
4
On the Semantics of “Now” in Databases

J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen,
and R. T. Snodgrass

While “now” is expressed in SQL asCURRENT_TIMESTAMPwithin queries,
this value cannot be stored in the database. However, this notion of an ever-
increasing current-time value has been reflected in some temporal data mod-
els by inclusion of database-resident variables, such as “now,” “ until-changed,”
“∞,” “@” and “–.” Time variables are very desirable, but their use also leads
to a new type of database, consisting of tuples with variables, termed avariable
database.

This paper proposes a framework for defining the semantics of the vari-
able databases of the relational and temporal relational data models. A frame-
work is presented because several reasonable meanings may be given to data-
bases that use some of the specific temporal variables that have appeared in
the literature. Using the framework, the paper defines a useful semantics for
such databases. Because situations occur where the existing time variables are
inadequate, two new types of modeling entities that address these shortcom-
ings, timestamps which we callnow-relativeandnow-relative indeterminate,
are introduced and defined within the framework. Moreover, the paper pro-
vides a foundation, using algebraicbind operators, for the querying of variable
databases via existing query languages. This transition to variable databases
presented here requires minimal change to the query processor. Finally, to un-
derline the practical feasibility of variable databases, we show that database
variables can be precisely specified and efficiently implemented in conven-
tional query languages, such as SQL, and in temporal query languages, such
as TSQL2.

117

118 SEMANTICS OF TEMPORAL DATA

1 Introduction

Now is a noun in the English language that means “at the present time” [48]. A
variable with this name has also been used extensively in temporal relational data
model proposals, primarily as a timestamp value associated with tuples or attribute
values in temporal relations. Yet, the precise semantics of databases with this and
other current-time variables have never been fully specified. An important goal of
this paper is to give a clear semantics for databases with current-time variables.

Time variables such asnoware of interest and indeed are quite useful in data-
bases, including conventional SQL databases, that record time-varying information,
the validity of which often depends on the current-time value. Such databases may
be found in many application areas, such as banking, inventory management, and
medical and personnel records. For example, in a banking application, it is ne-
cessary to record when account balances for customers are valid. Specifically, if
a customer opens an account and deposits US$ 200 on January 15 (in some year),
the validity of that balance starts when the deposit is made and extends until the
current time, assuming no update transactions are committed. Thus, on January 16,
the balance is valid from January 15 until January 16; on January 17, the balance is
valid from January 15 until January 17, etc. It is impractical to update the database
each day (or millisecond) to correctly reflect the valid time of the balance. Rather, it
would be quite useful to be able to store a variable, such asnow, to indicate that the
time when a balance is valid depends on the current time. In the example, it would
be recorded on January 15 that the customer’s balance of US$ 200 is valid from Jan-
uary 15 throughnow. While SQL–92 [38] has a constructCURRENT_TIMESTAMP
(as well asCURRENT_DATEandCURRENT_TIME) for use in queries, one cannot
store such a value in a column of an SQL table. All major commercial DBMSs have
similar constructs, and impose this same restriction. The user is forced instead to
store a specific time, which is cumbersome and inaccurate. This paper shows how
database variables such asCURRENT_TIMESTAMPcan be precisely specified and
efficiently implemented in conventional query languages such as SQL-92 and in
temporal query languages, while having little impact on the underlying data model.

We knew of no work on storingnow in conventional databases, so we turned
to the literature on temporal databases. In examining the large body of existing
temporal data models, it is apparent that two differenttypesof models have been
proposed. The first type of model essentially accords with the view expressed by
Reiter that a relational database can be seen as a set of ground first-order formulæ,
for which there is a minimal model [41]. These models have either been presented
as logical models directly (e.g., [14], [9]), or have been presented in such a way that
their logical model was clear (e.g., [15]).

The second type of model deviates from this tradition. Rather, these models
have been presented as a set of formulæ some of which are ground, but others of

ON THE SEMANTICS OF “NOW” IN DATABASES 119

which have included one or more free, current-time variables. Chief among these
current-time variables is “now” (e.g., [8, 25, 13]), but a variety of other symbols
have been used, including “–” [4], “∞” [44], “@” [37], and “until-changed” [52].
As already mentioned and exemplified, the use of such variables is quite convenient
and practical. Thus, these approaches have advantages at the implementation level,
namely, they are space efficient and avoid the need for updates at every moment in
time. However, nowhere have we found a clear exposition of temporal variables,
i.e., nowhere has the semantics of this type of database—a database with current-
time variables, here termed avariable database—been formally specified so that the
logical model represented by the database is clear. Rather, the models have relied
on the choice of intuitive names for the variables to convey their meaning. This has
led many to suppose that they understood their semantics. However, this reliance
on intuition and lack of a clear semantics for databases with current-time variables
is an unsatisfactory foundation for the development and implementation of variable
databases, as it is prone to ambiguities and misinterpretations and, therefore, to
errors.

In this paper, we present a framework for the specification of the different se-
mantics that may be given to variable databases, which builds on the approach intro-
duced in [12]. In the framework, the semantics of a variable database is defined by
means of anextensionalization mappingfrom a variable database to a fully ground
data model. The actual extensionalization mappings for valid-time, transaction-
time and bitemporal databases with one or more current-time variables are given
in subsequent sections. This illustrates that the framework is general enough to al-
low for the specification of a wide variety of semantics, an important property of
a framework. It also illustrates that the framework can capture the semantics of
multidimensional databases in a straightforward manner: the multidimensional ex-
tensionalization mapping is obtained by a simple, but coordinated, combination of
the mappings for the constituent one-dimensional databases.

We also observe that the modeling capabilities of current-time variables are
limited. To overcome these limitations, two new modeling entities,now-relative
andnow-relative indeterminatetimestamps are introduced and defined within the
framework. Next, a mechanism for the querying of variable databases using existing
query languages is provided. This mechanism provides added functionality, does
not require changes to a query language, and is easily integrated into a query pro-
cessor. It is observed that the incorporation of the notion of perspective into query
languages may provide additional functionality when querying variable databases.
Finally, to underline the practicality of a variable database, compact physical rep-
resentations for timestamps involving current-time variables are provided. These
formats can be efficiently manipulated during query processing.

120 SEMANTICS OF TEMPORAL DATA

2 Motivation

To motivate the need for current-time variables in databases with time-varying data,
including a solid, formal foundation for their use, this section introduces the use of
such variables and explores some of the perhaps unintuitive, semantic subtleties
resulting from their incorporation. Further, this section explores the limitations of
current-time variables in some realistic situations.

As the meaning of current-time variables depends on whether the context is
valid time or transaction time, current-time variables in valid-time and transaction-
time databases are considered in isolation, followed by a short discussion of current-
time variables in bitemporal databases.

2.1 Storing Valid-time Variables in Databases

The valid timeof a fact denotes the time(s) when the fact is true in the modeled
reality [33, 47, 32]. In the valid-time dimension, a timestamp involvingnow is
commonly used to indicate that a fact is currently valid [2, 3, 22, 25, 40, 43, 49, 53].

It is possible to explicitly record when facts are valid in both conventional
SQL databases and in truly temporal, e.g., TSQL2 [46], databases. With SQL data-
bases, the semantics of valid time must be implemented in the application programs,
while in temporal databases, the semantics are built directly into the data model and
query language. The discussion of valid time that follows is phrased in terms of
temporal databases, but applies equally well to conventional databases.

As an example, suppose that a database records that Jane was on the faculty
of “State University” in some particular year, e.g., 1995; which year is not rele-
vant here. Figure 1(a) shows the relevant tuple from the University’s employment
database (theFACULTY valid-time relation). Jane started working as an Assistant
Professor on June 1, as indicated by the “from” attribute. The valuenow, appear-
ing as the “to” time in Jane’s employment tuple, represents the (later) time when
Jane will stop working for State University as an Assistant Professor. Together,
the “to” and “from” attributes encode the valid time associated with the tuple. For
simplicity, we assume a timestamp granularity of one day in all examples.

The informal meaning of this tuple is that Jane is a faculty member from
June 1 until the current time. Thus, the result of a query that requests the current
faculty members will include Jane. As the current time inexorably advances, the
value ofnowalso changes to reflect the new current time. Some authors have called
this concept “until changed” [52] or “@” [37] instead of “now,” but the meaning is
the same.

Using the variablenow in a timestamp is very convenient. To see why, sup-
pose that instead of using the variable as the “to” time, we use a ground time, i.e., a
particular date. We start by recording a “to” time of June 1. Then as time advances

ON THE SEMANTICS OF “NOW” IN DATABASES 121

FACULTY
VALID TIME

NAME RANK (from) (to)

(a) Jane Assistant June 1 now

(b) Jane Assistant June 1 forever

(c) Jane Assistant June 1 July 6
Jane possibly employed as an AssistantJuly 6 now

Figure 1: Describing Jane’s employment

and Jane remains an Assistant Professor, the “to” time on Jane’s tuple must be up-
dated each day to record when she worked. Hence, the “to” time would be updated
to June 2, then to June 3, etc. While this representation is faithful to our knowledge
at any point in time, having to continuously update the “to” time as time advances
is impractical. It is also unclear who should do the updating, as the database has no
indication of which tuples have a continuously increasing valid time and which are
stable. For these reasons, it is better to use the variablenow.

2.2 Anomalies of Existing Approaches

Here we explore four situations that illustrate shortcomings of a single variable
nowand thus indicate a need for additional current-time modeling entities, which
we introduce in Section 4.

The Pessimistic and Optimistic Assumptions

While usingnow is convenient, using it as the “to” time of a tuple may lead to an
overly pessimistic assumption about the modeled reality. The university applica-
tion introduced in the previous section provides such a situation. Specifically, it is
reasonable to expect that if an employee is employed in a certain position today,
that employee will also be employed in that position tomorrow (and the next few,
following days). However, theFACULTY relation given in Figure 1(a) specifically
records that Jane willnotbe employed tomorrow. Assume that today is July 9. Then
a query asking who will be employed tomorrow (i.e., July 10) will not have Jane in
the answer, since the “to” time of Jane’s tuple isnow, or in this case, July 9. This is
overly pessimistic.

Some temporal data models avoid this problem by limiting valid time to the
past, that is, “to” times beforenow [25, 49]. For many applications, e.g., the uni-

122 SEMANTICS OF TEMPORAL DATA

versity application, this limitation is much too restrictive. Other data models have
advocated using one of the special (non-variable) valid-time values, such asforever,
∞, or “–” [44, 45, 4, 51]) instead ofnow. These symbols (we will useforever) de-
note the largest representable timestamp value, that is, the one furthest in the future.
In SQL and in IBM’s DB2,foreveris about 8,000 years from the present [38, 16];
in our more liberal proposal, it is approximately 18 billion years from the present
time [18].

By using a “to” time offorever, as in Figure 1(b), we certainly avoid the pes-
simistic assumption, but we are now being overly optimistic. We have indicated that
Jane will be employed as an Assistant Professor not only tomorrow, butforever. To
assert that Jane will be employed as an Assistant Professor forever is most assuredly
incorrect (others have also noted that a “to” time of∞, or forever, has erroneous
implications for the future [40]). Another indication thatforever is inappropriate
is that when Jane departs the University,forevermust be replaced by the date of
her departure; but the revised date will be a separate and much earlier time that is
inconsistent withforever. Rather than having the new informationrefine the old
information, the new information contradicts the old information. Using, instead of
forever, some large, application-dependent time value earlier thanforever(e.g., in
the university application, the mandatory retirement date) is better than the generic
forever, but is still overly optimistic. In Section 4.4, we introduce a new type of
timestamp that meets these requirements.

The Punctuality Assumption

The use ofnow in timestamps implies a strong assumption about the punctuality
of updates. For example, the tuple in Figure 1(a) states that Jane will remain an
Assistant Professor until the current time. The correctness of this tuple is dependent
on the correctness of the assumption that updates are made ahead of time, i.e.,
predictively. Thus, changes in Jane’s employment status and rank are assumed to
conform with the punctuality assumption: “changes are recorded in the database no
later than the instant they take effect.”

This assumption is not often satisfied. Rather, information is often recorded
after the time it became valid, but with a well-specified maximum delay [31]. For
example, when employees change status, it may be that the database is guaranteed
to be updated to reflect this at most three days after the status is changed. If Jane
was promoted on July 8, perhaps it is not until July 11 that her tuple is actually
updated to reflect her correct status. With this delay, the database is known to
correctly describe the mini-world only in the past, up until three days ago. Within
the last three days, it can only be concluded that it is likely, or possible, that Jane
is employed as an Assistant Professor. In this case, one could interpret the meaning
of Jane’s tuple in Figure 1(a) as of today (July 9) as shown in Figure 1(c) that

ON THE SEMANTICS OF “NOW” IN DATABASES 123

intuitively illustrates the “possible” type of information that we would like to be
able to record because it more accurately describes our knowledge of the mini-
world. This cannot conveniently be recorded usingnow. Sections 4.2 through 4.4
describe a new kind of timestamp that can be used to address these issues.

The Problem ofNow in Predictive Updates

Another problem with using the variablenow as a “to” time in a tuple occurs in
predictive updates where the “from” time is after the current time. Thus, the “to”
time is before the “from” time, contradicting the intuition that the “from” should
always be before the “to” time. To illustrate this use ofnow, assume that the tuple
in Figure 1(a) was inserted on May 25, i.e., the fact was recorded prior to when Jane
began work. Then, during the remainder of May, the “to” time is before the “from”
time.

Some data models do not allow the use ofnowas a “to” time when its value
is before the “from” time. Instead a special “to” time value of NULL is used in
such situations [22, 40, 53]. This value is replaced bynowwhen the value ofnow
exceeds the “from” time. Tuples with NULL’s are ignored in queries. However,
there is a subtle difficulty with this solution. Suppose that today is May 25 and we
record that Jane will be an Assistant Professor from June 1 untilnow (or NULL
in this case). We then execute a query that determines who will be employed in
June barring any changes to the database between now and June. To evaluate this
query, we temporarily “observe” the database from the perspective of a user in June
even though today is May 25. The result should include Jane; however, Jane’s tuple
is ignored since it has a “to” time of NULL. In Section 4.4 we introduce a new
modeling entity that addresses this shortcoming.

Queries andNow

When querying data that involvesnow, the current time must be clearly specified
since the value ofnow depends on this time. To illustrate the kind of ambiguity
that can result from unclear specification of the current time, assume that today is
July 9 and that our database is given as in Figure 1(a). Then, consider the query,
“Will we agree on July 13 that Jane was employed on July 11?” Suppose thatnow
is interpreted to refer to the time at which the query is asked, in this case July 9.
Then Jane will not be employed on July 11 and so we would answer “no.” Butnow
could be interpreted as the time mentioned in the query about which we were asked
to agree, in this case July 13. Then Jane will be employed on July 11 and so we
would answer “yes.”

Another source of ambiguity is that the constant evolution of the current-time
variablenow appears to cause the “same” query to return different results when

124 SEMANTICS OF TEMPORAL DATA

evaluated at different times, even if no updates have occurred. For instance, con-
sider the query, “Is Jane employed on July 11?” This simple query asked on July 10
will yield one answer (“no”), but if we ask the query on July 12 we will receive a
quite different answer (“yes”). Hence, the querying of variable databases introduces
new semantic subtleties, not found when querying non-variable databases.

2.3 Storing Transaction-time Variables in Databases

The transaction timeof a database fact denotes the time(s) when the fact is (logi-
cally) current in the database [47]. It is an orthogonal concept to valid time, in that it
concerns the evolution of the database, as opposed to the enterprise being modeled.
The use of current-time relative variables in transaction-time databases introduces
a different set of problems.

While a valid-time timestamp is generally supplied by the user, a transaction-
time timestamp, an interval from a “start” to a “stop” time, is supplied automatically
by the DBMS during updates. Insertions initialize the “start” time to the “current
time” and the “stop” time tonow1. Deletions are accommodated by changing “stop”
times ofnow to the “current time.” Hence, deletion is logical. The information is
not physically removed from the relation; rather, it is tagged as no longer current by
having a “stop” time different fromnow. Updates may be considered combinations
of deletions and insertions.

As an example, consider the transaction-time relation in Figure 2(a). The
distinct semantics of transaction time yields a different interpretation of this relation
as compared with the one shown in Figure 1(a). The “start” time of June 1 indicates
that this tuple was stored in the database on June 1, i.e., we first became aware
that Jane was an Assistant Professor on that date. The value ofnow for the “stop”
attribute indicates that the database still records that Jane is an Assistant Professor,
i.e., the fact is current. If we learn on July 10 that Jane left State University and thus
(logically) delete the fact, this is reflected by changing the “stop” time to July 10.

FACULTY
TRANS TIME

NAME RANK (start) (stop)

(a) Jane Assistant June 1 now

(b) Jane Assistant June 1 forever

Figure 2: Describing Jane’s employment in a transaction-time relation

1The transaction processing system must also obey the requirement that the “start” times of tuples be
consistent with a serialization order of their respective transactions.

ON THE SEMANTICS OF “NOW” IN DATABASES 125

The problem with using a variable callednow in transaction time is that the
name “now” obscures the use of the variable. Strictly speaking, it implies that every
current tuple was deleted by the current transaction! In Figure 2(a), if the current
time is July 9, then a strict interpretation of a “stop” time ofnowsuggests that the
“stop” time is July 9. This is not what was intended.

As with valid time, some data models address this problem by usingforever
(also called∞ or “–”) instead ofnow, as shown in Figure 2(b) [4, 5, 44, 51]. Using
this large value, we immediately encounter difficulties. The strict interpretation of
this tuple is that some transaction executing a (very) long time in the future will
logically delete this tuple from the relation. In the meantime, it will remain in the
database. If, on July 10, it becomes known that Jane has left State University, then
we logically delete this tuple by changing the “stop” time to July 10. Such a change
is inconsistent with the previous “stop” time. Put differently, in this scenario the
database first records that we believe that Jane is an Assistant Professor from June 1
until “forever.” The subsequent update then contradicts this belief by saying that it
is only from June 1 until July 10 that we believe Jane is an Assistant Professor.

There is a more fundamental problem withforever in transaction time. By
the semantics of transaction time, storing future transaction times is equivalent to
predicting future states of the database, which is a highly problematic proposition.
With no crystal ball at hand, it is customary to avoid predictions and require that the
right endpoint of every interval be less than or equal to the current time. To distin-
guish “now” in transaction time from “now” in valid-time, we propose in this paper
to adopt the name “until changed” for the former and provide a precise semantics
for its interpretation.

2.4 Variables in Bitemporal Databases

Bitemporal databases support both valid time and transaction time [33]. The con-
fusion that has arisen in a number of bitemporal data models between the use of the
same variable in both dimensions was a prime motivation for the semantic frame-
work which we present below. In order to allow for a completely general treatment
of the semantics of these variables, we use a different variable in each dimension.
In Section 6 we show how the concept of areference timecan coordinate the inter-
action between the current-time variables in both time dimensions.

3 Semantic Framework

In order to provide a precise semantics for databases with current-time variables, we
propose a semantic framework for defining the meaning of databases with variables
in terms of databases of a fully extensional temporal data model. Databases in this
latter model are fully ground, i.e., they do not admit variables. While the model

126 SEMANTICS OF TEMPORAL DATA

is not suitable for the implementation of temporal databases, it is well suited for
capturing the semantics of variable databases.

3.1 The Temporal Universe

The framework developed below includes three distinct time dimensions, each with
its own temporal universe. The framework requires the existence of well-defined
mappings between these universes. Although this requirement does not preclude
the possibility of different granularities for the universes, we choose to avoid such
diversions and instead use a single, underlying granularity. This yields a homoge-
neous treatment of all time dimensions and their relationships.

Since most database researchers have adopted the view that valid time in a
database is best viewed as discrete, and every database transaction model that we
are aware of has this property, we adopt a discrete model of time. LetTZ to be the
totally ordered set{. . . ,−2,−1, 0,+1,+2, . . .}∪{⊥,>}, where⊥ (bottom) and>
(top) are two distinguished elements, which intuitively correspond to−∞ and∞,
respectively. The total order<TZ onTZ is the normal order on integers extended so
that⊥ and and> are a bottom and a top element, respectively, i.e.,

1. for any two integersz andz′, z <TZ z
′ if z < z′ (as integers);and

2. ∀t ∈ TZ (⊥ ≤TZ t ≤TZ >).
The only requirement on our temporal universe,T , is that it has the same order
structure asTZ. That is,T can be any ordered set of order type 1+ ∗ω + ω + 1
([24], p. 128). For example, in most of the examples in this article we choseT to be
the ordered set of days, extended infinitely into the past and the future, with added
elements−∞ and∞.

In addition to the concepts of valid time and transaction time, we introduce a
third time,reference time, to represent the relationship between a temporal database
and the “real world” time at which it is viewed. Thus, three temporal universes
are required in the framework, namely thereference-time, thevalid-time, and the
transaction-time universe, and it may be desirable or convenient to restrict them to
some subset ofT . Therefore, let

• TRT ⊆ T denote thereference-time universeof our database,

• TV T ⊆ T denote thevalid-time universeof our database, and

• TT T ⊆ T denote itstransaction-time universe.

3.2 Important Times

Throughout our discussion of variable databases and queries on these databases,
five distinct times surface repeatedly. The first of these is calledinitiation. It is
relative to a specific relation and denotes the transaction time when that relation

ON THE SEMANTICS OF “NOW” IN DATABASES 127

was created. To simplify the discussion that follows, we assume that all relations
are created at the same time, denoted byt0. Once created, we assume that the
database schema never changes (schema versioning [42] is orthogonal to most of
the issues discussed in this paper).

The second important time, which is new to most readers, is thereference
time. The reference time is the time of the database observer’s “frame of reference,”
denoted byrt∗. Reference time is a term analogous to theindicesor “points of
reference” in intensional logic [39], and discussed more recently in the context of
valid-time databases [23]. The reference time facilitates a kind of “time travel” by
means of which we may observe the database at times other than the present.

A related time is thequery time, or current transaction time, denoted by
tcurrent . It is the time at which a query is processed. The reference time,rt∗,
and current time,tcurrent , are related, but distinct. In general,tcurrent is the time
at which a query is initiated, whilert∗ is the time at which the user “observes” the
database. In many queries, the reference time and the query time are the same. But
the user may choose to observe the database from a previous perspective; for this
kind of query, the reference time is earlier than the query time. For example, if
today is July 9 and we wish to observe the database from the perspective of a week
ago, thentcurrent = July 9, andrt∗ = July 2.

The final two times of special interest are thevalid timeslice time, vt∗, and
thetransaction timeslice time, t t∗. These times are important in this paper because,
for expository purposes, we focus exclusively on various timeslice queries. The
valid and transaction timeslice times could both be an instant, an interval, or a set
of instants or intervals. The valid timeslice time(s) specifies the real-world time
about which information is wanted, while the transaction timeslice time(s) is the
time(s) during which information must be current in the database in order to be of
interest for a query. For the example queries given in this paper, it is advantageous
to choose instants (as opposed to intervals) as the valid timeslice and transaction
timeslice times. Later, we shall see that, while these times are distinct concepts,
there are important relationships between the valid timeslice time, the transaction
timeslice time, and the reference time.

To illustrate the distinction among these five times, let us consider an example.
A temporal database for recording employment information is created on January
11 (again, the particular year is immaterial). Today (which we assume is July 9), the
director of the personnel department investigates an apparent discrepancy reported
by a co-worker a week earlier, while using the database on July 2. The co-worker
discovered that the database had mistakenly recorded on June 27 that an employee
had been hired two weeks earlier, on June 13. The five times in this example are as
follows.

1. t0 is January 11, the day of the creation of the database;

128 SEMANTICS OF TEMPORAL DATA

2. rt∗ is July 2, the day when the problem was observed;

3. tcurrent is July 9, the day the personnel department director investigates the
database;

4. vt∗ is June 13, the real-world day of the problematic information; and

5. t t∗ is June 27; this is the day for which we are interested in what was recorded
as current information in the database.

By using a reference time of July 2, the director can view the identical database state
in existence when the co-worker discovered the discrepancy. If a reference time of
June 20 had been used instead, it is possible that no discrepancy would have been
found, because that date was well beforet t∗. Although purposely contrived, this
example highlights the differences among the five times. Having made this point,
this example will not be used in the remainder of this article.

We have the following constraints on these five times.

• ⊥≤ t0 ≤ t t∗ ≤ tcurrent ≤ >
• ⊥≤ rt∗ ≤ >
• ⊥≤ vt∗ ≤ >

Note thatrt∗ is not bound bytcurrent. This provides the ability to ask “hypothetical
now” queries, that is, from the perspective of a future valid time (i.e., ten years from
now). Such an example is given later in Section 6.2.

3.3 Extensional and Variable Database Levels

It is useful to view the semantics of temporal databases with variables within the
context of a two-level framework. This section develops such a framework in two
steps, by first presenting the levels of a theoretical framework. Then this framework
is augmented, motivated by the practical concerns of easily extending existing data
models to admit databases with variables, such asnow, with minimal impact on
existing query languages and query processing engines.

A relational database consists of a set of relations, where each relation is a
set of tuples. Each tuple in a relation has a number of application-specific attribute
values. Temporal databases extend this view by incorporating the temporal aspects
of data using special attributes, termed timestamps. These are explored further next.

In our model of time from the previous section,time instants(or just instants
for short) are points in time andintervalsare sequences of temporally consecutive
points. (Indeed, when time is discrete, intervals are merely shorthand for a finite,
or countably infinite, set of instants.) Intervals may be uniquely described by two
bounding instants, termed thestartingandterminatinginstants.

Each of the valid and transaction times of data may be recorded by associating
a single time interval or a single instant with each tuple. Interval timestamps are

ON THE SEMANTICS OF “NOW” IN DATABASES 129

very convenient at the conceptual and implementation levels, as they are compact
and can represent information about a potentially large number of times in a single
tuple. Thus, following a range of temporal data models, we will assume interval
timestamps at the variable database level.

We employ specific names for the timestamp attributes that encode the time
intervals of tuples. For valid-time intervals, the starting instant is recorded by an
attribute “from” and the terminating instant is recorded by an attribute “to”; see
Figure 1 for an example. For transaction-time intervals, we use “start” and “stop,”
as in Figure 2. In a variable database, the values of the timestamp attributes in any
tuple are extended to permit instances of one or more current-time variables, as
discussed earlier. Figure 1(a) gives a simple variable database with only one tuple.

Moving to the extensional level, tuples also have timestamp attributes. How-
ever, there are three key differences. First, no variables are allowed—the exten-
sional level is fully ground. Second, timestamps are instants rather than intervals.
Third, an extensional tuple has one additional temporal attribute, called areference
time attribute. Later in this paper we describe the importance of reference time to
the meaning of tuples. For now, it may be thought of as representing the time at
which a meaning was given to the temporal variables in the original tuple.

Whereas the variable-database level offers a convenient representation that
end-users can understand and that is amenable to implementation, the mathemat-
ical simplicity of the extensional level supports a rigorous treatment of temporal
databases in terms of first order logic. A theoretical framework for providing a log-
ical interpretation or “meaning” for a particular variable database, i.e., a “transla-
tion” from variable to extensional level, may be based on a homomorphic mapping
from variable-level databases to extensional-level databases [12]. This mapping is
termed an extensionalization, and is denoted[[]]. In addition to giving the semantics
of variable databases, the framework also provides a means for checking the cor-
rectness of query languages over variable databases. This is illustrated in Figure 3
and explained using an example.

The top of the figure, labeled thevariable database level, represents a data-
base model that allows the use of temporal variables in timestamps of tuples. At
the top left, we see a particular variable database,db. The tuple<Jane, Assistant,
[June 1, now]> (with nowbeing a variable) from Figure 1(a) is an example. A query
qV is applied to this database, resulting in another variable database,qV (db). Let
qV be “List the faculty on June 15,” and assume this query is evaluated on June 27.
The result is then{<Jane, Assistant>}.

The bottom of the figure, labeled theextensional database level, represents
our fully extensional temporal data model, whose semantics is well-specified in the
standard tradition of a first-order logical framework. Developing a query language
in this extensional model is relatively straightforward, due to the model’s simplicity.
In contrast, developing a query language for a more complex variable-level data

130 SEMANTICS OF TEMPORAL DATA

dbvariable database level qV (db)

?

-

-

?

qV

extensionalization mapping[[]] [[]]

qE
extensional database level[[db]] qE([[db]]) = [[qV (db)]]

Figure 3: Relationship between variable database and extensional database

model is error prone. The framework can be used for checking the correctness of
variable-level query constructs. Specifically, variable-level query constructs must
commute with the corresponding extensional-level query constructs, as indicated in
the figure: qE([[db]]) = [[qV (db)]].

A particular extensionalization mapping from the top level to the bottom level
is defined in order to specify the semantics of variable databases. As tuples at the
variable database level are independent of each other, an extensionalization map-
ping may treat each tuple in isolation.

Continuing the example, an extensionalization mapping2 may map<Jane,
Assistant, [June 1, now]> of db to {<Jane, Assistant, June 1, June 27>, <Jane,
Assistant, June 2, June 27>, . . . , <Jane, Assistant, June 27, June 27>} of [[db]].
In the extensional database level, valid-time tuples are associated with two (instant)
timestamps. The first timestamp, e.g.,June 1, is the instant when the fact was valid
(the interval is deconstructed into its component instants), and the second time,
e.g.,June 27, is the reference time. The extensional-level version of the query then
selects the tuple from this set that has a valid time of June 15, giving as result
qE([[db]]) = {<Jane, Assistant, June 27>} (again omitting the valid time). Finally,
applying the extensionalization mapping to the variable-level query result,{<Jane,
Assistant>}, yields[[qV (db)]] = {<Jane Assistant, June 27>}. The diagram thus
commutes for the sample database and query. Section 4 and subsequent sections
provide a thorough coverage of extensionalization.

We are concerned in this paper with the practical use of variable databases.
In particular, we are interested in how to extend existing data models and query

2Here, we consider only a reference time of June 27. In the discussion to follow,[[]] takes an optional
subscript. We omit these subscripts here to simplify the discussion.

ON THE SEMANTICS OF “NOW” IN DATABASES 131

languages with the ability to allow current-time variables, with as little impact as
possible on their conceptual model and their associated query processing engines.
This is consistent with the philosophy of the designers of the proposed temporal
extension to SQL-92, termed TSQL2 [46]. Thus, we next augment the theoretical
framework as shown in Figure 4.

(db)

bind () bind (database

database
variable

level

extensional

level =
q (

V

Vq

bind

db bindE Eq EE

q (bind (db))
V V

E

db

V
bind (db)

bind
V

db q (bind (db))
V

)) = db
V

Figure 4: Preprocessing of variable-level databases

Figure 4 shows that at the variable database level, the database is mapped to
an intermediate stage, in which the tuples contain timestamps but no variables, by
applying abindV operation, which is discussed further below. The various exist-
ing temporal data models, including SQL-92 and TSQL2, that do not permit vari-
able timestamps in their databases belong to this stage. By mapping variable-level
databases to this intermediate stage, it is possible to reuse existing—or proposed—
query engines to query variable databases. This is the motivation for augmenting
the framework to permit preprocessing of variable databases before querying them.

The preprocessor substitutes each instance of a variable with a specified time,
effectively “binding" the variables in a variable database (as discussed in Section 7,
this occurs during query evaluation on a per-tuple basis). The bind operator,bindV ,
maps a database from the variable to the intermediate level, upon which it is queried
with a variable-level queryqV . The correctness of this mechanism is ensured by
providing extensional-level counterparts to the preprocessor and to the queries,
bindE andqE, respectively, and by demonstrating that the above diagram com-
mutes.

To exemplify, as before let the databasedb contain the single tuple in Fig-
ure 1(a), let the queryq be “List the faculty on June 15,” and let the current date be
June 27. To evaluateq on db, we first bind the variablenow to the reference time,
June 27. The result isbindV (db) = {<Jane, Assistant, [June 1, June 27]>}. The
query can then be evaluated on this relation using simple (and already accepted)

132 SEMANTICS OF TEMPORAL DATA

methods, resulting inqV (bindV (db)) = {<Jane, Assistant>}.
By defining queriesqV at the variable-level in this way, as a composition of

a binding operator and a ground query, we conceive a framework where the com-
mutativity of the diagram shown in Figure 3 holds. While the particular binding we
exhibit here is simple, Section 2 showed this need not be the case for all tempo-
ral databases, particularly not for bitemporal databases. For this reason, we need a
precise semantics, provided by the extensionalization mapping and the extensional
counterpart to the query operators, and a correctness criterion, that is, the commu-
tativity requirement.

4 Valid-Time Databases

Here we present a semantics for variable valid-time databases by specifying map-
pings from the variable to the extensional level. We initially consider the exten-
sionalization mappings for databases with ground timestamps and timestamps with
the variablenow. In order to address the shortcomings identified in Section 2, we
also introduce additional, current-time modeling entities. Specifically, we consider
now-relativetimestamps that allow for positive and negative displacements from
now. Next, we introduce so-called indeterminate time values which may be used
in timestamps to indicate imprecise times. This leads to a further generalization
of now-relative instants tonow-relative indeterminateinstants, which are values
that are imprecise as well as current-time relative. The section concludes with an
illustration of the querying of variable databases.

4.1 Extensionalization of Valid-time Tuples withNow

We first consider the extensionalization of tuples with ground timestamps. To do
this, it is convenient to start by defining the meaning, or denotation, of the ground
component in a timestamp. As other timestamp values are introduced, their deno-
tations will also be defined.

Definition 1 (Denotation of a Time Instant) The denotationof a valid-time in-
stantt at a particular reference timert∗, written〈〈t〉〉rt∗ , is defined as follows.

〈〈t〉〉rt∗ =df t. 2

In general, to map agroundvalid-time tuple, i.e., a tuple without variables, to
the extensional database level, the tuple isexpandedinto a set of tuples, one for each
time instant in its associated timestamp. Let us consider first the extensionalization
of a ground tuple at a particular reference time. We use the notation,[[T]]rt∗ , to
denote the extensionalization of tupleT at a reference time ofrt∗.

ON THE SEMANTICS OF “NOW” IN DATABASES 133

Definition 2 (Extensionalization of a tuple at an Instant) Theextensionalization
of a ground tupleT of the formT =< X, [vt1, vt2] >, where[vt1, vt2] denotes the
set of times{vt | vt1 ≤ vt ∧ vt ≤ vt2}, at reference timert∗ is defined as follows.

[[T]]rt∗ =df {(X, vt, rt∗) | vt ∈ [〈〈vt1〉〉rt∗, 〈〈vt2〉〉rt∗]}. 2

Note that each tuple at the extensional level is tagged with the reference time.
To exemplify, assume that the academic career of Jane at State University is

given by the tupleT =<Jane, Assistant, [June 3, June 9]>. The extensionaliza-
tion mapping of this tuple at time June 6, i.e.,[[T]]June 6, consists of seven tuples:
{<Jane, Assistant, June 3, June 6>,<Jane, Assistant, June 4, June 6>, . . . ,<Jane,
Assistant, June 9, June 6>}. Recall also the sample mapping given in Section 3.3.

Definition 3 (Extensionalization of a tuple at an Interval) In the extensionaliza-
tion mapping, a reference time interval may be used rather than a single reference
time. The extensionalization of the tupleT over the reference time interval[rt1, rt2]
is defined as follows.

[[T]][rt1,rt2] =df
⋃
rt∗ ∈ [rt1,rt2] [[T]]rt∗ . 2

Definition 4 (Extensionalization (Complete))The complete meaning or extension-
alization of a tupleT , denoted[[T]], is simply the extensionalization ofT over all
reference times, i.e.,

⋃
rt∗∈TRT [[T]]rt∗ . Equivalently, the general meaning or exten-

sionalization of a tupleT is:

[[T]] =df [[T]][⊥,>] . 2

We have found that a two-dimensional graphical notation makes valid-time
concepts easier to grasp. In the visualization, reference time corresponds to the
X-axis and valid time corresponds to the Y-axis. The graphical representation is
a plot of the tuple at the extensional database level. Each cell in the plot stands
for a particular reference time,RT , and valid time,V T , combination. The cells
corresponding to the temporal coordinates of tuples in the extensional set of tuples
are shaded, indicating when a tuple is valid relative to the reference time of an
observer. Even though our underlying model of time is discrete, we treat each cell as
a region rather than a point since this results in a better visualization. Several tuples
may be plotted in the same graph by using different cell colors or patterns. The key,
shown below the graph, indicates the explicit attribute values of the corresponding
tuples. Variations of these graphs have been independently explored [34, 30, 12].

As an example, Figure 5(a) shows the extensionalization of Jane’s employ-
ment tuple from before for a sequence of reference times, June 1 through June 11,
that is, [[T]][June 1,June 11] . The figure illustrates that the valid time of this tuple
is reference-time invariant, that is, it is independent of the reference time. So for
a tuple with a valid-time interval but without variables, it does not matter at what
time the tuple is observed—it is always valid over exactly the same interval.

134 SEMANTICS OF TEMPORAL DATA

The meaning of a tuple with the variablenow, however, is not reference-time
invariant. The denotation ofnowmakes this dependence explicit.

Definition 5 (Denotation ofnow) Thedenotationof the current-time variablenow
at a particular reference timert∗ is defined as follows.

〈〈now〉〉rt∗ =df rt∗ 2

This is precisely how reference time enables us to ‘materialize’ variables in the
extensional level. While variablesper seare not permitted at the extensional level,
a valid-time tuple does vary with reference time. With this additional timestamp
value, the extensionalization of a tuple withnowas the “to” or “from” time is still
given by Definition 2.

As an example, assume that the academic career of Jane at State University is
given by the tupleT =< Jane,Assistant, [June 1, now] >. Figure 5(b) visualizes
the extensionalization of this tuple for every reference time between May 30 and
June 8. Note that before June 1 theempty intervalis depicted in the figure. This
is because a timestamp with a “to” time that is before the “from” time denotes the
empty interval. This situation occurs prior to June 1. The valid-time region in
the figure is “stair-shaped” since the extensionalization of a tuple with variables is
dependent on the time at which we observe the tuple. The stair-shape is a result of
the constraint that the “to” time in the valid-time interval is bound to the reference
time.

June 3

June 9

June 1

June 11

VT

RT

Jane, Assistant

(a) A ground valid-time tuple

June 1

June 2

June 3

June 4

June 5

June 6

June 7

June 8

June 6

June 5

June 4

June 3

June 2

June 1

VT

RT

Jane, Assistant

June 7

June 8

May 31

May 30

M
ay 30

M
ay 31

(b) A valid-time tuple with a variable

Figure 5: A graphical representation of the extensionalization of a valid-time tuple

ON THE SEMANTICS OF “NOW” IN DATABASES 135

It is our contention that all other valid-time current-time variables currently in
use (e.g., “@” [37] anduntil-changed[52]) have the same meaning asnow. Thus
having covered existing variables, we now proceed by proposing new timestamps
that address the shortcomings ofnowdiscussed in Section 2.

4.2 Now-relative Instants

In this section we introduce a new type of timestamp, called anow-relative instant,
that adds flexibility to the variablenow. A now-relative instant generalizes the
variablenowby allowing an offset from this variable to be specified. Now-relative
times were first introduced in transaction time for vacuuming [28].

With now-relative instants, we have a means of more accurately recording
our knowledge of Jane’s employment with State University. For example, it may
be that changes in hirings at State University are recorded in the database only
three days after they take effect. Assuming that Jane was hired on June 1, we can
accurately record our definite knowledge of her employment in the tuple<Jane,
Assistant, [June 1, now− 3 days]>. This tuple states that Jane was an Assistant
Professor from June 1 and until three days ago, but it contains no information about
her employment as of, e.g., yesterday.

A now-relative instant thus includes a displacement, which is a (signed) span,
from now. In the example given above, the displacement is minus three days. The
extensionalization of tuples with now-relative instants is formalized as follows.

Definition 6 (Denotation of a Now-relative Instant) Thedenotationof a now-re-
lative instant,nowOPn days, where OP∈ {+,−}, at a particular reference time
rt∗ is defined as follows.

〈〈nowOPn days〉〉rt∗ =df 〈〈now〉〉rt∗ OPn 2

Even with this additional timestamp value, the extensionalization of a valid-time
tuple is still given by Definition 2.

Although now-relative instants allow us to relax the otherwise close cou-
pling between valid and transaction time found in the punctuality assumption, now-
relative instants still suffer from making a pessimistic assumption. The use ofnow
− 3 days in the first example is an ultra-pessimistic view of the future. Jane would
not even be employednow since her employment terminates three days prior to
now. To address this potential shortcoming, we next introduce the notion of inde-
terminate timestamp values.

4.3 Indeterminate Timestamp Values

It turns out that support for valid-time indeterminacy [6, 17, 27, 35] can also alle-
viate the shortcomings ofnow and now-relative instants. This section introduces

136 SEMANTICS OF TEMPORAL DATA

indeterminate timestamp values for ground timestamps. The next section extends
this treatment to indeterminate timestamps with variables.

Sometimes, the time when an event occurred is known only imprecisely. For
instance, we may know that an event happened “sometime in June 1993,” which is
an imprecise period of 30 days. Anindeterminate instantis the time of an event,
which is known to have occurred, but exactly when is unknown [19, 21].

The times when the event might have occurred is called theperiod of inde-
terminacyand is delimited by a lower and an upper bound (e.g., the event occurred
sometime between June 1 and June 30). An indeterminate instant could have an
associated probability distribution that gives the probability that the event occurred
for each time in the period of indeterminacy. For the purposes of this paper, we
ignore the probability information: every indeterminate instant is treated as though
it has a distribution that ismissing[21]. A determinateinstant may be thought of as
an indeterminate instant, with identical lower and upper bounds. Anindeterminate
interval is an interval bounded by indeterminate instants.

By using indeterminate instants, we can more accurately record our knowl-
edge of Jane’s employment with State University. Instead of usingnowas the “to”
time in Jane’s tuple, we can use an indeterminate instant. Which indeterminate in-
stant to use depends on our knowledge of the situation. If Jane was hired to workat
leasttwo months, we could record this information as shown in Figure 6(a). Here
two time bounds, July 31 andforever, delimit the “to” indeterminate instant. If State
University has a mandatory retirement policy, we could decrease the indeterminacy
considerably, as shown in Figure 6(b).

FACULTY
VALID TIME

NAME RANK (from) (to)

(a) Jane Assistant June 1 July 31∼ forever

(b) Jane Assistant June 1 July 31∼ January 1, 2028

Figure 6: Using indeterminate timestamps for recording Jane’s appointment

Indeterminate instants address the pessimistic update assumption, providing
evidence that Jane might still be employed in the future. They also remove the prob-
lem of incompleteness in the non-timestamp attributes (e.g.,possiblyemployed, as
shown in Figure 1(c)), and ensure that new knowledge acquired later, such as the
information that Jane left the company on August 10, is not inconsistent with cur-
rently stored information, but rather is a refinement of that information. They also

ON THE SEMANTICS OF “NOW” IN DATABASES 137

address the problem ofnow in predictive updates; an indeterminate interval is a
valid interval no matter when it was stored in the database.

There are two bounds on the information represented by an indeterminate in-
terval [36]. The first bound is thedefiniteinformation. The definite information
represents all that is definitely known about the interval and is the intersection of all
of the possible intervals. The second bound is thepossibleinformation. The pos-
sible information represents the maximum possible extent of an interval and is the
union of all of the possible intervals. The two bounds have different extensionaliza-
tions. The definite information is given by thedefinite extensionalization, presented
next.

Definition 7 (Indeterminate Ground Tuple) An indeterminate ground tupleis a
ground tuple of the formT =< X, [vt1 ∼ vt2, vt3 ∼ vt4] >, wherevt1 ≤ vt2 and
vt3 ≤ vt4. Here,vt1 andvt2 are the lower and upper bound, respectively, of the
starting instant andvt3 andvt4, are the lower and upper bound, respectively, of the
terminating instant. 2

Definition 8 (Definite Extensionalization of an Indeterminate Tuple) The defini-
te extensionalization of an indeterminate ground tuple of the formT =< X, [vt1 ∼
vt2, vt3 ∼ vt4] >, at the reference timert∗ is defined as follows.

[[T]]Drt∗ =df {(X, vt, rt∗) | vt ∈ [〈〈vt2〉〉rt∗, 〈〈vt3〉〉rt∗]} 2

The possible information is given by thepossible extensionalization.

Definition 9 (Possible Extensionalization of an Indeterminate Tuple)The possi-
ble extensionalization of a ground indeterminate tuple of the formT =< X, [vt1 ∼
vt2, vt3 ∼ vt4] > at the reference timert∗ is defined as follows.

[[T]]Prt∗ =df {(X, vt, rt∗) | vt ∈ [〈〈vt1〉〉rt∗, 〈〈vt4〉〉rt∗]} 2

It is always the case that the definite information is a subset of the possible infor-
mation. Note that if the bounding instants are determinate, that is, if the lower and
upper bounds are the same, then the possible and definite extensionalizations yield
exactly the same set of tuples. Consequently, for the extensionalization of determi-
nate intervals, we omit the possible or definite superscript and use[[]]rt∗ instead of
either[[]]Prt∗ or [[]]Drt∗ .

Valid-time tuples timestamped with indeterminate intervals have a graphical
representation similar to the one described above. Both the possible and definite
extensionalizations are represented. We use different shadings to distinguish the
regions in the two extensionalizations. As an example, assume that the academic
career of Jane at State University is given by the tuple

< Jane,Assistant, [June 1∼ June 3, June 7∼ June 10] > .

138 SEMANTICS OF TEMPORAL DATA

Jane’s academic career, for the reference times[June 1, June 11], is graphically rep-
resented in Figure 7(a). Note that the region of possible information is never smaller
than the region of definite information and that the valid time is reference-time in-
variant (just as it is for determinate intervals) when the tuple has no variables.

VT

RT

Possible

Definite

Jane, Assistant

June 2
June 3
June 4

June 7
June 8

June 10
June 11

June 1

June 11

June 1

(a) A ground indeterminate valid-time
tuple

VT

RT

Possible

Definite

Jan. 1, 2028

Dec. 31, 2027

May 30

May 31

June 1

June 2

June 3

June 4

June 5

M
ay 30

M
ay 31

June 1

June 2

June 3

June 4

June 5

Jan. 2, 2028

Jan. 3, 2028

Jan. 4, 2028

Jane, Assistant

D
ec. 31. 2027

Jan. 1, 2028

Jan. 2, 2028

Jan. 3, 2028

Jan. 4, 2028

Jan. 5, 2028

(b) Jane’s possible and definite
employment

Figure 7: A graphical representation of the extensionalization of an indeterminate
valid-time tuple

4.4 Now-relative Indeterminate Instants

To achieve the full benefit of indeterminate timestamp values, we proceed by in-
troducing now-relative indeterminate instants, which may be understood as gen-
eralizations of the ground, indeterminate timestamps presented above and of the
now-relative instants presented earlier.

To exemplify and motivate the utility of this new type of instant, assume that
today is July 9, that Jane is still employed, and that there is at most a three-day lag
in recording a fact in the database. Jane’s tuple in the database should not be that
of Figure 6(b), but rather that shown in Figure 8(a) which is more accurate. The
state on July 10 is shown in Figure 8(b). Note how the indeterminacy in the “to”
instant has decreased ever so slightly—on July 10 we know that Jane was employed
on July 7.

ON THE SEMANTICS OF “NOW” IN DATABASES 139

FACULTY
VALID TIME

NAME RANK (from) (to)

(a) Jane Assistant June 1 July 6∼ January 1, 2028

(b) Jane Assistant June 1 July 7∼ January 1, 2028

(c) Jane Assistant June 1 now− 3 days∼ January 1, 2028

Figure 8: Using indeterminate and now-relative indeterminate timestamps

To accurately represent our continuously changing knowledge about Jane’s
employment, we need to combine now-relative instants and ground indeterminate
values into a new kind of instant, which we call anow-relative indeterminate in-
stant. An example is shown in Figure 8(c) where the “to” timestamp is such an
instant. Note that a tuple with a now-relative indeterminate instant may yield no
definite information or may have the same possible and definite information con-
tent; it all depends upon when we observe that tuple.

The visualization of a tuple at the extensional database level with a now-
relative indeterminate time is similar to the visualization of a tuple with an inde-
terminate interval. Both the definite and possible regions are plotted on the same
graph but using different colors or patterns. Figure 7(b) shows a graph of both the
possible and definite extensionalizations of the tuple in Figure 8(c) for every refer-
ence time between May 30 and January 5, 2028. Note that for all reference times
before June 4 the tuple does not contain any definite information, only possible
information. The definite information gradually increases as the reference time ad-
vances. On January 4, 2028, and for all reference times thereafter, the possible and
definite information for the tuple are the same.

Now-relative indeterminate instants provide a flexible means of precisely cap-
turing our imprecise, but current-time dependent, knowledge of when a fact is valid.
For instance, in the tuple given in Figure 8(c), we are certain that Jane was an As-
sistant Professor starting on June 1, but our knowledge of when she ceases to be
an Assistant Professor is imprecise; all we know is that she was definitely an As-
sistant Professor until three days ago and that it is possible that she will remain an
Assistant Professor until retirement on January 1, 2028. The “to” timestamp allows
us to capture this precisely. Using a now-relative indeterminate instant ensures that
continual updates are not required, while capturing all of our knowledge of exactly
when Jane is employed by State University.

A now-relative indeterminate instant consists of a variable lower bound and

140 SEMANTICS OF TEMPORAL DATA

a ground upper bound. The lower bound cannot exceed the instant’s upper bound,
consequently the upper bound represents a limit on the possible or definite infor-
mation in the instant. So, for instance, the possible or definite information rep-
resented by Jane’s employment tuple shown in Figure 8(c) cannot extend beyond
January 1, 2028, even if today is after January 1, 2028. If today is May 9, then
the lower bound is May 6 and the tuple indicates that weexpectJane to be (possi-
bly) employed from June 1 to January 1, 2028. If today is January 1, 2050, then
the upper bound is January 1, 2028 and the tuple indicates that Jane wasactually
employed from June 1 to January 1, 2028. In short, now-relative indeterminate in-
stants capture the semantics of predictive updates. They are also able to model the
evolutionary character of temporal databases since values in thepossibleextension-
alization of a tuple evolve intodefinitevalues as the reference time increases.

Definition 10 (Possible Ext. of a Now-relative Indeterminate Tuple)The possi-
ble extensionalization at reference timert∗ of the tupleT =< X, [e1 ∼ vt2, e3 ∼
vt4], > wheree1 ande3 stand for “expressions using variables,” andvt2 andvt4 are
ground values, is defined as follows.

[[T]]Prt∗ =df {(X, vt, rt∗)| vt ∈ [min(〈〈e1〉〉rt∗, 〈〈vt2〉〉rt∗), 〈〈vt4〉〉rt∗]}. 2

Definition 11 (Definite Ext. of a Now-relative Indeterminate Tuple) The definite
extensionalization of the tupleT =< X, [e1 ∼ vt2, e3 ∼ vt4], > at reference time
rt∗ is defined as follows.

[[T]]Drt∗ =df {(X, vt, rt∗)| vt ∈ [〈〈vt2〉〉rt∗,min(〈〈e3〉〉rt∗, 〈〈vt4〉〉rt∗)]}. 2

4.5 Summary of Extensionalizations

Table 1 summarizes some of the valid-time extensionalizations (the most repre-
sentative cases). Casev1 (the v stands for “valid-time” database) specifies the
extensionalization of tuple timestamped with a determinate interval, casev2 a now-
relative interval, casev3 an indeterminate interval, and casev4 a now-relative inde-
terminate interval. Note that the possible and definite extensionalizations in cases
v1 andv2 are the same since the intervals are determinate.

4.6 Querying Variable Valid-time Databases

In this section we enhance the query facilities of existing (non-variable) data mod-
els to support queries on timestamps containing variables. The essential problem
is what to do when encountering a variable during query evaluation. Below, we
describe a solution to that problem. Further, we show how the framework may
be utilized in defining algebraic operators on variable databases that are consistent
with the semantics of variable databases. Specifically, we consider the valid-time
timeslice operation.

O
N

T
H

E
S

E
M

A
N

T
IC

S
O

F
“N

O
W

”
IN

D
ATA

B
A

S
E

S
141

Variable Database Extensional Database
v1 T =< X, [vt1, vt2] > [[T]]rt∗ = {(X, vt, rt∗)|vt1 ≤ vt ≤ vt2}
v2 T =< X, [vt1, now± n days] > [[T]]rt∗ = {(X, vt, rt∗)|vt1 ≤ vt ≤ rt∗ ± n}
v3D T =< X, [vt1 ∼ vt2, vt3 ∼ vt4] > [[T]]Drt∗ = {(X, vt, rt∗)|vt2 ≤ vt ≤ vt3}
v3P T =< X, [vt1 ∼ vt2, vt3 ∼ vt4] > [[T]]Prt∗ = {(X, vt, rt∗)|vt1 ≤ vt ≤ vt4}
v4D T =< X, [vt1, now± n days∼ vt2] > [[T]]Drt∗ = {(X, vt, rt∗)|vt1 ≤ vt ≤ min(rt∗ ± n, vt2)}
v4P T =< X, [vt1, now± n days∼ vt2] > [[T]]Prt∗ = {(X, vt, rt∗)|vt1 ≤ vt ≤ vt2}

Table 1: Extensionalization of valid-time databases

142 SEMANTICS OF TEMPORAL DATA

When evaluating a user-level query, e.g., written in some dialect of SQL, it
is common to transform it into an internal algebraic form that is suitable for subse-
quent rule or cost-based query optimization. As the query processor and optimizer
are among the most complex components of a database management system, it is
important that the added functionality of current-time-related timestamps necessi-
tates only minimal changes to these components.

While many solutions may be envisioned, a solution that meets this require-
ment and is natural in our semantic framework is to eliminate variables before they
are seen. More specifically, when a timestamp that contains a variable is used dur-
ing query processing (e.g., in a test for overlap with another timestamp), a ground
version of that timestamp is created and is used instead. Thus, only minimal, incre-
mental changes to the query processor are needed. Existing components remain un-
changed. Only a new component that substitutes variable timestamps with ground
timestamps has to be added.

More specifically, we define a “bind” operator that is added to the set of op-
erators already present. When user-level queries are mapped to the internal repre-
sentation, this operator is utilized. The operator accepts any valid-time tuple with
variables as defined earlier in the paper. It substitutes a ground value for each vari-
able and thus returns a ground (but still variable-level) tuple.

To exemplify, assume that we on June 20 are interested in Jane’s employment
status at State University as of June 15 and that we have available the database with
the single tuple in Figure 1(a), but that our query processor is unable to contend
with variables in timestamps. To answer the query, we first eliminate the variable
nowby applying the bind operator (defined below) to the tuple, resulting in{<Jane,
Assistant, [June 1, June 20] >}. Second, this tuple is passed to the query processor,
where it is then used to compute that Jane is an Assistant Professor on June 15.

Definition 12 (Variable-level Valid-time Bind) Given an arbitrary valid-time tu-
ple T =< X, [e1 ∼ vt2, e3 ∼ vt4] > and a reference timert∗, the variable-level
valid-time bind operation eliminates all variables and is defined as follows.

bindV,V Trt∗ (T) =df< X, [〈〈e1〉〉rt∗ ∼ 〈〈vt2〉〉rt∗, 〈〈e3〉〉rt∗ ∼ 〈〈vt4〉〉rt∗] > 2

This operation can be extended in the obvious way to an operator on sets of tuples,
i.e., relations. The superscript, “V,V T ,” indicates that this is a variable-level, valid-
time operator. Note that two tuples that have timestamps “[vt1 ∼ vt1, vt2 ∼ vt2]”
and “[vt1, vt2],” but are otherwise identical, have the same extensionalizations.
Thus the timestamps are equivalent, and therefore the definition above also cov-
ers determinate timestamps.

The outcome of a query on a variable database generally depends on the spe-
cific reference-time argument given to thebind operator. To provide a foundation
for understanding how to use thebind operator when mapping user-level queries to
algebraic equivalents, we must explore its meaning.

ON THE SEMANTICS OF “NOW” IN DATABASES 143

The bind operator with reference-time argumentrt∗ replaces each variable
by its denotation or value at timert∗. Put differently, the operator replaces each
variable timestamp with a ground timestamp that has the special property of having
the same denotation, or value, as the variable timestamp at the reference timert∗.
At other reference times, the original and the ground timestamps will generally not
have the same denotation. This semantics may be expressed at the extensional level
as follows.

Definition 13 (Extensional-Level Valid-time Bind) Given an arbitrary setS of ex-
tensional-level valid-time tuples of the form(X, vt, rt) and a reference timert∗, the
extensional-level valid-time bind operation is defined as follows.

bindE,V Trt∗ (S) =df {(X, vt, rt) | (X, vt, rt∗) ∈ S ∧ rt ∈ TRT } 2

The “E” in the operator’s superscript indicates that this is an extensional-level op-
erator. At the extensional level, the bind operator chooses the meaning of a tuple
at the indicated reference time and propagates that meaning over every possible
reference time, resulting in a reference-time invariant meaning. To prove that this
definition is correctvis-á-visthe required commutativity of the left side of the dia-
gram in Figure 4, we need to show that given a tupleT , and a reference timert∗,
[[bindV,V Trt∗ (T)]] = bindE,V Trt∗ ([[T]]). This follows directly from the definitions. For
brevity, we omit the proof.

Intuitively, thebind operator sets the perspective of the observer, i.e., it sets
the reference time as described in Section 3.2. Existing query languages generally
assume that the perspective of a user observing the database is the same as what we
termed the query time or current time and denotedtcurrent in that section. However,
as we shall see, a bind operator provides a basis for added functionality.

Recall that the definition of query operators at the variable level is complex
and that current temporal data models have not satisfactorily resolved the complex
problems involved. In our approach, we first preprocess the variable-level database
by binding timestamps tort∗, effectively removing the variables. We can then apply
any algebraic operators from an existing temporal query language. It should be clear
from the discussion above that the composition of bind with any of these algebraic
operators is well-defined, and the timestamps have the appropriate meaning.

To show how operators are defined within the semantic framework, we now
define several timeslice operators.Valid-time timesliceis a fairly standard opera-
tion; some variant of timeslice is a component of virtually all temporal algebras.
Standard definitions of determinate and indeterminate timeslice operators are given
below. Note that these do not have to contend with variables; because of the use of
the bind operator, they can be defined solely on ground tuples.

144 SEMANTICS OF TEMPORAL DATA

Definition 14 (Variable-level Definite Valid-time Timeslice) Let S be a set of tu-
ples at the variable database level, i.e., a set of tuples of the formT =< X, [vt1 ∼
vt2, vt3 ∼ vt4] >, where thevti are ground values. The definite valid-time timeslice
of S at valid timevt∗ is defined as follows.

5
D,V,V T
vt∗ (S) =df {< X, [vt∗, vt∗] > |

∃ T = < X, [vt1 ∼ vt2, vt3 ∼ vt4] > ∈ S (vt∗ ∈ [vt2, vt3])} 2
Definition 15 (Variable-level Possible Valid-time Timeslice)Let S be a set of tu-
ples at the variable database level, i.e., a set of tuples of the formT =< X,

[vt1 ∼ vt2, vt3 ∼ vt4] >, where thevti are ground values. The possible valid-
time timeslice ofS at valid timevt∗ is defined as follows.

5
P,V,V T
vt∗ (S) =df {< X, [vt∗, vt∗] > |

∃ T = < X, [vt1 ∼ vt2, vt3 ∼ vt4] > ∈ S (vt∗ ∈ [vt1, vt4])} 2
The superscript “D,V,V T ” of the first operator indicates that it considers only the
definite information contents, that it belongs at the variable level, and that it is a
valid-time timeslice. Also, recall that definite timestamps are special cases of inde-
terminate timestamps, which are then also covered by the definition. The straight-
forward extensions of the operator to slice on valid-time intervals and to take as
input a set of tuples (i.e., a relation), are omitted for brevity. A timeslice operator at
the extensional level that satisfies the correctness criterion of the framework, as il-
lustrated in Figure 3, specifically,5E,VTvt∗ ([[T]]D) = [[5D,V,V Tvt∗ (T)]], is given next.
The proof of this statement is omitted for space considerations.

Definition 16 (Extensional-level Valid-time Timeslice)Since there is no indeter-
minacy at the extensional database level, there is no need for two timeslice opera-
tors; one suffices. At the extensional database level, the valid-time timeslice of a set
S consisting of tuples of the form(X, vt, rt) is defined as follows.

5
E,VT
vt∗ (S) =df {(X, vt∗, rt) | (X, vt∗, rt) ∈ S} 2

We are now in a position to explore the interaction of the important times
(Section 3.2) by using the newbind operator and existing (variable-level) timeslice
operators. We generally consider only the definite version of the timeslice operator.

Thebind operator sets the perspective and is combined with timeslice to for-
mulate queries. In the first two example queries given below, we assume that the
database is to be observed from the perspective of June 5, i.e.rt∗ = June 5. For all
examples, the query time is assumed to also be June 5, i.e.tcurrent = June 5.

• Who is employed on June 5?

5
D,V,V T
June 5 (bindV,V TJune 5(Faculty))

• Who will actually be employed on June 7?

5
D,V,V T
June 7 (bindV,V TJune 5(Faculty))

ON THE SEMANTICS OF “NOW” IN DATABASES 145

Tuples with a “to” time ofnowwill not be in the result.

• Discounting future (and as yet unknown) employee hirings or firings, who do
we expect to be employed on June 7?

5
D,V,V T
June 7 (bindV,V TJune 7(Faculty))

Our “expectation” is that current employees (i.e., those employednow) will
remain employed through June 7. We make this expectation concrete by
adopting a June 7 perspective of the database. Then all tuples with a “to”
time ofnowwill contribute to the result.

• Making no assumptions about the future evolution of the database, who will
possibly be employed on June 7?

5
P,V,V T
June 7 (bindV,V TJune 5(Faculty))

We limit the future evolution of the database by adopting a June 5 perspective,
and query about a possible future from that perspective. Tuples with intervals
with a “to” time of now∼ June 7(or a later upper bound) will be in the result,
although those with a “to” time ofnowwill not be in the result.

We have seen that the binding ofnow impacts the meaning of query results
and that query results must be interpreted with respect to a particular perspective.
Existing query languages, e.g., TSQL2 [46], generally assume that the perspective
and the query time coincide. This assumption leads to a restriction in functionality,
but it also simplifies the interpretation of answers.

The bind operation removes all variables from an answer to a query. Some
users, however, might wish to seenow in query results. One way to supportnow
in query results is to redefine every temporal operation, making each sensitive to
user perspective. For example, consider the temporal constructor,First. Currently,
First is a reference-time independent operation that determines if one interval is
earlier than another, and returns the tuple with the earlier interval. We could rede-
fine First to use the meaning of a tuple with respect to a given reference time to
determine which interval is earliest. By choosing a single reference time at which
to evaluateFirst we are “temporarily” bindingnow to a particular reference time,
but only during evaluation of the operation (and the binding is not made manifest
in the result). There is one chief drawback to this method of supportingnow in
query results: the semantics of every existing temporal operation must be redefined
to add a “temporary” bind ofnow. An important virtue of the “permanent” bind
operation that we have described in this paper is that it is a minimal extension of
the semantics and implementation of non-variable databases to support current-time
variables. In terms of operations, only a single new operation, bind, need be added
and implemented; the non-variable database semantics and implementation remain
intact.

146 SEMANTICS OF TEMPORAL DATA

4.7 Summary

Nowappears in many temporal database models, although it is sometimes disguised
under a different name.Now is commonly used as the “to” time in a valid-time tu-
ple. It has one principal advantage: it efficiently represents that a tuple will continue
to be valid, barring further updates. But it also suffers from several anomalies, as
discussed in Section 2.2. In the following, we show how each of these four anoma-
lies are addressed in our approach.

The use ofnow as a “to” time makes apessimisticassumption about a tu-
ple’s continuing validity since it indicates that a tuple’s validity ends immediately,
whereas we expect such tuples to remain valid in future. To address this problem
we propose a semantics that allows users to bindnowto any desired “perspective,”
i.e., any reference time, in a query. The user can adopt a pessimistic perspective,
by bindingnowto the current time, or an optimistic perspective, by bindingnowto
some future time, e.g.,forever. The proposed semantics is backwards-compatible
with existing, non-variable semantics.

Nowalso imposes an unrealistic assumption about thepunctualityof updates
to a tuple because it presupposes that the current database state accurately models
the current real-world state. To address this anomaly we introducenow-relative
instants that include a displacement fromnow. Now-relative instants can relax the
strict punctuality assumption by using the displacement fromnow to model the
real-world delay in updating tuples.

Further, the use ofnow as a timestamp value necessitates special-case pro-
cessing to correctly supportpredictiveupdates. A predictive update inserts into a
database a fact that is valid sometime in the future. If such a fact has a “to” time of
now, its valid time ends before it starts. This not only violates a common assump-
tion about interval timestamps (that the timestamp is a valid interval), it can also
lead to an incorrect result for a query about information valid in the future. To sup-
port predictive update we proposenow-relative indeterminateinstants that combine
indeterminacy with now-relativity. An interval with a now-relative indeterminate
instant as the “to” time is a valid interval no matter when it is inserted into the data-
base. Furthermore, the indeterminacy in a now-relative indeterminate instant can be
used to model the uncertainty of future information, while the now-relative portion
of the instant relaxes the punctuality assumption and allows the user to adopt both
optimistic and pessimistic query perspectives.

Finally, when querying data that involvesnow, the current time must be clearly
specified since the value ofnowdepends on this time. An unclear specification can
result in ambiguous query results. In our proposed framework, the current time in
fixed by the bind operation. This allows the perspective of the observer to be set,
thereby ensuring that the same answer is always returned for a particular reference
time.

ON THE SEMANTICS OF “NOW” IN DATABASES 147

5 Transaction-time Databases

The use of a current-time variable in the transaction-time dimension is not as fraught
with problems as its use in the valid-time dimension. The reason for this lies in
the different meaning of transaction time in a database. The valid time of a tuple
indicates when it is considered valid, and, as such, valid timestamps of tuples are
generally provided by the users. In contrast, transaction timestamps are supplied
by the database management system itself. This is a consequence of the meaning
of transaction time: the transaction timestamp indicates when the tuple is current in
the database.

Although several timestamp values, e.g.,foreverandnow, have been used,
it is our contention that they all have the same meaning. Specifically, they are
all employed as a “stop” timestamp that indicates that the tuple stamped is current
(from the “start” time) until the database is updated to indicate otherwise. However,
the various names used do not convey the intuitive semantics of the variable in this
dimension. A term more precise thannowor foreverfor this meaning of “not yet
logically deleted or updated” isuntil changed—a fact is current in the database
until changed. It has no counterpart in valid time. Usinguntil changedinstead of
nowavoids also potential confusion withnow in valid time, although some authors
have useduntil changedin valid time [52]. Unlike the (valid-time variable)now,
until changedcan only be used as the “stop” time; it is undefined to use it as the
“start” time.

5.1 Extensionalization of a Ground Transaction-time Tuple

We first examine the meaning of a tuple without variables in transaction time. The
extensionalization of such a tuple differs from its valid-time counterpart, because
the semantics of transaction time does not allow future transaction times to be
recorded in the database. Hence, the extensionalization of such tuples must be
restricted to ensure that no matter when we look at the database, we can never see
a “future” transaction time. Since the future depends on when we observe the data-
base, the reference time is used to constrain the transaction-time in the expanded
set of tuples.

In Definition 1, the denotation at any reference time of a ground valid-time
instant was given to be the instant itself. The same applies to ground transaction-
time instants.

Definition 17 (Transaction-time Extensionalization of a Ground Tuple) The
transaction-time extensionalization of a tuple of the formT =< X, [t t1, t t2] >,
whereX is some set of attribute values andt t1 andt t2 are transaction-time instants,
at the reference timert∗, wheret0 ≤ rt∗ ≤ tcurrent , is defined as follows.

148 SEMANTICS OF TEMPORAL DATA

[[T]]T Trt∗ =df {(X, tt, rt∗) | t t ∈ [〈〈t t1〉〉rt∗,min(〈〈t t2〉〉rt∗, rt∗)]} 2

We use aT T superscript to differentiate this mapping from a valid-time extension-
alization.

The visualization of a transaction-time tuple is similar to that of a valid-time
tuple. Again, a two-dimensional graph is used. The X-axis of the graph is the ref-
erence time, while the Y-axis is the transaction time. However, unlike a valid-time
tuple without variables, the transaction-time interval for a tuple is not independent
of the time at which we observe the tuple. Figure 9 depicts the extensionalization of
the transaction-time tuple< Jane,Assistant, [June 5, June 8] > for a sequence of
reference times, June 1 through June 11. Note that the depicted region has a “stair
shaped” feature which is a result of the constraint that the transaction time cannot
exceed the reference time.

June 5

June 6

June 7

June 8

June 6

June 7

June 11 RT

TT

Jane, Assistant

June 1

June 2

June 3

June 4

June 5

June 8

June 9

June 10

June 1

June 2

June 3

June 4

t
current

June 9

June 10

June 11

Figure 9: Graphical representation of a transaction-time tuple

5.2 Semantics of “Until Changed”

The current-time variable in transaction time indicates that the associated fact is
current in the database until the fact is changed by a subsequent update. Substituting
transaction time for valid time in our running example yields the relation shown in
Figure 10.

Definition 18 (Denotation ofUntil Changed) The denotationof the transaction-
time variableuntil changedat a particular reference timert∗, wheret0 ≤ rt∗ ≤
tcurrent , is defined as follows.

〈〈until changed〉〉rt∗ =df rt∗ 2

ON THE SEMANTICS OF “NOW” IN DATABASES 149

FACULTY
TRANS TIME

NAME RANK (start) (stop)

Jane Assistant June 1 until changed

Figure 10: Using until changed in a transaction-time relation

The extensionalization of a transaction-time tuple with the variableuntil changed
as the value of its “stop” time is obtained by generating tuples for each instant in
the ground interval that results from substitutinguntil changedby rt∗. Thus, Defi-
nition 17 also applies whenuntil changedis allowed as a “stop” time.

5.3 Summary of Extensionalizations

Table 2 summarizes the extensionalizations presented for transaction time. Case
t1 (thet stands for “transaction-time” database) applies to tuples with fully ground
timestamp values only, whereas Caset2 covers the case whereuntil changedis the
“stop” time.

Variable Database Extensional Database
t1 T =< X, [t t1, t t2] > [[T]]rt∗ = {(X, tt, rt∗)|t t1 ≤ t t ≤ min(tt2, rt∗)}
t2 T =< X, [t t1,until changed] > [[T]]rt∗ = {(X, tt, rt∗)|t t1 ≤ t t ≤ rt∗}

Table 2: Extensionalization of transaction-time databases

5.4 Querying Variable Transaction-time Databases

The bind operator for transaction time eliminates occurrences ofuntil changedin
the “stop” component of timestamps.

Definition 19 (Variable-level Transaction-time Bind) Given a tuple T =
< X, [t t1, e2] >, wheret t1 is a ground transaction time ande2 is until changed
or a ground transaction time, the variable-level transaction-time bind operation is
defined as follows.

bindV,T T (T) =df< X, [〈〈t t1〉〉tcurrent
, 〈〈e2〉〉tcurrent

] > 2

Again, this operation can be extended in the obvious way to relations. Transaction-
time bind is very similar to valid-time bind, but differs in one important respect.
The bindV,T T operator does not accept any time argument, butalwaysbindsun-
til changedto the query time or current transaction time,tcurrent .

Since thebindV,T T operator lacks a time parameter and is always applied be-
fore any other operator, it is feasible to omit the operator and instead build it into the

150 SEMANTICS OF TEMPORAL DATA

transaction timeslice operator, as has been done in some variable-level transaction-
time algebras [29]. However, it would also need to be built into any additional
operators, so to preserve the parallel with Section 4.6, we choose not to do this.
The definition of the extensional-level bind for transaction time is omitted because
it is very similar to Definition 13.

Definition 20 (Variable-level Transaction-time Timeslice)Let S be a set of tu-
ples at the variable database level, i.e., a set of tuples of the formT =< X,

[t t1, t t2] >, wheret t1 and t t2 are ground transaction times. The transaction-time
timeslice ofS at transaction-timet t∗ is defined as follows.

5
V,T T
tt∗ (S) =df {< X, [t t∗, t t∗] > |

∃ T = < X, [t t1, t t2] > ∈ S (tt∗ ∈ [t t1, t t2])} 2
Definition 21 (Extensional-level Transaction-time Timeslice)At the extensional
database level, the transaction-time timeslice of a setS consisting of tuples of the
form (X, tt, rt) is defined as follows.

5
E,T T
tt∗ (S) =df {(X, tt∗, rt) | (X, tt∗, rt) ∈ S} 2

The definitions of transaction-time binding and slicing conform to the frame-
work we set up in Section 3.3, specifically to Figure 4, i.e.,5E, T Tt t ∗ (bindEr t ∗
([[S]]r t∗) = [[5V , T Tt t ∗ (bindVr t ∗ (S))]]r t∗. The proof, which follows from the
definitions, is omitted for brevity.

As with valid-time queries, a combination of bind and timeslice supports
transaction-time queries. When asking queries about a transaction-time database,
there are two important times to consider: (i) the transaction-time timeslice time,
t t∗, indicating that information is sought that was current in the database at timet t∗,
and (ii) the query time,tcurrent, the time at which the query is asked.

As an example, we consider several timeslice operations on the tuple,T , de-
picted in Figure 2(a). For the following queries, it is assume thattcurrent is June 11.

• 5V,T TJune 11(bindV,T T (T)) yields an empty result because the interval associated
with T is before the timeslice time—tupleT ceased to be current starting on
June 9.

• 5V,T TJune 7(bindV,T T (T)) yields tupleT , but with “start” and “stop” times of
June 7. This is so because the information recorded byT was current on
June 7.

6 Bitemporal Databases

A bitemporalrelation supports both transaction and valid time [33, 47]. The com-
bination of these two temporal dimensions empowers the database to record time-
dependent information as well as earlier database states. Bitemporal databases thus

ON THE SEMANTICS OF “NOW” IN DATABASES 151

combine the advantages of valid-time and transaction-time databases. Yet, this
greater flexibility comes at a cost: increased complexity derives from the inter-
actions between the two temporal dimensions which must be carefully considered.
The logical framework we have presented for current-time variables has been de-
signed to make it relatively straightforward to obtain the semantics of bitemporal
databases. The interaction between the current-time variable for valid time,now,
and transaction time,until changed, is coordinated through the reference time. We
demonstrateonepossible (and, we think, reasonable) semantics for this combina-
tion, but we emphasize that the framework is general enough to allow the definition
of other, alternative semantics for the interaction of these variables.

6.1 Extensionalization of Bitemporal Databases

The timestamp of a bitemporal tuple contains both a valid-time and a transaction-
time component. Since the valid-time component may be indeterminate, it is ne-
cessary to distinguish between a definite and a possible extensionalization,[[]]BT,Drt∗
and[[]]BT,Prt∗ , respectively.

Definition 22 (Definite Extensionalization of a Bitemporal Tuple) The definite
extensionalization of a bitemporal tupleT of the form T = < X, [vt1, vt2],
[t t1, t t2] >, whereX is some set of attribute values and the timestamp[vt1, vt2],
[t t1, t t2] may contain any of the variables introduced earlier, at the reference time
rt∗ is defined as follows.

[[T]]BT,Drt∗ =df {(X, vt, tt, rt∗) | (X, vt, rt∗) ∈ [[< X, [vt1, vt2] >]]VT ,Drt∗ ∧
(X, tt, rt∗) ∈ [[< X, [t t1, t t2] >]]T Trt∗ } 2

Definition 23 (Possible Extensionalization of a Bitemporal Tuple)The possible
extensionalization of a bitemporal tupleT of the form T = < X, [vt1, vt2],
[t t1, t t2] > at the reference timert∗ is defined as follows.

[[T]]BT,Prt∗ =df {(X, vt, tt, rt∗) | (X, vt, rt∗) ∈ [[< X, [vt1, vt2] >]]VT ,Prt∗ ∧
(X, tt, rt∗) ∈ [[< X, [t t1, t t2] >]]T Trt∗ } 2

The definitions show that the framework has been constructed so that the exten-
sionalization of bitemporal tuples is the combination of the extensionalizations for
valid and transaction time. It also shows how the reference timert∗ serves as an
essential coordination mechanism between the valid and transaction time compo-
nents of the timestamp: the same reference time appears in the valid-time and in
the transaction-time denotations. Although, it is possible and may be interesting
to consider situations where the two reference times differ, we have found that for
all practical purposes this coordination is desirable. Nevertheless, other kinds
of coordination through the reference time are possible. For example, instead of

152 SEMANTICS OF TEMPORAL DATA

the standard Cartesian product used here, a coordination mechanism that utilizes a
step-wise cross product of the two temporal dimensions is possible [12].

Another feature of the framework is that the uniform and component-wise
treatment of time dimensions makes it easy to include additional dimensions. To
specify the semantics of a variable database with additional dimensions, it is neces-
sary to first specify the semantics of the variables and tuples in that new dimension,
e.g., as is done for the transaction-time dimension in Section 5. Subsequently, the
new dimension can be easily integrated with the other dimensions in a definition
similar to the one above. Thus, our framework can be extended to encompass mul-
tidimensional temporal databases (also termedindexical [7] and parametric[26]
temporal databases), for exampletemporally generalized[31] andspatio-temporal
[1] databases.

Tables 1 and 2 may be combined to cover the bitemporal extensionalizations.
The combination of Casev1 from Table 1 and Caset1 from Table 2 gives the bitem-
poral extensionalization for a tuple timestamped with a determinate valid time in-
terval, [vt1, vt2], and a transaction time interval,[t t1, t t2], both without variables.
Note that the transaction time in this case is restricted to the “past” relative to the
reference time, just as in transaction-time tuples. For example, the extensionaliza-
tion at reference time June 2 of the tuple

< Jane,Assistant, [June 3, June 10], [June 1, June 3] >
is

{(Jane,Assistant, vt, t t, June 2) |
vt ∈ [June 3, June 10] ∧ t t ∈ [June 1,min(June 2, June 3)]}.

In this example, the terminating transaction time, June 3, is constrained by the
reference time, June 2.

The graphical representation of bitemporal tuples is three-dimensional; trans-
action time is the X-axis, valid time is the Y-axis, and reference time is the Z-axis.
To this point, the reference time has been the X-axis, but making the reference time
the Z-axis in the three-dimensional visualization results in a better picture. The
graph is displayed so that the Z-axis goes “into” the page. The three-dimensional
picture of a bitemporal tuple allows us to represent the passage of time as a spatial
displacement, and provides a visual representation for interesting phenomena such
as history changes and predictions about the future, as well as incorporating the
viewpoint of an observer into these phenomena. As we will see below, the graphi-
cal representation shows the subtle interaction betweennow, until changed, and the
reference time.

Examples of the combinations of the extensionalizations presented in Ta-
bles 1 and 2 are graphically depicted in Figures 11 and 12. The dotted line vectors
in the graph represent directions of growth as either the reference time, valid time,

ON THE SEMANTICS OF “NOW” IN DATABASES 153

or transaction time extends to>. Only one generic example tuple is depicted in
each case. The evolutionary nature of temporal databases, a key concept, comes
through very clearly in the figures. Notice how the shaded areas grow as reference
time increases, most prominently for tuples containing variables, indicating an ac-
cumulation of knowledge stored in the database. Note also how information in later
reference times is always consistent with that in earlier reference times.

Figure 11 illustrates the determinate cases. For example, the lower right cor-
ner of Figure 11 depicting thev2× t2 case, shows hownowanduntil changedare
bound to an increasing reference time, resulting in a three-dimensional stair-shaped
pattern. The tuple’s extensionalization grows as time passes encompassing more
points. In contrast, casev1 × t1 depicts constrained growth, as the tuple ceases
to exist beyond transaction timet t2. Note that, unless a tuple is known to have
been deleted from the database, its “transaction-stop time” isuntil changed, and
hence it has unlimited growth in the transaction-time dimension. This is true for
the determinate cases shown in Figure 11 as well as for the indeterminate cases of
Figure 12. Notice for example, how the possible and definite extensionalizations
in casesv3D × t2 andv3P × t2, the upper right-hand corner of Figure 12, remain
constant in the valid-time dimension while growing in transaction-time. In contrast,
casev4D×t2 illustrates constrained growth, i.e., constant evolution up through time
vt2.

6.2 Querying Variable Bitemporal Databases

The existing bind and timeslice operators, developed for valid-time and transaction-
time databases, are easily generalized to apply to bitemporal databases. A bitem-
poral tuple differs from a valid-time tuple by having a transaction time interval in
its timestamp. The valid-time operators are generalized to corresponding bitempo-
ral operators by simply ignoring this extra timestamp. For example, the definite
bitemporal valid-time timeslice is defined by generalizing Definition 14 as follows.

Definition 24 (Variable-level Definite Bitemporal Valid-time Timeslice) Let S

be a set of tuples at the variable database level, i.e., a set of tuples of the form
T = < X, [vt1 ∼ vt2, vt3 ∼ vt4], [t t1, t t2] >, whereT is ground. The definite
bitemporal valid-time timeslice ofS at valid timevt∗ is defined as follows.

5
D,V,V T ,BT
vt∗ (S) =df {< X, [vt∗, vt∗], [t t1, t t2] > |
∃ T = < X, [vt1 ∼ vt2, vt3 ∼ vt4], [t t1, t t2] > ∈ S (vt∗ ∈ [vt2, vt3])} 2

The superscript “D,V,V T ,BT ” indicates that the operator considers only the defi-
nite information in the tuple, belongs at the variable level, performs a timeslice
in the valid-time dimension, and is applicable to bitemporal tuples. In addition to
this operator, the subsequent discussion uses the operators5P,V,V T ,BT ,5V,T T ,BT ,

154 SEMANTICS OF TEMPORAL DATA

TT

VT

RT

tt_1

vt_1

Attribute Values

tt_2

vt_2

tcu
rre

n
t

Casev1× t1

TT

VT

tt_1

vt_1

Attribute Values

vt_2

tcu
rre

n
t

Casev1× t2

TT

VT

tt_1

vt_1

Attribute Values

tt_2

tcu
rre

n
t

Casev2× t1

TT

VT

tt_1

vt_1

Attribute Values

tcu
rre

n
t

Casev2× t2

Figure 11: Examples of the bitemporal determinate cases

ON THE SEMANTICS OF “NOW” IN DATABASES 155

TT

VT

RT

tt_1

vt_1
Attribute Values

tt_2

vt_2

vt_3

vt_4

Possible
Definite

tcu
rre

n
t

Casesv3D × t1 andv3P × t1

TT

VT

tt_1

vt_1

Attribute Values

vt_2

vt_3

vt_4

Possible
Definite

tcu
rre

n
t

Casesv3D × t2 andv3P × t2

TT

VT

RT

tt_1

vt_1

Attribute Values

vt_2

Possible
Definite

cu
rre

n
t

t

Casesv4D × t1 andv4P × t1

TT

VT

RT

tt_1

vt_1

Attribute Values

tt_2

vt_2

Possible
Definite

tcu
rre

n
t

Casesv4D × t2 andv4P × t2

Figure 12: Examples of the bitemporal indeterminate cases

156 SEMANTICS OF TEMPORAL DATA

bindV,V T ,BT , andbindV,T T ,BT which are all similar generalizations of previous
definitions.

As with valid-time and transaction-time databases, queries are evaluated by
combining bitemporal timeslice and bind operations. Also as before, valid and
transaction times must be bound before the bitemporal valid-time timeslice or bitem-
poral transaction-time timeslice, respectively, can be applied.

To explore the interaction of times in queries on bitemporal databases, we
consider a number of queries on the simple database depicted in Figure 13 which
shows that Jane’s employment tuple was added to the database on June 2. Note
that it contains an now-relative indeterminate “to” time and “until changed” as the
“stop” time. For the purpose of the example, we assume that today is July 9. Thus,
the transaction-time bind operator bindsuntil changedto July 9 in all queries. The
first four queries all include Jane in the result.

• Using the current database state, who was possibly a faculty member on
July 7?

5
P,V,V T ,BT
July 7 (bindV,V T ,BTJuly 9 (5

V,T T ,BT
July 9 (bindV,T T ,BT (Faculty))))

In this query, we transaction timeslice to get only the most current informa-
tion. The valid-time bind ensures a perspective of today, and the valid times-
lice retrieves those tuples that were possibly valid two days ago (on July 7).

• Using the current database state, who was definitely a faculty member on
July 1?

5
D,V,V T ,BT
July 1 (bindV,V T ,BTJuly 9 (5

V,T T ,BT
July 9 (bindV,T T ,BT (Faculty))))

As before, the lower bound of the “to” time is ground to July 6 (July 9− 3
days). The difference is solely in the valid timeslice; we require definite in-
formation, and so we use a definite timeslice. Since July 1 is before July 6,
Jane is in the result.

• Using the database state on July 1, who was definitely a faculty member on
June 15?

5
D,V,V T ,BT
June 15 (bindV,V T ,BTJuly 1 (5

V,T T ,BT
July 1 (bindV,T T ,BT (Faculty))))

The transaction timeslice retrieves the information current on July 1. The
valid-time bind adopts this day as the perspective of the subsequent valid
timeslice which retrieves information about June 15. Since Jane’s tuple was
current on July 1 and June 15 is more than three days before July 1, Jane will
be in the result.

ON THE SEMANTICS OF “NOW” IN DATABASES 157

• Using the current database state, who will we say on July 12 is possibly a
faculty member on September 1?

5
P,V,V T ,BT
September 1(bindV,V T ,BTJuly 12 (5

V,T T ,BT
July 9 (bindV,T T ,BT (Faculty))))

We first consider only current information. Then we adopt a valid-time per-
spective of July 12 to examine the database as it will appear on July 12 if no
updates are made, i.e., our best guess as to what will be current information
on July 12. Finally, using that perspective, we ask about possible information
on September 1. Jane will thus be in the result.

In contrast to the queries above, the following three queries donot include Jane in
the result.

• Using the current database state, who was definitely on the faculty of State
University on July 7?

5
D,V,V T ,BT
July 7 (bindV,V T ,BTJuly 9 (5

V,T T ,BT
July 9 (bindV,T T ,BT (Faculty))))

Here, the valid-time bind operation yields a ground “to” time of July 6∼
January 1, 2028. Since July 7 is after July 6, Jane is possibly, but not definitely,
on the faculty.

• Using the database as of July 1, who was definitely a faculty member on
July 1?

5
D,V,V T ,BT
July 1 (bindV,V T ,BTJuly 1 (5

V,T T ,BT
July 1 (bindV,T T ,BT (Faculty))))

• Using the current database state, who will we say on July 12 is definitely a
faculty member on September 1?

5
D,V,V T ,BT
September 1(bindV,V T ,BTJuly 12 (5

V,T T ,BT
July 9 (bindV,T T ,BT (Faculty))))

In most of the examples above, the transaction timeslice time and the valid-
time bind time, or reference time, are the same. Indeed, this is the typical and most
useful scenario, as the following example makes clear. Suppose that today, July 9,
we execute a transaction-time timeslice with time argument February 1 (that is, the
precedingFebruary 1). This operation chooses the most up-to-date information as
of February 1, and disregards information that was not up-to-date on February 1
or was recorded at a later time. The user’s perspective for subsequent operations
using this information should naturally switch to the frame of reference of the cho-
sen information. Hence, for this example, it would be natural to also bindnow to
February 1.

Yet, two of the queries given above illustrate that this in not a necessary re-
striction. Lifting it leads to increased functionality, but also to queries that are
conceptually more involved. Existing query languages generally enforce this re-
striction.

15
8

S
E

M
A

N
T

IC
S

O
F

T
E

M
P

O
R

A
L

D
AT

A

FACULTY
VALID TIME TRANS TIME

NAME RANK (from) (to) (start) (stop)

Jane Assistant June 1 (now− 3 days)∼ January 1, 2028 June 2 until changed

Figure 13: A bitemporal relation

ON THE SEMANTICS OF “NOW” IN DATABASES 159

7 Timestamp Implementation

This paper has proposed four new current-time-related timestamps; namely,un-
til changed, now, now-relative instants, and now-relative indeterminate instants.
Elsewhere we show how these timestamps may be efficiently represented [18, 20,
10, 21]. For example, a now-relative timestamp can be encoded as a datetime value
coupled with a one-bit flag differentiating it from a ground timestamp. Conse-
quently, the timestamps proposed in this paper impose little space overhead.

We also proposed adding bind operations for valid time, transaction time,
and bitemporal databases; no other operations are needed to support current-time-
related modeling entities. The bind operations have no significant impact on the
run-time efficiency of a temporal database. The transaction-time bind is very effi-
cient. It simply replacesuntil changedwith the current transaction time. The valid
and bitemporal bind operations are only slightly less efficient. For now-relative in-
stants (and now-relative indeterminate instants) these operations replacenowwith
the reference time and then displace that reference time by a span. The displacement
costs one integer addition operation.

Now-relative instants also add an extra comparison to interval constructors.
As we observed in Section 2.2, predictive updates could insert into the database
intervals that end before they start. For a tuple without variables, such intervals can
be detected and eliminated when the tuple is first inserted into the database. But a
tuple with a variable might initially end before it starts, and only later evolve into
a valid interval. Consequently, during run-time each interval involving a variable
must be tested to ensure that the starting instant is before the terminating instant.
This test needs to be performed only once per interval per query.

8 Summary and Research Directions

The overall conclusion of this paper is a recommendation that timestamps involving
current-time variables–that is,now, until changed, now-relative, and now-relative
indeterminate timestamps–be allowed to be stored as values of columns, for conven-
tional and temporal databases, as well as implicit valid and transaction timestamps,
for temporal databases.

This paper makes a number of contributions. First, it provides a formal basis
for defining the semantics of databases with variables. The use and generality of the
framework was demonstrated by giving a semantics for conventional, valid-time,
transaction-time and bitemporal databases with all existing variables. Apart from
specifying a reasonable semantics for such databases, this exercise demonstrates
two important properties of the framework. The first property is that it is capable
of capturing the semantics of a wide range of variables. We provide the seman-

160 SEMANTICS OF TEMPORAL DATA

tics of variables of all kinds of general temporal aspects of database facts currently
identified [33]: user-defined time, valid time, and transaction time. The second is
that the semantics of a multidimensional database may be specified as a coordi-
nated combination of the semantics of the constituent one-dimensional databases.
The reference-time dimension in the framework provides the coordination mecha-
nism. For example, the semantics of variable bitemporal databases was specified
very easily by using the already specified semantics for valid-time and transaction-
time databases. This property makes it relatively easy to specify the semantics of
multidimensional databases. It also makes it easy to add further kinds of time that
may emerge in the future, as well as other dimensions, such as space, again, in all
their various combinations.

Second, without current-time variables, temporal databases provide inade-
quate support for their applications. The paper demonstrates that existing variables,
such asnowanduntil changed, are indispensable in databases. It also identifies sit-
uations were even these variables are inadequate, and introduces newnow-relative
andnow-relative indeterminateinstants that provide the desired support. The se-
mantics of databases with variables are also defined within the framework.

Third, a foundation for the querying of variable databases from existing tem-
poral query languages was presented. The paper provides algebraic “bind” opera-
tors for valid-time, transaction-time, and bitemporal databases, and it shows how
these can be used to permit existing query languages to access variable databases.
As a first step during query processing, the bind operation is applied to variable
databases, thus replacing all variables with ground values appropriate for the pro-
cessing of the query at hand. The framework also clarifies which values are the
appropriate ground values. This approach encapsulates the handling of variables in
a single operator per temporal dimension. It also requires only minimal changes
to the query processor: support for one new operator has to be added, but all other
components remain unchanged.

These three observations provide the rationale for the conclusion that vari-
able databases are viable. A number of secondary, but noteworthy, contributions
also deserve mention. The paper resolves the meaning of the use of variables in
existing temporal data models. A graphical notation with two or three dimensions
used throughout the paper proved to be helpful when describing the semantics of
variable databases. The complex interactions of current time, reference time, trans-
action time, and valid time within queries and variable databases were investigated
in detail. These interactions were not thoroughly understood or explicated in ex-
isting bitemporal data models. The concept of “perspective” within queries was
illustrated. Perspective adds the ability to bind the valid-time variablenow “to”
times other than the current time. Supporting this notion within a query language
enhances its functionality when querying variable databases.

This framework has implications for database query language design. The

ON THE SEMANTICS OF “NOW” IN DATABASES 161

user-defined time types available in SQL-92 can be easily extended to store now-
relative and indeterminate non-relative variables as values in columns. The TSQL2
language [46] does so, and also supports those variables for valid and transaction
time. In TSQL2 the “bind” operation is implicit;NOBIND is provided to store
variables in the database.

There are several directions for future research. The precise semantics of
several temporal models proposed in the literature could profitably be examined
in light of the framework presented here. In defining the semantics for bitempo-
ral databases, we have chosen but one possible way of combining the semantics of
valid-time and transaction-time databases; other possible combinations of these two
temporal dimensions might also prove useful. In addition, the use of the graphical
representation of temporal relations at the user interface—for displaying the results
of queries and, e.g., for the assertion of temporal integrity constraints—seems to
us a promising one for further research. The impact of stored variables on data-
base storage structures and access methods is an open problem. It also presents an
opportunity, e.g., if the optimizer knows (through attribute statistics) that a large
proportion of a tuples have a “to” time of now. It may then decide that a sort-merge
temporal join will be less effective. Finally, new kinds of variables, such asherefor
spatial and spatio-temporal databases, should be investigated, as an extension of the
framework introduced in this paper.

9 Acknowledgments

Partial support for Curtis Dyreson and Richard Snodgrass was provided by the Na-
tional Science Foundation through grants IRI–8902707 and IRI–9302244, the IBM
Corporation through Contract #1124, and the AT&T Foundation. Partial support for
Christian S. Jensen was provided by the Danish Natural Science Research Council
through grants 11–9675–1 SE and 11–0061. Won Kim, Nick Kline and the anony-
mous referees provided helpful comments on a previous draft.

References

[1] K. K. Al-Taha, R. T. Snodgrass, and M. D. Soo. Bibliography on Spatiotem-
poral Databases.International Journal of Geographical Information Systems,
8(1):95–103, January-February 1994.

[2] G. Ariav, A. Beller, and H. L. Morgan. A Temporal Data Model. Technical
Report DS-WP 82-12-05, Decision Sciences Department, University of Penn-
sylvania, December 1984.

[3] M. A. Bassiouni and M. J. Llewellyn. A Relational-calculus Query Language
for Historical Databases.Computer Languages, 17(3):185–197, 1992.

162 SEMANTICS OF TEMPORAL DATA

[4] J. Ben-Zvi.The Time Relational Model. Ph.D. thesis, University of California
at Los Angeles, 1982.

[5] G. Bhargava and S. Gadia. Achieving Zero Information Loss in a Classical
Database Environment. InProceedings of the International Conference on
Very Large Databases, pages 217–224, Amsterdam, August 1989.

[6] V. Brusoni, L. Console, P. Terenziani, and B. Pernici. Extending Temporal
Relational Databases to Deal with Imprecise and Qualitative Temporal Infor-
mation. InProceedings of the VLDB International Workshop on Temporal
Databases, J. Clifford and A. Tuzhilin (editors), Workshops in Computing
Series, Springer Verlag, Zurich, Switzerland, pages 3–22, September, 1995.

[7] J. Clifford. Indexical Databases. InAdvanced Database Systems, Lecture
Notes in Computer Science 759, Springer-Verlag, 1993.

[8] J. Clifford and A. Croker. The Historical Relational Data Model HRDM and
Algebra Based on Lifespans. InProceedings of the IEEE International Con-
ference on Data Engineering, pp. 528–537, Los Angeles, February 1987.

[9] J. Clifford, A. Croker, and A. Tuzhilin. On Completeness of Historical Rela-
tional Query Languages.ACM Transactions on Database Systems, 19(2):64–
116, March 1994.

[10] J. Clifford, C. E. Dyreson, T. Isakowitz, C. C. Jensen, and R. T. Snodgrass,
“On the Semantics of ‘Now’ in Temporal Databases.” Technical Report R-94-
2047, Aalborg University, Department of Mathematics and Computer Science,
Frederik Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark, November, 1994.

[11] J. Clifford and T. Isakowitz, On The Semantics of Transaction Time and Valid
Time in Bitemporal Databases. InProceedings of the ARPA/NSF International
Workshop on an Infrastructure for Temporal Databases, R. T. Snodgrass, edi-
tor, pp. I.1–I.17, Arlington, TX, June 1993.

[12] J. Clifford and T. Isakowitz, On The Semantics of (Bi)Temporal Variable
Databases. InProceedings of the Fourth International Conference on Extend-
ing Database Technology, pp. 215–230, Cambridge, England, March 1994.

[13] J. Clifford and A. U. Tansel. On an algebra for historical relational databases:
Two views. InProceedings of ACM SIGMOD International Conference on
Management of Data, S. Navathe, editor, pp. 247–265, Austin, TX, May 1985.

[14] J. Clifford and D. S. Warren. Formal Semantics for Time in Databases.ACM
Transaction On Database Systems, 8(2):214–254, 1983.

[15] E. F. Codd, A Relational Model of Data for Large Shared Data Banks.Com-
munications of the ACM, 13(6):377–387, June 1970.

[16] C. J. Date and C. J. White.A Guide to DB2, Volume 1, 3rd edition. Addison-
Wesley, Reading, MA, September 1990.

ON THE SEMANTICS OF “NOW” IN DATABASES 163

[17] S. Dutta. Generalized Events in Temporal Databases. InProceedings of the
Fifth International Conference on Data Engineering, pages 118–126, Los An-
geles, CA, February 1989.

[18] C. E. Dyreson and R. T. Snodgrass. Timestamp Semantics and Representation.
Information Systems, 18(3):143–166, 1993.

[19] C. E. Dyreson and R. T. Snodgrass. Valid-time Indeterminacy. InProceedings
of the International Conference on Data Engineering, pp. 335–343, Vienna,
Austria, April 1993.

[20] C. E. Dyreson and R. T. Snodgrass. A Timestamp Representation. Chapter 25
of [46], pp. 475–499.

[21] C. E. Dyreson. Valid-time Indeterminacy. Ph.D. thesis, Computer Science
Department, University of Arizona. October 1994, 187 pages.

[22] R. Elmasri, G. Wuu, and Y. Kim. The Time Index — an Access Structure for
Temporal Data. InProceedings of the International Conference on Very Large
Databases, Brisbane, Australia, August 1990.

[23] M. Finger. Handling Database Updates in Two-dimensional Temporal Logic.
Journal of Applied Non-Classical Logics, 2(2), 1992.

[24] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy.Foundations of Set Theory. North-
Holland Publishing Company, 1973.

[25] S. K. Gadia. A Homogeneous Relational Model and Query Languages for
Temporal Databases.ACM Transaction On Database Systems, 13(4):418–
448, 1988.

[26] S. Gadia and S. Nair. Temporal Databases: A Prelude to Parametric Data.
Chapter 2 of [50], pp. 28–66.

[27] S. K. Gadia, S. Nair, and Y.-C. Poon. Incomplete Information in Relational
Temporal Databases. InProceedings of the Conference on Very Large Data-
bases, Vancouver, Canada, August 1992.

[28] C. S. Jensen and L. Mark. A Framework for Vacuuming Temporal Data-
bases. Technical Report CS-TR-2516/UMIACS-TR-90-105, University of
Maryland, Department of Computer Science, College Park, MD, August 1990.

[29] C. S. Jensen and L. Mark. Queries on Change in an Extended Relational
Model. IEEE Transactions on Knowledge and Data Engineering, 4(2):192–
200, April 1992.

[30] C. S. Jensen and R. T. Snodgrass. Temporal Specialization. In F. Golshani, ed-
itor, Proceedings of the IEEE International Conference on Data Engineering,
pp. 594–603, Tempe, AZ, February 1992.

164 SEMANTICS OF TEMPORAL DATA

[31] C. S. Jensen and R. T. Snodgrass. Temporal Specialization and Generaliza-
tion. IEEE Transactions on Knowledge and Data Engineering, 6(6):954–974,
December 1994.

[32] C. S. Jensen and R. T. Snodgrass “Semantics of Time-Varying Information,”
Information Systems, to appear.

[33] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia (edi-
tors). A Consensus Glossary of Temporal Database Concepts.ACM SIGMOD
Record, 23(1):52–65, March 1994.

[34] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Data Mod-
els via a Conceptual Model.Information Systems, 19(7):513–547, December
1994.

[35] W. Kurutach and J. Franklin. On Temporal-fuzziness in Temporal Fuzzy
Databases. InDEXA’93, pages 154–165, Prague, Czech Republic, Septem-
ber 1993.

[36] W. Lipski, Jr. On Semantic Issues Connected with Incomplete Information
Databases.ACM Transactions on Database Systems, 4(3):262–296, Septem-
ber 1979.

[37] N.A. Lorentzos and R.G. Johnson. Extending Relational Algebra to Manipu-
late Temporal Data.Information Systems, 13(3):286-296, 1988.

[38] J. Melton and A. R. Simon.Understanding the New SQL: A Complete Guide.
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1993.

[39] R. Montague.Formal Philosophy: Selected Papers of Richard Montague. Yale
University Press, New Haven, 1974.

[40] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query
Language.Information Sciences, 49:147–175, 1989.

[41] R. Reiter. Towards a Logical Reconstruction of Relational Database Theory.
In On Conceptual Modelling, pp. 191–233. Springer Verlag, 1984.

[42] J. F. Roddick. Schema Evolution in Database Systems — An Annotated Bib-
liography.SIGMOD Record, 21(4):35–40, December 1992.

[43] N. L. Sarda. Algebra and Query Language for a Historical Data Model.The
Computer Journal, 33(1):11–18, February 1990.

[44] R. T. Snodgrass. The Temporal Query Language TQuel.ACM Transactions
on Database Systems, 12(2):247–298, June 1987.

[45] R. T. Snodgrass. An Overview of TQuel. Chapter 6 of [50], pp. 141–182.

[46] R. T. Snodgrass (editor).The TSQL2 Temporal Query Language. Kluwer
Academic Publishers, 1995, 674+xxiv pages.

ON THE SEMANTICS OF “NOW” IN DATABASES 165

[47] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In S. Navathe,
editor,Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, pp. 236–246, Austin, TX, May 1985.

[48] J. B. Sykes, editor.The Concise Oxford Dictionary. Oxford University Press,
Oxford, England, 1964.

[49] A. U. Tansel. Modelling Temporal Data.Information and Software Technol-
ogy, 32(8):514–520, October 1990.

[50] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass,
editors. Temporal Databases: Theory, Design, and Implementation. Ben-
jamin/Cummings, 1993.

[51] S. Thirumalai and S. Krishna. Data Organization for Temporal Databases.
Technical report, Raman Research Institute, Bangalore, India, 1988.

[52] G. Wiederhold, S. Jajodia, and W. Litwin. Integrating Temporal Data in a
Heterogeneous Environment. Chapter 22 of [50], pp. 563–579.

[53] C. Yau and G. S. W. Chat. TempSQL — a Language Interface to a Temporal
Relational Model.Information Sc. & Tech., pp. 44–60, October 1991.

