pp. 160–167, 1994.

[20] R. T. Snodgrass.The Temporal Query Language TQuel. ACM Transaction on
Database Systems, 12(2):247–298, June 1987.

[21] R. T. Snodgrass [ed].The TSQL2 Temporal Query Language. Kluwer Aca-
demic Publishers, 1995.

[22] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen and A. Steiner.Adding Valid
Time to SQL/Temporal. ANSI X3H2-96-501r2, ISO/IEC JTC 1/SC 21/WG 3
DBL-MAD-146r2, November 1996.

[23] M. Stonebraker.The Design of the Postgres Storage System. In Proceedings
of VLDB Conference, pp. 289–300, 1987.

[24] M. Stonebraker, L. A. Rowe, and M. Hirohama.The Implementation of Post-
gres. IEEE Transaction on Knowledge and Data Engineering, 2(1):125–142,
March 1990.

[25] K. Torp, C. S. Jensen, and M. Böhlen.Layered Implementation of Tempo-
ral DBMSs—Concepts and Techniques. Proceeding of the Fifth International
Conference On Database Systems for Advanced Applications, pp. 371–380,
1997.

[26] K. Torp, C. S. Jensen, and R. T. Snodgrass.Stratum Approaches To Temporal
Database Implementation. Proceeding of the International Database Engi-
neering & Application Symposium, pp. 4–13, 1998.

[27] G. Wiederhold.Mediators in the Architecture of Future Information Systems.
IEEE Computer 25(3):38–49, March 1992.

[28] G. Wiederhold.Mediation in Information Systems. ACM Computing Surveys
27(2):265–267, June 1995.

[29] Y. Wu, S. Jajodia, and X. S. Wang.Temporal Database Bibliography Update
In [8], pp. 338–366, 1998.

